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Abstract
The development of a non-invasive drug delivery system for unfractionated heparin (UFH) and low
molecular weight heparins (LMWHs) has been the elusive goal of several research groups since the
initial discovery of this glycosaminogylcan by McLean in 1916. After a brief update on current
parenteral formulations of UFH and LMWHs, this review revisits past and current strategies intended
to identify alternative routes of administration (e.g. oral, sublingual, rectal, nasal, pulmonary and
transdermal). The following strategies have been used to improve the bioavailability of this bioactive
macromolecule by various routes: (i) enhancement in cell-membrane permeabilization, (ii)
modification of the tight-junctions, (iii) increase in lipophilicity and (iv) protection against acidic pH
of the stomach. Regardless of the route of administration, a simplified unifying principle for
successful non-invasive macromolecular drug delivery may be: “to reversibly overcome the
biological, biophysical and biochemical barriers and to safely and efficiently improve the in vivo
spatial and temporal control of the drug in order to achieve a clinically acceptable therapeutic
advantage”. Future macromolecular drug delivery research should embrace a more systemic
approach taking into account recent advances in genomics/proteomics and nanotechnology.
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1. Introduction
In recent decades, several promising new anticoagulants have been evaluated. It has been a
challenge to determine which of these agents presently under development will provide the
greatest efficacy with the greatest degree of safety at a reasonable cost [1,2]. Heparin, a widely
accepted and proven anticoagulant discovered by McLean in 1916 [3] has survived more than
80 years clinical experience [4]. This drug is still essentially administered in clinics by
injections which present several limitations for effective pharmacotherapy of thrombosis. To
overcome these limitations, perhaps a non-invasive and improved heparin delivery system may
be needed to enhance patient compliance and minimize adverse effects. For the purpose of this
review and for the sake of simplicity, the term heparin hereafter refers to both unfractionated
(UFH) and low molecular weight heparins (LMWHs). Whenever applicable, the distinction
will be made between UFH and LMWHs. Besides its original therapeutic use as an anti-
coagulant, other potential applications of heparin for a vast array of human diseases have been
identified [5]. The potentially wide-ranging clinical importance of this bioactive
macromolecule warrants the building of better heparin [6] and the development of better
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heparin delivery system. All the foregoing aspects of heparin are beyond the scope of this
manuscript which is focused on delivery systems.

Recent reviews related to heparin delivery focused mainly on the oral delivery of heparin [7–
9]. To our knowledge, the first attempt of a comprehensive manuscript for alternative routes
of heparin delivery dates back to 1964 which covers limited routes of drug administration
[10]. The latter review manuscript dealt mainly with UFH probably because information related
to LMWH was not available at that time. Since then, it is noteworthy that a lot of efforts have
been made by several investigators using newer heparins (e.g. LMWHs), other alternative
routes of drug delivery and/or new method of drug delivery. As a contribution to the
consolidation of knowledge gathered on heparin delivery to date, this review will focus mainly
on the progress and prognostication involving the non-invasive route of heparin delivery. To
achieve this goal, we have consulted the US Food and Drug Administration electronic orange
book and current literature on heparin containing drug delivery systems (DDS). After a brief
commentary on the current route of administration in clinics (the parenteral route), we examine
different DDS investigated for each major non-invasive routes including oral, sublingual,
rectal, nasal, pulmonary and transdermal routes.

2. Parenteral delivery of heparins
Table 1 shows some examples of UFH and LMWH formulations approved by the US Food
and Drug Administration for clinical use since 1982. UFH and LMWHs have traditionally been
administered via the parenteral route (intravenous or subcutaneous injection). Newer heparin
derivatives such as fondaparinux (a pentasaccharide) and its analogue idraparinux are still
administered subcutaneously [11]. Recent strategies to improve parenteral delivery of heparins
include stents and antibody targeted approaches. Recently, minimally invasive methods
involving the use of heparin in drug eluting stents have emerged [12–15]. Heparin-loaded zein
microsphere films have been recently shown to significantly improve the hemocompatibility
of drug eluting stents for cardiovascular applications [16]. Non-eluting stents have clinically
reduced thrombotic complications following stent implantation [17]. The first compounds
considered for stent-based delivery, such as heparin, were chosen on the basis of promising
tissue culture and animal experiments, and yet they have failed to stop restenosis clinically.
The application of continuum pharmacokinetics to examine the effects of transport forces and
device geometry on the distribution of stent-delivered hydrophilic and hydrophobic drugs
showed that mere proximity of delivery devices to tissues does not ensure adequate targeting,
because physiological transport forces cause local concentrations to deviate significantly from
mean concentrations [18]. It is important to note that stent performance is also influenced
profoundly by stent design and configuration. A stent-less local delivery system for anti-
restenotic agents based on antibodies targeted to cross-linked fibrin was successful in the
targeted delivery of UFH and LMWH to injured areas of the artery wall without systemic
complications, suggesting that the local delivery of such agents may minimize systemic effects
and bleeding complications [19]. The antibody targeted triggered, electrically modified
prodrug-type strategy (ATTEMPTS) also used a similar approach [20].

Though invasive or parenteral formulations are available for heparin delivery, they are poorly
accepted by patients and present several restrictions in terms of manufacture (they should be
pyrogen and particulate free, isotonic, sterile, and stable) and in terms of pharmacokinetic and
pharmacodynamic aspects that may be overcome by non-invasive delivery strategies.

3. Obstacles for non-invasive delivery of heparins
Currently, there is a clinical need for a non-invasive anticoagulant to replace warfarin for long-
term prophylaxis and treatment of patients with venous and arterial thrombosis [1]. Improved
delivery systems for heparins are attractive solutions to achieve this goal for numerous reasons
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as follows: heparins are the anticoagulant of choice in pregnancy as they do not cross the
placenta and administration during pregnancy is not associated with undesirable effects in the
fetus or neonate. Prevention of thromboembolism in patients with atrial fibrillation and
prosthetic valves are still areas where there is a need for new anticoagulant drugs [1]. LMWHs
can be used safely and effectively to treat outpatients with proximal deep-vein thrombosis
[21]. The design of an ideal DDS for heparins that could circumvent current pharmacokinetics,
biophysical and antihemostatic limitations will have tremendous benefits including
improvement of patience compliance due to avoidance of pain during injection adding
convenience, safety and efficacy to thrombosis therapy. Such ideal DDS for heparins may
therefore reduce the healthcare cost because thrombosis is the discharge diagnosis of more than
a quarter-million patients in U.S. hospitals annually [21].

The lack of non-invasive delivery options for heparins may result in limited clinical use and
poor patient compliance. The major barriers hindering the delivery via the non-invasive route
for heparin include: (i) enzymatic degradation due to heparinase present in the liver [22] and
the intestinal microflora related to Bacteroides spp. [23,24], (ii) chemical instability at acidic
pH of the stomach [25] and (iii) limited absorption through the epithelial/mucosal barrier. It
has been shown that desulfation of heparin and the metabolism of the glycoside residue may
occur in the acidic pH of the stomach unless heparinase derived heparin fragment is used
[26]. Selective N-deacetylation and N-desulfation of the glucosamine residues of heparin have
been shown to affect both its anticoagulant activity and in vivo disposition characteristics
[27]. The poor absorption of heparins across the physiological barrier is due to their hydrophilic
nature, negative charge, and relatively large molecular weight. The absorption of large
hydrophilic macromolecules such as heparin may be limited to the paracellular pathway, which
consists of aqueous pores created by the cellular tight junctions [28]. For a drug with a
molecular mass beyond 500–700 Da, the bioavailability decreases with an increase in the
molecular mass [28]. Even if absorbed through mucosal barriers, another obstacle to efficient
heparin delivery by non-invasive route is its susceptibility to hepatic metabolism by heparinase
and the preferential concentration of heparin in the endothelium [29,30].

4. Heparin containing DDS for sublingual route
The oral mucosa, floor of mouth, underside of tongue and gingival mucosa offers excellent
accessibility, is not easily traumatized and avoids degradation of macromolecular drug
resulting from oral gastrointestinal absorption and first-pass hepatic metabolism [31]. The early
claims for sublingual delivery of heparins [32–36] have been challenged and did not survive
critical investigations [10,37,38]. For example, tablets containing 20,000 U of UFH with and
without ethylenediamine tetraacetic acid (EDTA) as penetration enhancers did not show any
significant changes in bioactivity in the plasma of treated patients [10]. The inconsistency of
earlier data may reflect the difference in the properties of heparin preparation, the sensitivity
and the accuracy of the bioactivity assessment method that was based on optical density at that
time [39]. Nevertheless, it is noteworthy that, although promising, the sublingual route of
heparin administration has not been extensively investigated for LMWH. This may probably
be due to the fact that heparins would have to permeate approximately 30–40 cell lines until
they reach the first blood vessels in the lamina propria. Though the successful development of
buccal heparin delivery systems seems unlikely based on the above fact, with the evolving
concept of building better heparin, this route deserves further investigation in the quest for non-
invasive delivery methods for heparin.

5. Heparin containing DDS for oral route
By far the most convenient and preferred route of drug administration is the oral route.
Therefore, the oral delivery of heparin is one of the most intensively studied delivery strategies
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[7]. Successful clinical use via the oral route has been hindered due to the obstacles described
earlier. Numerous attempts have been made to develop an oral delivery system for heparins
both in vitro and in vivo. In vivo studies involved different animal models such as mice [40,
41], rat [42–55], rabbit [56–58], dog [59], pig [53], primates [48] and human [60–65]. Table
2 underlines examples of oral formulation tested in humans.

Overall, a variety of formulation strategies have been investigated to circumvent the current
obstacle to oral delivery of heparins previously underlined. These strategies may be classified
based on the following mechanism.

a. Cell-membrane permeabilization using bile salts and derivatives [66–68] and
polycationic lipophilic-core dendrons (partial dendrimers) [69].

(ii) Tight-junction modifications using absorption enhancers such as labrasol [70],
sulfonated surfactants [71], EDTA acid [44], saponins [72], chitosan derivatives
[73], thiolated polycarbophil system [42,52,74], carbopol 934P [73], sodium caprate
[55], and Zonula occludens toxin synthetic peptide derivative AT1002 [75].

(iii) Increasing the drug lipophilicity: covalent attachment to lipophilic molecules
such as dimethyl sulfoxide and deoxycholic acid conjugates [66–68], the use of
carriers such as organic acids [76], sodium N-[10-(2-hydroxybenzoyl) amino]
decanoate [77] (SNAD), sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)
[8,65,78], diamine salt (ITF 1331 or counterion no. 4 [56], microemulsion
formulations [66,79], polyion complex micelles [80], liposomes [59] and dendrons
[69]. Microemulsions are potential drug carrier systems for oral, topical, and
parenteral administration [81]. These typically consist of water, oil, and amphiphilic
compounds (surfactant and co-surfactant) which yield a transparent, single optically
isotropic, and thermodynamically stable liquid. The main difference between
macroemulsions and microemulsions lies in the size of the particles of the dispersed
phase: these are at least an order of magnitude smaller in the case of microemulsions
(10–200 nm) than those of conventional emulsions (1–20 μm). Drug penetration
enhancement from microemulsions is mainly due to an increase in drug concentration
which provides a large concentration gradient from the vehicle to the physiological
barrier. Furthermore, it has been suggested that the surfactants and the oil from the
microemulsion interact with the rigid lipid bilayer structure and acts as a chemical
enhancer. The new area of polymer therapeutics [82] includes polymeric micelles
containing covalently bound drugs such as heparin. Liposomes [83] are microscopic
aggregates of highly ordered lipid molecules which are normally dispersed in a
hydrophilic solvent, typically water.

(iv) Protection against acidic pH of the stomach: enteric coating [84,85], use of
alginate/chitosan/PEG microparticles [86] and polymeric nanoparticles [57]. Results
obtained by this strategy are controversial. For example, the complexation of one
fraction with glycine (to adjust the ionization of the drug), and the use of
gastroresistant capsules administered directly into the stomach did not result in
significantly increased absorption, although large doses were administered (15,000
anti-Xa U/kg) [84]. However, improvement of heparin absorption from the
gastrointestinal tract was claimed by a combination of suppression of ionization and
selection of molecular size [87] and after enteric-coating [85]. Microparticles [88]
may be obtained by microencapsulation, a technology devoted to entrapping solids,
liquids or gases inside one or more polymeric coatings. Similar technologies are used
to produce nanoparticles. The main difference between nano- and microparticles is
their size, the former are typically less than 1 μm while the latter are typically above
1 μm. For successful heparin delivery using carriers, both the drug and biological
characteristics of the carrier, carrier–gut interactions, the dynamic nature of such
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interactions, the varied modes of uptake in vitro and in vivo, and the concerns of
targeting to the gut epithelium to encourage more efficient uptake of nanoparticles
need to be elucidated [89]. For example, the differences in the uptake of the
mucoadhesive polysaccharide chitosan (CS)-coated systems (solid lipid core or oily
core) by the Caco-2 cells did not have a consequence in the in vivo behaviour [90]
indicating the difficulty of obtaining appropriate in vivo and in vitro correlation with
these novel DDS. Whether or not these strategies can be utilized for the routine
administration of heparin from the gut remains to be known.

Due to the large amount of preliminary data on the oral delivery of heparins (in human and
animal models), we have summarized the data obtained in clinical trials in Table 2. Overall,
novel and reversible absorption promoters show promise for the oral delivery of heparin. It
appears that effective and safe delivery of heparins by the oral route would be clinically relevant
not only for thrombosis but also for other localized disease conditions such as gastric ulcer
[50].

6. Heparin containing DDS for rectal route
The rectal administration of drugs has been extensively reviewed [91]. Several strategies have
been investigated for the rectal delivery of heparin. Table 3 summarizes the examples of in
vivo studies involving rectal absorption of heparins in the animal model. The main formulation
strategies implemented focused on modification of cell membrane permeability using sodium
cholate [92], bile salts [93] and sodium lauryl sarconsinate [94]. The oil emulsion improved
the bioavailability of glycosaminoglycan sulfates at least 20 times [94]. Rectal absorption of
heparin in rabbits in the presence of non-surfactant adjuvants [95] has also been investigated.
These studies showed that the alteration or disruption of tight junctions plays an important role
in the absorption of heparin. Unfortunately, limited data are available on the toxicity and in
vivo performance via this route.

In order to gain a therapeutic response after rectal administration, heparins have to permeate
the absorption membrane based on the mucus layer and the epithelial tissue in significant
quantities. The transport of heparin across the rectal membrane may be further improved by
the co-administration of mucolytic agents and permeation enhancers. In addition, a
combination of oral and rectal formulations may succeed when one route, alone, is not
successful such as in the case of inflammatory bowel disease [96]. The effective and safe
delivery of heparins by another body orifice namely the vagina may be clinically relevant not
only for systemic thrombosis but also for the improved pharmacotherapy of other localized
disease conditions and for patients who have undergone gynecological surgery [97], patients
with septic pelvic thrombophlebitis (a major complication of endometritis) [98] and in cases
of postpartum ovarian vein thrombosis after vaginal delivery [99].

7. Heparin containing DDS for nasal route
In recent years, the nasal route has received a great deal of attention as a convenient and reliable
method for the systemic administration of drugs. Although this route is currently being used
in the clinics for the systemic administration of several drugs, it is a recently emerging area
[100].

Several strategies have been investigated for the intranasal delivery of heparin. Table 4
summarizes the main strategies used via this route. Investigations have been conducted in rat
[101,102] and human nose [103–105]. Delivery systems used include solution vapor and
nebulizers as shown in Table 4. The major barriers to nasal drug absorption are enzymatic
degradation, the inability of the nasal mucosa to enable transport of any molecule larger than
1 kDa, and the relatively short residence time of substances in the nose. In the case of heparin
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delivery, recent efforts to overcome these problems use penetration enhancers such as
alkylglycosides [101,106]. The mechanisms, by which these enhancers increase absorption,
remain to be elucidated. It is generally accepted that the absorption enhancers promote
absorption by a direct effect on the membrane. The human nose can accommodate a dose of
25–200 μl per nostril. Based on heparin solubility and therapeutic dose requirement, a relatively
higher volume may be needed leading to potential drainage out of the nose. This limitation of
dose volume should be taken into account while formulating a nasal drug delivery system for
heparin. Absorption via the nasal route may also be affected by the site of administration of
formulation in the nose. The anterior part of the nose provides greater contact between nose
and drug whereas a formulation applied to the posterior part of the nose is removed rapidly by
the mucociliary clearance mechanism of the nose [107].

A successful nasal heparin delivery system would offer numerous advantages including rapid
onset of action and avoidance of hepatic first-pass metabolism. An improved understanding of
the structure and function of tight junctions in the nasal epithelial barrier is needed before
significant improvements in the delivery of large molecules such as heparin can be made. The
effective and safe delivery of heparins via this route may be clinically relevant not only for
systemic thrombosis but also for other localized disease conditions (e.g. allergies [103,104]).

8. Heparin containing DDS for pulmonary route
The pulmonary route of drug delivery is well established in the treatment of lung diseases such
as asthma. In recent years, this technology has progressed to the extent that it is now possible
to deliver macromolecules to the systemic circulation via inhalation. Bioengineered particles
may be created in liquid form from devices specifically designed to create an unusually fine
size distribution or solid particles that possess a mixture of drug and excipient, with defined
shape, size, porosity, and drug release characteristics [108].

Several strategies have been investigated for the pulmonary delivery of heparins. The
absorption of LMWH from the respiratory tract is hampered due to excessive hydrophilicity
and surface charges. The delivery of heparin via this route would be especially beneficial, in
the case of PE owing to the prospect of targeted delivery at the site of action. Table 5 shows
various strategies that have been employed to increase drug absorption via the pulmonary route.
Animal models tested by this route include mice [109], rat [110,111], guinea pig [112], rabbit
[113,114], sheep [115] and dog [109]. Very few investigations have been performed in humans
as shown in Table 5.

One of the challenges in pulmonary drug delivery is the reproducible placement of drug at the
site of absorption in the alveoli. This issue has received considerable attention, and resulted in
the design and development of varied devices to provide consistent drug delivery to the deep
lung tissue [116]. The effective and safe delivery of heparins by this route may be clinically
relevant not only for the systemic effect against thrombosis but also for the improvement of
localized pharmacotherapy such as in cases of allergy and asthma management [117–119].

9. Heparin containing DDS for transdermal route
The skin provides an attractive and readily accessible site for drug delivery. The transdermal
delivery of heparin is of interest, because drug absorption across the skin avoids first-pass
metabolism. Previous reviews [120,121] provide an insight into the in vitro and in vivo studies
on percutaneous absorption of heparins. Recently, various novel strategies (Table 6) have been
investigated to enhance the transdermal delivery of heparin. This route offers several
advantages over traditional drug delivery systems. These include minimization of pain and the
prospect of sustained drug release. The major disadvantage to transdermal heparin delivery is
the low bioavailability of bioactive macromolecules through the skin mainly due to the
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presence of the stratum corneum. Strategies that have been used to overcome this barrier and
increase the permeability of the skin to heparin include penetration enhancers [122,121],
liposomes [123,124], phonophoresis [125,126], electroporation [127–129], iontophoresis
[126,130], needle-less injections [131] and microfabricated microneedles [132]. Several
excipients are able to promote the transport of an active substance across the skin barrier by a
variety of mechanisms including extraction of lipids from the stratum corneum, alteration of
the vehicle/skin partitioning coefficient, disruption of the lipid bilayer structure, displacement
of bound water, loosening of the horny cells and delamination of the stratum corneum.
Liposomes have been previously defined elsewhere in this manuscript. Phonophoresis (or
sonophoresis) uses ultrasound energy [133] in order to enhance the skin penetration of the drug.
When the skin is exposed to ultrasound, the waves propagate to a certain level and cause several
effects (cavitation and energy loss) that assist skin penetration. The force of cavitation leads
to the formation of holes in the corneocytes, enlargement of intercellular spaces, and
perturbation of stratum corneum lipids. The energy loss results in a rise in the temperature
which increases the fluidity of the stratum corneum lipids and directly increases the diffusivity
of molecules through the skin barrier. In contrast to iontophoresis where a low voltage is
applied, electroporation [127–129] requires a large voltage treatment for a short period (10
μs to 100 ms) to produce transient aqueous pathways across the skin barrier. These pores allow
the passage of macromolecules via a combination of diffusion, electrophoresis and
electroosmosis. Using tools from the microelectronics industry, microneedles [132] have been
fabricated with a range of sizes (10 to 200 μm in height and 10 to 50 μm in width), shapes
(solid or hollow) and materials (biodegradable or not). Microneedle arrays connected to a
reservoir are applied to the skin surface such that they pierce the upper epidermis far enough
to increase skin permeability and allow drug delivery, but too short to cause any pain to the
receptors in the dermis. Therefore, in this case there are no limitations concerning polarity and
molecular weight of the delivered molecules. The needle-less system (namely J-Tip®) used
for heparin delivery is a sterile, single use, disposable device that contains its own source of
propellant consisting of liquid CO2. It is important to point out that the needleless injections
and microfabricated needles may be construed or viewed as invasive parenteral routes.
However, we have included these systems under transdermal delivery systems because they
are often emerging painless alternative physical methods intended to systemically deliver drugs
through the skin beside the above chemical, electrical and ultrasound based methods.

One major drawback in the case of drug delivery via the transdermal route is the potential local
irritation at the site of absorption. In spite of this, evidence to support preferential binding of
heparin to keratinocytes and its high transcutaneous permeation through the skin suggests that
it may be an excellent candidate for use in the transdermal delivery of other drugs. Another
additional advantage in the delivery of heparin by this route may be an improvement in the
treatment of superficial venous thrombosis [123].

10. Perspectives on the current challenges of bioactive macromolecule/
heparin delivery

The major challenges which need to be overcome for effective and safe delivery of heparins
are instability in the organism (e.g. related to heparinase or at low pH), low permeability
through the biological tissue and better spatial and temporal control over the pharmacokinetics
and pharmacodynamic properties. The various non-invasive routes of delivery of LMWH show
promise for patient compliance in thrombosis management but none of them is yet to be proven
safe and effective for clinical use. Future advances in this field may be based on: (i) a better
understanding of the microbiota of the site of administration and their influence on the bioactive
macromolecules, (ii) our ability to smartly mimic bacterial invasion process, (iii) the use of
newer methods in genomics and in nanotechnology, (iv) development of in silico predictive
model for bioavailability based on physicochemical properties to decrease the probability of
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failure and (v) a better control of the production cost for routine use and affordability by diverse
human population. For example, the distal human intestine represents an anaerobic bioreactor
programmed with an enormous population of bacteria including Bacteroides sp. that secrete
heparinase. This microbiota and its collective genomes (microbiome) provide us with genetic
and metabolic attributes [134] that may differently affect the fate and stability of different
bioactive macromolecules. Moreover, invasive bacteria actively induce their own uptake by
phagocytosis in normally nonphagocytic cells and then either establish a protected niche within
which they survive and replicate, or disseminate from cell to cell by means of an actin-based
motility process [135]. An ideal noninvasive system should mimic these natural invasion
processes without inducing any adverse effect. In term of technologies, recent advances include
phage display. The latter is a simple functional genomic methodology for screening and
identifying protein–ligand interactions and is widely used in epitope mapping, antibody
engineering and screening for receptor agonists or antagonists [136]. For example this
technique has been used to identify AT1002, a hexapeptide derived from Cholera Zonula
occludens toxin derivative that is a promising penetration enhancer for macromolecules
including heparin [75]. Therefore, one may reasonably speculate that some methods derived
from current advances in genomics/proteomics may be useful to address the current challenge
of macromolecular drug delivery. The use of some relatively newer nanotechnological
methods/tools [137] such as dynamic force spectroscopy [138], microfluidics [139] and ion
trap tandem mass spectrometry [140] to delineate underlying physicochemical mechanisms
and probe the interaction at the interface between biology and physico-chemistry may lead and
to successful non invasive delivery of these drugs. Another challenge to be addressed with
these macromolecules is the development of predictive model for their bioavailabilities based
on their complex molecular properties and perhaps conformational properties in search of
optimization process. Such efforts have been successfully developed for small chemical entities
either for oral [141,142] or transdermal [143] routes but there is a knowledge gap for therapeutic
macromolecules. Additional biological and clinical studies are also required for these novel
delivery systems in order to confirm their safety and efficacy after a more systematic in silico
and in vitro study to decrease the probability of failure. The cost for routine use of such novel
DDS may be often prohibitive and should also be minimized to justify their choice over
conventional drug delivery methods.

11. Conclusions
The various non-invasive routes of delivery of LMWH show promise for patient compliance
in thrombosis management but none of them is yet to be proven safe and effective for clinical
use. It is noteworthy that one limitation of this review is that bioavailabilities data could not
be critically analyzed and compared. This limitation is due to the large differences between
operating procedures. For example, there was a wide variety between the nature/type of heparin
used in each study, the various doses administered, the differences in the animal species used,
method of administration, blood sample analysis methods, and in the data collection and
treatment.

Future advances in this field may be based on: (i) a better understanding of the microbiota of
site of administration and their influence on the bioactive macromolecules, (ii) our ability to
smartly mimic bacterial invasion process, (iii) the use newer methods in genomics (e.g. phase
display) and in nanotechnology, (iv) development of in silico predictive guidance for
bioavailability based on physicochemical properties to decrease the probability of failure and
(v) a better control of the cost for routine use of such novel DDS to justify the choice over
conventional delivery systems. Future drug delivery research on bioactive macromolecules
such as heparin should embrace a more systemic approach taking into account data not only
from physico-chemistry, pharmacokinetics/pharmacodynamics of the drug but also knowledge
gained from advances in genomics/proteomics and nanotechnology.
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