UC Berkeley ## **CEGA Working Papers** #### **Title** Discrimination from Below: Experimental Evidence from Ethiopia #### **Permalink** https://escholarship.org/uc/item/4218r07z #### **Authors** Ayalew, Shibiru Manian, Shanthi Sheth, Ketki #### **Publication Date** 2019-05-01 Series Name: WPS Paper No.: 079 Issue Date: 1 May 2019 # Discrimination from Below: Experimental Evidence from Ethiopia Shibiru Ayalew, Shanthi Manian, Ketki Sheth ## Working Paper Series Center for Effective Global Action University of California This paper is posted at the eScholarship Repository, University of California. http://escholarship.org/uc/cega_wps Copyright © 2014 by the author(s). The CEGA Working Paper Series showcases ongoing and completed research by faculty affiliates of the Center. CEGA Working Papers employ rigorous evaluation techniques to measure the impact of large-scale social and economic development programs, and are intended to encourage discussion and feedback from the global development community. Recommended Citation: Ayalew, Shibiru; Manian, Shanthi; Sheth, Ketki; (2019). Discrimination from Below: Experimental Evidence from Ethiopia. Working Paper Series No. WPS-079. Center for Effective Global Action. University of California, Berkeley. ## Discrimination from Below: Experimental Evidence from Ethiopia * Shibiru Ayalew Shanthi Manian Ketki Sheth We propose and test an understudied explanation for the under-representation of women in leadership roles: gender discrimination by subordinates may reduce the effectiveness of female leadership. Using a novel lab-in-the-field experiment in Ethiopia, we find striking evidence for discrimination: subjects are ten percent less likely to follow the same advice from a female leader than an otherwise identical male leader, and female-led subjects perform .34 standard deviations worse as a result. Subjects also give lower evaluations to hypothetical female managerial candidates. However, we find significantly higher returns to ability information for female leaders: when the leader is presented as highly trained and competent, subjects are more likely to follow advice from women than men. This pattern allows us to characterize this discrimination as statistical rather than taste-based, and is consistent with a model of statistical discrimination in which the same signal is interpreted differently for each gender. Our results suggest that discrimination from below is an important barrier for female leaders, that credible signals of ability are effective levers for closing such gender gaps, and that new policy approaches are necessary for organizations seeking to achieve gender equity. JEL Codes: O10, O15, J71 ^{*}We are grateful to the East Africa Social Science Translation (EASST), administered by the Center for Effective Global Action (CEGA), for financial support, and to Adama Science and Technology University for supporting our study, sharing data, and the staff which provided invaluable assistance with implementing the study design. We also thank Prashant Bharadwaj, Monica Capra, Edward Miguel, Karthik Muralidharan, Aurelie Ouss, Siqi Pan, Lise Vesterlund, Sevgi Yuksel, and various seminar participants for helpful suggestions and comments. This study was preregistered at the AEA RCT Registry (AEARCTR-0002304). No third party had the right to review this paper prior to its circulation. Ayalew: Arsi University (shibekoo84@gmail.com), Manian: Washington State University (shanthi.manian@wsu.edu), Sheth: University of California Merced (ksheth@ucmerced.edu). ### 1 Introduction Globally, women are underrepresented in leadership roles. For example, women hold just 17 percent of board directorships in the world's 200 largest companies, and representation falls even further in low-income countries (African Development Bank, 2015). In addition, a recent literature documents gender gaps in adherence to female guidance and expertise (BenYishay et al., 2018). In addition to equity considerations, these gaps suggest that the productivity potential of the labor force is not fully utilized. We propose a potential explanation: that discrimination from "below"—gender discrimination by subordinates—can make a female leader appear less qualified than a male leader who is of equal ability ex-ante. While leadership consists of many characteristics, successful performance in leadership depends in large part on how well others adhere to one's advice and direction. Thus, even if women are equally skilled and have similar leadership styles, female-led teams may perform worse if team members are less likely to heed advice from female leadership. This can generate gender disparities in promotions to higher-level management even when male and female leaders are otherwise identical and, importantly, even when there is no discrimination in promotion decisions. This mechanism also implies that even if a woman alters her leadership style or increases her human capital, she may still fall short of her male counterparts. However, little well-identified evidence exists on whether individuals are less likely to follow female leadership due to gender discrimination, and evidence is particularly scarce for developing countries. Using a novel lab-in-the-field experiment in Ethiopia, we study whether individuals follow advice differently when they are randomly assigned to a male versus female team leader. We use a unique sample of high-skilled employees who are unfamiliar with research experiments. Importantly, our design allows us to hold leader ability and communication style constant: there is no direct interaction between subjects and leaders, and pre-scripted messages are used to ensure that leader gender is the only difference between the two groups. Strikingly, although the female and male leaders are otherwise identical, we find that subjects are 10 percent less likely to follow the same guidance when provided by a woman rather than a man. As a result, female-led subjects earn fewer total points, a reduction of 0.34 standard deviations. Using a cross-randomized information treatment, we find that a signal of high ability has significantly higher returns for female leaders. This differential return to the ability signal is large enough to *reverse* the gender gap in the experiment. The observed pattern allows us to characterize the discrimination as statistical, where beliefs about a group are used to solve a signal extraction problem, and rule out "taste-based" discrimination, in which individuals simply dislike female leadership (Becker, 1957; Aigner and Cain, 1977; Guryan and Charles, 2013). Moreover, we show that this reversal can be explained by a model in which the same information about leader ability is interpreted differently for men versus women. We also provide additional evidence for gender discrimination by finding that subjects provided lower evaluations of female candidates for a hypothetical senior management position. Our tightly identified, lab-based evidence of discrimination from below is a strong complement to several studies documenting differential responses to female versus male leaders, advisers, and experts, particularly in low-income countries (BenYishay et al., 2018; Macchiavello et al., 2015; Gangadharan et al., 2016; Grossman et al., 2017). For example, BenYishay et al. (2018) find that female agricultural trainers in Malawi are less effective at getting others to adopt a new agricultural technology; Macchiavello et al. (2015) find that female manager trainees in Bangladeshi garment factories are seen as less effective; and Hardy and Kagy (2018) shows that female businesses receive fewer customers in Ghana. These papers extend an earlier literature documenting gender gaps in the labor market and political leadership (Jensen, 2012; Heath, 2014; Heath and Mushfiq Mobarak, 2015; International Labour Organization, 2016; Beaman et al., 2009), and exploring how gendered networks and peers create ¹We do not claim that these beliefs are necessarily accurate reflections of differences between the two groups; for the remainder of the paper, we use the convention of referring to any discrimination based on beliefs about the underlying groups, accurate or not, as statistical discrimination. and perpetuate gender gaps in the labor market (Beaman, Keleher and Magruder, 2018; Field et al., 2016; Hardy and Kagy, 2018). Similarly in high-income countries, female university professors receive lower teaching evaluations (Mengel, Sauermann and Zölitz, 2017; Boring, 2017) and female experts are more likely to be punished for negative shocks, even when they are random (Egan, Matvos and Seru, 2017; Landsman, 2018; Sarsons, 2017).² The consistent differential response to women documented in this recent literature raises the question of why individuals are responding differently to women. Are they prejudiced against women? Are they relying on their beliefs about women on average, because they do not have enough information about the ability of individual women? Or are they responding to other characteristics that are correlated with being female? The answer leads us to different policy solutions: should policies focus on improving gender attitudes and relaxing gender norms, on improving signals of ability, or on making women more similar to men, such as by increasing female educational attainment or confidence when asserting their authority? Because existing experiments on female leadership document differential responses to gender in natural settings, the men and women in their samples often differ on a number of characteristics in addition to gender. This is especially true for the studies in low-income countries, where gender differences tend to be larger.³ In addition to the observed differences between genders in many of these studies, a significant literature documents average differences by gender in communication style, confidence, and risk preferences (see Niederle (2017) for a
review), all of which are likely to influence how others respond to authority. We advance this literature in several ways. First, we provide clean identification of discrimination from below, an understudied form of discrimination. We show that individuals are responding to gender itself, as opposed to correlates of gender. Our results yield support ²Sarsons (2017) also shows that male experts are more likely to be rewarded for positive shocks, and that this implies that signals are interpreted differently for men and women. ³For example, Macchiavello et al. (2015) find that randomly assigned female manager trainees are seen as less effective, but are also younger, less experienced, less educated, less interested in being promoted, and have more children than their male counterparts. And in a lab experiment in the United States that also finds differential responses to advice by gender, Grossman et al. (2017) provide leaders with "talking points", but encourage them to provide the advice "in their own words". to interpreting the gaps documented in field experiments as statistical gender discrimination; likewise, the field experiments highlight the external validity and real-world consequences of our lab-based findings. In addition, because discrimination from below affects those in more senior positions, it is difficult to test using correspondence or audit studies, and in most cases, field experiments cannot hold constant the myriad differences across genders in such positions. Thus, a lab-in-the-field experiment is a particularly useful method to provide clean identification of such discrimination.⁴ Second, we show that signals of ability have significantly higher returns for female leaders, and thus are an important lever in closing gender gaps and improving efficiency. These patterns suggest our results are driven by statistical discrimination, and not taste-based discrimination, in a context with rigid gender norms and high gender inequality, like many low-income countries. To date, the growing literature on gender discrimination in low-income countries has largely characterized discrimination as a consequence of strong gender norms or of violations of those norms. An exception is Beaman, Keleher and Magruder (2018), who also find that gender differentials in job referrals in Malawi are more consistent with statistical discrimination. Third, we show that an ability signal can reverse gender discrimination outside a dynamic context. Although our results are broadly consistent with statistical discrimination, the reversal of discrimination that we document is *not* consistent with the simplest and most standard model of statistical discrimination in which beliefs are normally distributed, ability signals are uncorrelated with gender, and subjects update their beliefs using Bayes' rule. While our design does not allow us to pin down which of these assumptions is violated, we show that a model in which signals are interpreted differently by gender can explain our results. A recent paper by Bohren, Imas and Rosenberg (2018) also finds that an ability signal causes a reversal in gender discrimination. In an elegant online experiment, they show that ⁴There is a psychology literature that has used lab experiments to study discrimination toward female leaders, primarily in high-income countries, but generally does not involve real stakes. See Eagly (2013) for a review, and Beaman et al. (2009) for an example in India. this can be explained by subjects accounting for discrimination that women face in obtaining that ability signal, a phenomenon they call "dynamic discrimination". A key difference between this paper and Bohren, Imas and Rosenberg (2018) is that our experiment has no dynamic component: subjects have no reason to believe that it would be more difficult for women to obtain the ability signal in our experiment. Taken together with Bohren, Imas and Rosenberg (2018), our results suggest a broader phenomenon in which subjects respond particularly favorably to women of high ability, perhaps due to a broader environment in which women generally face barriers to attaining skills or accolades. Importantly, such reversals indicate that positive discrimination in favor of high-ability women does not preclude the existence of discrimination against women in the labor market more generally. The rest of the paper proceeds as follows. In Section 2, we provide a theoretical framework to motivate our experiment. Section 3 provides details on the design of the leadership game and the supporting resume evaluation. In Section 4, we present our findings and Section 5 concludes and discusses policy implications of the results. ## 2 Theory In this section, we develop a model incorporating both taste-based and statistical discrimination. We then generate testable predictions that will allow us to distinguish between these two sources of discrimination using our experimental results. We study an employee's decision to follow the advice of either a male or a female manager. We assume that both the male and female manager have equal underlying ability θ . However, we allow both the mean and variance of ability in the population to vary by gender $g \in \{m, f\}$, so $\theta \sim N(\bar{\theta}_g, \sigma_g^2)$. We focus on female and male managers of high ability, so $\theta \geq \bar{\theta}_g$ for all g. The employee does not observe the manager's ability. We first consider a base case in which the employee has no information about the manager except gender. Thus, the em- ⁵Given large differences in educational attainment between men and women in Ethiopia, for example, it may make sense to assume that mean ability is higher among men, and ability among women exhibits higher variance. ployee forms a belief $E(\theta|g)$ and chooses her action based on that belief. If she chooses to follow the manager's advice, she receives payoffs according to a continuous and increasing function $f(E(\theta|g))$. We also allow the employee's utility from following the advice to depend directly on the manager's gender, as in a model of "taste-based" discrimination (Becker, 1957). Thus, the employee has utility function $u(g, f(E(\theta|g)))$. To focus on the core predictions of our model, we assume rational expectations, that utility is linear in payoffs, and that taste-based utility and utility from payoffs are additively separable. This yields $u(g, f(E(\theta|g))) = f(\bar{\theta}_g) - c_g$, where c is the "taste-based" cost associated with following each gender. We standardize the utility of not following the manager to 0. The employee will then follow her manager's advice if the expected payoff from following the manager exceeds the taste-based cost of following the manager's directions: $$f(\bar{\theta}_g) > c_g$$ We allow employees to be heterogeneous in these taste-based costs, where c_g has the cumulative distribution function $D_g(x)$. We assume that the taste-based cost of following a female manager first order stochastically dominates the taste-based cost of following a male manager: $D_f(x) \leq D_m(x) \forall x$. Discrimination occurs when, for a male and female manager of equal ability θ and an employee with the information set S, we have: $$D_f(f(E(\theta|f, \mathbf{S})) < D_m(f(E(\theta|m, \mathbf{S})))$$ That is, discrimination occurs when employees are strictly less likely to follow the advice of a female manager than a male manager of equal ability. **Remark 1** Employees are less likely to follow female managers if $c_f > c_m$, if $\bar{\theta}_f < \bar{\theta}_m$, or both. In the absence of any other information about the manager ($S = \emptyset$), both taste-based discrimination and statistical discrimination toward women result in employees being less likely to follow the female manager relative to the male manager.⁶ If there is taste-based discrimination against women, then the expected payoff from following the manager must be higher for the female manager than the male manager, to compensate for the distaste. If there is statistical discrimination against women (i.e., $\bar{\theta}_f < \bar{\theta}_m$), employees are less likely to follow the female manager because the expected payoff from doing so is simply lower. #### The role of ability signals We now consider the possibility of introducing additional information about manager ability. Let s be a noisy but unbiased signal of ability: $s = \theta + u$, where u is independent of θ and is normally distributed with mean zero: $u \sim N(0, \eta^2)$. Note that for a male and female manager of equal ability, the distribution of s is the same for them both. We assume Bayesian updating and obtain: $$E(\theta|s,g) = \lambda_g \bar{\theta}_g + (1 - \lambda_g)s$$ where $$\lambda_g = \frac{\eta^2}{\eta^2 + \sigma_g^2}$$. In other words, when there is an additional signal of ability, employees form beliefs by taking a weighted average of the prior and the signal. The weights depend on the relative noise of the prior versus the ability signal: if the prior is noisier, the ability signal will be given more weight, whereas if the ability signal is noisier, the prior will be given more weight. Remark 2 After observing a signal of high ability, employees are weakly more likely to follow both male and female managers relative to the no-signal baseline. If $s \geq \bar{\theta}_g$ for all g, then $E(\theta|s,g) \geq E(\theta|g)$ and the expected payoff from following the manager increases. ⁶We note that discrimination could also occur when statistical discrimination is positive (i.e., $\bar{\theta}_f > \bar{\theta_m}$), but taste-based discrimination is severe enough to outweigh the added benefit of following the female leader. Here, our intention is not to rule out the possibility of positive discrimination, but rather to focus on which mechanism can generate the empirical observation that subjects are less likely to follow female leaders. We now
consider the role of a high ability signal when there is taste-based discrimination only: $c_f \geq c_m$ for all employees, but beliefs about ability are identically distributed. In this case, the condition for following the manager is $f(E(\theta|s)) > c_m$ if the manager is male and $f(E(\theta|s)) > c_f$ if the manager is female. **Proposition 1** Under only taste-based discrimination, $c_f > c_m$, signals of high ability cannot reverse the gender gap in following the manager. A high ability signal increases the expected payoff from following the manager, so it makes discrimination more costly. However, if the expected payoff is independent of manager gender, any given expected payoff is weakly more likely to exceed the distaste for following a male manager than a female manager by assumption. Thus, under taste-based discrimination, the share following the female manager can never exceed the share following the male manager. Proposition 1 implies that if a signal of high ability reverses the gender gap in following the leader, this must be due to a reversal of beliefs relative to priors. Therefore, we focus on beliefs, the basis for statistical discrimination, for the remainder of this section. We now return to our initial assumption that the priors on ability may vary by gender. In this case, after observing a signal of high ability, the gender gap in beliefs is: $$E(\theta|s,m) - E(\theta|s,f) = \lambda_m \bar{\theta}_m - \lambda_f \bar{\theta}_f + (\lambda_f - \lambda_m)s$$ Holding taste preferences constant $(D_m(x) = D_f(x))$ for all x, any reduction in the gender gaps in beliefs will translate into a corresponding reduction in discrimination from below. If the prior is that male managers have higher mean ability, $\bar{\theta}_m > \bar{\theta}_f$, but similar variances, $\sigma_m^2 = \sigma_f^2$ then a signal of high ability will reduce, but not reverse the gender gap. The gender gap will reverse only if the variance of female ability is large relative to male ability, so that much more weight is placed on the signal for female managers: $$\frac{\lambda_f}{\lambda_m} < \frac{s - \bar{\theta}_m}{s - \bar{\theta}_f}$$ However, in the special case of $s = \bar{\theta}_m$, that is, the signal indicates that the manager is of average male ability, even differences in prior variances in ability cannot reverse the gender gaps in beliefs. In such a case, the signal will have no effect of employees' response to a male manager, but will increase beliefs about the ability of a female manager.⁷ **Proposition 2** A signal indicating that a female manager is equal to the average male manager, $s = \bar{\theta}_m$, can reduce, but cannot reverse, the gender gap in following the manager. The gender gap in following the manager can reverse only if there is a reversal in the gender gap in beliefs. When the signal indicates that the female manager is equal to the average male manager, $s = \bar{\theta}_m$, the gender gap in beliefs is $\lambda_f(\bar{\theta}_m - \bar{\theta}_f)$, which is weakly positive by assumption. #### Discussion: understanding a belief reversal Propositions 1 and 2 show that the standard models of taste-based and statistical discrimination we have considered so far cannot explain a reversal in beliefs when $s = \bar{\theta}_m$. Here, we provide one example of how a reversal can be obtained within our framework. We consider a model in which employees interpret the same signal differently based on the gender of the manager. As a simple example, let $s = \theta - \gamma_g + u$, for some constant γ_g , where $\gamma_m = 0$ and $\gamma_f > 0$. Therefore, for the same level of ability, the employee assumes that a female manager will produce, on average, a lower signal than men. There may be several reasons that employees would interpret the same signal differently for male and female manager. One is gender stereotypes (Bordalo et al., 2016): for example, employees may expect female managers to perform worse on math or logic problems. Another ⁷We focus on this special case because our results suggest that the signal of high ability in our experiment indicated average male ability, i.e., $s = \bar{\theta_m}$. is the dynamic model of discrimination described by Bohren, Imas and Rosenberg (2018), where signals are interpreted differently because of barriers to entry in obtaining those signals. For example, in Ethiopia, as in many places around the world, barriers to entry for women in education are well documented. The World Economic Forum's 2016 Global Gender Gap Report ranked Ethiopia 132, out of 144 countries evaluated, for educational attainment. Thus, it may be rational in the Ethiopian context to infer different levels of ability for the same signal, such as an advanced degree. If employees believe that the signal mean differs by gender, we then have: $$E(\theta|s,g) = \lambda_g \bar{\theta}_g + (1 - \lambda_g)[s + \gamma_g]$$ For $s = \bar{\theta}_m$, the gender gap in beliefs is now $E(\theta|s,m) - E(\theta|s,f) = \lambda_f(s-\bar{\theta}_f) - (1-\lambda_f)\gamma_f$. This can be negative if the penalty γ_f is large enough. Employees viewing the same signal from male and female managers will conclude that it indicates higher ability for the female manager, on average, and this may be enough to reverse the gap. Thus, if employees believe that the signal mean differs by gender, then it is possible for a signal $s = \bar{\theta}_m$ to reverse the baseline gender gap in beliefs about ability. #### Summary of testable predictions The model developed in this sections makes the following testable predictions: - If there is either taste-based or statistical discrimination from below, subjects will be less likely to follow the advice of a female leader than an otherwise identical male leader. - 2. If there is either taste-based or statistical discrimination from below, when subjects receive a signal that their leader is of high ability, the gender gap in following the leader is reduced. 3. If there is taste-based discrimination only, under reasonable assumptions on preferences, a signal of high ability cannot reverse the gender gap in following the leader. Thus, a reversal indicates that discrimination is driven by beliefs. ## 3 Study Design We conducted the study in Adama, Ethiopia, in a sample of full-time administrative employees at Adama Science and Technology University (ASTU) that hold a BA or higher. Our primary results are based on an experiment we conducted in a subsample of these employees. We constructed the sample ourselves through local recruitment at the university. The sample itself is quite novel: the subjects are high-skilled, employees of an institution, and are unlikely to have participated as subjects in prior research. We supplement the experimental results with data from a survey experiment and institutional human resources data on the universe of ASTU administrative employees. #### 3.1 Context Ethiopia generally performs poorly on global indicators of gender inequality. For example, in the World Economic Forum's 2016 Global Gender Gap Report, Ethiopia ranked 109 of 144. This low rank was driven by their rank on sub-indexes related to education and labor market outcomes: they ranked 106 on "Economic participation and opportunity" and 132 on educational attainment. Adama Science and Technology University (ASTU) is an elite public university located about 100 km from the capital, Addis Ababa. To provide context for the potential beliefs of subjects in our sample, we use institutional human resources data to describe the characteristics of ASTU administrative employees (I). Educational attainment among employees is high: on average, employees completed 12 years of education, which corresponds to secondary school completion. In contrast, in the Ethiopian population more broadly, 48.3 Table I: Summary Statistics | | (1) | (2) | (3) | (4) | |---------------------|-----------|-----------|-----------|--------------| | | Total | Male | Female | Diff. | | Female | 0.56 | | | | | | (0.50) | | | | | Tenure | 8.00 | 7.61 | 8.31 | -0.71* | | | (5.55) | (5.95) | (5.20) | | | Years of education | 12.87 | 13.04 | 12.73 | 0.31^{*} | | | (3.01) | (3.23) | (2.83) | | | BA or higher | 0.30 | 0.38 | 0.23 | 0.14^{***} | | | (0.46) | (0.48) | (0.42) | | | MA or higher | 0.02 | 0.04 | 0.01 | 0.03*** | | | (0.15) | (0.20) | (0.09) | | | Salary | 2354.62 | 2629.83 | 2135.97 | 493.85*** | | | (1536.24) | (1878.60) | (1151.46) | | | Salary BA or higher | 3613.11 | 3681.16 | 3525.79 | 155.37 | | | (1624.55) | (1769.13) | (4161.84) | | | Observations | 1685 | 746 | 939 | 1685 | Standard deviations in parentheses. Female is an indicator for the subject being female, Tenure is the number of years the subject has been employed by the University, Years of education are based on the subject's highest education level completed, BA or higher is an indicator for whether the subject holds a Bachelors degree, MA or higher is an indicator for whether the subject holds a Masters degree, and salary is the subject's monthly salary reported in Ethiopian Birr. Salary|BA or higher is the salary conditional on the sample who hold a BA or higher. * p < 0.05, *** p < 0.01, **** p < 0.001. percent females and 45.7 percent males are out of secondary school (The World Bank, 2017). Nearly 30 percent of the sample has a BA or higher, while the gross tertiary enrollment ratio in Ethiopia is just 8 percent (The World Bank, 2017). Turnover among administrative employees at ASTU is low: average job tenure is 8 years. We observe significant differences in job tenure and salary by gender: women have been with the institution longer but are paid less on average. Importantly for the interpretation of our model, women in the sample have significantly fewer years of education: they are 37 percent less likely to hold a Bachelors degree and 75 percent less likely to hold a Masters degree. The salary gap we observe on
average disappears when limiting attention to those with advanced degrees. Thus, we find that women are less likely to have obtained an advanced degree, a credible signal of ability, but that its differential return is higher for women. #### 3.2 Leadership Game: Lab-in-the-Field Experiment #### **3.2.1** Sample Using a list of employees provided by the human resource department, we contacted all administrative employees with a BA or higher (n=500), and implemented the experiment until we reached 150 female subjects and 150 male subjects (see Table II for summary statistics on this sample). We restricted the experimental game to highly educated employees because we were concerned that the game may be too complicated for subjects with lower levels of education and literacy. Thus, relative to all university employees, those in the experiment were more educated, had higher salaries, and were balanced on gender. Within this sample, there is no salary or tenure difference across subject gender, though females have fewer years of education than males even conditional on obtaining a bachelors degree. Our sample size is similar to other experimental studies, including Cooper and Kagel (2005), on which our game is based. We estimated a minimum detectable effect between treatment arms to be .2 standard deviations, which corresponds to 5 to 10 percentage points.⁸ This calculation was based on a power of .8 and significance level of .05, and did not include additional covariates, such as a practice round, which would arguably reduce the minimum detectable effect even further. We decided to not increase the sample size due to the acceptable magnitude of the minimum detectable effect, and because of budgetary and logistical constraints. Unlike in the United States, recruitment of subjects in this lab-in-the-field experiment was not routine: there was no systematic recruitment pool or reliable method to recruit subjects in advance of the experiment. Instead, enumerators would go to the unit at ⁸The effect range corresponds to a 5 to 50 percent mean in the control. This power calculation used an ICC across rounds calculated from a non-incentivized pilot of the signaling game with 35 undergraduate university students in the United States in June 2017. which the employee worked to recruit the subject to participate within the next few days, with most subjects participating on the same day they were informed of the experiment. Due to such logistical difficulties, we designed our experiment to reduce the variance of the estimator through having subjects play multiple rounds rather than increasing the number of subjects (Lenth, 2001). Subjects were informed that they were participating in "an experiment in the economics of decision making," and were not informed of the hypotheses regarding gender and ability. #### 3.2.2 Overview of design The basic setup of the experiment is that subjects are randomly assigned to either a male or female "leader", subjects are asked to complete two games, and are told that the role of the leader is to provide assistance in the second game. The subject never sees the leader, and interaction between the leader and subject is limited to written messages that are identical across all leaders. In this way, we are able to hold the leader's behavior constant across male and female leaders. The subject is given some information about their leader: their leader's gender, as well as their leader's age range, and that their leader works in a similar position at a different university. In general, we are interested in the likelihood of subjects following the guidance provided by their leaders as a function of their leader's gender, and whether any gender gap can be mitigated by providing information about the leader being able. The leaders were real individuals at another university who actually played the games as described to the subjects a week prior. Unlike the subjects in the primary study, the leaders were given extensive training on how to play each task. We selected the two top performing leaders, one male and one female, to be assigned to subjects. To hold behavior constant, the leaders played ahead of time, and we selected one male and one female leader who played in the same way and had the same outcomes to be matched to subjects. The purpose of using real individuals as leaders was to avoid deceiving our subjects. Leaders received a bonus based on the average performance of the team members assigned to them. Subjects were told that their leader's compensation is partly based on how well the subject performs on the task. Analysis on the sample of recruited leaders is not possible as only eight individuals were recruited to be potential leaders. To prime our subjects to consider leadership, we frame the experiment by referring to the person providing advice as a team leader. Enumerators explicitly referred to the "leader", using the relevant word in Amharic, throughout the experiment. Though our results on advice giving may be broader than just leadership settings, we maintain the "leader" descriptor, instead of "advisor", because of this framing. In addition, we recognize that a manager's or leader's role is more than just providing advice; however, by focusing on one aspect of leadership, we are able to causally estimate the role of following advice, holding all other aspects of leadership constant. The experiment consists of two parts: a logic game (Tower of Hanoi) and a signaling game adapted from Cooper and Kagel (2005). The primary purpose of the first game is to serve as an input to the ability signal treatment. The primary purpose of the second game is to measure whether subjects follow their leader's directions. In the logic game, subjects are asked to solve the Tower of Hanoi logic game, (see Appendix Figure A.1 for details of the puzzle and Appendix Figure B for compensation schedule). How well a person solves the puzzle is measured by the number of moves required, in which fewer moves are better. Prior to actually playing, we asked subjects how many moves they think they will require to solve the puzzle, how many moves they think their leader will require to solve the puzzle, and finally how many moves they think their leader guessed they would require to solve the puzzle. These responses were specified in our preanalysis plan. However, the responses to these questions were bunched at the minimum number of moves and were highly skewed to the right, and therefore did not appear to be an effective question for precisely eliciting beliefs. We observe no statistically significant difference across treatment assignments or across female and male subjects; also, mean differences for all three measures by subject gender and randomly assigned leader gender are less than one move. #### Player 1 | | Type A | | Type B | | | | |------------|--------|-----|--------|-----|-----|-----------------| | | | | B's | | | Expected Payoff | | A's choice | In | Out | choice | In | Our | (not shown) | | 1 | 168 | 444 | 1 | 276 | 568 | 299 | | 2 | 150 | 426 | 2 | 330 | 606 | 395 | | 3 | 132 | 426 | 3 | 352 | 628 | 466 | | 4 | 56 | 182 | 4 | 334 | 610 | 525 | | 5 | -188 | -38 | 5 | 316 | 592 | 573 | #### Player 2 (Computer) | Computer's choice | Type A | Type B | |-------------------|--------|--------| | In | 500 | 200 | | Out | 250 | 250 | Figure I: Signaling Game Payoffs (colors and expected payoffs not shown to subjects) These results can be found in Appendix D. The second component was a signaling game adapted from Cooper and Kagel (2005). We selected this game because it has a clear correct answer, but it is quite complex and the correct answer is difficult to guess. This is particularly true for subjects with no previous exposure to game theory. Thus, there is a clear and important role for leader advice in this setting. In this two-player game, nature first selects Player 1's type (A or B with 50 percent probability). Player 1 moves first. Player 2 then responds after seeing what Player 1 has selected, but without knowing Player 1's type. The payoff structure is shown in Figure I.⁹ The key insight is that for a Player 1 Type B, the optimal play is 5. The logic is as follows. A naive Player 1 Type B will select 3, observing that conditional on Player 2's selection, 3 always provides the highest payoff. But a Player 1 Type B can be "strategic" by selecting 5. If he selects 5, he can signal his type, because 5 is strictly dominated for Type A. If Player 2 knows that Player 1 is Type B, Player 2 is better off playing "Out" (Figure I). ⁹The original game by Cooper and Kagel had 7 possible plays for Player 1 to select. We adapted the game to exclude the extreme options, leaving only 5 possible plays. A similar logic could be applied to playing 4. The leader provides advice to play strategically in this game. Because we are interested in how subjects respond to such advice, we assigned all subjects to be Player 1 Type B and Player 2 was played by a computer. We programmed a mobile phone app to draw from the actual distribution of Player 2 responses by university students in Cooper and Kagel (2005). To make this clear to the subjects, they were told that the computer did not know whether they were Type A or Type B. In addition, we included the following statement: "Though you are playing a computer, the computer has been programmed to mimic how real life university students have played this game, and so the computer does not always respond in the same way to a given number." After being introduced to the directions of the game, the subject was then asked to complete a "practice round" in which they selected which number they believed they would play, prior to being given any advice from their leader and without seeing how the computer responded to this selection. Subjects were then asked what they believed was the probability of receiving each possible payoff in their first round, and the probability of their
leader receiving each possible payoff in the leader's first round. Using these two questions, we calculate the subject's belief of the expected point value for him/herself and their leader. We note that our expectation was for subjects to report non-zero probabilities on only two of the options when eliciting beliefs of their own payoff (as the subject selects which number they will play), but the majority of subjects did include positive probabilities on more than two possible payoffs. The subject then played 10 rounds on the game. Prior to each round, the subject observes how their assigned leader played for that given round. In addition, subjects are told that the leader can send them messages. To control the content of the messages, messages were pre-written and leaders simply chose whether or not to send the messages to the subjects. All leaders chose to send the messages. The messages were displayed on an Android app by the enumerator (Figure II), and became increasingly informative over the rounds of the Figure II: Leader result and messages as shown to subjects game. The enumerator recorded the leader's play and outcome for each round on a piece of paper in front of the subject. The messages are provided in Appendix C. Figure III provides an overview of the experiment. We completed the game in a span of 6 days. Options in the signaling game were relabeled for Day 5 and Day 6, such that Player 1 selected from two different sets of letters for Day 5 and 6, and the computer responded with "left/right" and "up/down". ¹⁰ #### 3.2.3 Experimental Treatments We implemented a cross-cutting randomization of two treatments: leader gender and information on the leader being of high ability. Subjects were randomly assigned into one of four ¹⁰Results are robust to including day fixed effects and we observe no consistent differential pattern of choices for subjects playing later in the study. Figure III: Timeline of Leadership Game groups: Female leader with no information on ability, male leader with no information on ability, female leader with information on high ability, and male leader with information on high ability.¹¹ #### Leader Gender Subjects were randomly assigned either the male leader or the female leader. Recall, the information provided to the subjects about how the leaders played are identical, and subjects do not personally interact with their leaders. This ensures that the leaders were identical to each other, except for gender. In addition to telling the subjects the gender of their leader, we provided gendered pseudonyms¹² for the leader (mentioned 23 times in the enumerator's script) and relied on the gendered grammatical structure of the local language, Amharic, $^{^{11}}$ We randomized leader gender and then independently randomized the ability treatment, so the subjects are not perfectly evenly distributed across treatments. The distribution is as follows. Female leader with no information on ability: n=78. Male leader with no information on ability: n=71. Female leader with information on ability: n=85. ¹²Subjects were informed that the name was a pseudonym to protect the privacy of their leader. to make the leader's gender salient. To confirm that subjects were aware of their leader's gender, we asked subjects a series of questions at the end of the game on the characteristics of their leader, including gender, on the last two days of the experiment. 95 percent recalled the correct gender of their leader. #### Leader Ability We cross-randomized subjects to receive information on their leader being of high ability. This ability treatment consists of three components. First, after the "Tower of Hanoi" logic game, the enumerator informed the subject that the leader solved the puzzle with the minimum number of moves possible, and noted how many moves fewer this was than their own performance. Second, in the introduction to the second task, subjects were explicitly told that unlike themselves, the leader has already played the game and is an experienced player. And third, after 5 rounds of play, the enumerator totalled the points earned by the leader versus the subject to highlight the (expected) point advantage by their leader. #### 3.2.4 Validity of randomization Subjects were assigned a treatment once they arrived for the experiment. The randomization was stratified by subject gender. We had generated a random ordering of 150 treatment assignments per male and female subjects to be assigned as subjects arrived. For the last two days of the experiment, we re-randomized using a blocked randomization in groups of four, because we were concerned that we may not meet our recruitment targets (although we were ultimately successful in meeting the target). In all analyses, we account for differing randomization probabilities using inverse probability weights. Table II confirms the validity of our randomization. Using information on the subjects provided by the human resources department, we confirm that subject characteristics are balanced across the four treatment groups using a linear regression of treatment assignment on each characteristic (gender, salary, job level, education, and tenure). We also confirm Table II: Randomization balance | | (1) | (2) | (3) | (4) | (5) | (6) | |-------------------------------------|--------------------------|------------|---------|------------|----------|---------| | | Fem. | ln(Salary) | Level | Years | MA or | Job | | | $\operatorname{subject}$ | | | Ed. | higher | tenure | | Female leader only (F) | 0.0173 | -0.0213 | -0.145 | 0.00175 | 0.00848 | 238.2 | | | (0.0817) | (0.0634) | (0.446) | (0.0813) | (0.0401) | (328.3) | | | | | | | | | | Ability signal only (A) | -0.0189 | -0.00813 | 0.151 | 0.0556 | 0.0354 | 71.63 | | | (0.0803) | (0.0597) | (0.424) | (0.0865) | (0.0427) | (335.7) | | | | | | | | | | Female leader \times Ability (FA) | -0.0383 | -0.00636 | -0.149 | 0.117 | 0.0587 | -276.9 | | | (0.0840) | (0.0610) | (0.420) | (0.100) | (0.0494) | (342.2) | | D DD | 3.7 | 3.7 | 3.7 | 3 7 | 3.7 | 3.7 | | Day FE | Yes | Yes | Yes | Yes | Yes | Yes | | Observations | 304 | 304 | 304 | 304 | 304 | 304 | | p-val: $F = A$ | 0.649 | 0.839 | 0.510 | 0.535 | 0.535 | 0.586 | | p-val: $A = FA$ | 0.812 | 0.977 | 0.481 | 0.554 | 0.650 | 0.268 | | p-val: $F = FA$ | 0.503 | 0.821 | 0.994 | 0.251 | 0.312 | 0.0959 | | Sample Mean | 0.484 | 8.092 | 13.45 | 16.17 | 0.0822 | 3020.7 | Robust standard errors in parentheses. All dependent variables refer to subject characteristics taken from institutional data. Fem. subject is an indicator for the being female, $\ln(\text{Salary})$ is the log of annual salary, Level refers to internal categorization of the seniority and skill of a position, Years Ed. is the number of years of education reported, MA or higher is an indicator of whether the subject holds a Masters degree or higher, and Job tenure is the number of days of employment with the university. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.1, ** p < 0.05, *** p < 0.01 pairwise balance in the bottom three rows of Table II. In addition to balance across subject characteristics, we may be concerned that the pseudonyms we used to connote gender also contained information on other important characteristics (e.g., ethnicity, age). In Ethiopia, there are significant differences in ethnicity (Amhara and Oromic are the two dominant ethnicities) and religion (Orthodox Christianity and Islam are dominant). The pseudonyms assigned to leaders were selected from a listing exercise conducted for another study in an Amharic region of Ethiopia (Ahmed and Mcintosh, 2017).¹³ We use 193 unique names and no name is used for more than five subjects to reduce the concern of characteristics associated with a name being correlated with treatment status. The listing exercise had also collected information on the following basic demographic information on characteristics of the person with the given name: ethnicity, religion, age, and grade completed. Table III confirms that the characteristics associated with the pseudonym assigned to each subject in a given treatment are balanced across treatment arms. A final concern is that due to the randomized responses by the computer, leader ability could appear different across treatments despite holding leader behavior constant. Subjects may perceive their leader as less able if they do not follow their leader's advice and happen to obtain a higher payoff in a given round than the leader, or if they follow their leader's advice but happen to receive a low payoff. Table IV shows that these "errors" are balanced across treatments both unconditionally (Column 1) and conditional on the subject's play (Column 2). This alleviates concerns that differential error rates could be driving our results. #### 3.2.5 Estimating Equations Our primary research question is whether discrimination from below reduces the performance of female leaders. In the leadership game, this corresponds to the hypothesis that subjects are less likely to follow the leader's advice to play strategically (defined as playing 4 or 5, following Cooper and Kagel (2005)). We additionally hypothesized that information ¹³We therefore oversample Oromic names in our selection. Table III: Pseudonym balance | | (1)
Amhara | (2)
Oromo | (3)
Age | (4)
Grade | (5)
Orthodox | |-------------------------------------|---------------|--------------|------------|--------------|-----------------| | | | | | | | | Female leader only (F) | -0.0188 | -0.00914 | 0.670 | 0.219 | -0.0220 | | | (0.0554) | (0.0708) | (2.365) | (0.263) | (0.0700) | | Ability signal only (A) | -0.0537 | -0.0104 | -0.932 | 0.145 | -0.0689 | | | (0.0568) | (0.0697) | (2.278) | (0.227) | (0.0665) | | Female leader \times Ability (FA) | -0.0265 | 0.00721 | -0.409 | 0.160 | -0.0477 | | | (0.0597) | (0.0754) | (2.517) | (0.270) | (0.0712) | | Day FE | Yes | Yes | Yes |
Yes | Yes | | Observations | 304 | 304 | 304 | 304 | 304 | | p-val: $F = A$ | 0.544 | 0.985 | 0.444 | 0.781 | 0.466 | | p-val: $A = FA$ | 0.658 | 0.807 | 0.816 | 0.956 | 0.743 | | p-val: $F = FA$ | 0.900 | 0.826 | 0.648 | 0.848 | 0.700 | Robust standard errors in parentheses. Pseudonym characteristics are assigned based on the characteristics of actual individuals with a given name, drawn from a listing exercise conducted for another study in Ethiopia. The ethnicities, Amhara and Oromo, and religion, Orthodox Christian, are equal to 1 if there was at least one individual with the relevant characteristic. Age and grade represent the average age and educational attainment of all individuals with a given name. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ** p < 0.05, *** p < 0.01 Table IV: Leader "error" balance | | (1) | (2) | |-------------------------------------|----------|----------| | | Error | Error | | Female leader only (F) | 0.00943 | 0.00643 | | | (0.0187) | (0.0174) | | Ability signal only (A) | 0.00202 | -0.00126 | | | (0.0182) | (0.0162) | | Female leader \times Ability (FA) | -0.0118 | -0.00627 | | | (0.0187) | (0.0186) | | Day FE | Yes | Yes | | Round FE | Yes | Yes | | Play FE | No | Yes | | Observations | 3344 | 3339 | | p-val: $F = A$ | 0.681 | 0.620 | | p-val: $A = FA$ | 0.443 | 0.771 | | p-val: $F = FA$ | 0.252 | 0.483 | Standard errors in parentheses, clustered at subject level. Error is an indicator of whether the computer played "IN" in response to the subject playing strategically (i.e., 4 or 5) or if the Computer played "OUT" in response to the subject playing 2 or 3. Day FE are fixed effects referring to the day the subject participated in the experiment. Round FE are fixed effects referring to the ten rounds of the game. Play FE are fixed effects referring to the number played by the subject. * p < 0.1, ** p < 0.05, *** p < 0.01 indicating the leader is trained and competent will have higher returns to female leaders and mitigate such gender gaps. To test these hypotheses we estimate the following equation using a linear regression model: $$R_{ir} = \alpha + \beta_1 * FL_i + \beta_2 * Ability_i + \beta_3 FL * Ability_i + \epsilon_{ir}$$ (1) where R is an indicator for playing strategically (i.e., selecting 4 or 5)¹⁴ for subject i in round r (of 10 rounds). FL is an indicator for being randomly assigned a female leader, Ability is an indicator for being randomly assigned receipt of information on the leader's high ability, and FL * Ability is the interaction of the two indicators. We additionally include an indicator of whether the individual chose to play strategically in their practice round selection, subject characteristics listed in Table II, day fixed effects (i.e., the six days of the experiment), and round fixed effects (i.e., the 10 rounds of the game) to increase precision of our estimates and to directly control for changes we made on the latter days of the experiment. Standard errors are clustered at the individual level, corresponding to the level of randomization (Bertrand and Mullainathan, 2004; McKenzie, 2012). Based on our model, we have the following hypotheses: - $\beta_1 < 0$: In the absence of information, directions provided by female leaders are less likely to be followed relative to directions provided by male leaders. - $\beta_2 > 0$: Informing subjects that the leader is of high ability increases the likelihood that subjects follow the leader's directions. - $\beta_3 > 0$: The return to a signal of high ability is higher for female leaders that for male leaders. That is, the gender gap in following the leader narrows in the ability ¹⁴We use an indicator for playing 4 or 5 based on our pre-specified outcome of interest in our pre-analysis plan, following the earlier work of Cooper and Kagel (2005). Our results are qualitatively similar, though less precise, when using an indicator for selecting 5 only as the dependent variable and can be seen in the Appendix. ¹⁵As previously described, we corrected for varying randomization probabilities using inverse probability weights. The exclusion of these weights does not qualitatively change the results. treatment. • $\beta_1 + \beta_3 < 0$: The gender gap in following the leader conditional on receiving a signal of high ability reduces, but does not eliminate, the gender gap. Recall from Section 2 that a reversal in the gender gap, i.e., $\beta_1 + \beta_3 > 0$ and $\beta_1 < 0$, is not consistent with a model of taste-based discrimination. In addition, if $\beta_2 = 0$, this suggests that $s = \bar{\theta}_m$: the signal indicated that the leader was of average male ability. In such a case, models of statistical discrimination predict that an unbiased signal will mitigate, but not reverse, the gender gap. Thus, if we do observe a reversal of the gender gap, it is consistent with statistical discrimination in which the signal is being interpreted differently for men and women. #### 3.3 Resume Evaluation Upon completion of the experimental game for all subjects, we implemented a resume evaluation experiment that began the following week. We provided subjects with a job description for a senior management position, then asked subjects to evaluate a hypothetical candidate for that position. The gender of that candidate was randomly determined. This resume evaluation exercise is an additional test of discrimination towards management positions in the organization. It is customary to note the gender of the candidate on resumes in Ethiopia; therefore, names were not used and the gender was listed directly on the resume. An example is shown in Figure IV. To ensure the salience of candidate gender, we implemented a "comprehension" test before asking subjects to evaluate the resume. The test asked subjects a series of questions about the resume, include candidate gender. 95 percent of subjects correctly identified the candidate's gender, indicating that they read the resumes carefully. Subjects were randomly assigned one of four possible resumes: two different "candidates" that were designed to be comparable in quality, each of which was presented as either representing a male candidate or a female candidate. To guard against social desirability bias, we compare #### I. Personal Information Name: ----- Sex: [Randomly Determined: Female/Male] Birthdate: 21/07/1984 #### **Personal Summary:** I am an outgoing, ambitious, and confident individual, whose passion for the HR sector is equally matched by my experience in it. For the previous 6 years, my primary role at -----has been to provide HR support, guidance, advice, and services to all company staff. This has taught me to translate corporate goals into human resource development programs, as well as given me extensive knowledge of HR administration, principles, practices, and laws. I have experience sourcing candidates, overseeing hiring processes, and resolving employee relations issues. This has given me experience interacting with many different types of people and I have developed strong interpersonal skills for resolving conflicts. I am always looking for ways to improve systems in human resources, consistently complete tasks to their natural end, work well under pressure and deadlines, and adapt to changing environments. #### II. Work Experience Title: Employee and Labor Relations Consultant in Human Resources **Period of employment**: 2010 - Present Figure IV: Resume Evaluation Experiment: Example Resume evaluations across subjects only; that is, in the analysis sample, subjects are not directly comparing a male and a female candidate.¹⁶ After reviewing the resume and completing the comprehension test, subjects evaluated ¹⁶In the experiment, subjects were given a second resume of the opposite gender and asked to compare the two candidates directly. Our original analysis plan specified comparing evaluations within subjects, but we find evidence that providing a second resume to our subjects revealed that gender was a key component of interest, and subjects responded accordingly. Averaging across all subjects, we find that relative to the first resume, the second resume was rated more positively if it was a female candidate and more negatively if it was a male candidate. These results, along with estimation specified in the preanalysis plan, are shown in Appendix Table A.7. Thus, because of suggestive evidence of social desirability bias, evaluations of this second resume are excluded from this analysis. These biased estimators can be found in Appendix Table A.7. Importantly, when subjects were given the initial resume to evaluate, they were not told that a second resume would follow. In addition, even if subjects had known beforehand that the purpose of the resume evaluation was gender, the results from the second resume suggest that social desirability bias would have resulted in female resumes being evaluated more positively, causing our estimates to be a lower bound of gender discrimination. the potential candidate on an increasing scale from 1 to 5 on competence, likeability, and willingness to hire. They additionally suggested a salary to be offered to the candidate.¹⁷ Because of uncertainty in scheduling survey interviews with subjects, we again randomized the treatment (which of the four resumes) by creating a random ordering in groups of four for each enumerator and then had them go in the order of their list when interviewing subjects. We successfully followed up with 74 percent of the experimental subjects who complete the resume evaluation component in its entirety. Table V confirms the validity of our randomization by documenting that subject characteristics were balanced across treatment arms. The resume evaluation provides an additional test of gender discrimination towards potential managers. We test for this using the following linear regression model: $$Outcome_i = \alpha + \gamma_1 * FC_i +
\gamma_2 * ResumeType_i + \epsilon_i$$ (2) where Outcome is competence, likeability, hireability, or salary offer (in logs); FC is an indi- ¹⁷The exact questions were as follows: 1."I will first ask you about the competency of the candidate. By competency, I mean for you to evaluate the candidate based on how well you think he will perform on the requirements of the job. Based on the resume, is his competency: poor, fair, good, very good, or excellent?" 2. "I will now ask you about the likeability of the candidate. By likeability, I mean for you to evaluate the candidate based on how well you think he will get along with his colleagues, including the employees he will directly supervise. Based on the resume, is his likeability: poor, fair, good, very good, or excellent?" 3. "I will now ask you about how willing you would be to hire the candidate for the position. Based on the resume, would you be very unwilling, slightly unwilling, neither unwilling or willing, slightly willing, or very willing to hire him?" 4. "If this job candidate were hired, what monthly salary would you offer him, in Ethiopian birr?" ¹⁸We find 6 subjects for which the assigned treatment resume differs from the enumerator's recorded resume for the subject. All analysis uses assigned treatment resume. ¹⁹An additional 12.8 percent also participated in the resume evaluation, but chose to not respond to at least one of the evaluation questions, primarily the salary offer. We observe the same pattern for the marginal evaluation of a female resume on the remaining evaluation questions for which these subjects do provide a response. Attrition was not due to lack of consent or desire to participate, but rather driven by the difficulty in finding the same subjects by the enumerators. Because we implemented the survey over the summer, many employees were on leave. In general, subjects we were successful in following up with were paid less and had lower level positions in university. We do not observe differences in the lab experiment results based on resume experiment completion. ²⁰Prior to arrival in Ethiopia, we expected to implement the resume evaluation with 600 subjects. However, due to difficulties in recruitment and implementation by enumerators, we decided to limit the resume evaluation to just those subjects that participated in the experimental game. This decision was made prior to any data collection for the resume evaluation, and no other subjects were asked to evaluate the resumes. Table V: Resume Experiment Balance | | (1) | (2) | (3) | (4) | (5) | (6) | |---------------|----------|------------|---------|----------|----------|---------| | | Fem. | ln(Salary) | Level | Years | MA or | Job | | | subject | | | Ed. | higher | tenure | | Female Resume | 0.0213 | -0.0256 | -0.181 | 0.0189 | 0.00517 | 412.0 | | | (0.0671) | (0.0493) | (0.355) | (0.0712) | (0.0354) | (264.9) | | Resume Type | -0.0309 | 0.00549 | -0.0314 | -0.0634 | -0.0273 | -505.6* | | | (0.0671) | (0.0493) | (0.356) | (0.0713) | (0.0355) | (265.7) | | Observations | 225 | 225 | 225 | 225 | 225 | 225 | Robust standard errors in parentheses. Female Resume is an indicator for whether the subject reviewed a resume for a female candidate. Resume Type refers to which of two resume versions the subject reviewed. All dependent variables refer to subject characteristics taken from institutional data. Fem. subject is an indicator for the being female, $\ln(\text{Salary})$ is the log of annual salary, Level refers to internal categorization of the seniority and skill of a position, Years Ed. is the number of years of education reported, MA or higher is an indicator of whether the subject holds a Masters degree or higher, and Job tenure is the number of days of employment with the university. * p < 0.10, ** p < 0.05, *** p < 0.01. cator of whether the resume was randomly assigned to be a female candidate, ResumeType is a control for which of the two "candidate" resume was given; and i represents subject. The coefficient of interest is γ_1 . Based on our model, we hypothesize $\gamma_1 < 0.21$ ### 4 Results ## 4.1 Leadership Game Table VI shows our primary results from estimating equation (1) for the first round of the game, half way through the game, and using all rounds. We find that in the absence of information on ability, subjects with female leaders were 6 percentage points less likely to play in accordance with their leader's directions (see β_1). Relative to subjects with male leaders and no information on ability, this reflects a 10 percent reduction in adherence to the ²¹The pre-analysis plan uses a different estimating equation based on within subject comparisons; however, as previously discussed, we use across subject comparisons due to evidence of social desirability bias in evaluations of the second resume. Table VI: Leadership Game Results | Dependent Variable: | Strategic Play | | | | | | |--|----------------|--------------|------------|--|--|--| | | (1) | (2) | (3) | | | | | | Round 1 | Rounds 1-5 | All Rounds | | | | | (β_1) Fem. Leader | -0.0502 | -0.0822** | -0.0604* | | | | | | (0.0810) | (0.0391) | (0.0344) | | | | | (β_2) Ability | -0.0361 | -0.0443 | -0.00234 | | | | | | (0.0783) | (0.0393) | (0.0343) | | | | | (β_3) Fem. leader \times Ability | 0.295*** | 0.154*** | 0.123*** | | | | | | (0.112) | (0.0542) | (0.0472) | | | | | Covariates | X | X | X | | | | | Day FE | X | X | X | | | | | Round FE | | X | X | | | | | Practice round | X | X | X | | | | | Observations | 301 | 1505 | 3010 | | | | | Control group mean | 0.479 | 0.614 | 0.618 | | | | | $\beta_1 + \beta_3$ | 0.245*** | 0.0722^{*} | 0.0624* | | | | | P-val.: $\beta_1 + \beta_3$ | 0.00153 | 0.0571 | 0.0569 | | | | Standard errors in parentheses, clustered at subject level. Strategic play is defined as playing 4 or 5. Practice Round is an indicator for whether the subject played strategically in a practice round prior to any advice from the leader. Covariates are subject's gender, $\ln(\text{salary})$, level of employment, years of education, an indicator for having a masters degree, and tenure. Day FE are fixed effects referring to the day the subject participated in the experiment. Round FE are fixed effects referring to the ten rounds of the game. * p < 0.1, ** p < 0.05, *** p < 0.01 leader's recommendation. We find the discrimination in the absence of any information on ability to be relatively constant, despite subjects playing additional rounds of the game. This pattern of gender discrimination is further supported by the resume evaluation, discussed in the following section. We find that the marginal effect of the ability signal for subjects with female leaders is large and significant (see β_3). This is especially true in the first round of the game (Column 1), when subjects had the most uncertainty of the quality of the advice provided. This suggests that the marginal effect of the signal of ability was an important lever for increasing the effectiveness of female leadership. In contrast, we find that information on ability had no effect for subjects with male leaders, suggesting that the signal indicated an ability level approximately equal to the expected group mean for men. Interestingly, $\beta_1 + \beta_3 > 0$, which means that after receiving information that leader was of high ability, subjects were *more* likely to follow the directions provided by female leaders relative to male leaders. Conditional on the ability signal, subjects were 9 percent more likely to follow the recommendation provided by female leaders. As shown in Section 2, since the signal is approximately equal to the group mean for men, if priors are normally distributed, this implies that the ability signal is interpreted differently for men and women, even though the information contained in the signal is identical. The results are qualitatively similar, though sometimes less precise, when excluding covariates, using a probit model, and using the dependent variable of selecting "5" (see Appendix A.5). When using the outcome of selecting "5", the effect corresponds to a decrease of 16 percent adherence when paired with a female leader when no ability information is provided, and an increase of 8 percent adherence when paired with a female leader when information on ability is provided. Our results are also robust to using statistical significance determined by randomization inference.²² Figure V graphs the predicted performance for each leader type relative to the male leader with no ability signal using coefficients from our primary estimating equation (1) in which each round is added cumulatively.²³ We observe that female leaders with no ability signal consistently lie below their male leader counterparts. We further find that the marginal gain from the ability signal is much larger for female leaders (shaded in dark gray) relative to male leaders (shaded in light gray), who often have a negative estimate for the return to the ability signal. And finally, the performance of female leaders with an ability signal remains above the male leaders with ability across all rounds. The consistent reduced adherence to $^{^{22}}$ Using 1,000 draws, we find the p-value to be similar to our primary specification. For β_1 we find a p-value for the one-sided test to be .04 and two-sided to be .082, for β_3 to be .009 for the one-sided test and .015 for the two-sided test, and for $\beta_1 + \beta_3$ to be .04 for the one-sided test and .09 for the two-sided test. ²³We do not present later rounds in isolation because early round decisions influence later rounds, and early decisions are a function of treatment status. Using later rounds alone as a dependent variable thus raises concerns about endogeneity. female leaders and much higher return to the ability signal for female leaders are also evident when focusing on playing 5, instead of
strategic play (Appendix Figure A.3). We continue to see that female leaders with an ability signal outperform male leaders with an ability signal for each additive round, though the difference is somewhat smaller. This graphical representation echos our findings in Table VI, highlighting that results are not driven by selectively focusing on certain rounds. This pattern of discrimination against female leaders in the absence of ability information, and a reversal of discrimination with ability information, emerges from the first round of play. Columns 1 and 2 of Table VI present results for earlier rounds in the game (Round 1 and Rounds 1-5) to highlight that the discrimination begins early. The coefficient estimate on discrimination from below (β_1) is remarkably stable across rounds; while it is not statistically significant in the first round due to lower power, it is statistically significant for rounds 1-5. The large return to ability signals for female leaders (β_3) diminishes over rounds, suggesting that the importance of the signal may be reduced as subjects learn the strategy of the game and the quality of the advice over rounds. The discrimination against female leaders in the absence of ability information is costly. In the absence of information on high ability, having a female leader reduced total points earned by .34 standard deviations, which is statistically significant at the 5 percent level. In contrast, when provided information on high ability and the discrimination from below is reversed, we no longer observe a statistically significant difference in performance by leader gender.²⁴ We estimate our results separately for male and female subjects in Appendix Table A.6. Though less precise, the estimates suggest that the general pattern is quite robust across subject genders.²⁵. If anything, the reversal of discrimination appears to be somewhat stronger among female subjects. ²⁴However, the only reason for this difference between the subject's selection and their final points earned is chance, since there was randomness in how the computer responded to each play. ²⁵Estimating a single model that interacts the subject's gender with treatment also does not yield statistical differences by subject gender Proportional differences in playing strategically (i.e., selecting 4 or 5) are estimated using the coefficients estimated in our primary estimating equation used in Table VI). Cumulative Rounds refer to coefficients estimated using all rounds up to the given round. Relative performance of female leader with no ability signal is β_1 , relative performance of male leader with ability signal is β_2 , and relative performance of female leader with ability signal return for male leaders is the distance between the male leader with no ability signal and with ability signal return for female leaders is the distance between female leaders with no ability signal and with ability signal β_3 . Figure V: Relative Leader Performance over Cumulative Rounds 34 Table VII: Beliefs about leaders | Dependent Variable: | Beliefs on leader's performance | |--|---------------------------------| | | (1) | | (β_1) Fem. Leader | -7.425 | | | (9.051) | | (β_2) Ability | 4.064 | | | (9.381) | | (β_3) Fem. leader \times Ability | 18.46 | | | (13.30) | | Covariates | X | | Day FE | X | | Observations | 300 | Robust standard errors in parentheses. Dependent variable refers to the expected points earned in Game 2 by the leader, based on the subject's reported probability of the leader receiving each possible outcome. Covariates are subject's gender, $\ln(\text{salary})$, level of employment, years of education, an indicator for having a masters degree, and tenure. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ** p < 0.05, *** p < 0.01. Our estimates of belief expectation on how well the leader will perform in Task 2 can also act as a robustness check for our results, and for our conclusion that the results are more consistent with statistical discrimination. Unfortunately, the belief expectation exercises were difficult for subjects to understand and thus were likely very noisy estimates of belief. However, as Table VII shows, the pattern of the magnitudes of the beliefs elicited for Task 2 align with the pattern of following the leader's directions in Table VI. Female leaders (relative to male leaders) were expected to perform more poorly when no information was provided on ability—their expected performance was 7.43 fewer points. However, when leaders were presented as high-ability, female leaders' expected performance was 11.04 more points than male leaders. Our results lack statistical precision and thus cannot be differentiated from having no effect on expected value of performance, but the fact that they exhibit a similar pattern to our primary results is suggestive of the robustness of our results in Table VI. Table VIII: Resume Evaluation Results | | (1) | (2) | (3) | (4) | |---------------|------------|-------------|--------------------|------------------| | | Competence | Likeability | Likelihood of Hire | Log Salary Offer | | Female Resume | -0.0933 | -0.0337 | -0.172 | -0.115** | | | (0.122) | (0.111) | (0.140) | (0.0534) | | Observations | 225 | 225 | 225 | 225 | Robust standard errors in parentheses. Competence, Likeability, and Likelihood to Hire were asked using a Likert Scale, increasing from 1 to 5. Log Salary Offer is the log of the salary the subject suggested as an offer to the candidate in Birr. Female Resume is an indicator for the resume belonging to a randomly assigned female candidate. Regression specifications include the resume version, and subject's gender, $\ln(\text{salary})$, level of employment, years of education, an indicator for having a masters degree, and tenure as covariates. * p < 0.10, *** p < 0.05, *** p < 0.01 #### 4.1.1 Resume Evaluation The discrimination we observe in the absence of high ability information is echoed in our results from the resume evaluation experiment. On all measures, female candidates were evaluated more poorly than male candidates. Female candidates were rated less competent, less likeable, less likely to be hired, and were offered a 12 percent lower salary. Only this last result is statistically significant, at the 5 percent level. However, we should expect discrimination to be difficult to detect and results to be relatively imprecise given the crude evaluation measures. Nonetheless, the pattern of lower evaluations of female candidates is quite stark, and consistent across all measures, providing additional evidence of employees discriminating against potential female managers relative to male counterparts.²⁶ Among those who did not respond to salary (39 subjects), the same pattern is observed for competency and likelihood of hiring, though likeability goes in the opposite direction, and all results remain statistically insignificant. Our results are also robust to using enumerator reported treatment, as opposed to assigned treatment. And finally, the estimated effects from the experimental game display the same pattern when restricted to this subsample. The lack of a gender wage gap among those who hold advanced degrees at the university ²⁶We do not observe statistically significant differences by subject gender (see Appendix). suggests that the difference in salary offered is less likely to reflect differences in expectations of the candidate's outside option.²⁷ This exercise differs from typical correspondence studies in that our sample is not involved with human resources or hiring decisions. Instead, we interpret our results as suggestive survey evidence on how the subjects may generally view managers. Given our results on the experimental game, we had no prior on the direction of discrimination – it could have been that the information in the resume was a signal of ability that was equal to or above the expectations of a male candidate. Our results suggest they were not. Furthermore, our results provide additional evidence that gender is taken into account when evaluating managers. #### 5 Conclusion This paper uses a novel experimental design to study how leader gender influences the way individuals respond to leadership. We find striking evidence for discrimination against female leaders: subjects are less likely to follow the same advice from a woman than an otherwise identical man. While using a leadership framing, our results highlight discriminatory concerns in advice-giving contexts more generally. If female advice is less likely to be followed when offered, then simply giving women the opportunity to "sit at the table" may not be sufficient to overcome gender disparities. Though we focus on the context of management in this paper, discrimination from below can generate gender disparities in any position in which successful performance requires individuals to follow one's advice or direction. Our results further raise concerns about how best to evaluate female leaders and highlight a tension between gender equity and successful performance. Performance metrics that are based on subordinate or client responsiveness may be problematic in reaching equity goals. We also show that a credible signal of high ability has significant returns for female leaders, much greater than for male leaders. This resulted in the gender gap in following $^{^{27}}$ See Appendix for additional prespecified estimations on resume evaluation. the leader to not only be mitigated, but to reverse, when the leader is presented as highly trained and competent. We show that this pattern of empirical results implies statistical discrimination. Despite strong gender norms and severe gender inequality in Ethiopia, a general distaste for taking advice from females cannot explain our results. Instead, our results imply that
subjects are using gender as a proxy for quality of the advice. Global development goals have focused on improving gender parity in low-income countries, making it particularly important to understand the role and sources of gender discrimination in the labor market in these countries. Our results suggest that to improve gender equity in developing countries, it is not sufficient to change norms about the appropriate roles for women in society; beliefs about women's ability must also change. In general, discrimination from below can result in disparate promotion probabilities for male versus female managers, even when the employer is unbiased, which suggests that female managers who are promoted are positively selected. This follows from the seminal model of Coate and Loury (1993), in which an employer maximizes her payoff by setting a minimum standard and promoting those who exceed the minimum standard. Since discrimination from below reduces the performance of female-led teams, they are less likely to exceed the minimum performance standard, which in turn reduces the probability that female managers are promoted. Female managers who exceed the standard despite discrimination are more likely to be qualified than their male counterparts. Thus, discrimination from below can generate both under-representation of women in senior management, and positive selection of female leaders in high level management positions. Given our finding that discrimination from below is statistical in nature, an interesting implication of this last result is that conditional on obtaining a high enough management position, female leaders may see a reduction or even a reversal in discrimination from below. This insight can thus help reconcile, for example, the large gender disparities for the median woman in South Asia with the fact that the four largest South Asian countries have all had a female head of government.²⁸ In addition to highlighting the importance of conducting studies on discrimination in various settings, our findings help reconcile why discrimination and gender inequities on average may not translate to similar patterns of inequities among the elite. The discrimination we observe against female leaders is a potential explanation for why female representation in top management remains low globally despite large country-to-country variation in gender norms, female educational attainment and female labor force participation. Our results suggest that discrimination from below will be most prominent at lower stages in the management pipeline, and reduce for those women who are able to move up the pipeline. Given the statistical nature of this discrimination and the heterogeneous effects we document when information on ability is provided, our findings imply that providing women with credible signals of their ability, especially signals that can be communicated widely, can improve their performance by reducing discrimination from below. It follows that sensitivity training should not be limited to only those who hire and evaluate employees; changing gendered beliefs of *all* employees is important for reducing gender equities. A better understanding of successful methods of communicating ability to a broad audience is an important area for future research. $^{^{28}}$ Sen, Amartya. "More Than 100 Million Women Are Missing." The New York Review of Books, December 20, 1990. #### References - **African Development Bank.** 2015. "Where are the women: inclusive boardrooms in Africa's top listed companies?" https://www.afdb.org/en/documents/document/where-are-the-women-inclusive-boardrooms-in-africas-top-listed-companies-53810/. - "The Impact of Ahmed, Craig Mcintosh. 2017. Shukri, and Commercial Rainfall Index Ethiopia." Insurance: Experimental Evidence From https://gps.ucsd.edu/ files/faculty/mcintosh/mcintosh paper ams-ethiopiaimpact.pdf. - Aigner, Dennis J., and Glen G. Cain. 1977. "Statistical Theories of Discrimination in Labor Markets." *Industrial and Labor Relations Review*, 30(2): 175. - Beaman, Lori, Niall Keleher, and Jeremy Magruder. 2018. "Do Job Networks Disadvantage Women? Evidence from a Recruitment Experiment in Malawi." *Journal of Labor Economics*, 36(1): 121–157. - Beaman, Lori, Raghabendra Chattopadhyay, Esther Duflo, Rohini Pande, and Petia Topalova. 2009. "Powerful Women: Does Exposure Reduce Bias?" Quarterly Journal of Economics, 124(4): 1497–1540. - **Becker, Gary Stanley.** 1957. The economics of discrimination. Chicago: Univ. of Chicago Press. - BenYishay, Ariel, Maria Jones, Florence Kondylis, and Ahmed Mushfiq Mobarak. 2018. "Are Gender Differences in Performance Innate or Socially Mediated?" http://faculty.som.yale.edu/mushfiqmobarak/papers/gendermalawi.pdf. - Bertrand, Marianne, and Sendhil Mullainathan. 2004. "Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination." American Economic Review, 94(4): 991–1013. - Bohren, J. Aislinn, Alex Imas, and Michael Rosenberg. 2018. "The Dynamics of Discrimination: Theory and Evidence." SSRN Electronic Journal. https://www.ssrn.com/abstract=3235376. - Bordalo, Pedro, Katherine Coffman, Nicola Gennaioli, and Andrei Shleifer. 2016. "Stereotypes." *Quartely Journal of Economics*, 1753–1794. - Boring, Anne. 2017. "Gender biases in student evaluations of teaching." *Journal of Public Economics*, 145: 27–41. - Coate, Stephen, and Glenn C. Loury. 1993. "Will Affirmative-Action Policies Eliminate Negative Stereotypes?" American Economic Review, 83(5): 1220–1240. - Cooper, David J., and John H. Kagel. 2005. "Are two heads better than one? Team versus individual play in signaling games." *American Economic Review*, 95(3): 477–509. - **Eagly, Alice H.** 2013. "Women as Leaders: Leadership Style Versus Leaders' Values and Attitudes." In *Gender and work: Challenging conventional wisdom*. Harvard Business School Press. https://www.hbs.edu/faculty/conferences/2013-w50-research-symposium/Documents/eagly.pdf. - Egan, Mark L, Gregor Matvos, and Amit Seru. 2017. "When Harry Fired Sally: The Double Standard in Punishing Misconduct." NBER Working Paper Series, 23242. - Field, Erica, Seema Jayachandran, Rohini Pande, and Natalia Rigol. 2016. "Friendship at Work: Can Peer Effects Catalyze Female Entrepreneurship?" American Economic Journal: Economic Policy, 8(2): 125–153. - Gangadharan, Lata, Tarun Jain, Pushkar Maitra, and Joseph Vecci. 2016. "Social identity and governance: The behavioral response to female leaders." European Economic Review, 90: 302–325. - Grossman, Philip J., Catherine Eckel, Mana Komai, and Wei Zhan. 2017. "It pays to be a man: Rewards for leaders in a coordination game." *Monash Economics Working Papers*, 01(17). - Guryan, Jonathan, and Kerwin Kofi Charles. 2013. "Taste-based or statistical discrimination: The economics of discrimination returns to its roots." *Economic Journal*, 123(572): 417–432. - Hardy, Morgan, and Gisella Kagy. 2018. "It's Getting Crowded in Here: Experimental Evidence of Demand Constraints." https://www.dropbox.com/s/kdz1or4r0404k9w. - **Heath, Rachel.** 2014. "Women's Access to Labor Market Opportunities, Control of Household Resources, and Domestic Violence: Evidence from Bangladesh." World Development, 57: 32–46. - **Heath, Rachel, and A. Mushfiq Mobarak.** 2015. "Manufacturing growth and the lives of Bangladeshi women." *Journal of Development Economics*, 115: 1–15. - International Labour Organization. 2016. "Women at Work: Trends 2016." https://www.ilo.org/wcmsp5/groups/public/—dgreports/—dcomm/—publ/documents/publication/wcms 457317.pdf. - **Jensen, R.** 2012. "Do Labor Market Opportunities Affect Young Women's Work and Family Decisions? Experimental Evidence from India." *The Quarterly Journal of Economics*, 127(2): 753–792. - **Landsman, Rachel.** 2018. "Gender Differences in Executive Departure." https://drive.google.com/file/d/0B4Gus2bxOyznZXM3TVlfTzZ2TWM/view. - **Lenth, Russell V.** 2001. "Some Practical Guidelines for Effective Sample Size Determination." *The American Statistician*, 55(3): 187–193. Macchiavello, Rocco, Andreas Menzel, Atonu Rabbani, and Christopher Woodruff. 2015. "Challenges of Change: An Experiment Training Women to Manage in the Bangladeshi Garment Sector." Centre for Competitive Advantage in the Global Economy, University of Warwick Working Paper Series, 256. McKenzie, David. 2012. "Beyond baseline and follow-up: The case for more T in experiments." *Journal of Development Economics*, 99(2): 210–221. Mengel, Friederike, Jan Sauermann, and Ulf Zölitz. 2017. "Gender Bias in Teaching Evaluations." *IZA Discussion Paper*, 11000. Niederle, Muriel. 2017. "Gender." In *The Handbook of Experimental Economics*. Vol. 2. Princeton University Press. Sarsons, Heather. 2017. "Interpreting Signals in the Labor Market: Evidence from Medical Referrals." https://drive.google.com/file/d/1bDV1Tqhl6SX2CtM6Sf1c95PF5eloDJtr/view. The World Bank. 2017. "World Development Indicators." https://datacatalog.worldbank.org/dataset/world-development-indicators. ## For Online Publication ## A Tower of Hanoi Figure A.1: Tower of Hanoi Subjects are asked to move the tower from one pole to another. They can only move one disk at a time, and a larger disk cannot be placed on a smaller disk. The subject is asked to solve the Tower using four disks and told that the minimum moves are 15. # B Subject Compensation Schedule | Enumerator ID | Subject Number | |---------------|----------------| Payout Schedules Provided to Subject: Payout Schedule for Game 1: (Show each of these as different tables at the relevant time.) | Number of M | oves – Number of | Number of Moves t | o Solve | |--------------|------------------|---------------------|---------| | Guessed Mov | es | | | | 0 | \$1.7 | 15 | \$2.00 | | 1 | \$1.65 | 16 | \$1.94 | | 2 | \$1.6 | 17 | \$1.88 | | 3 | \$1.55 | 18 | \$1.82 | | 4 | \$1.5 | 19 | \$1.76 | | 5 | \$1.45 | 20 | \$1.70 | | 6 | \$1.4 | 21 | \$1.64 | | 7 | \$1.35 | 22 |
\$1.58 | | 8 | \$1.3 | 23 | \$1.52 | | 9 | \$1.25 | 24 | \$1.46 | | 10 | \$1.2 | 25 | \$1.40 | | 11 | \$1.15 | 26 | \$1.34 | | 12 | \$1.1 | 27 | \$1.28 | | 13 | \$1.05 | 28 | \$1.22 | | 14 or more, | \$1 | 29 or more, or | \$1.16 | | or failed to | | failed to solve the | | | solve the | | puzzle. | | | puzzle. | | | | #### Payout Schedule for Game 2: | Type A | | | Type B | | | |------------|-----------|-----------|------------|-----------|-----------| | A's choice | Computer: | Computer: | B's choice | Computer: | Computer: | | | In | Out | | In | Out | | 1 | 168 | 444 | 1 | 276 | 568 | | 2 | 150 | 426 | 2 | 330 | 606 | | 3 | 132 | 408 | 3 | 352 | 628 | | 4 | 56 | 182 | 4 | 334 | 610 | | 5 | -188 | -38 | 5 | 316 | 592 | Conversion rate: 100 Points = 1 USD (e.g., 568 = 5.68) The computer makes its decisions to try to get the maximum points possible. The computer receives points in the following way: | Computer Decides: | Type A | Type B | |-------------------|--------|--------| | In | 500 | 200 | | Out | 250 | 250 | Figure A.2: Subject Compensation Schedule ## C Messages Sent by Leaders - Round 3: When I play 5, the Computer guesses I am Type B and so plays Out. - Round 4: When I play 5, the Computer guesses I am Type B and so plays Out. Remember, my payment is based on how well you play the game Trust me, you and I will both make more if you play 5. - Rounds 5 and 6: Remember, the computer wants to play In when it thinks I'm Type A and Out when it thinks I'm Type B. But I want the computer to play Out. So I need to make the computer think I am Type B. - Round 7: Remember, the computer wants to play In when it thinks I'm Type A and Out when it thinks I'm Type B. But I want the computer to play Out. So I need to make the computer think I am Type B. When I play 5, the computer thinks I must be Type B, because Type A is always better off on another number even if the Computer chooses In. - Round 8: Remember, the computer wants to play In when it thinks I'm Type A and Out when it thinks I'm Type B. But I want the computer to play Out. So I need to make the computer think I am Type B. When I play 5, the computer thinks I must be Type B, because Type A is always better off on another number even if the Computer chooses In. This is why I want you to Play 5, so we can both earn more. - Rounds 9 and 10: Remember, the computer wants to play In when it thinks I'm Type A and Out when it thinks I'm Type B. But I want the computer to play Out. So I need to make the computer think I am Type B. When I play 5, the computer thinks I must be Type B, because Type A is always better off on another number even if the Computer chooses In. If I play 3, then the Computer cannot tell if I am A or B and so will assume half the time it is better to Play In that means that on average, I earn less when Playing 3 because half the time I earn 352. But when I play 5, most times the Computer chooses Out and I earn 592. So on average, I earn more when I play 5 because it signals to the computer that I must not be Type A and so the computer can get more points if it plays Out. # D Prespecified Estimations, Robustness, and Heterogeneity by Subject Gender Table A.1: Self Confidence in Performance on Games by Subject Gender | Dependent Variable: | Beliefs on own performance | | | | |---------------------|----------------------------|--------------------|--|--| | | (1) | (2) | | | | | Game 1 (Tower) | Game 2 (Signaling) | | | | Female Subject | -0.0226 | 3.340 | | | | | (0.456) | (6.391) | | | | Constant | 17.02*** | 467.7*** | | | | | (0.923) | (11.81) | | | | Day FE | X | X | | | | Observations | 304 | 303 | | | Robust standard errors in parentheses. Column 1 refers to the number of predicted moves for the subject to move the tower. Column 2 refers to the expected points earned in Game 2, based on the self-reported probability of receiving each possible outcome. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ** p < 0.05, *** p < 0.01 Table A.2: Confidence in Leader Performance | Dependent Variable: | Beliefs on leader's performance | | | | |--|---------------------------------|--------------------|--|--| | | (1) | (2) | | | | | Game 1 (Tower) | Game 2 (Signaling) | | | | (β_1) Fem. Leader | -0.171 | -5.812 | | | | | (0.403) | (9.056) | | | | (β_2) Ability | | 6.362 | | | | | | (9.527) | | | | (β_3) Fem. leader \times Ability | | 14.39 | | | | | | (12.98) | | | | Day FE | X | X | | | | Observations | 304 | 301 | | | Robust standard errors in parentheses. Column 1 refers to the number of predicted moves for the leader to move the tower. Column 2 refers to the expected points earned in Game 2 by the leader, based on the subject's reported probability of the leader receiving each possible outcome. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ** p < 0.05, *** p < 0.01 Table A.3: Confidence in Leader Performance by Subject Gender | Dependent Variable: | Beliefs on leader's performance | | | | |-----------------------------------|---------------------------------|--------------------|--|--| | | (1) | (2) | | | | | Game 1 (Tower) | Game 2 (Signaling) | | | | Fem. Leader | -0.534 | 8.680 | | | | | (0.516) | (8.899) | | | | Female Subject | -0.840 | 15.21 | | | | | (0.549) | (9.225) | | | | Fem. leader \times Fem. Subject | 0.742 | -15.18 | | | | | (0.819) | (12.85) | | | | Day FE | X | X | | | | Observations | 304 | 301 | | | Robust standard errors in parentheses. Column 1 refers to the number of predicted moves for the leader to move the tower. Column 2 refers to the expected points earned in Game 2 by the leader, based on the subject's reported probability of the leader receiving each possible outcome, and includes an indicator for belonging to the ability treatment arm as additional covariate. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ^{**} p < 0.05, *** p < 0.01 Table A.4: Beliefs on Tower of Hanoi | Dependent Variable: | Perceived | | Perceived - Expected | Expected | |--|-----------|---------|----------------------|----------| | | (1) | (2) | (3) | (4) | | Fem. Leader | -1.013 | -0.726 | 0.612 | -0.401 | | | (0.684) | (0.531) | (0.554) | (0.604) | | Female Subject | -1.204* | -1.013* | 0.937 | -0.332 | | | (0.665) | (0.543) | (0.576) | (0.660) | | Fem. leader \times Fem. Subject | 1.173 | 0.823 | -0.684 | 0.478 | | | (0.955) | (0.706) | (0.748) | (0.912) | | Leader beliefs first | | | | 0.100 | | | | | | (0.615) | | Leader beliefs first \times Fem. subj. | | | | 0.123 | | | | | | (0.913) | | Day FE | X | X | X | X | | Observations | 304 | 304 | 304 | 304 | Robust standard errors in parentheses. Column 1 and 2 refers to the number of moves the subject reports as the leader's expected performance of the subject, Column 3 refers to the difference in the leader's expected performance of the subject relative to the subject's own expectations of his/her performance, Column 4 refers to the subject's own expectations of his/her performance. Column 2 includes expectations of one's own performance as an additional covariate. Leader beliefs first is an indicator for whether the subject was first asked about the leader's performance rather than his/her own performance. Day FE are fixed effects referring to the day the subject participated in the experiment. * p < 0.10, ** p < 0.05, *** p < 0.01 Table A.5: Leadership Game Results | | | - | All Rounds | 3 | | |--|----------|----------|------------|----------|----------| | | (1) | (2) | (3) | (4) | (5) | | Dependent Variable: | SP | SP | SP | SP | Play 5 | | (β_1) Fem. Leader | -0.0604* | -0.0590* | -0.0518 | -0.0605* | -0.0668* | | | (0.0344) | (0.0352) | (0.0360) | (0.0349) | (0.0399) | | (β_2) Ability | -0.00234 | -0.00301 | -0.00590 | 0.00762 | 0.00813 | | | (0.0343) | (0.0350) | (0.0362) | (0.0350) | (0.0405) | | (β_3) Fem. leader \times Ability | 0.123*** | 0.115** | 0.115** | 0.115** | 0.0978* | | | (0.0472) | (0.0479) | (0.0491) | (0.0481) | (0.0559) | | Covariates | X | | X | X | X | | Day FE | X | X | X | | X | | Round FE | X | X | X | | X | | Probit Specification | | | | X | | | Practice round | X | X | | X | X | | Observations | 3010 | 3020 | 3030 | 3010 | 3010 | | Control group mean | 0.618 | 0.618 | 0.618 | 0.618 | 0.374 | | $\beta_1 + \beta_3$ | 0.0624 | 0.0561 | 0.0633 | 0.0550 | 0.0310 | | P-val.: $\beta_1 + \beta_3$ | 0.0569 | 0.0891 | 0.0586 | 0.0970 | 0.434 | Standard errors in parentheses, clustered at subject level. SP refers to strategic play (i.e., subject selecting 4 or 5); Play 5 refers to subjecting selecting 5. Covariates include subject's gender, ln(salary), level of employment, years of education, an indicator for having a masters degree, and tenure. Day FE are fixed effects referring to the day the subject participated in the experiment. Round FE are fixed effects referring to the ten rounds of the game. Practice Round is an indicator for whether the subject played strategically in a practice round prior to any advice from the leader. * p < 0.10, ** p < 0.05, *** p < 0.01 Table A.6: Leadership Game: Results by subject gender | Dependent Variable: | Strategic Play | | | | | |--|----------------|---------------|-----------------|--|--| | | (1) | (2) | (3) | | | | | All subjects | Male Subjects | Female Subjects | | | | (β_1) Fem. Leader | -0.0590* | -0.0683 | -0.0600 | | | | | (0.0352) | (0.0488) | (0.0530) | | | | (β_2) Ability | -0.00301 | 0.0107 | -0.0144 | | | | | (0.0350) | (0.0517) | (0.0481) | | | | (β_3) Fem. leader \times Ability | 0.115** | 0.0979 | 0.135** | | | | | (0.0479) | (0.0682) | (0.0683) | | | | Day FE | X | X | X | | | | Round FE | X | X | X | | | | Practice round | X | X
 X | | | | Observations | 3020 | 1560 | 1460 | | | | Control group mean | 0.618 | 0.618 | 0.618 | | | | $\beta_1 + \beta_3$ | 0.0561 | 0.0296 | 0.0751 | | | | P-val.: $\beta_1 + \beta_3$ | 0.0891 | 0.540 | 0.0885 | | | Standard errors in parentheses, clustered at subject level. Strategic play is defined as playing 4 or 5. Practice Round is an indicator for whether the subject played strategically in a practice round prior to any advice from the leader. Covariates are subject's gender, $\ln(\text{salary})$, level of employment, years of education, an indicator for having a masters degree, and tenure. Day FE are fixed effects referring to the day the subject participated in the experiment. Round FE are fixed effects referring to the ten rounds of the game. * p < 0.10, ** p < 0.05, *** p < 0.01. Proportional differences in playing 5 are estimated using the coefficients estimated in our primary estimating equation in Column 5, Appendix Table A.5). Cumulative Rounds refer to coefficients estimated using all rounds up to the given round. Relative performance of female leader with no ability signal is β_1 , relative performance of male leader with ability signal is β_2 , and relative performance of female leader with ability signal is $\beta_1 + \beta_2 + \beta_3$. Ability signal return for male leaders is the distance between the male leader with no ability signal and with ability signal return for female leaders is the distance between female leaders with no ability signal and with ability signal β_3 . Figure A.3: Relative Leader Performance over Cumulative Rounds 53 Table A.7: Resume Evaluation Results: Social Desireability Bias | | (1) | (2) | (3) | (4) | | | | |------------------------------------|------------|-------------|--------------------|------------------|--|--|--| | | Competence | Likeability | Likelihood of Hire | Log Salary Offer | | | | | Panel A: Social Desireability Bias | | | | | | | | | Female Resume | -0.0729 | -0.0283 | -0.149 | -0.123** | | | | | | (0.119) | (0.108) | (0.143) | (0.0521) | | | | | Reviewed Second | -0.0142 | -0.0381 | -0.147 | -0.113** | | | | | | (0.119) | (0.115) | (0.141) | (0.0491) | | | | | Female \times Reviewed Second | 0.237 | 0.142 | 0.402^{*} | 0.227** | | | | | | (0.211) | (0.193) | (0.242) | (0.0993) | | | | | Panel B: Female Resume Evaluation | | | | | | | | | Female Resume | 0.0457 | 0.0425 | 0.0496 | -0.0121 | | | | | - | (0.0607) | (0.0589) | (0.0704) | (0.0147) | | | | | Observations | 450 | 450 | 445 | 441 | | | | Standard errors are clustered at the subject level and are in parentheses. Competence, Likeability, and Likelihood to Hire were asked using a Likert Scale, increasing from 1 to 5. Log Salary Offer is the log of the salary the subject suggested as an offer to the candidate in Birr. Female Resume is an indicator for the resume belonging to a randomly assigned female candidate. Reviewed Second is an indicator for whether the candidate was reviewed second. All regressions include the version of the resume and the ordering of the resumes as covariates. We restrict results to the sample used in the primary specification in the table for consistency; additional reductions in the number of observations are due to individuals who did not respond on the second resume. * p < 0.10, ** p < 0.05, *** p < 0.01. Table A.8: Resume Evaluation by Subject Gender | | (1) | (2) | (3) | (4) | |---------------------------------------|------------|-------------|--------------------|------------------| | | Competence | Likeability | Likelihood of Hire | Log Salary Offer | | Female Resume | -0.196 | -0.0344 | -0.237 | -0.0737 | | | (0.166) | (0.149) | (0.217) | (0.0672) | | Female Subject | -0.119 | -0.0325 | -0.129 | -0.0735 | | | (0.162) | (0.155) | (0.185) | (0.0701) | | Female Resume \times Female Subject | 0.240 | 0.0125 | 0.169 | -0.0943 | | | (0.238) | (0.217) | (0.287) | (0.102) | | Observations | 225 | 225 | 225 | 225 | Robust standard errors in parentheses. Competence, Likeability, and Likelihood to Hire were asked using a Likert Scale, increasing from 1 to 5. Log Salary Offer is the log of the salary the subject suggested as an offer to the candidate in Birr. Female Resume is an indicator for the resume belonging to a randomly assigned female candidate. Female subject is an indicator for the subject being female. Regression specifications include the resume version as a covariate. p < 0.10, ** p < 0.05, *** p < 0.01.