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Abstract

Ferritin-immobilized poly(L-lysine)-modified electrodes showed well-defined redox waves 

representing ferritin.  Cathodic and anodic peak currents obtained from cyclic voltammograms were 

proportional to potential sweep rates.  From charge flow values during oxidation or reduction 

reactions calculated by peak areas in cyclic voltammograms, and the surface coverage of ferritin, 

reacted iron atoms per ferritin molecule were calculated.  Obtained numbers of reacted iron atoms 

were significantly smaller than expected values from iron atoms at ferrihydrite core surfaces of 

ferritin, which would be caused by the rate-determining ion flow through ion channels of ferritin to 

compensate for charges in the ferritin cavity.  Anodic and cathodic peak potentials in cyclic 

voltammograms were significantly dependent on cationic species in the solution, though 

voltammetric shapes and peak currents were independent of cations.  From the obtained results that 

structural changes in ferritin were not detected by fluorescent spectra, it is thought that the cationic 

dependence on ferritin redox peak potentials is caused by ferritin cores.   
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1. Introduction

Ferritins provide a means for living systems to gain access to essential mineral nutrients 

under conditions that otherwise favor the formation of hydrous ferric oxide, a biologically inert 

form of iron.  Ferritins consist of protein shells formed from highly symmetrical subunits and from 

mineral cores containing up to ca. 4500 iron atoms in the form of ferrihydrite phosphate,

(FeOOH)8(FeOPO3H2) [1-9].  The outside diameter of the shell is ca. 12 nm, and the cage that 

surrounds a hollow cavity is roughly 8 nm in diameter.  Eight hydrophilic 3-fold channels and six 

hydrophobic 4-fold channels surround the shell, which provides access to the protein interior, 

presumably for electrons, protons, small ions and molecules.  3-fold channels are proposed as the 

main entry route for iron [1-9].   Iron uptake and release mechanisms are caused by iron (Fe(III) / 

Fe(II)) redox reactions [1-9].  In view of the interesting properties of ferritin, this protein has been 

studied extensively with regards to biochemistry [1-11] as well as in the protein engineering of 

viral cages for constrained nano-material syntheses [12-17].  

Direct electron transfer reactions of ferritin at electrodes were recently reported [18-25].  The 

electrochemistry of ferritin adsorbed onto tin-doped indium oxide and bare gold electrode surfaces 

due to hydrophobic interactions in highly ionic solutions was investigated [19-22].  We reported 

ferritin-immobilized electrodes based on self-assembled monolayer (SAM)-modified gold 

electrodes, using electrostatic interactions between ferritin and terminal SAM functional groups

[24,25].  Furthermore, recently we demonstrated direct electron transfer reaction of ferritin 

immobilized onto polypeptide-functionalized indium oxide electrodes using electrostatic 

interactions between polypeptides and ferritin [26].  As described above, iron uptake and release of 

ferritin is caused by oxidation and reduction reactions of iron ions in ferritin shell.  Thus, before the 

observation of direct electron transfer of ferritin, the behaviors of iron uptake and release of ferritin 

were investigated using oxidant and reductant reagents [1-9].  Electrochemistry of ferritin has 

possibility for easily and precision control of the iron uptake and release of ferritin.  To analyze the 
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ferritin function by electrochemisty, we should have knowledge for electrochemical redox reaction 

characteristics of ferritin.  In the present study, we used ferritin-immobilized poly(L-lysine)-

modified electrodes, to evaluate and analyze anodic and cathodic peak currents, and peak potentials.  

The preliminary results suggest that peak currents in cyclic voltammograms are governed by a rate-

determining ion flow through ferritin ion channels to compensate for charges in the ferritin cavity.  

Furthermore, anodic and cathodic peak potentials in cyclic voltammograms were significantly 

dependent on cationic species.

2  Experimental

2.1. Ferritin and materials

Horse spleen ferritin (from Sigma) was purified by size exclusion chromatography [6].  The 

concentration of purified ferritin was determined by measuring its absorbance at 562 nm, followed 

by BCA-protein reactions (BCA protein assay kit, Pierce Chem. Comp.) against an albumin 

standard curve [27].  The number of iron atoms per ferritin molecule used in this study was 

determined to be 3 x 103 atoms by inductively coupled plasma-atomic emission spectroscopy (ICP-

AES) using the IRIS Advantage (Jarrell-Ash Co.) and atomic absorption spectroscopy using a 

Nippon Jarrell Ash AA-845 Atomic Absorption & Flame Emission Spectrophotometer.  Poly-(L-

lysine) (PLL, molecular weight: 93,800 Da) was obtained from Sigma, and used as received.  Water 

was purified with a Millipore Milli-Q water system.  Other reagents were of analytical grade.   

2.2. Preparation of ferritin-immobilized poly-(L-lysine)-modified indium oxide electrode

Ferritin-immobilized poly-(L-lysine)-modified electrodes (ferritin-PLL-modified electrode) 

were prepared according to previous reports [26].  Briefly, an indium oxide electrode (Kinoene 

Optics Corp., Japan, or Kuramoto Corp., Japan, geometric area: 0.25 cm2) was used as a working 

electrode.  The electrode was cleansed by ultra sonication in a 1% aqueous New-Vista (AIC Corp.) 
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solution according to methods described elsewhere [28].  PLL-modified electrodes were obtained 

by immersing indium oxide electrodes into phosphate buffer solutions (ionic strength, = 0.1, pH 

7.0) in the presence of 1 mg ml-1 PLL for 30 min.  In neutral solutions, positively charged PLL

adsorbed on negatively charged indium oxide electrode surfaces by electrostatic interactions [29].  

The PLL-modified indium oxide electrode was immersed into phosphate buffer solution with 2 

mol dm-3 ferritin for 60 min.  Then, electrodes were rinsed with buffer solution and transferred to 

buffer solution devoid of ferritin.

2.3.  Instrumentation

Fluorescence spectra were recorded with a Spectrofluorometer FP-6500, JASCO. A 

multimode NanoScope III (Digital Instruments) was utilized for tapping-mode atomic force 

microscopic (AFM) imaging.  Standard phosphorus doped silicon cantilevers were used.  The 

calibration was performed by imaging standard grating samples.  Tapping-mode AFM 

measurements were carried out under an air atmosphere. 

Electrochemical measurements were carried out in a phosphate buffer solution under a 

nitrogen atmosphere using a Potentiostat PS-6, Toho Giken Corp., Japan, with a function generator.  

An Ag/AgCl (saturated KCl) electrode and a Pt plate were used as reference and auxiliary 

electrodes, respectively.  All potentials are reported with respect to an Ag/AgCl (saturated KCl) 

electrode.  Prior to cyclic voltammetric measurements, a phosphate buffer solution (= 0.1, pH 

7.0) was de-aerated with high purity argon gas, and a positive pressure of argon gas was maintained 

over the solution during all electrochemical experiments.

3. Results and Discussion

3.1. Electrode reactions at ferritin-PLL-modified indium oxide electrode
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Fig. 1 shows the surface morphology of a polished indium oxide (from Kuramoto Corp., 

Japan), a PLL-modified indium oxide and a ferritin-immobilized PLL-modified indium oxide 

electrode surfaces by tapping-mode AFM measurements.  The indium oxide and PLL-modified 

electrode surfaces were flat at an atomic level.  After electrodes were modified with ferritin, 

monolayers of ferritin molecules adsorbed onto surfaces.  The size of each ferritin molecule was 

evaluated to be approximately 11 (1.5) nm in diameter, which was comparable to the expected 

~12 nm diameter determined by x-ray diffraction [1-9].    These results ae similar to our previously 

reported results [26].  

Fig. 2 shows typical cyclic voltammograms in phosphate buffer solutions (= 0.1, pH 7.0) at 

various potential sweep rates, after PLL-modified indium oxide electrodes were immersed into a 

phosphate buffer solution of 2 mol dm-3 ferritin for 60 min.  Well-defined redox waves

representing ferritin were observed.  Oxidation and reduction peaks were observed around –0.10 

and –0.22 V, respectively, at a potential sweep rate of 50 mV s-1.  A redox response for ferritin was 

not observed in the buffer solution, when indium oxide and PLL-modified electrodes were used.  

Fig. 3 shows plots of cathodic and anodic peak currents in cyclic voltammograms from ferritin-

PLL-modified electrode as a function of potential sweep rates.  Voltammograms at various 

potential sweep rates were obtained from individual ferritin-PLL-modified electrodes.  Both 

cathodic and anodic peak currents were proportional to potential sweep rates at a sweep range of 20 

to 200 mV s-1.  Herein, the redox reaction of ferritin can be roughly understood as follows: Fe(III) 

atoms, which consists of ferrihydrite cores of ferritin, sited around core surfaces reduce to Fe(II) 

atoms during negative potential sweeps in voltammograms.  From the aforementioned reaction, it 

was expected that the electrode reaction behaviors show the adsorbed species reaction type.  In fact, 

the cathodic peak current increased linearly with an increasing potential sweep rate.  Reduced 

Fe(II) atoms would still site at the same position at the core surface, or release from the core surface, 

as shown in Fig. 4, because the solubility of Fe(II) ((Fe(OH)2: Ksp ≈ 10-15 (mol dm-3)2) is much 
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higher than that of Fe(III) ((Fe(OH)3: Ksp ≈ 10-39 (mol dm-3)3) under physiological pH [30].  Thus, 

during positive potential sweep, it is expected that the electrode reaction behaviors would show the 

diffusion-controlled electrode reaction type, or reaction type mixed with diffusion-controlled and 

adsorbed species reaction types.  However, the obtained results showed a linearly relationship 

between anodic peak currents and potential sweep rates.  The difference between expectation and 

obtained results could be understood by thin-layer electrochemical behavior.  The following 

equation (1) shows the relation between the root-mean-

                                               x2 = 2Dt                                                                      (1)

square displacement, x2, at time t and the diffusion coefficient, D.  Assuming D and t are 1  10-5 

cm2 s-1 and 14 seconds (sweep time from 200 to -500 mV at a scan rate of 50 mV s-1), the resulting 

estimated finite diffusion layer is calculated to be 1.7  10-2 cm.  This obtained finite diffusion layer 

is significantly larger than the ferritin cavity (ca. 8 nm in diameter).  Considering the nanospace of 

the ferritin cavity is ca. 8 nm in diameter (x = 8  10-7 cm), the finite diffusion layer would react at 

ca. 3  10-8 s.  Thus, within the cyclic voltammetric time scale of this study, linear relationships 

between anodic peak currents and potential sweep rates were observed.  

From the linear relationship between peak currents and potential sweep rates in potential 

sweep rates of 20 to 200 mV s-1, values of charge flow (C cm-2) during oxidation or reduction 

reactions were calculated by the peak areas from cyclic voltammograms.  During the first cycle of 

voltammmetric measurements, charge flow values of reduction and oxidation processes in cathodic 

and anodic peaks were evaluated to be 7.4  10-6  and 5.0  10-6 C cm-2, respectively, indicating 

that 7.7  10-11 mol cm-2 Fe(III) and 5.2  10-11 mol cm-2 Fe(II) (4.6  1013 ions cm-2 Fe(III) and 3.1 

 1013 ions cm-2 Fe(II)) had reacted.  In a previous report, we reported that the surface coverage of 

ferritin immobilized onto a PLL-modified electrode was 9~13  1011 molecules cm-2.  Using this 
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surface coverage value for ferritin, 43 (8) ions per ferritin molecules  Fe(III) were reduced and 29 

(5) ions per ferritin molecules Fe(II) were oxidied.  The evaluated results for numbers of reacted 

iron atoms provide two pieces of evidence.  First, numbers of reacted iron atoms in ferritin cavity 

during reduction and oxidation reactions were significantly smaller than expected values from iron 

atoms at ferritin core surfaces.  On redox reactions of iron atoms at ferritin core surfaces in ferritin 

cavity, the total charge in the cavity would be change.  For example, before redox reaction of 

ferritin, total charge in ferritin cavity is maintained to be neutral.  On the other hand, when ferritin 

core would be reduced, the total charge in ferritin cavity would change to positive.   In order to 

compensate for change of charge in the ferritin cavity, in the other words, to keep electroneutrality 

in the cavity, ion (anions and/or cations) uptake and/or release passing through the ion channels of 

ferritin would occur (Fig. 4).  This compensating ion uptake and/or release would be the rate-

determining factor, thus the number of iron atoms actually related to redox reactions would be 

significantly smaller than that expected.  In a previous report, kinetics of iron release from ferritin 

in 0.1 mol dm-3 Tris-HCl buffer (pH 7.4) solution was investigated by UV-visible spectroscopy 

using dihydroriboflavin as a reductant, and it was resulted that the maximum rate of iron release for 

horse spleen ferritin was evaluated to be 1.0 Fe(II) leaving per second per channel [30].  Roughly 

analyses in our case study, 43 (8) Fe(III) ions per feritin molecules were reduced during 14 

seconds for reduction potential sweep in voltammetry.  Thus, it is evaluated to be, roughly, 3 

(0.5) Fe(III) ions per second per ferritin molecule would be reduced, and then the reduced 0.4 

Fe(II) ions per second per channel might be released, because ferritin has eight 3-fold channels per 

molecule for iron ions passing.  The obtained rate value of iron release is approximately half value 

with respect to the reported value.  The difference results might be caused by follows:  In the 

previous report, rate kinetics was studied using ferritin aqueous solution.  On the other hand, in our 

study, ferritin molecules were adsorbed on PLL-modified electrode surface.  Thus, some ion 

channels of ferritin molecule would be inaccessible, because the molecule would be covered with 
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PLL at the electrode surface.  Second, the number of re-oxidized Fe(III) ions from Fe(II) ions was 

ca. two-third times the number of reduced Fe(II) ions from Fe(III) iron ions, which indicates that 

part of the reduced iron ions would be released from the ferritin cavity.  This prediction is also 

supported by the fact that redox peaks gradually decreased during the potential cycling and were 

eventually not observed.

3.2.  Anionic and cationic effects on redox reactions at ferritin-PLL-modified indium oxide 

electrodes

Anionic and cationic effects on the redox reactions of ferritin were investigated using various 

anionic and cationic species.  Fig. 5a-c shows a redox reaction of ferritin-PLL-modified electrode 

in the presence of 300 mmol dm-3 NaCl, NaBr and NaI.  Voltammetric shapes and peak currents 

were almost independent of the anionic species.  Anodic and cathodic peak potentials are 

summarized in Table 1a, which indicate that peak potentials were almost independent of the anions.  

Fig. 5b,d,e shows the redox reaction of ferritin in the presence of NaBr, LiBr and KBr.  

Voltammetric shapes and peak currents were also independent of the cationic species.  On the other 

hand, anodic and cathodic peak potentials were significantly dependent on the cationic species, as 

shown in Table 1b.  Furthermore, we investigated peak potentials in the presence of LiCl, NaCl and 

KCl, as summarized in Fig. 6a,b.  A tendency towards positive shifts in anodic and cathodic peak 

potentials with decreasing cation diameters (K < Na < Li) was observed.  

To clarify whether the cation dependence on redox peak potentials was due to structural 

changes in ferritin or ferritin cores, we measured fluorescent spectra of ferritin in the presence of a 

cation.  When ferritin was excited at 280 nm, it showed a fluorescence emission peak around 325 

nm corresponding to tryptophan residues [31-33].  The peak position and intensity were almost 

independent of the cationic species, indicating that ferritin structural changes were not induced.  In 

conclusion, these facts suggest that the cationic dependence of redox peak potentials of ferritin is 
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caused by ferritin cores, and does not arise because of structural changes.  However, we cannot 

discuss this phenomenon in more detail, because electron transfers in ferritin remain unclear.  The 

putative distance for electron transfers between ferrihydorite ferritin cores and an electrode surfaces 

is the thickness of the protein shell of ca. 2 nm, which is larger than that for long-range electron 

transfers observed in protein [34].  R. C. Davis and coworkers concluded, from conductive probe 

(CP) AFM measurements, that ferritin protein shells act as significant tunneling barriers for 

electron transfers [35].  Thus, it is expected that bound iron ions at positions around ion channels 

and/or on the inner faces of ferritin cavity, could act as an electron transfer mediator and accelerate 

electrons through the protein shells [36]. On the other hand, D. N. Axford and J. J. Davis used CP-

AFM measurements to suggest the presence of direct tunneling electron transfers across protein 

layers [37].  

4. Conclusions

In conclusion, ferritin molecules covered the whole surface of PLL-modified indium oxide 

electrodes were observed by AFM measurements using atomically flat electrodes.  Ferritin-PLL-

modified electrodes showed well-defined redox waves representing ferritin.  Observed cathodic and 

anodic peak currents in cyclic voltammograms were proportional to potential sweep rates, and these 

aforementioned behaviors can be understood when considering the thin-layer electrochemistry of 

the nanospace of the ferritin cavity.  From charge flow values during oxidation or reduction 

reactions calculated by peak areas in cyclic voltammograms, reacted Fe(III) and Fe(II) atoms 

during reduction and oxidation processes were evaluated to be 7.7  10-11 and 5.2  10-11 mol cm-2

(4.6  1013 and 3.1  1013 ions cm-2), respectively.  Using the surface coverage of ferritin (9~13 

1011 molecules cm-2), 43 (8) ions per ferritin molecules Fe(III) were reduced and 29 (5) ions per 

ferritin molecules Fe(II) were oxidized. Anodic and cathodic peak potentials in cyclic 

voltammograms were significantly dependent on cationic species in solutions, even though 
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voltammetric shapes and peak currents were independent of these species.  Positive shift tendencies 

in anodic and cathodic peak potentials with decreasing diameters of cations were observed.  Since 

structural changes in ferritin were not detected in fluorescent spectra, it is thought that the cationic 

dependence on redox peak potentials of ferritin is caused by ferritin core.  

Although ferritin redox reaction details remain unclear, the results presented herein are useful 

in understanding the physiology of ferritin, and they demonstrate how electrochemical methods are 

useful in characterizing ferritin functions.   
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Figure Captions

Fig. 1.  Tapping–mode AFM images of a polished indium oxide electrode surface (a), its surface 

modified with poly(L-lysine) (b) and a ferritin-immobilized poly(L-lysine)-modified electrode 

surface (c, d).  The cross-sectional view corresponds to the line drawn  (d).

Fig. 2.  Typical cyclic voltammograms from ferritin-immobilized poly(L-lysine)-modified indium 

oxide electrodes in phosphate buffer solutions (pH 7).  Potential sweep rates: 200, 150, 100, 50 and 

20 mV s-1. Electrode area: 0.25 cm2.

Fig. 3.  Plots of anodic (a) and cathodic (b) peak currents vs. potential sweep rates.  Peak currents 

were obtained from cyclic voltammograms of ferritin-immobilized poly(L-lysine)-modified indium 

oxide electrodes in phosphate buffer solutions (pH 7).  Electrode area: 0.25 cm2.

Fig. 4.  A schematic illustration of a ferritin redox reaction on the electrode surface and ion flow 

during the redox processes.

Fig. 5.  Typical cyclic voltammograms from ferritin-immobilized poly(L-lysine)-modified indium 

oxide electrodes in phosphate buffer solutions (pH 6.5) in the presence of 300 mmol dm-3 NaCl (a), 

NaBr (b), NaI (c), LiBr (d) and KBr (e).  Potential sweep rate: 50 mV s-1. Electrode area: 0.25 cm2.

Fig. 6. Cation effects on anodic (a) and cathodic (b) peak potentials of ferritin-immobilized 

poly(L-lysine)-indium oxide electrodes in phosphate buffer solutions (pH 6.5).  Potential sweep 

rate: 50 mV s-1.



Table 1b Effects of cation on anodic and cathodic peak potentials.

Electrolyte

LiBr
NaBr
KBr

-7.5 -202.5
-25
-50

-220
-240

Anodic peak potential /
mV vs. Ag/AgCl

Cathodic peak potential /
mV vs. Ag/AgCl

Table 1a Effects of anion on anodic and cathodic peak potentials.

Electrolyte Anodic peak potential /
mV vs. Ag/AgCl

Cathodic peak potential /
mV vs. Ag/AgCl

NaCl
NaBr
NaI

-22.5 -217.5
-25
-35

-220
-225

The peak potential values were obtained from cyclic voltammograms
of ferritin-immobilized poly(L-lysine)-modified indium oxide
electrode in a phosphate buffer solution (pH 6.5) in the presence of
300 mmol dm-3 NaCl, NaBr, NaI, LiBr and KBr. Potential sweep
rate: 50 mV s-1. Electrode area: 0.25 cm2.

Table1
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