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Abstract

We consider electron transfer from a redox to an electrode through and adsorbed
intermediate. The formalism is developed to cover all regimes of coverage factor, from
lone adsorbate to monolayer regime. The randomness in the distribution of adsorbates
is handled using coherent potential approximation. We give current-overpotential pro-
file for all coverage regimes. We explictly analyse the low and high coverage regimes by
supplementing with DOS profile for adsorbate in both weakly coupled and strongly cou-
pled sector. The prominence of bonding and anti-bonding states in the strongly coupled
adsorbates at low coverage gives rise to saddle point behaviour in current-overpotential
profile. We were able to recover the marcus inverted region at low coverage and the
traditional direct electron transfer behaviour at high coverage.

1 Introduction

A proper understanding of electron transfer reaction through an adsorbate intermediate

constitutes the first step towards modelling the charge transfer across a chemically modified

electrode [1–3], through a molecular wire [4, 5], or the phenomenon of the molecular elec-

tronics [6–10]. In fact the indirect heterogeneous electron transfer is a recurring feature in

all these processes.

In the present communication, we consider the kinetics of an adsorbate mediated electron
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transfer reaction. The adsorbate is taken to be a metal ion. The reactant is supposed to

couple with the adsorbate orbital alone; the direct coupling between the reactant and Bloch

states in the metal electrode is neglected. In the present study, the adsorbate coverage

factor θ is allowed to take any arbitrary value in the range (0, 1). Thus starting from a single

adsorbate case, corresponding to θ −→ 0 limit, the formalism remains valid all the way up to

a monolayer regime (θ = 1) . For metallic adsorbates, the adsorbate orbitals remain spatially

localized in the low coverage regime. But in the monolayer regime, one obtains extended

electron states in the adlayer. These states now form a two-dimensional band [11, 12]. The

localized adsorbate states interact strongly with the solvent polarization modes. On the

other hand, the interaction of extended electron states with polarization modes are much

weaker, and as a first approximation, it can be neglected [13] . This progressive desolvation

of adspecies, when the coverage is varied from zero to one, changes adsorbate orbital energy

by a few electron volts and hence must leave very significant effects on the electron kinetics.

In addition, in the monolayer regime, the metallic adlayer acts as the electrode surface.

As a consequence, the adsorbate mediated electron transfer exhibits the characteristics of a

direct heterogeneous reaction. We investigate how the desolvation and metallization of the

adsorbate layer influences the charge transfer kinetics.

The crucial difference between the heterogeneous electron transfer reaction through an

adsorbate and a direct electron transfer to an electrode arises due to (i) a possible change

in the electronic coupling term between the participating orbitals, and (ii) modification

in the relevant density of state. The electronic coupling strength can change due to the

particular symmetry configuration of the orbitals. Besides, the equilibrium distance between

the reactants may vary in both the situations [ ]. Next, the density of states (dos) of a

metallic electrode is usually broad, and a slowly varying function of energy [ ]. This feature

enables one to replace the energy dependent dos by its value at the Fermi level. As the

coupling between the band states in the electrode and solvent polarization modes are usually

neglected, the electrode dos does not exhibit any temperature dependence. The adsorbates,

on the other hand have a narrower dos, which depends on temperature. This follows from

the solvent induced broadening of the adsorbate orbital. When this broadening mechanism is

absent, adsorbate dos ceases to be temperature dependent. In addition to the solvent induced

broadening, the adsorbate dos acquires an additional temperature independent width due
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to the hybridization of its orbital with the Bloch states in the electrode. The location of

adsorbate dos vis a vis the dos of redox couple play an important role in determining the

charge transfer kinetics. In fact catalytic effect can be observed when strong overlap occurs

between these two density of states.

The adsorbates exhibit different structural arrangements at different coverage. Even

at a fixed coverage, more than one kind of distribution pattern can be observed in the

adlayer [14–16]. Modelling each configuration separately poses a difficult task. Therefore we

consider a random distribution of the adsorbates in a two dimensional layer. Subsequently, an

‘effective-medium’ description is used for the adlayer. This procedure captures the essential

features of the adlayer in an average sense.

The plan of the paper is as follows: In section 2, we present the model Hamiltonian and

the expression for anodic and cathodic current in terms of system parameters, whose detailed

calculations as shown in appendix. In section 3, the results of numerical analysis is presented along

with the various DOS for different regimes and also the profile of current at different coverages

are considered along with explanation for the observed behaviour. In section 4, we summarize our

results and an overview of the whole work is given

2 System Hamiltonian and Current

An adsorbate has strong electronic coupling with the substrate band states as well as

it has electronic overlap with the neighbouring adspecies. The latter coupling leads to a

two-dimensional band formation in the adlayer at higher coverage. The solvent-adsorbate

interaction and surface plasmon-adsorbate interaction, both modelled within the harmonic

approximation, are responsible for the solvation and image energy for the adsorbate, respec-

tively. Similar interactions are present for the redox-couple, which is supposed to interact

weakly with the adsorbate orbital. Taking into account various system components and in-

teractions among them, an effective Hamiltonian for an adsorbate mediated electron transfer

reaction can be written as

H =
∑

σ

ǭr{bν + b†ν}nrσ +
∑

σ

{varc†aσcrσ + h.c.} −
∑

ν=1,2

λrcν(bν + b†ν) +Ho (1)
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The redox species is coupled to an adsorbate located at a site i = a in the adlayer. Ho is the

Hamiltonian for the ‘electrode - adsorbate - solvent’ subsystem

Ho =
∑

k,σ ǫknkσ +
∑

i,σ ǫ̂iσ({bν + b†ν})niσ +
∑4

ν=1
ωνb

†
νbν

+
∑

k,i,σ{vikc
†
iσckσ + h.c.}+

∑

i 6=j,σ vijc
†
iσcjσ

−
∑

i,ν=1,2 λicν(bν + b†ν)

(2)

{i} specify sites in the adlayer. k and r label electrode and reactant electronic states. σ is

the spin index and ǫ is the energy value. n, c† and c respectively denote number, creation and

annihilation operators for electrons. ν = 1, 2, 3, 4 label oscillator modes corresponding to the

orientational, vibrational, electronic solvent polarization and surface plasmons, respectively,

and ων are the associated frequencies. b, b† are the annihilation and creation operators for

the boson modes. v represent the coupling term between the electronic states. λ signify

the strength of adsorbate and reactant coupling with the boson modes. Subscripts o and c

respectively refer to the reactant and adsorbate core.

ǭr{bν + b†ν} = ǫor +
∑

ν=

λrν(bν + b†ν) (3)

ǫ̂iσ ≡ ǫ̂aσ +
∑

ν

λaν(bν + b†ν) (4)

ǫor and ǫoa are the reactant and adsorbate orbital energies in the gas phase The expression (4)

gives the energy of adsorbate at site i when it is occupied. In case no adsorbate occupies the

site i, the expectation value

< ǫ̂iσ >−→ ∞ (5)

which ensures no charge transfer through an unoccupied site. While evaluating the shift in

adsorbate orbital due to its coupling to boson, the boson mediated interaction between dif-

ferent sites are neglected. Next, since the adsorption of a single type of species is considered,

we replace λiν by λaν and λicν by λcν . The randomness associated with the site energy can

be handled using the coherent potential approximation [ ].

Treating the magnitude of var to be a small quantity, the anodic current contribution is

obtained within the linear response formalism as (cf.AppendixA)
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Ia = 2 eθ|var|2
√
π~−1

∫ ∞

−∞

sgn(X2(ǫ, θ)) (1− f(ǫ)) ρana (ǫ) ρanr (ǫ)dǫ (6)

where f(ǫ) = (1+exp(−βǫ))−1 is the Fermi distribution function. Here zero of the energy

scale is set to be at ǫf for a direct electrochemical electron transfer reaction. ρana (ǫ) and and

ρanr (ǫ) are the adsorbate and the reactant density of states.

ρana (ǫ) =
1

2
√
πP

Re(w(z)) (7)

w(z) = e−z2erfc(−iz) (8)

P =
(4Er

aE
r
r − (Er

ar)
2)

4βEr
r

(9)

Z = (−Qan + i|X2(ǫ, θ)|)/(2
√
P ) , (10)

Qan = X1(ǫ, θ)− ǫ0aσ +
∑

ν

λaν λ̄ν

ων
−

(ǫ− ǫ0r +
∑

ν

λrνλ̄ν

ων
)Er

ar

2Er
r

(11)

Re(w(z)) denotes the real part of [w(z)]. X1 and X2 is obtained through the relation (cf.

Appendix)

X1(ǫ, θ) + i sgn(X2(ǫ, θ))|X2(ǫ, θ)| = Ḡ−1
ii +Kσ{ǫ, < qν >} (12)

with Kσ being the coherent potential which has to be estimated self-consistently.

λ̄ν = λcν + λoν + λrν (13)

in case of anodic current.

Er
r =

∑

ν

λ2
rν

ων
; Er

a =
∑

ν

λ2
aν

ων
; Er

ar = 2
∑

ν

λrνλaν

ων
; (14)

are the reorganization energy for the reactant, adsorbate, and the cross reorganization energy,

respectively.
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ρr(ǫ) =

√

β

4πEr
exp

[

−β
(ǫ − ǫ′r)

2

4Er

]

(15)

Alternatively, we can also write

ǫ′r = ǫ0r −
∑

ν

λrνλ̄ν

ων
= F r

R − F r
O − Er

r ≡ η −Er
r (16)

where

F r
R = ǫR −

4
∑

ν=1

λ2
Rν

ων

− 2
4

∑

ν=1

λRνλcν

ων

(17)

F r
O = ǫO −

4
∑

ν=1

λ2
oν

ων
− 2

4
∑

ν=1

λoνλcν

ων
(18)

FO and FR denote the free energies of the redox-couple in the oxidized and reduced states.
ǫR − ǫO = ǫor, λRν = λrν − λoν . Thus FR − FO gives the overpotential η for the electron transfer
reaction. Similarly, the fraction of overpotential drop between the electrode and adsorbate is related
to the change in the adsorbate free energy during the reaction

ǫ′aσ = ǫ0aσ −
∑

ν

λaν λ̄ν

ων
= F a

R − F a
O − Er

a ≡ αη − Er
a + Er

ar (19)

Rewriting the Anodic current expression in terms of overpotential, the expression for Q and ρr

takes the form as shown below.

Qan = X1(ǫ, θ)− αη − Er
a + Er

ar −
(ǫ− η + Er

r )E
r
ar

2Er
r

(20)

ρanr (ǫ) ==

√

β

4πEr
r

exp

[

−β
(ǫ − η + Er

r )
2

4Er
r

]

(21)

Proceeding along similar lines of argument for the cathodic current, and noting that λ̄ν =

λcν + λoν + λaν for cathodic current, the expression for Q and ρr obtained as shown below,

Ic = 2 eθ|var|2
√
π~−1

∫ ∞

−∞

sgn(X2(ǫ, θ)) f(ǫ) ρa(ǫ) ρr(ǫ)dǫ (22)

Qcat = X1(ǫ, θ)− αη + Er
a −

(ǫ− η − Er
r + Ea

ar)E
r
ar

2Er
r

(23)
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ρcatr (ǫ) ==

√

β

4πEr
r

exp

[

−β
(ǫ− η − Er

r + Er
ar)

2

4Er
r

]

(24)

The coupling constants between adsorbate and various oscillator modes are scaled by a factor
√

(1− θ2) to take into account the disolvation effect as adlayer itself exhibits metallic properties in

the higher coverage regime. Consequently, the solvation and reorganization energy for the adsorbate

get scaled by a factor (1−θ2), and the solvent induced cross energy terms are scaled as
√

(1− θ2) [].

No such scaling is present for solvation and reorganization energies of the redox-couple. Thus the

scaling laws for the various re-organisation are as follows

Er
ar(θ) =

√

(1− θ2)Er
ar(0) ; Er

a(θ) = (1− θ2)Er
a(0) (25)

3 Numerical Results and Discussions

The basic concern in the article is toward current-overpotential characteristics with specific
emphasis on the variation with the coverage factor (θ) and the fraction of overpotential drop (αη)
across the adsorbate. A first look at the expression for anodic current for a shows that the current
is an overlap integral of three terms corresponding to the availability of vacant energy level at
the electrode (1 − f(ǫ)), the density of states of the solvated redox couple ρanr and the density
of states of the adsorbate ρana . The redox density of states has a Gaussian form in terms of ǫ.
The self-consistent evaluation of the coherent potential kσ(θ) enforces a numerical derivation of the
adsorbate density of states. However in the following limiting cases, kσ(θ) takes the value

lim
θ→0

kσ = ǫ− ǫ− ǫaσ − wii

θ
− wii (26)

and
lim
θ→1

kσ = ǫaσ (27)

where

wii =
∑

k

|vik|2
ǫ− ǫk

(28)

.
Consequently, the adsorbate density of states can be analytically obtained in the limits θ →

0 and 1. Additionally, ǫ′aσ involved in performing the self-consistent evaluation of the coherent
potential takes the value as αη−Ea(θ)+Ear(θ) for anodic current evaluation and αη+Ea(θ)
for cathodic current estimation.
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In what follows, we describe the current vs overpotential profile for different sets of parameters.
The adsorbate-electrode interaction is treated both in the weak (v = 0.5eV ) and strong (v = 2.0eV )
coupling limits. When the coverage is low, the adsorbate density of states has a single peak Fig. 1
. An important consequence of the strong coupling limit is the splitting of the adsorbate level in
bonding and anti-bonding states for low θ Fig.2. This feature is recaptured in the present analysis
since energy dependence of ∆(ǫ) is explicitly treated in the present approach (Eqs A-14, A-15). On
the other hand, the well known wide-band approximation for ∆(ǫ) fails to provide the bonding anti-
bonding splitting. In the monolayer regime, due to the 2-d bond formation by the adsorbate layer,
its density of states acquires a flat profile, irrespective of the strength of the electrode-adsorbate
coupling (Fig 1, 2) . The table I summarizes the values of parameters used in the calculations.

Table 1: Values of parameters used in calculation in eV

v ∆|| ∆⊥ µ Er Ear (0) Ea (0)
strong 2.0 0.75 1.5 4.5 1.0 0.25 0.75
weak 0.5 0.75 1.5 4.5 0.6 0.2 0.4

Ideally, under zero overpotential condition, the anodic and cathodic currents are expected to be
equal in magnitude. This implies that the profile of the product ρanr (ǫ) ∗ ρana (ǫ) for anodic current
is identical to the product profile ρcatr (ǫ) ∗ ρcata (ǫ) for the cathodic current. This is a consequence of
equal separation between the peak positions of adsorbate and reactant density of states for anodic
and cathodic processes during equlibrium. [Fig. 3, 4]. The corresponding plots for strongly coupled
regime is also shown in Fig. 5, 6

As noted earlier, the electrochemical potential µ has been set as the zero of energy scale for
the direct electron transfer reaction. The presence of additional charge particles for the bridge
assisted electron transfer reaction, namely the adsorbates, changes the equilibrium potential of
the electrode. This is turn gets reflected as a θ dependent variation ∆φ(θ) in µ(≡ 0). The fact
that the anodic and cathodic currents at equilibrium potential are identical in magnitude provides
a novel method for the determination of ∆φ(θ). Thus the relation Ia(η = 0) = Ic(η = 0) with
f(ǫ) = (1+ exp(−β(ǫ+∆φ(θ)))−1 { } (cf eqs. 6 and 22) enables us to evaluate ∆φ(θ). The
variation of ∆φ with respect to θ is shown in Fig.7 in the limit of weak and strong adsorbate-
electrode interaction, with Er

r = 0.6 eV, Er
ar(0) = 0.2 eV, Er

a (0) = 0.4 eV. The value of ∆φ(θ)
depends on the strength of coupling v; its magnitude increases as the coupling becomes stronger.
|∆φ(θ)| is again large for low θ values and remains almost constant in this region. Note that in
this regime, the charge on the adsorbate remains localized on the adsorption site. |∆φ(θ)| starts
diminishing sharply for θ > 0.6 and it tends to 0 as θ → 1. This behaviour is expected. As θ → 1,
the adsorbate layer becomes metallic and gets incorporated in the electrode. The electron transfer
acquires the characteristics of a direct heterogeneous reaction, and consequently as noted earlier,
the electrochemical potential µ again lies at the zero of the energy scale.

We first present the current-overpotential profile in the weak coupling limit (v = 0.5 eV ) for a
range of θ and α. The employed values of various reorganization energies are Er

r = 0.6, Er
ar(0) =

0.2, Er
a (0) = 0.4. The general behaviour can be analysed by looking at the case of lower coverage
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and high coverage regimes respectively, and then by investigating the effect of variation of α in these
limits. Fig. 8 shows that for a fixed α, anodic current as well as the current peak height increases
with θ in the small θ range (curve a and b). This feature arises due to a better overlap between
the reactant and adsorbate density of states, whose peak positions are approximately separated
by a distance Er

r + Er
a(θ) − Er

ar(θ). An increase in θ reduces Er
a and Er

ar (cf eq. 25), and hence
the peak separation diminishes and the overlap gets enhanced. The presence of anodic current
peak at ηp signifies negative differential resistance for η > ηp. This feature is absent in the higher
coverage limit. For large value of θ, the current at higher η exhibits a saturation effect. This is a
consequence of the fact that the maximum n in the adsorbate density of states ρana is now absent.
ρana now acquires a plateau profile (Fig 1). The plateau height, and therefore the overlap between
the reactant and adsorbate density of states decreases with the increasing coverage . Therefore a
decrease in the saturation current results as θ → 1 (curve θ = 0.7 and 0.9 in Fig. 8).

The effect of the α variation on the anodic current is highlighted in Fig. 9, 10 and 11 The effect
is more pronounced in the low coverage regime due to the presence of adsorbate density of states
peak. The reactant and adsorbate density of states peak separation increases with the increasing
α. Consequently, the maximum overlap between the two occurs at larger η. This explains the
occurrence of the anodic current peak at higher η values as α increases . On the other hand, the
near constant adsorbate density of states for large θ ensures a minimal effect of α variation on the
anodic current (Fig. 11, 12).

Next the strong coupling limit with [v = 2.0 eV, Er
r = 1.0, Er

ar(0) = 0.25, Er
a (0) = 0.75 ]is

considered. Figures 13,14,15 and 16 shows the current overpotential response in the strong coupling
regime. As in the case of low coverage, the Ia vrs η plot exhibits a negative-differentail region (Fig.
13, 14).

More importantly, the presence of two peaks in ρana when coupling v is large and θ is small (Fig.
2) leads to a saddle point and a maximum in the Ia vrs. η plot. For the set of parameters currently
employed, the IA,Max now occurs at a much larger η in comparison to the weak coupling limit,
and may not be accessible experimentally. However, the saddle point in the current appears in an
overpotential range where the anodic current peak appears in the weak coupling limit. For large
coverage, current potential profile are similar in strong and weak coupling limit. Interestingly, the
saturation current is smaller in the large coupling case due to a decrease in the height of ρana . In
fact this lowering of the current in the strong coupling is holds true for any coverage and η. This is
shown in Fig. 17 wherein the variation of equilibrium current Io with respect to coverage is plotted
The Io is smaller for larger v, and as explained earlier in the context of Fig. 8, shows a maximum
in the intermediate coverage regime. However it may be noted that when v → 0, current would be
proportional to |v|2, and an increase in v in this very weak coupling limit will lead to an increase
in the current.

The results presented till now correspond to anodic current. But the formalism developed here
also yields the cathodic current. In fact the equivalence of anodic and cathodic currents at the
equilibrium potential has been earlier employed to determine the the variation in the equilibrium
potential due to varying adsorbate coverage. The dependence of the cathodic current Ic on over-
potential η is plotted in Fig. (18). It is often presumed that Ic = e−ηIa (Fig. 18). The present
‘microscopic’ calculations show that it is not entirely true. The calculated current value is slightly
larger than the e−ηIa when η < 0.
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The high coverage regime of θ → 1 corresponding to a formation of monolayer of A decrease
in the current for higher η when the coverage is low virtually mimics the Marcus inverted region
for a homogeneous electron transfer reaction. On the other hand, the current getting saturated at
higher η when the coverage is large is also true for a direct heterogeneous electron transfer reaction.
Thus depending on the extent of coverage, an adsorbate mediated electron transfer at an electrode
exhibits the characteristics of both homogeneous and heterogeneous electron transfer reactions.
The localization of adsorbate electron at low coverage and its delocalization at high coverage is the
reason behind this phenomena.

4 Summary and Conclusions

In this work, we considered electron transfer in an electrochemical system, from a solvated
redox to an electrode mediate by intervening adsorbate atoms. Further randomness is introduced
in the model in terms of the coverage factor which relates to the number of adsorbate atoms
adsorbed on the electrode surface. The theory developed is valid for a range of regime, lone
adsorbate mediate transfer to the monolayer formated direct electron transfer regime. The inherent
randomness involved in the adsorbate distribution on the surface has been tackled by coherent
potential approximation (CPA) and separate expression are derived for anodic and cathodic current.

Explicit attention was paid to the low coverage and high coverage regime, even though the
formalism is valid for all regime, since at these two regions the theory could be compared with pre-
existing literature. Plots were also provided for intermediate regimes and additionally, the effect
of the adsorbed atoms on the Fermi level of the electrode were incorporated by means of a shifted
potential ∆φ(θ), ensuring that the anodic and cathodic current were equal under zero overpotential
condition.

The analysis also provides a novel method for determining the variation in ∆φ(θ) with changing
adsorbate coverage.

The fraction of overpotential drop across the electrode-adsorbate is incorporated and the collec-
tive plots are analysed. We have proved that this fraction of overpotential drop plays a significant
role in determining the response behaviour of current, typically the location and extent of the
maximas in case of lower coverage situations. while in case of high coverage regime, the effect is
not profound and the electron transfer follows the traditional direct electron transfer as expected
from heuristic arguments.

The dependence of anodic current in the weak and strong electrode-adsorbate coupling is ana-
lyzed. In the former case, Ia vrs overpotential profile exhibits a peak, where as in the later case,
and in the same overpotential region, the current plot shows a saddle point behaviour. This fact
can be used to distinguish a weakly chemisorbed bridge from a strongly chemisorbed one. These

10



distinguishing features occur only when the coverage is low. At high coverage, Ia ∼ η plots have
identical profile for weak and strong coupling cases

The calculated cathodic current gives a slightly higher value of Ic in comparison to a presumed
Ic which equals e−ηIa.

At low coverage, it is possible to recover the Marcus inverted region, which is absent when the
coverage is large. The localized nature of the adsorbate orbital when coverage is low, and its getting
delocalised for high coverages leads to this behaviour.
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appendix

The microscopic current associated with the electron transfer reaction depends on the average
value of the rate of change of electronic occupancy of the redox orbital [ ]

I = −e

〈

∂nr

∂r

〉

(A-1)

Treating var as a small quantity, a linear response formalism can be used to evaluate < ṅr >.
Consequently,

I =
e

~2

∑

σ

∫ ∞

−∞
< [V †

Iσ(0), VIσ(t)]− > dt (A-2)

where

VIσ = varC
†
aσCr (A-3)

The first term in the commutator leads to anodic and the second one gives the cathodic current.
The expectation value in (A-2) now corresponds to a density matrix defined for the Hamiltonian

H ′ = H − ∑

σ(V
†
Ir + VIr). H ′ also determines the time evolution of various operators in (A-2).

Employing the Frank-Condon approximation and treating the low frequency polarization modes in
the semi-classical approximation, anodic current is obtained as

Ia =
e

~

2
∫ ∞

−∞
dt|Vat|2 << C†

r(0)Cr(t) >F< Caσ(0)C
†
aσ(t) >F>B (A-4)

where

< c†r(0)cr(τ) >F =
1

π

∫ ∞

−∞
e−iǫτ/~δ(ǫ− ǫr)dǫ (A-5)

The time correlation function involving ca, c†a can be expressed in terms of adsorbate Green’s
function

< caσ(0)c
†
aσ(t) >F =

1

π

∫ ∞

−∞
(1− f(ǫ))eiǫτ/~(ImGii)i=adǫ (A-6)

where

(Gii(ǫ))i=a = < 0|caσ <
1

ǫ−H ′ >c,i=a c†aσ |0 >F (A-7)

Here < ... >F implies an average over electronic degrees of freedom, keeping bosonic variables as
fixed parameters. < ... >B denotes the thermal average over boson modes. < ... >c,i=a denotes
a restricted configuration average. It implies that while obtaining the configuration average, the
site a, which is occupied by an adsorbate and through which the electron transfer takes place, is
excluded from the averaging. The occupancy status of the remaining sites are still unspecified. We
replace the random medium encompassing the remaining sites by an effective medium using the
CPA technique. The picture which now emerges is the one in which a reactant is coupled to an
adsorbate occupying the site a, and this particular adsorbate is embedded in a two dimensional
effective medium.
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The randomness associated with these sites can be handled using the coherent potential ap-
proximation [ ]. Accordingly, the random energy operator ǫ̂iσ(< qν >)nnσ in eq. 4 is now replaced
by a deterministic operator kσniσ. The coherent potential kσ(ǫ,< qν >) is same for all the sites,
but depends on the energy variable ǫ. kσ is determined self-consistently through the expression [ ]

Ḡii =
1

N||

∑

u

1

ǫ− kσ(ǫ,< qν >)− ǫu −W ′(ǫ, u)
=

1− θ

ǫaσ − kσ(ǫ,< qν >)
(A-8)

where 2D adsorbate lattice has N|| number of sites, and

W (ǫ, u) =
∑

j e
iu.Rji [vij +W ′

ij(ǫ)]

= ǫu +
∑

j e
iu.RjiW ′

ij(ǫ)

= ǫu +W ′(ǫ, u)

(A-9)

The (Gii)i=a can be related to the complete configuration averaged GF Ḡii

(Gii)i=a = Ḡii(ǫ)[1 − (ǫ̂aσ(qν)− kσ(ǫ))Ḡii(ǫ)]
−1 (A-10)

The tedious summation over the momentum k of metal states and the momentum u of the
Bloch states in 2D adsorbate layer, commensurate with the underlying electrode surface lattice,
can be considerably simplified under the following assumptions. (i) The separability of the metal
state energy ǫk in the direction parallel and perpendicular to the surface. (ii) The substrate density
of states in the direction perpendicular to surface is taken to be Lorentzian, whereas the same is
assumed to be rectangular along the surface. (iii) The adsorbate occupies the ‘on-top’ position
on the electrode, and is predominantly coupled to the underlying substrate atom with coupling
strength v. Consequently, eq.(A9) now becomes

Ḡii(ǫ) = 1− θ
ǫaσ{< qν >} − kσ{ǫ,< qν >}

= 1
2∆||(B −A)µ

[

(A− C) ln
(

A−∆||

A+∆||

)

− (B − C) ln
(

B−∆||

B+∆||

)]

(A-11)

with

A/B =
1

2
[(C +D)± {(C +D)2 − 4(CD − v2

µ
)} 1

2 ] (A-12)

C =
ǫ− kσ{ǫ,< qν >}

µ
; D = ǫ− i∆⊥; µ = θδ/∆|| (A-13)

δ is the half-bandwidth of adsorbate monolayer and µ is the same for an arbitrary coverage
θ. 2∆|| is the substrate bandwidth at the surface and ∆t the total bandwidth of the substrate
2(∆|| +∆⊥) = ∆t.

1

N⊥

∑

δ(ǫ− ǫkz) =
1

π

∆⊥

(ǫ− ǫkz)
2 +∆2

⊥

(A-14)

1

N||

∑

δ(ǫ − ǫu) = 1/2∆|| ; −ǫ < ∆|| < ǫ (A-15)
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Where the separability of metal states energies ǫk in directions parallel and perpendicular to
the surface is a crucial assumption made here. ǫk = ǫu + ǫkz .

The self-consistent value of kσ(ǫ) is obtained from eq. A-11, which also determines Ḡii.
Expressing

Ḡ−1
ii +Kσ{ǫ,< qν >} = X1(ǫ, θ) + i sgn(X2(ǫ, θ))|X2(ǫ, θ)| (A-16)

enables us to write (cf. eq.(A11))

Im(Gii)i=a = −sgn(X2)
|X2|

(X1(ǫ, θ)− ǫ̂aσ(qν))
2 +X2

2

(A-17)

where sgn(X) = +1 when X > 0 and -1 otherwise.
To evaluate the anodic current Ia, one finally needs to carry out the thermal average over low

frequency boson modes. The required density matrix for this average in the semi-classical limit is

P (qν) = W (qν)/

∫ ∞

−∞
W (qν)dqν (A-18)

W (qν) = exp[−β
∑

ν=1,2

ων

2
(p2ν + q2ν) + λ̄νqν ] (A-19)

With the above defined probability function the net expression for anodic current is shown
below

Ia = e〈nr〉 | υar |2
1√
π~

1

Z

∫

dǫ

∫

(Πνdqν)

∫

dt

∫

dτ [(1 − f(ǫ)]

exp[−β
∑

ν=1,2

ων

2
(p2ν + q2ν) + λ̄νqν ] exp[i(ǫ− ǫr −

∑

ν

λrνqν)t]

exp[i(X1(ǫ, θ)− ǫa −
∑

ν

λaνqν)τ− | X2(ǫ, θ) || τ |] (A-20)

where Z =
∫

(Πνdqν)exp[−β
∑

ν
ων

2
(p2ν + q2ν) + λ̄νqν ] The expression for cathodic current has a

similar form with the 1 − f(ǫ) replaced by f(ǫ) and λ̄ν defined accordingly. For anodic current
λ̄ν = λcν + λoν + λrν , while for cathodic current, λ̄ν = λcν + λoν + λaν . Carrying out the various
integrations leads to the result employed in the main article.

Ia = e〈nr〉 | υar |2
1√
π~

∫

dǫ(1− f(ǫ))ρa(ǫ)
Reωz

2
√
πP

(A-21)
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Figure 1: Comparison of density of states of the adsorbate for weakly coupled regime at low
(θ = 0.1) and high coverage factor (θ = 0.9). he values of parameters (in eV) are as follows:
Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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Figure 2: Comparison of density of states of adsorbates for strong coupling regime at low
and high coverage factor. The values of the various parameters employed (in eV) are as
follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ = 4.5, υ = 2.0
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Figure 3: Plots showing the density of states for redox, adsorbate and the Fermi distribution
for anodic current under zero overpotential. The weakly coupled regime and low coverage of θ
= 0.3 is considered here .The values of parameters (in eV) are as follows: Er

r = 0.6, Er
ar(0) =

0.2, Er
a = 0.4 and v = 0.5 eV .
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Figure 4: Plots showing the density of states for redox, adsorbate and Fermi distribution for
cathodic current at zero overpotential. The values of parameters are same as in 3

19



-4 -3 -2 -1 0 1 2 3 4
 ε

0

0.2

0.4

0.6

0.8

1

 ρ 
 r 

 ρ 
 a 

1 - f( ε)

Figure 5: Plots showing the density of states for redox, adsorbate and the Fermi distribution
for anodic current under zero overpotential. The strongly coupled regime and low coverage of
θ = 0.3 is considered here .The values of parameters (in eV) are as follows: Er

r = 1.0, Er
ar(0) =

0.25, Er
a = 0.75 and v = 2.0 eV .
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Figure 6: Plots showing the density of states for redox, adsorbate and Fermi distribution for
cathodic current at zero overpotential. The values of parameters are same as in 5
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Figure 7: Plots showing the variation of ∆φ with respect to θ the coverage factor. The values
of re-organisation energies employed were same in both the curves. Er = 0.6 eV, Ea(0) =
0.4 eV, Ear(0) = 0.2 eV

22



0 0.5 1 1.5 2 2.5 3
 η

0

5e-10

1e-09

1.5e-09

2e-09

I 
/a

rb
.u

ni
ts

 θ = 0.1
 θ = 0.3
 θ = 0.7
 θ = 0.9

Figure 8: anodic current vs η for α = 0.3. The values of the various parameters employed (in
eV) are as follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ = 4.5, υ =
2.0
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Figure 9: anodic current vs η for θ = 0.1 in the weak coupled regime. The values of
parameters (in eV) are as follows: Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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Figure 10: anodic current vs η for θ = 0.3 in weak coupled regime. The values of parameters
(in eV) are as follows: Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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Figure 11: anodic current vs η for θ = 0.7. The values of parameters (in eV) are as follows:
Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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Figure 12: anodic current vs η for θ = 0.9. The values of parameters (in eV) are as follows:
Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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Figure 13: anodic current vs η for θ = 0.1. The values of the various parameters employed
(in eV) are as follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ =
4.5, υ = 2.0
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Figure 14: anodic current vs η for θ = 0.3.The values of the various parameters employed (in
eV) are as follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ = 4.5, υ =
2.0
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Figure 15: anodic current vs η for θ = 0.7. The values of the various parameters employed
(in eV) are as follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ =
4.5, υ = 2.0
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Figure 16: anodic current vs η for θ = 0.9. The values of the various parameters employed
(in eV) are as follows: Er

r = 1.0, Er
ar(0) = 0.25, Er

a(0) = 0.75,∆|| = 1.5,∆⊥ = 1.5, µ =
4.5, υ = 2.0
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Figure 17: Plots showing the equilibrium current at zero overpotential I0 vs θ for strong and
weak coupled regime. The values of re-organisation energies were selected be the same for
both the curves, Er = 0.6 eV, Ea(0) = 0.4 eV, Ear(0) = 0.2 eV
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Figure 18: Comparison of cathodic current obtained from corresponding expression for ca-
thodic current and from empirical relation of anodic current, Ic = exp[−βη]Ia. The specific
case selected is for θ = 0.1 and α = 0.5 in the weakly coupled regime. The values of param-
eters (in eV) are as follows: Er

r = 0.6, Er
ar(0) = 0.2, Er

a = 0.4 and v = 0.5 eV.
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