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Abstract 

A natural clinoptilolite in its potassium form (KNC) was modified by impregnation of hydrated metal 

oxides (HMO) of aluminium (III) (KAlC), iron (III) (KFeC) and manganese (IV) (KMnC) for the 

simultaneous ammonium and phosphate recovery from urban wastewaters. The resulting pHpzc of the 

HMO on the modified zeolites (7.3±0.3 for KAlC, 6.4±0.4 for KFeC and 6.9±0.3 for KMnC) are 

suitable for phosphate sorption at pH of treated urban wastewaters (6-8).The sorption capacity for 

phosphate for KAlC and KFeC zeolites is higher at the lower pH range while for KMnC is higher at 

the upper pH range. Differences were associated to the differences on the complexing properties of 

the MOH groups to form outer and inner sphere MOH-phosphate complexes. The maximum 

phosphate sorption capacity for the three zeolites were 6.8 mg-P/g for KAlC, 7.2 mg-P/g for KFeC 

and 8.2 mg-P/g for KMnC. Contrary maximum ammonium sorption capacity is kept constant between 

pH 4 to 9 for the tree zeolites as the main sorption mechanism is the ion-exchange reaction with K+ 

ions of the zeolite. The maximum ammonium sorption capacity for the three zeolites ranged from 29 

to 33 mg-N/g. These differences on the nature of the sorption processes was traduced in a much 

faster sorption kinetic for ammonium than for phosphate although for both cases the rate determining 

*
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step was ions diffusion on the zeolite particles. Modified zeolites shown high selectivity towards 

ammonium and phosphate in the presence of the dissolved organic matter as well as other ionic 

species present in the treated wastewaters. Finally, P fractionation assays of the loaded zeolites 

confirmed a high phosphate bioavailability if these are applied as phosphate slow release fertilizers in 

soil applications. 

Keywords: potassium clinoptilolite; nutrients recovery; hydrated metal oxides; sorption; NPK fertilizer 

 

1. Introduction 

Ammonia nitrogen (NH4
+-N) and orthophosphate phosphorous (PO4

3- -P) are majors polluting species 

of aqueous environments [1]. These nutrients are discharged into rivers and lakes from municipal 

wastewater after being treated, or from run-off of bio-fertilizers applied in farms lands by effect of the 

rain drainage leading to eutrophication [2]. Currently, phosphate is becoming a major economical 

concern because its natural deposits are diminishing due to the continuous growth of the world 

population. Then, urban, industrial and farming wastewaters and sludge streams with phosphorous 

(P) contents below 1% (w/w) are considered secondary resources of P that need to be mined [3]. 

There are already a variety of technologies for P recovery at wastewater treatment plants. These 

technologies differ by the origin of the used resources (wastewater, sludge, sludge liquor, sludge 

ash), the applied process (precipitation, wet chemical extraction, and thermal treatment) and the 

potential P-recovery ratio. P could be recovered simultaneously with ammonium from concentrated 

streams of urban wastewater (e.g. anaerobic digestion side streams) by chemical precipitation of 

struvite [4]. Few efforts have been directed for the recovery from diluted streams where different 

techniques for phosphate removal are available [5]. Chemical precipitation and coagulation 

processes are not cost effective and polymeric ion exchangers are not applicable due to potentially 

high levels of dissolved and particulate organic matter. Thus, phosphate removal/recovery solutions 
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have been focused to the use of low-cost adsorbents with high removal efficiency in terms of 

equilibrium (sorption capacity) and kinetics. Moreover, simultaneous removal of ammonium and 

phosphate from diluted streams (e.g., treated waste waters from the conventional activated sludge 

reactors) can be achieved using inorganic adsorbents like natural zeolites [6]. The ammonium 

removal is favoured by the high cation exchange capacity of natural zeolites [7, 8], however they 

exhibited poor performance for anions removal (e.g., phosphate) [9]. So, they need a modification 

stage [10] by incorporating neither cations forming low solubility phosphate minerals (e.g., Ba (II), Ca 

(II), Mg (II)) [11]; or by incorporating hydrated metal oxides (e.g., Fe, Al, Mn) with complexing 

properties (inner and outer sphere complexes with phosphate ions). The resulting exhausted 

sorbents could be used in agriculture and in agronomical applications to improve soil properties in 

both physical and chemical terms as potential fertilizer as they will provide P and N. The methodology 

used to modify a granular natural zeolite in sodium form into the Al (III), Fe (II)) and Mn (II) forms and 

the equilibrium and kinetic properties when used in sorption and desorption cycles was described in 

previous studies [12, 13]. Therefore, the aim of this work is to evaluate the simultaneous removal of 

ammonium and phosphate from treated urban wastewater using impregnated aluminium, iron and 

manganese forms of a powder natural zeolite in its potassium form. The specific objectives proposed 

are: i) to evaluate the use of powder natural potassium zeolites impregnated with hydrated metal 

oxides to recover phosphate and ammonium from treated wastewaters and ii) to evaluate the P 

availability of the loaded N,P,K zeolites for soil quality improvement by using Phosphorous fractioning 

test of the loaded zeolites. 

 

2. Materials and methods 

2.1. Preparation of metal hydrated oxide impregnated zeolites 
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A natural zeolite (NC) (Zeocem Company from the Slovak Republic) was grounded until particles 

were below 74 μm. Then, three different samples of 50 g of NC were treated in a 250 mL glass 

reactor with 0.1 M AlCl3, 0.1 M FeCl3 and 0.1 M MnCl2. After 20 minutes of agitation, the pH of the 

solutions was adjusted to pH 7±0.5 using 0.1 M KOH (KNC). Then, samples were treated two 

consecutive times by refluxing in 250 mL of KCl (0.1 M) for 3 h to obtain the aluminium (KAlC), iron 

(KFeC) and manganese (KMnC) forms of NC zeolite. After treatment, samples were washed until no 

chloride was detected using an AgNO3 test followed by drying at 80 °C for 24 hours.  

 

2.2. Characterization of metal hydrated oxide impregnated zeolites 

A powder X-ray Diffractometer (D8 Advance A25 Bruker) was used for X-ray diffraction (XRD) 

characterization of KAlC, KFeC, KMnC samples. The phase purity and crystallinity of the powder 

samples were analysed by X-ray diffraction with λ CuKα radiation (λ= 1.54056 Å)) at a scanning rate 

time of 19.2 and 57.6 s, steep angle of 0.015° and 2  in range of 4-60°.  

The chemical composition and morphology of the samples were determined by a Field Emission 

Scanning Electron Microscope (JEOL JSM-7001F) coupled to an Energy Dispersive Spectroscopy 

system (Oxford Instruments X-Max). The infrared absorption spectra were recorded with a Fourier 

Transform FTIR 4100 (Jasco) spectrometer in the range of 4000 – 550 cm-1. The nitrogen gas 

adsorption method was used for the specific surface area determination of KAlC, KFeC, KMnC 

samples on an automatic sorption analyser (Micrometrics). The tests were replicated at least four 

times for each sample and the average values are reported. 

 

2.3. Point of cero charge of metal hydrated oxide impregnated zeolites  
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Samples of impregnated zeolites (KAlC, KFeC, KMnC) were equilibrated in different ionic strengths 

(25 mL of deionized water; 0.01, 0.05 and 0.1 M NaCl) at 200 rpm and 21±1 °C. The pH drift method 

was used for point of zero charge (PZC) determination in the range of pH 2 to 11 [14]. Tests were 

performed in triplicate for each sample and the average values are reported. 

 

2.4. Effect of pH on ammonium and phosphate sorption 

Ammonium and phosphate solutions were prepared by dissolving ammonium chloride (NH4Cl) and 

sodium phosphate (NaH2PO4.2H2O) in deionized water. KAlC, KFeC, KMnC samples (0.1 g) were 

equilibrated in 25 mL of aqueous solutions containing 25 mg N-NH4
+/L and 25 mg P-PO4

3-/L (pH 

adjusted from 2 to 11). The tests were replicated three times for each sample and the average values 

are reported. Experiments were carried out (in triplicate) using the effluent from secondary treatment 

at the El Prat wastewater treatment plant (WWTP) (Barcelona – Spain) at its average pH of 7.5. The 

chemical composition of the treated wastewater used is shown in Table 1. 

 

2.5. Ammonium and phosphate sorption kinetic studies 

Weighted amounts of impregnated samples (6 g of KAlC, KFeC, KMnC) were equilibrated in 500 mL 

of the effluent stream from secondary treatment at the El Prat WWTP (composition shown in Table 1) 

at pH 7.5±0.5. Experiments were performed at 500 rpm and at room temperature (21±1 °C). 

Samples (10 mL) were withdrawn at given times for determining the concentrations of ammonium 

and phosphate ions at the initial and remaining aqueous solution. Tests were performed in triplicate 

for each sample and the average values are reported. Samples were filtered (0.2 μm) before 

analysis.  
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ICP - MS elements 

 

Na Ca S K Mg Sr Al Si Fe Ba 

 mg/L 246 127 82 36 35 1 0.2 0.03 0.03 0.02 

 
 

Li B Ti V Cr Mn Co Ni Cu Zn As 

μg/L 19 258 6 12 1 3. 2 29 45 61 3 

 
Se Rb Sr Mo Sn Sb Ba W Pb U 

 μg/L 3 16 1091 15 0.3 4 19 3 0.2 2 

 

 

Organic and inorganic carbon content 

 

NPOC NT TOC TC IC 
 

mg/L 11.8 296 11 50 42 
 

 

Major ionic species 

 

NH4+ PO43- NO3- Cl- 
  

 mg/L 30 14 51 542 

   Table 1. Chemical composition of the effluent stream from the secondary treatment at the El Prat 

WWTP (Barcelona, Spain) used for kinetic studies. 

 

Standard methods were used for phosphate and ammonium quantification [15]. The P concentration 

was analysed by the vanadomolybdophosphoric acid colorimetric method (4500-P C) and N was 

determined by ammonia-selective electrode method (4500-NH3 D). It was also used a Thermo 

Scientific Ionic Chromatograph (Dionex ICS-1100 and ICS-1000) for ions quantification. The non-

purgeable organic carbon (NPOC), total carbon (TC), total organic carbon (TOC), inorganic carbon 

(IC) and total nitrogen (NT) were determined in a total organic carbon analyser (Shimadzu, TOC-

VCPH). Finally, an elemental analysis including traces existent in the treated wastewater effluent was 

performed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at CSIC, Barcelona - Spain. 

 

2.6. Sequential chemical fractionation of phosphorous on loaded zeolites samples 

The modified zeolites were loaded in a solution containing 500 mg/L of ammonium and phosphate 

ions, and then they were filtered and dried for the sequential chemical fractionation of phosphorus by 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 
 

an adaptation of the Hedley method [16]. The sequential P extraction was performed to classify and 

quantify P fractions of the loaded modified zeolites. Samples (0.5 g of KAlC, KFeC, KMnC) were 

added to 20 mL of each extracting solution 0.5 M NaHCO3 (pH 8.5), 0.1 M NaOH and 1.0 M HCl. The 

tubes were shaken for 16 h and then the suspensions were centrifuged at 8000 rpm for 10 min and 

filtered (0.45 μm). The supernatant was collected and stored until analysis and the remaining soil was 

re-suspended for succeeding extractions. An aliquot of the NaHCO3 and NaOH extracts was acidified 

to precipitate extracted organic matter and the supernatant was analysed for inorganic phosphorus 

(Pi). Another aliquot of the extracts was digested with acidified ammonium persulfate in an autoclave 

at 120 kPa and 121 °C (60 min and 90 min for the NaHCO3 and the NaOH extract, respectively) to 

convert organic into inorganic form; total phosphorus (Pt) in the digest was analysed 

spectrophotometrically. The organic phosphorus (Po) in NaHCO3 and NaOH extracts was calculated 

as the difference between Pt and Pi of the respective extracts. Residual P in soil samples was 

determined after digestion with H2SO4/H2O2. The P concentration in all extracts and digestion 

solutions was determined spectrophotometrically at 882 nm [17]. Among the P pools, NaHCO3-P is 

considered to be labile whereas NaOH-P, HCl-P and residual P are referred to as non-labile [18, 19].  

 

2.7. Kinetic data treatment of ammonium and phosphorous removal 

Zeolites are characterized by a highly regular porous structure with cavities and interconnected 

channels that can be penetrated by specific ions while others are excluded. Hence, two different 

types of pores exist: micropores in the crystals and macropores in the binding network. The 

Homogeneous Diffusion Model (HDM) and the Shell Progressive Model (SPM) [20] were selected to 

describe phosphate and ammonium removal by MHO impregnated potassium zeolites. In the HDM 

model the zeolite is considered as a quasi-homogeneous media and the sorption diffusion rate 

controlling step on the spherical particles leads to:  
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i) if particle diffusion Dp (m2 s-1) controls the sorption rate as described by Eq. 1:  

              
      

  
   (1) 

ii) if liquid film diffusion Df (m2 s-1) controls the sorption rate is described by Eq. 2:  

             
   

      
   (2) 

Where X(t) is the fractional attainment of sorption equilibrium (qt/qe) on the zeolite phase at time t, Cs 

and Cr (mg kg-1) are the concentrations of solute in solution and in the zeolite, respectively; r is the 

average radius of zeolite particles (4x10-4 m), t is the contact time (min or s); and h is the thickness of 

film around the zeolite particle (1x10-5 m for poorly stirred solution) [21]. In the SPM, as the porosity 

of the zeolite is considered small and thus practically impervious to the fluid reactant and the sorption 

process is described by a concentration profile of the solution containing phosphate and ammonium 

ions advancing into a spherical zeolite particle partially saturated [20]. The sorption rate controlling 

steps on the zeolite particles leads to:  

(a) if it is controlled by the fluid film KF (m s-1)  described by Eq. 3: 

      
      

      
           (3) 

(b) if it is controlled by the diffusion though the particle sorption layer Dp (m2 s-1), described by 

Eq. 4: 

                        
      

       
        (4) 

(c)  if it is controlled by the chemical reaction ks (m2 s-1), described by Eq. 5: 

                 
     

 
         (5) 

Where CAo and CSo are the concentration of solute in bulk solution and at the zeolite unreacted core, 

respectively (mg L-1) and as is the stoichiometric coefficient.  
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All experimental data were treated graphically and compared to all fractional attainment of equilibrium 

functions (F(X) = f (t)) defined previously for both models HDM and SPM. 

3. Results and discussion 

3.1. Zeolites characterization 

The natural zeolite was mainly identified as clinoptilolite and traces of cristobalite and mordenite were 

identified through XDR analysis (Figure 1).  

 

Figure 1. X-ray diffractograms of NC, KAlC, KFeC and KMnC.  

 

The natural zeolite not exhibited a highly pure and crystalline nature. It was not observed any 

significant attenuation of the peak intensity of the modified forms of NC zeolite revealing the absence 

of changes on the structure of the raw NC after the modification with aluminium, iron and 

manganese. The absence of new mineralogical phases and also of significant shift in peaks position 

of the modified samples  suggested that K+ and remaining non-precipitated Al3+, Fe3+ and Mn2+ ions 

are not modifying the raw material structure (NC) [22]. The chemical composition of the natural and 

5 10 15 20 25 30 35 40

 Clinoptilolite  Mordenite  Cristobalite  Gismondine

 Calcite

2 Theta (Deg.)

NC

KAlC

KFeC

KMnC



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 
 

modified zeolites is collected in Table 2. The three modified materials revealed a reduction in the 

sodium, magnesium and calcium content that was accompanied by the slight increase of potassium 

percentage, in comparison with the natural zeolite. Clinoptilolite plate-like morphology that was 

characterized by networks of crystal clusters with cavities and entries to the channels inside the 

framework is shown in Figure S1a-d (supplementary information) [23]. The surfaces of the modified 

zeolites were covered of small particles and crystals uniformly distributed which is in accordance with 

previous reports [24]. The FTIR analysis of the parent zeolite NC and its aluminium, iron and 

manganese forms are shown in Figure S2 (supplementary information). A slight variation in the 

intensity of the peaks in the range from 3700 cm-1 to 2951 cm-1, at 1630 cm-1 and at 1012 cm-1 was 

observed in the three modified zeolites in comparison to the parent zeolite. The range of bands from 

3700 cm-1 to 2951 cm-1 was assigned to the hydroxyl region of zeolitic structure: SiO–H groups, AlO–

H groups, bridging hydroxyls, and H-bonded species [25]. The decrease of the intensity of these 

bridging Si(OH)Al groups was attributed to the substitution of protons for positively charged M: Al (III), 

Fe (III) and Mn (II) species. Then, these changes could be attributed to the formation of Al3+–OH, 

Fe3+–OH and Mn2+–OH hydroxyl sites, which generated the variation of intensity in the band of 

deformation vibration of water band at ~1630 cm-1 [26]. The change of intensity in the peak at ~1012 

cm-1 also suggested the structural changes promoted by the incorporation of transition metals into 

zeolite structure [27]. Additionally, the appearance of new peaks below peak at 1558 cm-1 when the 

Al3+, Fe3+ and Mn2+ are exchanged, can be associated to the amount of Brønsted and Lewis acid 

sites variation [22].  
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Sample O Na Mg Al Si K Ca Fe Mn 

NC 57.9±3 0.3±0.1 0.4±0.1 5.3±0.4 29.7±2 2.9±1 1.9±0.3 1.6±0.2 - 

KAlC 46.6±1 <loq* <loq* 5.6±1 14.7±2 3.4±1 <loq* <loq* - 

KFeC 42.4±3 <loq* <loq* 2.7±0.3 15.6±3 3.4±1 <loq* 8.9±1 - 

KMnC 47.8±3 <loq* <loq* 3.8±1 21.9±5 3.4±1 <loq* <loq* 1.6±0.2 

*loq: limit of quantification 

Table 2. Relative atomic percentages measured by EDX of natural and modified zeolites. 

The acid–base characterization measured a pHpzc of 5.2±0.4 for parent zeolite in comparison to 

modified zeolites pHpzc (7.3±0.4 for KAlC, 6.4±0.4 for KFeC and 6.9±0.4 for KMnC). The pHpzc 

provides information about the sorbent surface charge, and then a slight increase of the point of zero 

charge after modification can be attributed to the surface nature of impregnated HMO. It was reported 

in previous studies that metal oxides developed a surface charge with water contact [28] and its 

interfacial behaviour is promoted by the dissociation of functional groups on the active sites of the 

sorbent [29]. The values of pHpzc determined for modified zeolites are in agreement with those 

reported for an aluminium oxide γ-AlOOH (HAO) with 7.26 [30], for an iron oxide supported on a 

modified zeolite with 6.23 [31], and for manganese oxide Mn2O3 with 6.7 [32]. The development of 

negative charges is obtained for solutions with pH above pHpzc, while pH below pHpzc characterise 

positive charges development. The pHpzc in modified zeolites KAlC, KFeC and KMnC revealed the 

existence of positive charges near below the common pH of real municipal wastewater (pH ~7), 

favouring the adsorption of orthophosphate anions [33]. 

 

3.2. Ammonium and phosphate sorption as function of pH 

The removal of ammonium can be described by an ion exchange reaction with potassium ions as is 

described by Eq. 6.  
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Z-K+ +NH4
+↔ K+ + Z-NH4

+  (6) 

where Z- represents the ionogenic groups of the zeolite structure. 

The selectivity of the exchange process is considered mainly affected by the ionic charge and ionic 

radius. Although the Stokes hydration ionic radius for both ions is similar (130 nm) the differences in 

selectivity for the exchange of K+/NH4
+ is enough to assure a high removal efficiency for ammonium 

[34]. 

The influence of pH on ammonium sorption capacity of the modified forms of zeolite KAlC, KFeC and 

KMnC is plot in Figure 2. A similar behaviour of the ammonium sorption capacity as function of pH 

was obtained for NC. The repulsion of ammonium ions with the positive charges existing on the 

surface of the modified sorbents was observed below the pHpzc in the acid range from pH 2 to pH 4. 

Then, the maximum values of ammonium sorption capacity were reached between pH 4 to 7 which is 

near below the pHpzc of the sorbents. However, above pHpzc it was observed a progressive reduction 

of ammonium sorption capacity since at pH 7 starts the decrease of the NH4
+ ion concentration and 

the conversion to the NH3 form [35].  

The aluminium and iron hydrated oxide forms revealed similar pH dependence behaviour on 

phosphate sorption. The highest value of sorption capacity was reached at pH 3, which is below the 

pHpzc of these sorbents; so the presence of positive charges favoured the anion sorption. However, 

the reduction of phosphate capacity at pH 2 seems to be connected to the conversion of charged 

phosphate species (e.g. H2PO4
-) to non-charge H3PO4. In the range from pH 4 to 11, near and above 

the pHpzc of these sorbents, the decrease of phosphate sorption was attributed to the existence of 

negative surface charged species. Moreover, for the manganese zeolite, low values of phosphate 

sorption in the pH range from 2 to 6 were measured, and then suddenly increased from pH 7 to pH 

10. The phosphate oxyanions (H2PO4
- - HPO4

2-) sorption ocurred through chemical reaction via 
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complexes formation with HMO functional groups (MOH). According to these removal patterns 

observed, the phosphate sorption in the expected pH range (Eq. 7 to 9) could be explained as follow:  

- Formation of outer-sphere complexes with MOH2
+ surface groups, described by Eq. 7: 

MOH2
+X- + (H2PO4

-/HPO4
2- ) MOH2

+(H2PO4
-/HPO4

2-) + X-  (7) 

- Formation of inner-sphere complexes with MOH surface groups, described by Eq. 8: 

             MOH+H2PO4
-/HPO4

2- MH2PO4
-/HPO4

2-+OH-    (8) 

 

 

Figure 2. Effect of pH on the removal of ammonium and phosphate on modified zeolites KAlC, KFeC 

and KMnC. 
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3.3. Kinetic of phosphate and ammonium sorption 

Kinetic sorption data for ammonium and phosphate for KAlC, KFeC and KMnC zeolites are shown in 

Figure 3. The ammonium sorption rates are comparable for the three modified zeolites which reached 

the equilibrium in only 15 minutes; whereas the phosphate sorption rates were lower and more than 

60 minutes were needed to reach equilibrium. It can suggest that the ion exchange reaction between 

NH4
+/K+ (Eq. 6) occurred faster than complexation reactions of phosphate ions (Eq. 8 and 9). It can 

be explained due to the better access of the ammonium cations to the negative sites in comparison to 

the access of the surface hydroxide groups on the solid surface. 
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Figure 3. Ammonium and phosphate kinetic adsorption curves of KAlC, KFeC and KMnC zeolites in 

treated wastewater effluent sample. 

The KMnC zeolite exhibited a lower phosphate sorption rate than KAlC and KFeC zeolites; and 

indeed the sorption capacity showed an increase of removal from 57% up to 78% (50% relative 

increase) after 30 minutes. This behaviour indicates that the main sorption mechanism involved in 

phosphate uptake is precipitation.  

 

Figure 4. X-ray diffractograms of NC, KMnC and loaded KMnC. (ammonium manganese phosphate 

(NH4MnPO4·H2O)). 
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The chemical precipitation of a new crystalline phase was revealed and identified as ammonium 

manganese hydrogen phosphate (NH4MnPO4·H2O) through the XRD patterns of the loaded modified 

potassium manganese clinoptilolite KMnC as shown in Figure 4. In the case of KAlC and KFeC 

neither phosphate-Al nor phosphate-Fe phase was identified after sorption tests. 

Analysis of the fractional equilibrium attainment functions (X versus t) by using both HDM and SPM 

models (Eq. 1-5) indicated that sorption rate control of ammonium and phosphate ions is particle 

diffusion. A first stage of NH4
+ and HPO4

2-/H2PO4
- diffusion from the solution to the external surface of 

zeolite is followed by a sorption stage along the zeolite internal surface. The linear regression 

analyses of the rate control equations for ammonium and phosphate sorption onto modified zeolites 

are summarized in Table 3. The R2 values are closer to 1 for Dp than Df attributing to particle diffusion 

as the rate-limiting step for both ions. The HPDM and SPM models provided a good description of the 

kinetic ammonium and phosphate experimental data as can be seen in Figure S3 (supplementary 

information). 

 HPDM SPM 

 -ln (1-X2) -ln (1-X) X [3-3(1-X)2/3-2X] [1-(1-X)1/3] 

 R2 Df  (m2·s-1) R2 Dp (m2·s-1) R2 KF (m·s-1) R2     Dp (m2·s-1) R2   ks  (m·s-1) 

KFeC 

KMnC 

KAlC 

 

Phosphate 

0.97    1.1 10-13 

0.98    2.2 10-14 

0.99    1.1 10-13 

0.86     1.1 10-8 

0.91     1.4 10-8 

0.93     2.9 10-8 

0.83     2.9 10-10 

0.94     7.4 10-10 

0.72     8.3 10-9 

0.97    6.8 10-14 

0.99    2.2 10-14 

0.98    5.0 10-14 

0.84     4.6 10 -10 

0.93     2.1 10-10 

0.84      4.910-10 

KFeC 

KMnC 

KAlC 

 

Ammonium 

0.99    1.1 10-12 

0.98    5.7 10-13 

0.99    2.6 10-13 

0.92     3.7 10-8 

0.86     2.1 10-8 

0.89     1.4 10-8 

0.79     3.2 10-9 

0.79     1.2 10-10 

0.75     2.3 10-9 

0.98    4.6 10-13 

0.97     2.6 10-13 

0.99     2.1 10-13 

0.87      7.9 10 -10 

0.86      1.4 10-10 

0.87      3.5 10-10 

Table 3. Kinetic parameters for ammonium and phosphate removal by modified zeolites using both 

HPDM and SPM models. 
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The effective diffusion coefficients in the range of 10-14-10-12 m2/s for both ions are common with 

chemisorption systems [36] and similar to those reported with powder synthetic zeolites used for 

ammonium or phosphate removal. The effective diffusion coefficients for ammonium ions are higher 

than for phosphate ions due to the different internal structure of the sites responsible for the sorption 

mechanism, ion-exchange for ammonium, and surface complexation for phosphate ions. Onyango et 

al. [37] reported effective diffusion coefficients in the order of 10-15 to 10-14 m2/s for phosphate removal 

with synthetic zeolites impregnated with Al (III) hydrated oxides.  

Sorption selectivity of ammonium and phosphate in front of sodium, calcium, magnesium, chloride, 

sulphate and nitrate, major ions present in the treated wastewaters, for the impregnated zeolites is 

plot in Figure 5. For the three zeolites, the concentration ratio (C/C0) decreases with time. A different 

trend was observed for K+ as the concentration in solution increased due to the exchange with 

Na+/Mg2+ and also for Ca2+ as expected according to Eq. 6. The selectivity order of K-zeolites for 

monovalent cations is as follows, NH4
+>K+>Na+, while for the divalent cations the amount of 

exchanged cations leads to an equilibrium by about 30 min. The exchanged amount of Ca2+ and Mg2+ 

are higher compared to that of monovalent cations, especially for KAlC and KFeC zeolites. The three 

impregnated potassium zeolites were very selective for the simultaneous ammonium and phosphate 

sorption as it was reported for aluminium and iron impregnated zeolites [12, 13], taking into account 

the ions present in real wastewaters that were not sorbed. It should be pointing out that the KMnC 

zeolite showed the highest selectivity. 
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Figure 5. Sorption of cations and anions present in treated wastewater effluent for ammonium and 

phosphate sorption on modified zeolites KAlC, KFeC and KMnC. 

The organic matter sorption of the zeolites, as a function of their major components, purgeable 

organic carbon (NPOC), total organic carbon (TOC), and total carbon (TC) is listed in Table 4. 
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Sorption values were below 0.3 mg/g indicating a limited sorption capacity of the zeolites for organic 

matter under working range evaluated (e.g., 20 mgTOC/L for the test solutions). Then a low influence 

of the dissolved organic matter on ammonium and phosphate removal can be expected for the three 

impregnated zeolites. This behaviour is in accordance with previous reports about inorganic sorbents 

used for nutrients removal which were not affected by low concentration of organic matter [38]. 

However influence of the organic matter was observed when high organic content is present in 

contaminated waters [6, 39].  

                    Ion 

Sample 

Adsorption capacity (mg·g-1) 

Na+ K+ Mg2+ Ca2+ NO3+ Cl- SO42- NPOC NT TOC TC IC 

KAlC 1.6 -1.8* 0.9 1.4 0.1 2.5 1.8 0.1 1.6 0.3 0.1 0.2 

KFeC 1.4 -3.0* 0.7 2.8 0.3 5.3 1.6 0.1 2.1 0.1 <l.d 0.1 

KMnC 2.2 -1.3* 0.4 0.9 0.2 5.2 1.6 0.1 2.0 0.1 <l.d <l.d 

<l.d: values below the limit of detection 
*Negative values means desorption of the ion from the zeolite to the solution 

Table 4. Adsorption capacity of species present in treated wastewater samples. 

 

3.4. Evaluation of phosphate bioavailability of loaded impregnated zeolites by sequential 

chemical phosphorus fractionation  

Sequential chemical phosphorous fractionation data collected in Table 5 revealed that the major 

fraction of P after the leaching steps is associated with inorganic form (Pi). This in accordance with 

the fact that the real treated wastewater effluent sample used contained mostly the inorganic form of 

phosphorus because of WWTP treatment stages involving physical and chemical process. 

The major P fraction was found to be the biological active HCO3
- fraction that was around 35 – 39% 

of total P. The second P fraction was found to be the NaOH fraction which is associated with 

formation Fe-Al-Mn hydroxide minerals with 28 – 36% of total P. The third P fraction was found to be 
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the HCl extractable fractions associated with Ca-P and Mg-P between 26 – 28% of total P. The minor 

P fraction was the H2SO4/H2O2 fraction accounting 2 – 3% of total P. 

 

                  Treatment  

 

          Sample 

  HCO3 NaOH HCl H2SO4/H2O2 

q Pi Po Pt Pi Po Pt Pi Po Pt Pr 

mg.g-1 mg.g-1 

KAlC 6,3 1,7 0,3 2,0 1,6 0,3 1,9 1,3 0,3 1,5 0,2 

KFeC 5,6 1,7 0,2 1,8 1,5 0,3 1,9 1,2 0,2 1,3 0,1 

KMnC 9,6 2,0 0,3 2,3 1,4 0,3 1,7 1,5 0,20 1,7 0,2 

Table 5. Sequential phosphorus fractionation of the loaded modified zeolite samples (P i represents 

the inorganic fraction, Po the organic fraction and Pr the residual fraction). 

 

The sequential fractioning of the loaded modified zeolite revealed the existence of an important 

fraction of biological active phosphorus. Furthermore, the recovered phosphate can be suitable 

applied as fertilizer in P-deficient soils and finally it should be considered the abilities of the K-zeolites 

in soil improvement schemes. Cation exchange sites initially occupied by K cations are selectively 

exchanged with NH4
+ and in less extension with Na+, Ca2+ and Mg2+. Then, they can be used as a 

slow acting fertilizer, mainly for K+ and NH4
+. 

 

4. Conclusions 

The modification of a powder natural zeolite into the potassium aluminium, iron and manganese 

forms allowed the simultaneous removal of ammonium and phosphate sorption from a secondary 

wastewater effluent. The sorption mechanisms identified were ion exchange in the case of 

ammonium and the formation of inner sphere complexes with the functional groups M-OH (M: Al3+, 
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Fe3+, Mn2+) in the case of phosphate. Moreover, it was also found that electrostatic interactions 

occurred in both ammonium and phosphate sorption on modified zeolite. Particularly, the chemical 

precipitation of ammonium manganese hydrogen phosphate (NH4MnPO4·H2O) was identified on the 

loaded modified potassium manganese zeolite. The maximum phosphate sorption capacity for the 

three zeolites were 6-80 mg-P/g for KALC, 7.2 mg-P/g for KFeC and to 8.2 mg-P/g for KMnC. 

Contrary ammonium maximum sorption capacity was constant between pH 4 and 9 for the tree 

zeolites as the main sorption mechanism is the ion-exchange involves the K+ ions of the zeolite. The 

maximum ammonium sorption capacity for the three zeolites was approximately 29±3 mg-N/g. 

The existence of organic matter content in treated wastewater not represented interference on the 

ammonium and phosphate sorption capacities for the three modified zeolite. The sequential 

fractioning of the loaded modified zeolite revealed on one hand the existence of an important fraction 

of biological active phosphorus and on the other hand that recovered phosphate is suitable as 

fertilizer in P-deficient soils. However, due to the limited reusability of these materials, it could be an 

interesting option as additives for the soil quality enhancement. 
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