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Abstract

This paper examines whether importing intermediate goods improves plant performance.

While addressing the issue of simultaneity of a productivity shock and decisions to import

intermediates, we estimate the impact of the use of foreign intermediates on plants’ produc-

tivity using plant-level Chilean manufacturing panel data. We found that the switching from

being a non-importer to being an importer of foreign intermediates can improve productivity

by 3.4 to 22.5 percent.
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1 Introduction

International trade is one of the primary avenues for the diffusion and adoption of new tech-

nologies worldwide. This is particularly true and important for developing nations where it is

believed that importing new technologies is a significant source of productivity and economic

growth. Through adoption and imitation of imported technologies, countries can take advantage

of research and development (R&D) abroad to improve the efficiency of domestic production.
∗E-mail: kasahara@qed.econ.queensu.ca and rodrigue@qed.econ.queensu.ca
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The previous empirical work using aggregate cross-country data show that importing inter-

mediate goods that embody R&D from an industrial country can significantly boost a country’s

productivity (c.f., Coe and Helpman, 1995; Coe, Helpman and Hoffmaister, 1997). Countries

that are more open to trade benefit more from foreign R&D because they are better able to ac-

cess improvements in technology by importing intermediate goods.1 Aggregated data, however,

does not capture heterogeneity across different plants in the economy. As empirically shown by

Baily, Hulten, and David (1992), to understand changes in aggregate productivity levels it is

vital to examine plant-level changes. Furthermore, recent developments in trade theory suggest

that understanding the plant-level response to trade policy is a crucial factor in understanding

its impact on aggregate productivity (e.g., Melitz, 2003; Bernard, Eaton, Jensen and Kortum,

2003). Yet, few previous studies have empirically examined the impact of importing intermediate

goods on productivity at plant level.2

The goal of this paper is to test whether the use of foreign intermediate goods increases plant

productivity, using a detailed panel data set on Chilean manufacturing plants from 1979-1986.

The data set captures plant heterogeneity in terms of importing decisions: some plants import

most of the intermediate goods, others do not at all. While importers are larger and more

productive than non-importers in the data, the direction of causality between importing foreign

intermediates and plant’s performance is not clear. Does the use of foreign intermediate goods

per se increase productivity? Or, do inherently high productivity plants tend to use foreign

intermediate goods? To answer these questions, we estimate the impact of the use of imported

intermediates on plant’s productivity while addressing the important issue of simultaneity of

a productivity shock and decisions to import intermediates. Specifically, utilizing the panel

nature of the data set, we employ the three alternatives to OLS estimator: (i) The Within-

Groups Estimator, (ii) The System GMM Estimator (c.f., Blundell and Bond, 1998), and (iii)

The Proxy Estimator (c.f., Olley and Pakes, 1996; Levinsohn and Petrin, 2003).

The results from our analysis clearly indicate substantial positive impact of the use of im-

ported intermediates on plant productivity. The Within-Groups estimates show that the use

of imported intermediates per se increases plant’s productivity by 3.4-3.9 percent. The point
1Keller (2001) provides the industry-level empirical evidence for the role of R&D spillovers through imports.
2On the other hand, there is a growing literature on the impact of exporting on firm performance. The

typical finding is that, while good firms become exporters, becoming exporters do not necessarily improve firm

performance (c.f., Clerides, Lach, and Tybout, 1998; Bernard and Jensen, 1999).
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estimates from the System GMM and the Proxy Estimators suggest even larger impact of the

use of imported intermediates on productivity: 13.2-22.4 percent. Overall, the empirical anal-

ysis in this paper provides strong plant-level evidence for the role of imported intermediates in

increasing plant’s productivity.

The paper is organized as follows. The next section proceeds to describe the analytical

framework used to study the relationship between productivity and imported intermediates.

Section 3 outlines the empirical specification, while sections 4 and 5 explain the estimation

procedure and data set, respectively. The sixth section presents the results and the seventh

concludes.

2 The Analytical Framework

Time is discrete. For each period t, the ith plant’s production, Yit, is given by:

Yit = eωitKβk
it Lβl

it Eβe

it

[∫ N(dit)

0
x(j)

γ−1
γ dj

] βxγ
γ−1

, (1)

where ωit represents a serially correlated productivity shock, Lit is labor input, Kit is capital

input, Eit is energy input, and Xit is a composite input consisting of horizontally differentiated

intermediate goods x(j) of variety j. The elasticity of substitution between any two material

inputs is given by γ > 1. The variable N(dit) denotes the range of intermediate inputs which

are employed in the ith plant; it is a function of a plant’s discrete choice, denoted by dit, to

import from abroad or not:

N(dit) =





Nh,t, for dit = 0

Nf,t, for dit = 1

where Nh,t is the range of intermediate inputs produced in this country and Nf,t is the range of

intermediate inputs available in the world. There are a range of intermediate inputs that are not

produced domestically in this country but are produced in foreign countries and thus available

through imports. Therefore, Nf,t > Nh,t. The ratio

Nf,t

Nh,t
≥ 1

represents the technological gap in ability to produce a variety of intermediate goods between

the rest of the world and this country.
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Consider the equilibrium in which all intermediate goods are symmetrically produced at level

x̄. Substituting x(j) = x̄ into equation (1) leads to

Yit = eωitN(dit)
βx

γ−1 Kβk
it Lβl

it Eβe

it Xβx

it , (2)

where Xit = N(dit)x̄.

Total factor productivity (TFP) is defined as Ait = Yit

K
βk
it L

βl
it Eβe

it Xβx
it

. Then, from equation (2),

ln A(dit, ω) =
βx

γ − 1
ln(N(dit)) + ωit.

This equation indicates that productivity is positively related to the range of employed inter-

mediate inputs. In the view of equation (2), plants importing intermediate inputs from abroad

employ a larger variety of intermediate inputs and hence exhibit higher productivity than those

employing domestic intermediate inputs only; for example, had there been no difference in the

value of ω across plants, then lnA(1, ω)− ln A(0, ω) = βx

γ−1 ln(N(1)/N(0)) > 0.

3 Econometric Specification

We examine whether the use of imported intermediates leads to a higher productivity by es-

timating the following Cobb-Douglas production function augmented by the term representing

the use of imported intermediates:

yit = β0 + βkkit + βllit + βeeit + βxxit + βddit + ωit + ηit, (3)

where yit = lnYit, kit = ln Kit, lit = ln Lit, eit = ln Eit, and xit = ln Xit. A plant’s discrete

choice to import from abroad is denoted by dit. ωit is a serially correlated shock and ηit is an

i.i.d. shock.

We examine whether the use of imported intermediates leads to higher productivity by test-

ing whether βd > 0. A positive estimate of βd provides plant-level evidence for R&D spillovers

through trade in intermediate goods. It suggests that plants using the imported intermedi-

ates close the technological gap between the home country and the rest of the world, i.e.,
βx

γ−1 ln(N(1)/N(0)), and hence achieve a higher productivity relative to those only using do-

mestic intermediates.

The degree of the technological gap may differ across plants, for instance, if they produce

different products. In fact, among plants that are using imported intermediates, we observe
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substantial differences in the ratios of imported intermediates to total intermediates. Assuming

that all intermediate goods are symmetrically produced at level x̄ and that plants only import a

variety of intermediate goods that are not available in domestic market, we may use the ratio of

total intermediates to domestic intermediates as a measurement of the technological gap between

world and domestic technology since

Xit

Xh
it

=
N(1)x̄
N(0)x̄

=
N(1)
N(0)

,

where Xit is total intermediates and Xh
it is domestic intermediates.

We examine whether a larger technological gap leads to higher productivity conditional on

the use of imported intermediates by considering the following alternative specification:

yit = β0 + βkkit + βllit + βeeit + βxxit + βnnit + ωit + ηit, (4)

where

nit = ln
Xit

Xh
it

.

From the estimate of βn and βx, we may compute the elasticity of substitution across different

varieties of intermediate goods, denoted by γ, using βn = βx

γ−1 .

4 Estimation

One of the main econometric issues in estimating the equations (3)-(4) is the simultaneity

of a productivity shock ωit + ηit and input decisions, including the decision to use imported

intermediates.3 For example, if inputs are chosen on the basis of the productivity shocks, a

plant with a higher productivity shock may use more inputs; since the regressors are correlated

with the error term, one of the conditions for unbiased and consistent estimation by ordinary

least squares (OLS) is violated. To address the simultaneity issue, we consider the following

three alternatives to the OLS estimator: (i) The Within-Groups Estimator, (ii) The System

GMM Estimator (c.f., Blundell and Bond, 1998), and (iii) The Proxy Estimator (c.f., Olley and

Pakes, 1996; Levinsohn and Petrin, 2003).
3The selection due to endogenous exit decisions is another important issue. We are planning to examine the

issue of the self-selection with the unbalanced panel data set in the future by using the framework developed by

Olley and Pakes (1996) in the context of the input proxy estimator of Levinsohn and Petrin.

5



The within-groups estimator only uses the within-plant variation so that it is robust against

the simultaneity arising from the correlation between an unobserved plant-specific productivity

shock and inputs. For short panels, however, the between-plant variation often plays an im-

portant role in identifying the parameters; this is especially true for coefficients of capital and

imported intermediates where the within-plant variation is much less than the between-plant

variation due to the slow adjustment of capital and the persistence in the import status over

time. The within-estimator may lead to imprecise estimates especially for capital and imported

intermediates.

To deal with the issue of simultaneity in panel data, Blundell and Bond (1998, 2000) propose

the system GMM estimator by extending the first differenced GMM estimator (c.f., Arellano

and Bond, 1991). Consider the equation (3) with the following additional structure on ωit:

ωit = ξt + αi + vit,

vit = ρvi,t−1 + ζit, (5)

where ξt is a year-specific effect, αi is a plant-specific effect, vit is AR(1) productivity shock with

|ρ| < 1, and ζit is MA(0). The system GMM estimator is based on two sets of moment conditions.

The first set of the moment conditions comes from the first differenced equations (to eliminate

the plant-specific effect) with lagged levels of the variables as instruments (c.f., Arellano and

Bond, 1991). The first-differenced GMM estimator based only on these moment conditions may

have poor finite sample properties due to weak instruments. Blundell and Bond (1998) find that

exploiting the additional moment conditions implied by the initial conditions restriction under

stationarity may lead to dramatic reductions in finite sample bias; these additional moment

conditions are based on the level equations with lagged differences of the variable as instruments.4

We employ the system GMM estimator that uses both sets of moment conditions to estimate

the parameters. The appendix provides a detailed discussion of the estimation procedure and

moment conditions.

Levinsohn and Petrin (2003) show how to use intermediate inputs to control for correlation

between inputs and an unobserved productivity shock.5 We apply the Levinsohn and Petrin
4Recently, however, some researchers found that even the system GMM estimator may lead to imprecise and

possibly biased estimates due to weak instruments. For example, see Griliches and Mairesse (1998), Mulkay, Hall,

and Mairesse (2000), and Levinsohn and Petrin (2003).
5Their estimator is developed based on the investment proxy estimator of Olley and Pakes (1996). In the
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estimator to the production function (3) as follows. Suppose that capital kit and the import

decision dit are the state variables but lit, xit, and eit are freely variable inputs.6 Assume that a

plant does not observe ηit at the time of material input decisions.7 Then, the material’s demand

function is given as xit = xt(ωit, kit, dit), where the function xt(·) is time-dependent, reflecting

its dependence on time-specific common shocks in productivity and prices. Assuming that xt(·)
is strictly increasing in ωit, we can invert this function to obtain the productivity shock ωit as

a function of (xit, kit, dit): ωit = ωt(xit, kit, dit). Replacing ωt(xit, kit, dit) for ωit in the equation

(3) leads to a partial linear function:

yit = βllit + βeeit + φt(xit, kit, dit) + ηit, (6)

where

φt(xit, kit, dit) = β0 + βkkit + βxxit + βddit + ωt(xit, kit, dit).

In the first stage, we obtain the consistent estimates of βl and βe. By subtracting the

expectation of (6) conditional on (xit, kit, dit) from (6), we obtain

yit − E(yit|xit, kit, dit) = βl(lit −E(lit|xit, kit, dit)) + βe(eit − E(eit|xit, kit, dit)) + ηit. (7)

We first consistently estimate the conditional expectations, E(yit|xit, kit, dit), E(lit|xit, kit, dit),

and E(eit|xit, kit, dit) by the OLS regressions of yit, lit and eit, respectively, on the power series

of (xit, kit, dit).8 Using the estimates of the conditional expectations in place of the actual

conditional expectations in (7), we estimate βl and βe by OLS with no-intercept. Denote the

estimates by β̂l and β̂e. Note that βk, βx, and βd are not identified in the first stage.

In the second stage, define the innovations in productivity conditional on the last year’s

productivity as:

νit = ωit − Et[ωit|ωi,t−1]

Chilean data, there are a substantial number of zero investment observations (perhaps due to the presence of

fixed investment cost). For these observations, the investment proxy estimator of Olley and Pakes can not be

used because they do not satisfy the monotonicity condition (and thus the investment function is not invertible

with respect to shocks). Given this feature of the Chilean data, we choose to use the Levinsohn and Petrin

intermediate proxy estimator rather than the Olley and Pakes investment proxy estimator.
6Material import dit is the state variable, for example, if there is a sunk cost to start importing intermediates.
7This is not a strong assumption since any observable component of productivity shocks can be included in

ωit.
8The results presented in this paper use a fourth order polynomial with a full set of interactions to approximate

unknown functions. Using a third order polynomial, we got very similar estimates of the coefficients (βx, βk, βd).
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For each candidate parameter vector β∗ = (β∗x, β∗k, β∗d), we may compute an estimate for the

residual as follows:

( ˆνit + ηit)(β∗) = yit − β̂llit − β̂eeit − β∗kkit − β∗xxit − β∗ddit − ˆE[ωit|ωi,t−1], (8)

where ˆE[ωit|ωi,t−1] is the estimate of conditional expectation of ωit given ωi,t−1. Here, ˆE[ωit|ωi,t−1]

is obtained by the year-by-year OLS regression of ( ˆωit + ηit)(β∗) ≡ yit − β̂llit − β̂eeit − β∗kkit −
β∗xxit−β∗ddit on the power series of ω̂i,t−1(β∗) ≡ φ̂t−1(xi,t−1, ki,t−1, di,t−1)−β∗kki,t−1−β∗xxi,t−1−
β∗ddi,t−1, where φ̂t(·) is the estimate of φt(·) obtained by the year-by-year OLS regressions of

yit − β̂llit − β̂eeit on the power series of (xit, kit, dit) as implied by equation (6).

We estimate the parameters (βx, βk, βd) by minimizing the GMM criterion function Q(β∗) =

minβ∗
∑7

h=1[
∑N

i=1

∑T
t=1( ˆνit + ηit)(β∗)Zit,h]2, where ( ˆνit + ηit)(β∗) is given by (8), Zit,h is the hth

element of the instrument vector Zit = (kit, dit, ki,t−1, li,t−1, xi,t−1, ei,t−1, di,t−1).9 There are four

over-identifying conditions. The standard errors are obtained by the bootstrap.10

5 Data

The data set is based on a census of Chilean manufacturing plants by Chile’s Instituto Nacional

de Estadistica (INE) that has been used in previous empirical studies (e.g., Lui, 1993; Pavcnik,

1999; Levinsohn and Petrin, 2003). We focus our attention on the balanced panel data set that

consists of the collection of plants present for the whole sample period of 1979-1986.11 Other

sample selection criteria are the following. We exclude plants for which any of the data for

investment, capital stocks, domestic intermediates, and imported intermediates are not available.

In particular, plants that do not report book values of their capital stocks in any year are

excluded since constructing capital stocks for these plants is impossible. After cleaning the

data, the balanced panel data set contains 2066 plants for the period of 1979-1986.

Table 1 reports descriptive statistics for variables in our regression analysis. Out of 2066
9It is assumed that kit and dit are predetermined so that capital and import decisions do not respond to νit

and ηit.
10Assuming that each set of plant-level observations xi ≡ {yit, kit, lit, xit, eit, dit}T

t=0 is independently and

identically distributed across plants, we draw a bootstrap sample of size N with replacement from the original

sample (x1,x2, ....,xN). We generate B independent bootstrap samples and estimate the parameters for each

sample using the recentered moment conditions (c.f., Horowitz, 2001). The bootstrap standard errors are then

computed based on the B sets of parameter estimates.
11We are also planning to examine the unbalanced panel data set in the future.
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Table 1: Descriptive Statistics
Interme- Import Output/ No. of

Output Capital Labour Energy diates Ratios Workers Plants

All 164.8 62.5 62.8 4.3 105.8 0.080 1.42 2066

Plants (1171.8) (440.4) (118.5) (32.9) (1116.6) (0.185) (2.56) —

Importing 694.8 282.9 172.4 14.3 431.2 0.362 3.06 265

Plants (2866.9) (1134.1) (234.6) (61.6) (2458.7) (0.248) (5.22) —

Non-Importing 33.2 10.8 30.3 1.2 19.4 — 0.86 1122

Plants (114.8) (89.3) (39.8) (14.5) (56.8) — (0.84) —

Notes: Standard errors are in parentheses. “Importing Plants” are plants that continuously imported foreign intermediates

for 1979-1986. “Non-Importing Plants” are plants that never imported foreign intermediates for 1979-1986. “Output,”

“Capital,” “Energy,” and “Intermediates” are measured in millions of 1980 pesos. “Labor” is the number of workers.

“Import Ratios” is the ratio of imported intermediate materials to total intermediate materials.

plants, 265 plants (12.8%) continuously import foreign intermediates throughout the sample

period (i.e., “Importing Plants” in Table 1), while 1122 plants (54.3%) are “Non-Importing

Plants” that never import intermediates from abroad. This suggests that plant import status

is persistent over time. There are, nevertheless, a substantial fraction (32.9%) of plants that

switch between importing and not importing over the period. This within-plant variation of

import statuses is an important source of identification of the import variable coefficient, espe-

cially for Within-Groups and GMM estimators. A comparison between “Importing Plants” and

‘Non-Importing Plants” in Table 1 reveals the substantial differences between the two types of

plants. Importing plants are substantially larger and have higher labor productivity, although

the direction of causality is not clear.

We now describe the variables used in our regression analysis. The variable yit is the log-

arithm of total sales, adjusted for changes in inventories, deflated by a 3-digit industry output

deflator. The variable lit is the logarithm of the average number of workers. The variable kit

is the logarithm of the capital stock in the beginning of year t so that investment in year t is

not included in its measurement. The capital stock is constructed from the 1980 book value of

capital (the 1981 book value if the 1980 book value is not available), including machinery and

equipment, vehicles, and buildings, using perpetual inventory method.12 The variable eit is the
12Since the reported book values are evaluated at the end of year t, the book values of capital in machinery and

equipment, and vehicles, are deflated by the (geometric) average deflator of machinery and equipment for years t

and t+1. The average deflator of buildings is used to deflate the book values of capital in buildings. Depreciation

rates are set to 5 % for buildings, 10 % for machinery and equipment, and 20% for vehicles. Some plants did not
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logarithm of the total purchased value of various types of fuels, including electricity, coal, coke,

petroleum, diesel, and liquid gas, deflated by a 3-digit industry fuels deflator. The variable Xh
it

is real value of domestically produced materials constructed as the total purchased values of

materials less the purchased values of imported materials, deflated by a 3-digit industry materi-

als deflator. Real purchased value of imported materials, denoted by Xf
it, is the total purchased

values of imported materials deflated by import price index. Real value of total intermediate

materials, denoted by Xit, is the sum of Xh
it and Xf

it. The variable xit is the logarithm of Xit.

The variable dit is equal to one if Xf
it > 0, and zero otherwise. The variable nit is the logarithm

of the ratio of Xit to Xh
it.

6 Results

Table 2 presents the results from OLS, the Within-Groups estimator, the system GMM estimator

and the Levinsohn and Petrin estimator using the discrete choice import variable. For OLS,

Within-Group, and system GMM, we present the cases of both serially uncorrelated productivity

shocks and AR(1) shocks.13 While columns (1), (3), and (5) report the estimates under the

assumption of serially uncorrelated productivity shocks, columns (2), (4), and (6) report the

estimates under the assumption of AR(1) productivity shocks. The appendix provides the

details of estimation procedures.

The most important finding is the significance and large size of the discrete import variable

coefficient across different estimators. As shown in columns (1)-(2) of Table 2, the estimated

coefficients of the discrete import variable are positive and significant. The OLS point esti-

mate under the assumption of AR(1) productivity shock in column (2) imply that a plant only

using domestic intermediates can increase its productivity by 13 percent if it starts importing

intermediates. The OLS estimate is, however, likely to be biased due to correlation between

an unobserved plant productivity shock and inputs. The within-estimator is robust against the

simultaneity between a permanent plant-specific shock and input decisions. Columns (3)-(4)

of Table 2 demonstrate that although estimate of βd is considerably smaller using the within-

report the book values of capital in either 1980 or 1981. Since it is not possible to construct capital stock without

these reports, the plants missing their book values of capital were excluded from the sample.
13To estimate the model with AR(1) shocks, we first estimate the unrestricted parameter vector of a dynamic

common factor representation, and then obtain the restricted parameter vector using minimum distance. See the

appendix for the system GMM estimator.
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Table 2: Discrete Choice Import Variable

Within GMM Levinsohn

Variable OLS Groups System and Petrin

(1) (2) (3) (4) (5) (6) (7)

kt 0.0752 0.0762 0.0193 0.0076 0.0798 0.0787 0.0314

(0.0032) (0.0040) (0.0065) (0.0073) (0.0209) (0.0627) (0.0118)

lt 0.2759 0.2641 0.2482 0.2188 0.2034 0.3565 0.2511

(0.0065) (0.0084) (0.0127) (0.0138) (0.0380) (0.1127) (0.0120)

et 0.0572 0.0650 0.0651 0.0704 0.0590 0.1518 0.0449

(0.0031) (0.0036) (0.0049) (0.0053) (0.0202) (0.0613) (0.0065)

xt 0.6593 0.6665 0.5859 0.5850 0.6948 0.5233 0.7704

(0.0050) (0.0071) (0.0114) (0.0131) (0.0213) (0.0545) (0.0194)

dt 0.1894 0.1286 0.0344 0.0389 0.2243 0.1322 0.1641

(0.0074) (0.0082) (0.0087) (0.0092) (0.0499) (0.1186) (0.0177)

yt−1 0.4058 0.1931 0.5721

(0.0219) (0.0210) (0.0598)

Notes: Standard errors are in parentheses.

estimator relative to OLS, at 3.4-3.9 percent, it is still positive and significant.

While the within-estimator controls for correlation between inputs and a permanent shock,

it does not address the simultaneity between inputs and the persistent shock that varies within-

plant over time. To correct for such simultaneity in panel data, we further provide the results

from two alternative estimators: the system GMM estimator and the Levinsohn and Petrin

input proxy estimator. The system GMM estimates in columns (5)-(6) of Table 2 also indicate

that imports have a strong, positive effect on plant productivity.14 The AR(1) model once again

finds a 13 percent increase in productivity from a switch to imports although the estimates are

not as significant. Finally, column (7) of Table 2 provides the result of the Levinsohn and Petrin

estimator which controls for correlation between inputs and an unobserved productivity shock

by using intermediate inputs as proxies for unobserved productivity shocks. The results of the

Levinsohn and Petrin estimator indicates a 16 percent increase in productivity from a switch to

imported intermediates.

Table 3 presents estimates using the continuous measure of import usage. The coefficients
14The results for system GMM estimation in Table 2 use a lag length of 2 and larger for instruments. We also

estimated using a lag lengths of 3 and larger for instruments, which are valid in the presence of measurement

errors, and found that the estimates and the standard errors of the coefficient of import variables are similar to

those presented in columns (5)-(6) of Table 2.
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Table 3: Continous Variable: n = lnX/Xh

Within GMM Levinsohn

Variable OLS Groups System and Petrin

(1) (2) (3) (4) (5) (6) (7)

kt 0.0797 0.0778 0.0196 0.0080 0.0986 0.1103 0.0292

(0.0032) (0.0040) (0.0064) (0.0073) (0.0199) (0.0606) (0.0106)

lt 0.2917 0.2669 0.2493 0.2193 0.2019 0.3332 0.2580

(0.0066) (0.0083) (0.0127) (0.0137) (0.0372) (0.1097) (0.0118)

et 0.0561 0.0649 0.0652 0.0705 0.0361 0.1339 0.0457

(0.0031) (0.0036) (0.0049) (0.0053) (0.0205) (0.0630) (0.006)

xt 0.6635 0.6756 0.5870 0.5857 0.7120 0.5475 0.7853

(0.0051) (0.0071) (0.0114) (0.0131) (0.0212) (0.0577) (0.0157)

nt 0.1559 0.1214 0.0152 0.0210 0.1415 0.2021 0.1433

(0.0105) (0.0095) (0.0099) (0.0102) (0.0549) (0.1036) (0.0145)

yt−1 0.3980 0.1936 0.5545

(0.0215) (0.0210) (0.0610)

Implied γ 5.256 6.565 39.618 28.890 6.032 3.709 6.480

Notes: Standard errors are in parentheses.

for the continuous import variable are significant and of large size across different estimators,

indicating the importance of foreign intermediates in explaining productivity differences across

plants and over time. The OLS results in columns (1) and (2) suggest decreasing the share of

domestic intermediates in total intermediates by 1 percent could lead to a 0.12 to 0.15 percent

increase in productivity. The within estimator once again predicts a lower but still positive

and significant effect of increasing imported intermediates on productivity. The results from

other two alternative estimators that control for the possible correlation between the inputs and

productivity shocks also show that imports have a strong, positive effect on productivity. The

system GMM estimates in columns (5) and (6) of Table 3 imply that a 1 percent decrease in

the share of domestic intermediates in total intermediates could increase productivity between

0.14 and 0.20 percent. Again, the Levinsohn and Petrin estimator supports a substantial impact

of an increase in the share of imported intermediates on productivity, finding that a 1 percent

decrease in the share of domestic intermediates increases productivity by 0.14 percent.

From the estimates of βn, we can compute an estimate of the elasticity of substitution, γ.

Using the system GMM estimates with and without serial correlation and the Levinsohn and

Petrin estimates we obtain estimates of γ of 6.03, 3.71, and 6.48. These estimates are in line with
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those found by Feenstra (1994) and indicate that there is significant evidence that productivity

increases through specialization.

Non-importing plants may improve their productivity by expanding the variety of inter-

mediate goods when they start using imported intermediates. The extent to which the use

of imported intermediates increases productivity crucially depends on the technological gap,

measured as the ratio of total intermediates to domestic intermediates, nit, among importing

plants. We calculate the average of nit is 0.45 for importing plants, implying that non-importing

plants, on average, use only 63.8(=e−0.45) percent of available variety of intermediate goods

in the world relative to importing plants. Our estimated coefficient of n using the Levinsohn

and Petrin estimator suggests that expanding the variety of intermediates by switching from

being a non-importer to an importer of foreign intermediates increases a plant’s productivity,

on average, by 6.4(=0.143× 0.45) percent.

7 Conclusion

The results in this paper demonstrate significant plant-level evidence that imported intermedi-

ates improve a plant’s productivity. We found that by switching from being a non-importer to

an importer of foreign intermediates a plant can improve productivity by 3.4 to 22.5 percent.

Intermediate imports, therefore, allow plants to adopt technology from abroad and substan-

tially benefit from foreign research and development. This result alone is important for both

government policy and plant production strategy.

The empirical findings of this paper shed new light on the issue of how trade policy affects

aggregate productivity and suggest directions for future research. Recent developments in trade

theory, focusing on heterogeneous plants, suggest that understanding the plant-level response to

trade policy is a crucial factor in understanding its impact on aggregate productivity (e.g., Melitz,

2003; Bernard, Eaton, Jensen and Kortum, 2003). Our results imply that understanding the

plant-level import decisions may be particularly important in understanding the impact of trade

policy on aggregate productivity. While there is a growing empirical literature on plant-level

export decisions (e.g., Roberts and Tybout, 1997; Bernard and Jensen, 1999), few empirical

studies have examined the determinants of the plant-level import decisions. Is there a sunk

start-up cost for importing intermediates? What is the role of plant characteristics (e.g., past

13



experience, labor quality, geographic location) in the import decisions? How are import decisions

related to the export decisions at the plant level? These are important research questions we

are planning to pursue in our future research.

Appendix

A.1 The Blundell and Bond System GMM Estimator

Using a dynamic common factor representation, (3) with (5) can be rewritten as:

yit = (1− ρ)β0 + βkkit − ρβkki,t−1 + βllit − ρβlli,t−1 + βeeit − ρβeei,t−1 + βxxit − ρβxxi,t−1

+βddit − ρβddi,t−1 + ρyi,t−1 + ξ∗t + α∗i + µit (9)

where ξ∗t = ξt − ρξt−1, α∗i = (1− ρ)αi, and µit = ζit + ηit − ρηi,t−1.

Following Blundell and Bond (2000), we estimate the unrestricted parameter vector of (9)

by the one-step GMM and then obtain the restricted parameter vector (ρ, β0, βk, βl, βe, βm, βd)

using minimum distance (c.f., Chamberlain (1982)). The following moment conditions are used:

E[zi,t−s∆µit] = 0 for s ≥ 3, (10)

E[∆zi,t−s(α∗i + µit)] = 0 for s = 2, (11)

where zit = (yit, kit, lit, xit, dit) and ∆zit = zit − zi,t−1.
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