

NIH Public Access

Author Manuscript

J Control Release. Author manuscript; available in PMC 2006 August 11.

Published in final edited form as: *J Control Release*. 2006 June 28; 113(2): 91–101.

The quest for non-invasive delivery of bioactive macromolecules: A focus on heparins

Nusrat A. Motlekar^a and Bi-Botti C. Youan^{a,*}

a Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA

Abstract

The development of a non-invasive drug delivery system for unfractionated heparin (UFH) and low molecular weight heparins (LMWHs) has been the elusive goal of several research groups since the initial discovery of this glycosaminogylcan by McLean in 1916. After a brief update on current parenteral formulations of UFH and LMWHs, this review revisits past and current strategies intended to identify alternative routes of administration (e.g. oral, sublingual, rectal, nasal, pulmonary and transdermal). The following strategies have been used to improve the bioavailability of this bioactive macromolecule by various routes: (i) enhancement in cell-membrane permeabilization, (ii) modification of the tight-junctions, (iii) increase in lipophilicity and (iv) protection against acidic pH of the stomach. Regardless of the route of administration, a simplified unifying principle for successful non-invasive macromolecular drug delivery may be: "to reversibly overcome the biological, biophysical and biochemical barriers and to safely and efficiently improve the in vivo spatial and temporal control of the drug in order to achieve a clinically acceptable therapeutic advantage". Future macromolecular drug delivery research should embrace a more systemic approach taking into account recent advances in genomics/proteomics and nanotechnology.

Keywords

Alternative routes; Bioactive macromolecule; Drug delivery; Non-invasive; Heparin

1. Introduction

In recent decades, several promising new anticoagulants have been evaluated. It has been a challenge to determine which of these agents presently under development will provide the greatest efficacy with the greatest degree of safety at a reasonable cost [1,2]. Heparin, a widely accepted and proven anticoagulant discovered by McLean in 1916 [3] has survived more than 80 years clinical experience [4]. This drug is still essentially administered in clinics by injections which present several limitations for effective pharmacotherapy of thrombosis. To overcome these limitations, perhaps a non-invasive and improved heparin delivery system may be needed to enhance patient compliance and minimize adverse effects. For the purpose of this review and for the sake of simplicity, the term heparin hereafter refers to both unfractionated (UFH) and low molecular weight heparins (LMWHs). Whenever applicable, the distinction will be made between UFH and LMWHs. Besides its original therapeutic use as an anticoagulant, other potential applications of heparin for a vast array of human diseases have been identified [5]. The potentially wide-ranging clinical importance of this bioactive macromolecule warrants the building of better heparin [6] and the development of better

^{*} Corresponding author. Tel.: +1 806 356 4015x236; fax: +1 806 354 4034. E-mail address: bibotti.youan@ttuhsc.edu (B.-B.C. Youan)...

heparin delivery system. All the foregoing aspects of heparin are beyond the scope of this manuscript which is focused on delivery systems.

Recent reviews related to heparin delivery focused mainly on the oral delivery of heparin [7–9]. To our knowledge, the first attempt of a comprehensive manuscript for alternative routes of heparin delivery dates back to 1964 which covers limited routes of drug administration [10]. The latter review manuscript dealt mainly with UFH probably because information related to LMWH was not available at that time. Since then, it is noteworthy that a lot of efforts have been made by several investigators using newer heparins (e.g. LMWHs), other alternative routes of drug delivery and/or new method of drug delivery. As a contribution to the consolidation of knowledge gathered on heparin delivery to date, this review will focus mainly on the progress and prognostication involving the non-invasive route of heparin delivery. To achieve this goal, we have consulted the US Food and Drug Administration electronic orange book and current literature on heparin containing drug delivery systems (DDS). After a brief commentary on the current route of administration in clinics (the parenteral route), we examine different DDS investigated for each major non-invasive routes including oral, sublingual, rectal, nasal, pulmonary and transdermal routes.

2. Parenteral delivery of heparins

Table 1 shows some examples of UFH and LMWH formulations approved by the US Food and Drug Administration for clinical use since 1982. UFH and LMWHs have traditionally been administered via the parenteral route (intravenous or subcutaneous injection). Newer heparin derivatives such as fondaparinux (a pentasaccharide) and its analogue idraparinux are still administered subcutaneously [11]. Recent strategies to improve parenteral delivery of heparins include stents and antibody targeted approaches. Recently, minimally invasive methods involving the use of heparin in drug eluting stents have emerged [12–15]. Heparin-loaded zein microsphere films have been recently shown to significantly improve the hemocompatibility of drug eluting stents for cardiovascular applications [16]. Non-eluting stents have clinically reduced thrombotic complications following stent implantation [17]. The first compounds considered for stent-based delivery, such as heparin, were chosen on the basis of promising tissue culture and animal experiments, and yet they have failed to stop restenosis clinically. The application of continuum pharmacokinetics to examine the effects of transport forces and device geometry on the distribution of stent-delivered hydrophilic and hydrophobic drugs showed that mere proximity of delivery devices to tissues does not ensure adequate targeting, because physiological transport forces cause local concentrations to deviate significantly from mean concentrations [18]. It is important to note that stent performance is also influenced profoundly by stent design and configuration. A stent-less local delivery system for antirestenotic agents based on antibodies targeted to cross-linked fibrin was successful in the targeted delivery of UFH and LMWH to injured areas of the artery wall without systemic complications, suggesting that the local delivery of such agents may minimize systemic effects and bleeding complications [19]. The antibody targeted triggered, electrically modified prodrug-type strategy (ATTEMPTS) also used a similar approach [20].

Though invasive or parenteral formulations are available for heparin delivery, they are poorly accepted by patients and present several restrictions in terms of manufacture (they should be pyrogen and particulate free, isotonic, sterile, and stable) and in terms of pharmacokinetic and pharmacodynamic aspects that may be overcome by non-invasive delivery strategies.

3. Obstacles for non-invasive delivery of heparins

Currently, there is a clinical need for a non-invasive anticoagulant to replace warfarin for longterm prophylaxis and treatment of patients with venous and arterial thrombosis [1]. Improved delivery systems for heparins are attractive solutions to achieve this goal for numerous reasons

as follows: heparins are the anticoagulant of choice in pregnancy as they do not cross the placenta and administration during pregnancy is not associated with undesirable effects in the fetus or neonate. Prevention of thromboembolism in patients with atrial fibrillation and prosthetic valves are still areas where there is a need for new anticoagulant drugs [1]. LMWHs can be used safely and effectively to treat outpatients with proximal deep-vein thrombosis [21]. The design of an ideal DDS for heparins that could circumvent current pharmacokinetics, biophysical and antihemostatic limitations will have tremendous benefits including improvement of patience compliance due to avoidance of pain during injection adding convenience, safety and efficacy to thrombosis therapy. Such ideal DDS for heparins may therefore reduce the healthcare cost because thrombosis is the discharge diagnosis of more than a quarter-million patients in U.S. hospitals annually [21].

The lack of non-invasive delivery options for heparins may result in limited clinical use and poor patient compliance. The major barriers hindering the delivery via the non-invasive route for heparin include: (i) enzymatic degradation due to heparinase present in the liver [22] and the intestinal microflora related to *Bacteroides* spp. [23,24], (ii) chemical instability at acidic pH of the stomach [25] and (iii) limited absorption through the epithelial/mucosal barrier. It has been shown that desulfation of heparin and the metabolism of the glycoside residue may occur in the acidic pH of the stomach unless heparinase derived heparin fragment is used [26]. Selective N-deacetylation and N-desulfation of the glucosamine residues of heparin have been shown to affect both its anticoagulant activity and in vivo disposition characteristics [27]. The poor absorption of heparins across the physiological barrier is due to their hydrophilic nature, negative charge, and relatively large molecular weight. The absorption of large hydrophilic macromolecules such as heparin may be limited to the paracellular pathway, which consists of aqueous pores created by the cellular tight junctions [28]. For a drug with a molecular mass beyond 500-700 Da, the bioavailability decreases with an increase in the molecular mass [28]. Even if absorbed through mucosal barriers, another obstacle to efficient heparin delivery by non-invasive route is its susceptibility to hepatic metabolism by heparinase and the preferential concentration of heparin in the endothelium [29,30].

4. Heparin containing DDS for sublingual route

The oral mucosa, floor of mouth, underside of tongue and gingival mucosa offers excellent accessibility, is not easily traumatized and avoids degradation of macromolecular drug resulting from oral gastrointestinal absorption and first-pass hepatic metabolism [31]. The early claims for sublingual delivery of heparins [32–36] have been challenged and did not survive critical investigations [10,37,38]. For example, tablets containing 20,000 U of UFH with and without ethylenediamine tetraacetic acid (EDTA) as penetration enhancers did not show any significant changes in bioactivity in the plasma of treated patients [10]. The inconsistency of earlier data may reflect the difference in the properties of heparin preparation, the sensitivity and the accuracy of the bioactivity assessment method that was based on optical density at that time [39]. Nevertheless, it is noteworthy that, although promising, the sublingual route of heparin administration has not been extensively investigated for LMWH. This may probably be due to the fact that heparins would have to permeate approximately 30-40 cell lines until they reach the first blood vessels in the lamina propria. Though the successful development of buccal heparin delivery systems seems unlikely based on the above fact, with the evolving concept of building better heparin, this route deserves further investigation in the quest for noninvasive delivery methods for heparin.

5. Heparin containing DDS for oral route

By far the most convenient and preferred route of drug administration is the oral route. Therefore, the oral delivery of heparin is one of the most intensively studied delivery strategies

[7]. Successful clinical use via the oral route has been hindered due to the obstacles described earlier. Numerous attempts have been made to develop an oral delivery system for heparins both in vitro and in vivo. In vivo studies involved different animal models such as mice [40, 41], rat [42–55], rabbit [56–58], dog [59], pig [53], primates [48] and human [60–65]. Table 2 underlines examples of oral formulation tested in humans.

Overall, a variety of formulation strategies have been investigated to circumvent the current obstacle to oral delivery of heparins previously underlined. These strategies may be classified based on the following mechanism.

a. Cell-membrane permeabilization using bile salts and derivatives [66–68] and polycationic lipophilic-core dendrons (partial dendrimers) [69].

(ii) Tight-junction modifications using absorption enhancers such as labrasol [70], sulfonated surfactants [71], EDTA acid [44], saponins [72], chitosan derivatives
[73], thiolated polycarbophil system [42,52,74], carbopol 934P [73], sodium caprate
[55], and Zonula occludens toxin synthetic peptide derivative AT1002 [75].

(iii) Increasing the drug lipophilicity: covalent attachment to lipophilic molecules such as dimethyl sulfoxide and deoxycholic acid conjugates [66–68], the use of carriers such as organic acids [76], sodium N-[10-(2-hydroxybenzoyl) amino] decanoate [77] (SNAD), sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) [8,65,78], diamine salt (ITF 1331 or counterion no. 4 [56], microemulsion formulations [66,79], polyion complex micelles [80], liposomes [59] and dendrons [69]. Microemulsions are potential drug carrier systems for oral, topical, and parenteral administration [81]. These typically consist of water, oil, and amphiphilic compounds (surfactant and co-surfactant) which yield a transparent, single optically isotropic, and thermodynamically stable liquid. The main difference between macroemulsions and microemulsions lies in the size of the particles of the dispersed phase: these are at least an order of magnitude smaller in the case of microemulsions (10–200 nm) than those of conventional emulsions (1–20 µm). Drug penetration enhancement from microemulsions is mainly due to an increase in drug concentration which provides a large concentration gradient from the vehicle to the physiological barrier. Furthermore, it has been suggested that the surfactants and the oil from the microemulsion interact with the rigid lipid bilayer structure and acts as a chemical enhancer. The new area of polymer therapeutics [82] includes polymeric micelles containing covalently bound drugs such as heparin. Liposomes [83] are microscopic aggregates of highly ordered lipid molecules which are normally dispersed in a hydrophilic solvent, typically water.

(iv) Protection against acidic pH of the stomach: enteric coating [84,85], use of alginate/chitosan/PEG microparticles [86] and polymeric nanoparticles [57]. Results obtained by this strategy are controversial. For example, the complexation of one fraction with glycine (to adjust the ionization of the drug), and the use of gastroresistant capsules administered directly into the stomach did not result in significantly increased absorption, although large doses were administered (15,000 anti-Xa U/kg) [84]. However, improvement of heparin absorption from the gastrointestinal tract was claimed by a combination of suppression of ionization and selection of molecular size [87] and after enteric-coating [85]. Microparticles [88] may be obtained by microencapsulation, a technology devoted to entrapping solids, liquids or gases inside one or more polymeric coatings. Similar technologies are used to produce nanoparticles. The main difference between nano- and microparticles is their size, the former are typically less than 1 μ m while the latter are typically above 1 μ m. For successful heparin delivery using carriers, both the drug and biological characteristics of the carrier, carrier–gut interactions, the dynamic nature of such

interactions, the varied modes of uptake in vitro and in vivo, and the concerns of targeting to the gut epithelium to encourage more efficient uptake of nanoparticles need to be elucidated [89]. For example, the differences in the uptake of the mucoadhesive polysaccharide chitosan (CS)-coated systems (solid lipid core or oily core) by the Caco-2 cells did not have a consequence in the in vivo behaviour [90] indicating the difficulty of obtaining appropriate in vivo and in vitro correlation with these novel DDS. Whether or not these strategies can be utilized for the routine administration of heparin from the gut remains to be known.

Due to the large amount of preliminary data on the oral delivery of heparins (in human and animal models), we have summarized the data obtained in clinical trials in Table 2. Overall, novel and reversible absorption promoters show promise for the oral delivery of heparin. It appears that effective and safe delivery of heparins by the oral route would be clinically relevant not only for thrombosis but also for other localized disease conditions such as gastric ulcer [50].

6. Heparin containing DDS for rectal route

The rectal administration of drugs has been extensively reviewed [91]. Several strategies have been investigated for the rectal delivery of heparin. Table 3 summarizes the examples of in vivo studies involving rectal absorption of heparins in the animal model. The main formulation strategies implemented focused on modification of cell membrane permeability using sodium cholate [92], bile salts [93] and sodium lauryl sarconsinate [94]. The oil emulsion improved the bioavailability of glycosaminoglycan sulfates at least 20 times [94]. Rectal absorption of heparin in rabbits in the presence of non-surfactant adjuvants [95] has also been investigated. These studies showed that the alteration or disruption of tight junctions plays an important role in the absorption of heparin. Unfortunately, limited data are available on the toxicity and in vivo performance via this route.

In order to gain a therapeutic response after rectal administration, heparins have to permeate the absorption membrane based on the mucus layer and the epithelial tissue in significant quantities. The transport of heparin across the rectal membrane may be further improved by the co-administration of mucolytic agents and permeation enhancers. In addition, a combination of oral and rectal formulations may succeed when one route, alone, is not successful such as in the case of inflammatory bowel disease [96]. The effective and safe delivery of heparins by another body orifice namely the vagina may be clinically relevant not only for systemic thrombosis but also for the improved pharmacotherapy of other localized disease conditions and for patients who have undergone gynecological surgery [97], patients with septic pelvic thrombophlebitis (a major complication of endometritis) [98] and in cases of postpartum ovarian vein thrombosis after vaginal delivery [99].

7. Heparin containing DDS for nasal route

In recent years, the nasal route has received a great deal of attention as a convenient and reliable method for the systemic administration of drugs. Although this route is currently being used in the clinics for the systemic administration of several drugs, it is a recently emerging area [100].

Several strategies have been investigated for the intranasal delivery of heparin. Table 4 summarizes the main strategies used via this route. Investigations have been conducted in rat [101,102] and human nose [103–105]. Delivery systems used include solution vapor and nebulizers as shown in Table 4. The major barriers to nasal drug absorption are enzymatic degradation, the inability of the nasal mucosa to enable transport of any molecule larger than 1 kDa, and the relatively short residence time of substances in the nose. In the case of heparin

delivery, recent efforts to overcome these problems use penetration enhancers such as alkylglycosides [101,106]. The mechanisms, by which these enhancers increase absorption, remain to be elucidated. It is generally accepted that the absorption enhancers promote absorption by a direct effect on the membrane. The human nose can accommodate a dose of $25-200 \,\mu$ l per nostril. Based on heparin solubility and therapeutic dose requirement, a relatively higher volume may be needed leading to potential drainage out of the nose. This limitation of dose volume should be taken into account while formulating a nasal drug delivery system for heparin. Absorption via the nasal route may also be affected by the site of administration of formulation in the nose. The anterior part of the nose provides greater contact between nose and drug whereas a formulation applied to the posterior part of the nose is removed rapidly by the mucociliary clearance mechanism of the nose [107].

A successful nasal heparin delivery system would offer numerous advantages including rapid onset of action and avoidance of hepatic first-pass metabolism. An improved understanding of the structure and function of tight junctions in the nasal epithelial barrier is needed before significant improvements in the delivery of large molecules such as heparin can be made. The effective and safe delivery of heparins via this route may be clinically relevant not only for systemic thrombosis but also for other localized disease conditions (e.g. allergies [103,104]).

8. Heparin containing DDS for pulmonary route

The pulmonary route of drug delivery is well established in the treatment of lung diseases such as asthma. In recent years, this technology has progressed to the extent that it is now possible to deliver macromolecules to the systemic circulation via inhalation. Bioengineered particles may be created in liquid form from devices specifically designed to create an unusually fine size distribution or solid particles that possess a mixture of drug and excipient, with defined shape, size, porosity, and drug release characteristics [108].

Several strategies have been investigated for the pulmonary delivery of heparins. The absorption of LMWH from the respiratory tract is hampered due to excessive hydrophilicity and surface charges. The delivery of heparin via this route would be especially beneficial, in the case of PE owing to the prospect of targeted delivery at the site of action. Table 5 shows various strategies that have been employed to increase drug absorption via the pulmonary route. Animal models tested by this route include mice [109], rat [110,111], guinea pig [112], rabbit [113,114], sheep [115] and dog [109]. Very few investigations have been performed in humans as shown in Table 5.

One of the challenges in pulmonary drug delivery is the reproducible placement of drug at the site of absorption in the alveoli. This issue has received considerable attention, and resulted in the design and development of varied devices to provide consistent drug delivery to the deep lung tissue [116]. The effective and safe delivery of heparins by this route may be clinically relevant not only for the systemic effect against thrombosis but also for the improvement of localized pharmacotherapy such as in cases of allergy and asthma management [117–119].

9. Heparin containing DDS for transdermal route

The skin provides an attractive and readily accessible site for drug delivery. The transdermal delivery of heparin is of interest, because drug absorption across the skin avoids first-pass metabolism. Previous reviews [120,121] provide an insight into the in vitro and in vivo studies on percutaneous absorption of heparins. Recently, various novel strategies (Table 6) have been investigated to enhance the transdermal delivery of heparin. This route offers several advantages over traditional drug delivery systems. These include minimization of pain and the prospect of sustained drug release. The major disadvantage to transdermal heparin delivery is the low bioavailability of bioactive macromolecules through the skin mainly due to the

Motlekar and Youan

presence of the stratum corneum. Strategies that have been used to overcome this barrier and increase the permeability of the skin to heparin include penetration enhancers [122,121], liposomes [123,124], phonophoresis [125,126], electroporation [127–129], iontophoresis [126,130], needle-less injections [131] and microfabricated microneedles [132]. Several excipients are able to promote the transport of an active substance across the skin barrier by a variety of mechanisms including extraction of lipids from the stratum corneum, alteration of the vehicle/skin partitioning coefficient, disruption of the lipid bilayer structure, displacement of bound water, loosening of the horny cells and delamination of the stratum corneum. Liposomes have been previously defined elsewhere in this manuscript. Phonophoresis (or sonophoresis) uses ultrasound energy [133] in order to enhance the skin penetration of the drug. When the skin is exposed to ultrasound, the waves propagate to a certain level and cause several effects (cavitation and energy loss) that assist skin penetration. The force of cavitation leads to the formation of holes in the corneocytes, enlargement of intercellular spaces, and perturbation of stratum corneum lipids. The energy loss results in a rise in the temperature which increases the fluidity of the stratum corneum lipids and directly increases the diffusivity of molecules through the skin barrier. In contrast to iontophoresis where a low voltage is applied, electroporation [127–129] requires a large voltage treatment for a short period (10 µs to 100 ms) to produce transient aqueous pathways across the skin barrier. These pores allow the passage of macromolecules via a combination of diffusion, electrophoresis and electroosmosis. Using tools from the microelectronics industry, microneedles [132] have been fabricated with a range of sizes (10 to 200 µm in height and 10 to 50 µm in width), shapes (solid or hollow) and materials (biodegradable or not). Microneedle arrays connected to a reservoir are applied to the skin surface such that they pierce the upper epidermis far enough to increase skin permeability and allow drug delivery, but too short to cause any pain to the receptors in the dermis. Therefore, in this case there are no limitations concerning polarity and molecular weight of the delivered molecules. The needle-less system (namely J-Tip®) used for heparin delivery is a sterile, single use, disposable device that contains its own source of propellant consisting of liquid CO₂. It is important to point out that the needleless injections and microfabricated needles may be construed or viewed as invasive parenteral routes. However, we have included these systems under transdermal delivery systems because they are often emerging painless alternative physical methods intended to systemically deliver drugs through the skin beside the above chemical, electrical and ultrasound based methods.

One major drawback in the case of drug delivery via the transdermal route is the potential local irritation at the site of absorption. In spite of this, evidence to support preferential binding of heparin to keratinocytes and its high transcutaneous permeation through the skin suggests that it may be an excellent candidate for use in the transdermal delivery of other drugs. Another additional advantage in the delivery of heparin by this route may be an improvement in the treatment of superficial venous thrombosis [123].

10. Perspectives on the current challenges of bioactive macromolecule/ heparin delivery

The major challenges which need to be overcome for effective and safe delivery of heparins are instability in the organism (e.g. related to heparinase or at low pH), low permeability through the biological tissue and better spatial and temporal control over the pharmacokinetics and pharmacodynamic properties. The various non-invasive routes of delivery of LMWH show promise for patient compliance in thrombosis management but none of them is yet to be proven safe and effective for clinical use. Future advances in this field may be based on: (i) a better understanding of the microbiota of the site of administration and their influence on the bioactive macromolecules, (ii) our ability to smartly mimic bacterial invasion process, (iii) the use of newer methods in genomics and in nanotechnology, (iv) development of in silico predictive model for bioavailability based on physicochemical properties to decrease the probability of

Motlekar and Youan

failure and (v) a better control of the production cost for routine use and affordability by diverse human population. For example, the distal human intestine represents an anaerobic bioreactor programmed with an enormous population of bacteria including Bacteroides sp. that secrete heparinase. This microbiota and its collective genomes (microbiome) provide us with genetic and metabolic attributes [134] that may differently affect the fate and stability of different bioactive macromolecules. Moreover, invasive bacteria actively induce their own uptake by phagocytosis in normally nonphagocytic cells and then either establish a protected niche within which they survive and replicate, or disseminate from cell to cell by means of an actin-based motility process [135]. An ideal noninvasive system should mimic these natural invasion processes without inducing any adverse effect. In term of technologies, recent advances include phage display. The latter is a simple functional genomic methodology for screening and identifying protein-ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists [136]. For example this technique has been used to identify AT1002, a hexapeptide derived from Cholera Zonula occludens toxin derivative that is a promising penetration enhancer for macromolecules including heparin [75]. Therefore, one may reasonably speculate that some methods derived from current advances in genomics/proteomics may be useful to address the current challenge of macromolecular drug delivery. The use of some relatively newer nanotechnological methods/tools [137] such as dynamic force spectroscopy [138], microfluidics [139] and ion trap tandem mass spectrometry [140] to delineate underlying physicochemical mechanisms and probe the interaction at the interface between biology and physico-chemistry may lead and to successful non invasive delivery of these drugs. Another challenge to be addressed with these macromolecules is the development of predictive model for their bioavailabilities based on their complex molecular properties and perhaps conformational properties in search of optimization process. Such efforts have been successfully developed for small chemical entities either for oral [141,142] or transdermal [143] routes but there is a knowledge gap for therapeutic macromolecules. Additional biological and clinical studies are also required for these novel delivery systems in order to confirm their safety and efficacy after a more systematic in silico and in vitro study to decrease the probability of failure. The cost for routine use of such novel DDS may be often prohibitive and should also be minimized to justify their choice over conventional drug delivery methods.

11. Conclusions

The various non-invasive routes of delivery of LMWH show promise for patient compliance in thrombosis management but none of them is yet to be proven safe and effective for clinical use. It is noteworthy that one limitation of this review is that bioavailabilities data could not be critically analyzed and compared. This limitation is due to the large differences between operating procedures. For example, there was a wide variety between the nature/type of heparin used in each study, the various doses administered, the differences in the animal species used, method of administration, blood sample analysis methods, and in the data collection and treatment.

Future advances in this field may be based on: (i) a better understanding of the microbiota of site of administration and their influence on the bioactive macromolecules, (ii) our ability to smartly mimic bacterial invasion process, (iii) the use newer methods in genomics (e.g. phase display) and in nanotechnology, (iv) development of in silico predictive guidance for bioavailability based on physicochemical properties to decrease the probability of failure and (v) a better control of the cost for routine use of such novel DDS to justify the choice over conventional delivery systems. Future drug delivery research on bioactive macromolecules such as heparin should embrace a more systemic approach taking into account data not only from physico-chemistry, pharmacokinetics/pharmacodynamics of the drug but also knowledge gained from advances in genomics/proteomics and nanotechnology.

Acknowledgements

This work was supported by the National Institutes of Health Grant (GM 069397-01A2).

References

- Bates SM, Weitz JI. Emerging anticoagulant drugs. Arterioscler Thromb Vasc Biol 2003;23(9):1491– 1500. [PubMed: 12842845]
- Linkins LA, Weitz JI. New anticoagulant therapy. Annu Rev Med 2005;56:63–77. [PubMed: 15660502]
- 3. McLean J. The thromboplastic action of heparin. Am J Physiol 1916;41:250-257.
- 4. Messmore HL, Wehrmacher WH, Coyne E, Fareed J. Heparin to pentasaccharide and beyond: the end is not in sight. Semin Thromb Hemost 2004;30(Suppl 1):81–88. [PubMed: 15085469]
- Lever R, Page CP. Novel drug development opportunities for heparin. Nat Rev Drug Discov 2002;1 (2):140–148. [PubMed: 12120095]
- Caughey GH. Building a better heparin. Am J Respir Cell Mol Biol 2003;28(2):129–132. [PubMed: 12540478]
- 7. Ross BP, Toth I. Gastrointestinal absorption of heparin by lipidization or coadministration with penetration enhancers. Curr Drug Deliv 2005;2(3):277–287. [PubMed: 16305430]
- Pineo G, Hull R, Marder V. Oral delivery of heparin: SNAC and related formulations. Best Pract Res Clin Haematol 2004;17(1):153–160. [PubMed: 15171964]
- 9. Hiebert LM. Oral heparins. Clin Lab 2002;48(3-4):111-116. [PubMed: 11934211]
- Windsor E, Freeman L. An investigation of routes of administration of heparin other than injection. Am J Med 1964;37:408–416. [PubMed: 14209287]
- Weitz JI. New anticoagulants for treatment of venous thromboembolism. Circulation 2004;110(9 Suppl 1):I19–I26. [PubMed: 15339877]
- Verheugt FW, Dieker H, Aengevaeren WR. Antithrombotic therapy during percutaneous coronary interventions. Ned Tijdschr Geneeskd 2005;149(17):912–916. [PubMed: 15884403]
- Medina RP, Foto D. The use of bivalirudin to prevent subacute thrombosis during drug-eluting stent implantation. J Invasive Cardiol 2004;16(5):236–239. [PubMed: 15152125]
- 14. Rha SW, Kuchulakanti PK, Pakala R, Cheneau E, Pinnow E, Gebreeyesus A, Aggrey G, Pichard AD, Satler LF, Kent KM, Lindsay J, Waksman R. Addition of heparin to contrast media is associated with increased bleeding and peripheral vascular complications during percutaneous coronary intervention with bivalirudin and drug-eluting stents. Cardiovasc Radiat Med 2004;5(2):64–70. [PubMed: 15464942]
- 15. Roffi M, Topol EJ. Percutaneous coronary intervention in diabetic patients with non-ST-segment elevation acute coronary syndromes. Eur Heart J 2004;25(3):190–198. [PubMed: 14972418]
- Wang HJ, Lin ZX, Liu XM, Sheng SY, Wang JY. Heparin-loaded zein microsphere film and hemocompatibility. J Control Release 2005;105(1–2):120–131. [PubMed: 15893840]
- 17. Whelan DM, van Beusekom HM, van der Giessen WJ. Mechanisms of drug loading and release kinetics. Semin Interv Cardiol 1998;3(3–4):127–131. [PubMed: 10406681]
- Hwang CW, Wu DER. Edelman, Physiological transport forces govern drug distribution for stentbased delivery. Circulation 2001;104(5):600–605. [PubMed: 11479260]
- Thomas AC, Campbell JH. Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis. Atherosclerosis 2004;176(1):73–81. [PubMed: 15306177]
- Park YJ, Liang JF, Song H, Li YT, Naik S, Yang VC. ATTEMPTS: a heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. Adv Drug Deliv Rev 2003;55(2):251–265. [PubMed: 12564979]
- Schafer AI. Low-molecular-weight heparin—an opportunity for home treatment of venous thrombosis. N Engl J Med 1996;334(11):724–725. [PubMed: 8594434]
- 22. Goldshmidt O, Yeikilis R, Mawasi N, Paizi M, Gan N, Ilan N, Pappo O, Vlodavsky I, Spira G. Heparanase expression during normal liver development and following partial hepatectomy. J Pathol 2004;203(1):594–602. [PubMed: 15095483]

- Kim BT, Kim WS, Kim YS, Linhardt RJ, Kim DH. Purification and characterization of a novel heparinase from *Bacteroides stercoris* HJ-15. J Biochem (Tokyo) 2000;128(2):323–328. [PubMed: 10920269]
- 24. Ahn MY, Shin KH, Kim DH, Jung EA, Toida T, Linhardt RJ, Kim YS. Characterization of a *Bacteroides* species from human intestine that degrades glycosaminoglycans. Can J Microbiol 1998;44(5):423–429. [PubMed: 9699297]
- Jandik KA, Kruep D, Cartier M, Linhardt RJ. Accelerated stability studies of heparin. J Pharm Sci 1996;85(1):45–51. [PubMed: 8926582]
- 26. Larsen AK, Rice KG, Linhardt RJ, Wogan G, Langer R. Resistance of heparinase-derived heparin fragments to biotransformation. J Biol Chem 1989;264(3):1570–1577. [PubMed: 2912974]
- Bjornsson TD, Schneider DE, Hecht AR. Effects of *N*-deacetylation and *N*-desulfation of heparin on its anticoagulant activity and in vivo disposition. J Pharmacol Exp Ther 1988;245(3):804–808. [PubMed: 3164387]
- Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2003;2(4):289–295. [PubMed: 12669028]
- 29. Hiebert LM, Wice SM, McDuffie NM, Jaques LB. The heparin target organ—the endothelium. Studies in a rat model. Q J Med 1993;86(5):341–348. [PubMed: 8327652]
- 30. Lovich MA, Edelman ER. Tissue average binding and equilibrium distribution: an example with heparin in arterial tissues. Biophys J 1996;70(3):1553–1559. [PubMed: 8785313]
- Senel S, Kremer M, Nagy K, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol 2001;2(2):175–186. [PubMed: 11480421]
- Litwins J, Vorzimer JJ, Sussman LN, Applezweig N, Etess AD. Sublingual administration of heparin. Proc Soc Exp Biol Med 1951;77(2):325–326. [PubMed: 14854037]
- 33. Fuller HL. Sublingual heparin in hyperlipemia; a preliminary report. Angiology 1958;9(5):311–313. [PubMed: 13583625]
- Korochkin IM, Fuller HL. Sublingual heparin in hyperlipemia; a preliminary report. Angiology 1958;9(5):311–313. [PubMed: 13583625]Kardiologiia 8 (7) (1968) 50–53.
- 35. Kalliomaki L. Sublingual administration of heparin. Duodecim 1952;68(7–8):655–658. [PubMed: 13021038]
- Engelberg H. Buccal and sublingual administration of heparin potassium (clarin); studies of plasma triglyceride lipolysis and heparin levels. J Am Med Assoc 1959;169(12):1322–1325. [PubMed: 13630759]
- McDevitt E, Huebner RD, Wright IS. Ineffectiveness of heparin by sublingual administration. J Am Med Assoc 1952;148(13):1123–1124. [PubMed: 14907342]
- Wright IS. An evaluation of anticoagulant therapy. Am J Med 1953;14(6):720–730. [PubMed: 13057882]
- 39. Lasker SE. Low molecular weight heparin-like preparations with oral activity. Semin Thromb Hemost 1985;11(1):37–39. [PubMed: 3883498]
- 40. Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983;221 (4612):719–725. [PubMed: 6192498]
- Chander CL, Colville-Nash PR, Moore AR, Howat DW, Desa FM, Willoughby DA. The effects of heparin and cortisone on an experimental model of pannus. Int J Tissue React 1989;11(3):113–116. [PubMed: 2482265]
- Schmitz T, Leitner VM, Bernkop-Schnurch A. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system. J Pharm Sci 2005;94(5):966–973. [PubMed: 15793802]
- Larsen AK, Lund DP, Langer R, Folkman J. Oral heparin results in the appearance of heparin fragments in the plasma of rats. Proc Natl Acad Sci U S A 1986;83(9):2964–2968. [PubMed: 3458256]
- 44. Windsor E, Cronheim GE. Gastrointestinal absorption of heparin and synthetic heparinoids. Naturwissenschaften 1961;190:263–264.

- Engel RH, Riggi SJ. Intestinal absorption of heparin: a study of the interactions of components of oil-in-water emulsions. J Pharm Sci 1969;58(11):1372–1375. [PubMed: 5349752]
- Vasdev S, Sampson CA, Longerich L, Prabhakaran VM, Parai S. Oral heparin normalizes blood pressure and elevated cytosolic calcium in hypertensive rats. Artery 1992;19(3):124–146. [PubMed: 1637255]
- 47. Brayden D, Creed E, O'Connell A, Leipold H, Agarwal R, Leone-Bay A. Heparin absorption across the intestine: effects of sodium *N*-[8-(2-hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharm Res 1997;14(12):1772–1779. [PubMed: 9453067]
- Leone-Bay A, Paton DR, Variano B, Leipold H, Rivera T, Miura-Fraboni J, Baughman RA, Santiago N. Acylated non-alpha-amino acids as novel agents for the oral delivery of heparin sodium, USP. J Control Release 1998;50(1–3):41–49. [PubMed: 9685871]
- Hiebert LM, Wice SM, Jaques LB. Antithrombotic activity of oral unfractionated heparin. J Cardiovasc Pharmacol 1996;28(1):26–29. [PubMed: 8797132]
- Li Y, Wang WP, Wang HY, Cho CH. Intragastric administration of heparin enhances gastric ulcer healing through a nitric oxide-dependent mechanism in rats. Eur J Pharmacol 2000;399(2–3):205– 214. [PubMed: 10884521]
- Costantini V, Deveglia R, Stabile A, Nenci GG. Absorption and antithrombotic activity of unfractioned heparin after intraduodenal administration in rats. Blood Coagul Fibrinolysis 2000;11 (1):7–13. [PubMed: 10691095]
- Kast CE, Guggi D, Langoth N, Bernkop-Schnurch A. Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil. Pharm Res 2003;20(6):931–936. [PubMed: 12817900]
- Thanou M, Verhoef JC, Nihot MT, Verheijden JH, Junginger HE. Enhancement of the intestinal absorption of low molecular weight heparin (LMWH) in rats and pigs using Carbopol 934P. Pharm Res 2001;18(11):1638–1641. [PubMed: 11758776]
- Yang T, Arnold JJ, Ahsan F. Tetradecylmaltoside (TDM) enhances in vitro and in vivo intestinal absorption of enoxaparin, a low molecular weight heparin. J Drug Target 2005;13(1):29–38. [PubMed: 15848952]
- Motlekar NA, Srivenugopal KS, Wachtel MS, Youan BB. Oral delivery of low-molecular-weight heparin using sodium caprate as absorption enhancer reaches therapeutic levels. J Drug Target 2005;13(10):573–583. [PubMed: 16390818]
- 56. Andriuoli G, Caramazza I, Galimberti G, Zoppetti G, Benedini F, Sala A, Del Soldato P. Intraduodenal absorption in the rabbit of a novel heparin salt. Haemostasis 1992;22(3):113–116. [PubMed: 1330852]
- Jiao Y, Ubrich N, Marchand-Arvier M, Vigneron C, Hoffman M, Lecompte T, Maincent P. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 2002;105(2):230–235. [PubMed: 11790706]
- 58. Welt FG, Woods TC, Edelman ER. Oral heparin prevents neointimal hyperplasia after arterial injury: inhibitory potential depends on type of vascular injury. Circulation 2001;104(25):3121–3124. [PubMed: 11748111]
- 59. Ueno M, Nakasaki T, Horikoshi I, Sakuragawa N. Oral administration of liposomally-entrapped heparin to beagle dogs. Chem Pharm Bull (Tokyo) 1982;30(6):2245–2247. [PubMed: 7127610]
- Dryjski M, Schneider DE, Mojaverian P, Kuo BS, Bjornsson TD. Investigations on plasma activity of low molecular weight heparin after intravenous and oral administrations. Br J Clin Pharmacol 1989;28(2):188–192. [PubMed: 2550047]
- 61. Horwitz O, Johnson WT, Sayen JJ, Roberts B, Whereat AF. Heparin for oral use: preliminary studies. Trans Am Clin Climatol Assoc 1992;104:94–102. [PubMed: 1343451](discussion 102–103).
- 62. Imiela J, Nosarzewski J, Gorski A. Oral heparin in the treatment of rheumatoid arthritis. Arch Immunol Ther Exp (Warsz) 1995;43(5–6):313–315. [PubMed: 8744652]
- Cui HF, Jiang XL. Treatment of corticosteroid-resistant ulcerative colitis with oral low molecular weight heparin. World J Gastroenterol 1999;5(5):448–450. [PubMed: 11819488]
- 64. Hiebert LM, Wice SM, Ping T. Increased plasma anti-Xa activity and recovery of heparin from urine suggest absorption of orally administered unfractionated heparin in human subjects. J Lab Clin Med 2005;145(3):151–155. [PubMed: 15871307]

- 65. Berkowitz SD, Marder VJ, Kosutic G, Baughman RA. Oral heparin administration with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty. J Thromb Haemost 2003;1(9):1914–1919. [PubMed: 12941031]
- 66. Kim SK, Vaishali B, Lee E, Lee S, Lee YK, Kumar TS, Moon HT, Byun Y. Oral delivery of chemical conjugates of heparin and deoxycholic acid in aqueous formulation. Thromb Res 2005;117(4):419– 427. [PubMed: 15913716]
- Lee Y, Nam JH, Shin HC, Byun Y. Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation 2001;104(25):3116–3120. [PubMed: 11748110]
- Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, Byun Y. Preparation and characterization of selfassembled nanoparticles of heparin–deoxycholic acid conjugates. Langmuir 2004;20(26):11726– 11731. [PubMed: 15595804]
- Hayes PY, Ross BP, Thomas BG, Toth I. Polycationic lipophilic-core dendrons as penetration enhancers for the oral administration of low molecular weight heparin. Bioorg Med Chem 2006;14 (1):143–152. [PubMed: 16169233]
- Rama Prasad YV, Minamimoto T, Yoshikawa Y, Shibata N, Mori S, Matsuura A, Takada K. In situ intestinal absorption studies on low molecular weight heparin in rats using labrasol as absorption enhancer. Int J Pharm 2004;271(1–2):225–232. [PubMed: 15129989]
- 71. Engel RH, Riggi SJ. Effect of sulfated and sulfonated surfactants on the intestinal absorption of heparin. Proc Soc Exp Biol Med 1969;130(3):879–884. [PubMed: 5773684]
- Cho SY, Sim JS, Kang SS, Jeong CS, Linhardt RJ, Kim YS. Enhancement of heparin and heparin disaccharide absorption by the *Phytolacca americana* saponins. Arch Pharm Res 2003;26(12):1102– 1108. [PubMed: 14723347]
- 73. Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE. Mono-*N*-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci 2001;90(1):38–46. [PubMed: 11064377]
- 74. Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm 2003;260(2):229–237. [PubMed: 12842342]
- 75. N. Motlekar, A. Fasano, M. Wachtel, B.B. Youan, Zonula occludens toxin synthetic peptide derivative AT1002 enhances in vitro and in vivo intestinal absorption of low-molecular-weight-heparin. Journal of Drug Targeting (in press).
- 76. Dal Pozzo A, Acquasaliente M, Geron MR, Andriuoli G. New heparin complexes active by intestinal absorption: I. Multiple ion pairs with basic organic compounds. Thromb Res 1989;56(1):119–124. [PubMed: 2595670]
- Gonze MD, Manord JD, Leone-Bay A, Baughman RA, Garrard CL, Sternbergh WC III, Money SR. Orally administered heparin for preventing deep venous thrombosis. AmJ Surg 1998;176(2):176– 178. [PubMed: 9737627]
- Rivera TM, Leone-Bay A, Paton DR, Leipold HR, Baughman RA. Oral delivery of heparin in combination with sodium *N*-[8-(2-hydro-xybenzoyl)amino]caprylate: pharmacological considerations. Pharm Res 1997;14(12):1830–1834. [PubMed: 9453076]
- Andersson M, Lofroth JE. Small particles of a heparin/chitosan complex prepared from a pharmaceutically acceptable microemulsion. Int J Pharm 2003;257(1–2):305–309. [PubMed: 12711186]
- 80. Dufresne MH, Leroux JC. Study of the micellization behavior of different order amino block copolymers with heparin. Pharm Res 2004;21(1):160–169. [PubMed: 14984271]
- Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 1999;16(5):461–521. [PubMed: 10635455]
- 82. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347–360. [PubMed: 12750738]
- 83. Gregoriadis G. Tailoring liposome structure. Nature 1980;283(5750):814-815. [PubMed: 7360227]
- Doutremepuich C, Toulemonde F, Lormeau JC. Oral administration of low molecular weight heparin fractions in rabbits. Semin Thromb Hemost 1985;11(3):323–325. [PubMed: 4048955]

- 85. Heparin by alternative routes of administration. 1990.
- Chandy T, Rao GH, Wilson RF, Das GS. Delivery of LMW heparin via surface coated chitosan/pegalginate microspheres prevents thrombosis. Drug Deliv 2002;9(2):87–96. [PubMed: 12055036]
- Sue TK, Jaques LB, Yuen E. Effects of acidity, cations and alcoholic fractionation on absorption of heparin from gastrointestinal tract. Can J Physiol Pharmacol 1976;54(4):613–617. [PubMed: 10060]
- Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C. Biologically erodible microspheres as potential oral drug delivery systems. Nature 1997;386(6623):410–414. [PubMed: 9121559]
- 89. Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 1997;14(3):259–266. [PubMed: 9098866]
- Prego C, Garcia M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release 2005;101(1–3):151–162. [PubMed: 15588901]
- 91. Senior N. Rectal administration of drugs. Adv Pharm Sci 1974;4:363–435. [PubMed: 4618035]
- 92. Nissan A, Ziv E, Kidron M, Bar-On H, Friedman G, Hyam E, Eldor A. Intestinal absorption of low molecular weight heparin in animals and human subjects. Haemostasis 2000;30(5):225–232. [PubMed: 11251329]
- 93. Ziv E, Eldor A, Kleinman Y, Bar-On H, Kidron M. Bile salts facilitate the absorption of heparin from the intestine. Biochem Pharmacol 1983;32(5):773–776. [PubMed: 6838625]
- 94. Stanzani L, Mascellani G, Corbelli GP, Bianchini P. Rectal absorption of some glycosaminoglycan sulphates and heparin in rats. J Pharm Pharmacol 1981;33(12):783–786. [PubMed: 6121850]
- 95. Miyake M, Nishihata T, Wada N, Takeshima E, Kamada A. Rectal absorption of lysozyme and heparin in rabbits in the presence of non-surfactant adjuvants. Chem Pharm Bull (Tokyo) 1984;32(5):2020– 2025. [PubMed: 6467481]
- 96. Robinson M. Optimizing therapy for inflammatory bowel disease. Am J Gastroenterol 1997;92(12 Suppl):12S–17S. [PubMed: 9395347]
- 97. Cyrkowicz A, Fiala J, Kacalski J, Jackowski P, Bielaszka K, Smida A. Prevention of deep vein thrombosis (DVT) with the low molecular weight heparin (LMWH) and epidural/spinal anesthesia. The efficacy viewpoint. Ginekol Pol 1998;69(11):795–799. [PubMed: 10337069]
- Magee KP, Blanco JD, Graham JM. Massive septic pelvic thrombophlebitis. Obstet Gynecol 1993;82 (4 Pt 2 Suppl):662–664. [PubMed: 8378005]
- Witlin AG, Sibai BM. Postpartum ovarian vein thrombosis after vaginal delivery: a report of 11 cases. Obstet Gynecol 1995;85(5 Pt 1):775–780. [PubMed: 7724112]
- 100. Suman JD. Nasal drug delivery. Expert Opin Biol Ther 2003;3(3):519-523. [PubMed: 12783620]
- 101. Mustafa F, Yang T, Khan MA, Ahsan F. Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J Pharm Sci 2004;93(3):675–683. [PubMed: 14762906]
- 102. Pillion DJ, Ahsan F, Arnold JJ, Balusubramanian BM, Piraner O, Meezan E. Synthetic long-chain alkyl maltosides and alkyl sucrose esters as enhancers of nasal insulin absorption. J Pharm Sci 2002;91(6):1456–1462. [PubMed: 12115845]
- 103. Zeng D, Prosperini G, Russo C, Spicuzza L, Cacciola RR, Di Maria GU, Polosa R. Heparin attenuates symptoms and mast cell degranulation induced by AMP nasal provocation. J Allergy Clin Immunol 2004;114(2):316–320. [PubMed: 15316509]
- 104. Vancheri C, Mastruzzo C, Armato F, Tomaselli V, Magri S, Pistorio MP, LaMicela M, D'Amico L, Crimi N. Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J Allergy Clin Immunol 2001;108(5):703–708. [PubMed: 11692092]
- 105. Uryvaev IV, Iudel'son IB, Sergeev VV. Changes in hemostasis and vagal tonus in healthy individuals and patients with facial neuropathy by micro-dose heparin stimulation of nasal receptors. Vestn Ross Akad Med Nauk 1997;8:22–23. [PubMed: 9340043]
- 106. Arnold J, Ahsan F, Meezan E, Pillion DJ. Nasal administration of low molecular weight heparin. J Pharm Sci 2002;91(7):1707–1714. [PubMed: 12115833]
- 107. Vidgren MT, Kublik H. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev 1998;29(1–2):157–177. [PubMed: 10837586]
- 108. Edwards DA, Dunbar C. Bioengineering of therapeutic aerosols. Annu Rev Biomed Eng 2002;4:93– 107. [PubMed: 12117752]

- 109. Jaques LB, Mahadoo J, Kavanagh LW. Intrapulmonary heparin. A new procedure for anticoagulant therapy. Lancet 1976;2(7996):1157–1161. [PubMed: 62993]
- 110. Berry LR, Klement P, Andrew M, Chan AK. Effect of covalent serpin-heparinoid complexes on plasma thrombin generation on fetal distal lung epithelium. Am J Respir Cell Mol Biol 2003;28(2): 150–158. [PubMed: 12540482]
- 111. Yang T, Mustafa F, Bai S, Ahsan F. Pulmonary delivery of low molecular weight heparins. Pharm Res 2004;21(11):2009–2016. [PubMed: 15587922]
- 112. Seeds EA, Horne AP, Tyrrell DJ, Page CP. The effect of inhaled heparin and related glycosaminoglycans on allergen-induced eosinophil infiltration in guinea-pigs. Pulm Pharmacol 1995;8(2–3):97–105. [PubMed: 8820248]
- 113. Gunther A, Lubke N, Ermert M, Schermuly RT, Weissmann N, Breithecker A, Markart P, Ruppert C, Quanz K, Ermert L, Grimminger F, Seeger W. Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am J Respir Crit Care Med 2003;168(11): 1358–1365. [PubMed: 14644925]
- 114. Qi Y, Zhao G, Liu D, Shriver Z, Sundaram M, Sengupta S, Venkataraman G, Langer R, Sasisekharan R. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci U S A 2004;101(26):9867–9872. [PubMed: 15226520]
- 115. Ahmed T, Abraham WM, D'Brot J. Effects of inhaled heparin on immunologic and nonimmunologic bronchoconstrictor responses in sheep. Am Rev Respir Dis 1992;145(3):566–570. [PubMed: 1546836]
- 116. Patton J. Breathing life into protein drugs. Nat Biotechnol 1998;16(2):141-143. [PubMed: 9487516]
- 117. Wang QL, Shang XY, Zhang SL, Ji JB, Cheng YN, Meng YJ, Zhu YJ. Effects of inhaled low molecular weight heparin on airway allergic inflammation in aerosol-ovalbumin-sensitized guinea pigs. Jpn J Pharmacol 2000;82(4):326–330. [PubMed: 10875752]
- 118. Bowler SD, Smith SM, Lavercombe PS. Heparin inhibits the immediate response to antigen in the skin and lungs of allergic subjects. Am Rev Respir Dis 1993;147(1):160–163. [PubMed: 8420411]
- Bendstrup KE, Jensen JI. Inhaled heparin is effective in exacerbations of asthma. Respir Med 2000;94(2):174–175. [PubMed: 10714425]
- 120. Sznitowska M, Janicki S. Percutaneous absorption of heparin: a critical review of experimental results. PolMerkuriusz Lek 2000;7(43):58–63.
- 121. Zesch A, Schaefer H. Penetration, permeation and resorption of heparin. In vivo studies on human skin. Arzneimittelforschung 1976;26(7):1365–1368. [PubMed: 1036927]
- 122. Fu K, Izquierdo R, Vandevender D, Warpeha RL, Wolf H, Fareed J. Topical application of low molecular weight heparin in a rabbit traumatic anastomosis model. Thromb Res 1997;86(5):355– 361. [PubMed: 9211626]
- 123. Katzenschlager R, Ugurluoglu A, Hirsch M. Liposomal heparin-spraygel in comparison with subcutaneous low molecular weight heparin in patients with superficial venous thrombosis. A randomized, controlled, open multicentre study. J Kardiol 2003;10(9):375–378.
- 124. Betz G, Nowbakht P, Imboden R, Imanidis G. Heparin penetration into and permeation through human skin from aqueous and liposomal formulations in vitro. Int J Pharm 2001;228(1–2):147– 159. [PubMed: 11576777]
- 125. Mitragotri S, Kost J. Transdermal delivery of heparin and low-molecular weight heparin using lowfrequency ultrasound. Pharm Res 2001;18(8):1151–1156. [PubMed: 11587487]
- 126. Le L, Kost J, Mitragotri S. Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 2000;17(9):1151–1154. [PubMed: 11087051]
- 127. Prausnitz MR, Edelman ER, Gimm JA, Langer R, Weaver JC. Transdermal delivery of heparin by skin electroporation. Biotechnology (N Y) 1995;13(11):1205–1209. [PubMed: 9636293]
- 128. Vanbever R, Prausnitz MR, Preat V. Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharm Res 1997;14(5):638–644. [PubMed: 9165536]
- 129. Weaver JC, Vanbever R, Vaughan TE, Prausnitz MR. Heparin alters transdermal transport associated with electroporation. Biochem Biophys Res Commun 1997;234(3):637–640. [PubMed: 9175766]
- 130. Mitchel JF, Azrin MA, Fram DB, Bow LM, McKay RG. Localized delivery of heparin to angioplasty sites with iontophoresis. Catheter Cardiovasc Diagn 1997;41(3):315–323.

- 131. Hollingsworth SJ, Hoque K, Linnard D, Corry DG, Barker SG. Delivery of low molecular weight heparin for prophylaxis against deep vein thrombosis using a novel, needle-less injection device (J-Tip). Ann R Coll Surg Engl 2000;82(6):428–431. [PubMed: 11103165]
- 132. McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 2003;100(24):13755–13760. [PubMed: 14623977]
- 133. Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 2005;4(3):255–260. [PubMed: 15738980]
- 134. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host–bacterial mutualism in the human intestine. Science 2005;307(5717):1915–1920. [PubMed: 15790844]
- 135. Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004;304(5668):242–248. [PubMed: 15073367]
- 136. Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases. Trends Microbiol 2006;14(3):141–147. [PubMed: 16460941]
- 137. Peppas NA, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev 2004;56(11):1675–1687. [PubMed: 15350296]
- 138. Sulchek TA, Friddle RW, Langry K, Lau EY, Albrecht H, Ratto TV, DeNardo SJ, Colvin ME, Noy A. Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. Proc Natl Acad Sci U S A 2005;102(46):16638–16643. [PubMed: 16269547]
- 139. Farokhzad OC, Khademhosseini A, Jon S, Hermmann A, Cheng J, Chin C, Kiselyuk A, Teply B, Eng G, Langer R. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem 2005;77(17):5453–5459. [PubMed: 16131052]
- 140. Saad OM, Leary JA. Delineating mechanisms of dissociation for isomeric heparin disaccharides using isotope labeling and ion trap tandem mass spectrometry. J Am Soc Mass Spectrom 2004;15 (9):1274–1286. [PubMed: 15337508]
- 141. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45(12):2615–2623. [PubMed: 12036371]
- 142. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1–3):3–26. [PubMed: 11259830]
- 143. Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci U S A 2005;102(13):4688–4693. [PubMed: 15774584]
- 144. Schanker LS, Burton JA. Absorption of heparin and cyanocobalamin from the rat lung. Proc Soc Exp Biol Med 1976;152(3):377–380. [PubMed: 948486]
- 145. Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993;329(2):90–95. [PubMed: 8510708]
- 146. Bendstrup KE, Gram J, Jensen JI. Effect of inhaled heparin on lung function and coagulation in healthy volunteers. Eur Respir J 2002;19(4):606–610. [PubMed: 11998987]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

 Table 1

 Examples of parenteral formulations of heparins and derivatives approved by US Food and Drug Administration

Approval date (dosage strength)	Type of heparin (proprietary name)	Developer/marketer	Delivery method
January 30/93 (10,000 IU/mL) March 29/93 (30 mg/0,3 mL) July 14/00 (20,000 IU/mL) Prior January 1/82 (1000; 10,000; 20,000 U/mL) July 20/92 (10,000 U in dextrose 5% in 100 mL) Prior January 1/82 (1000; 5000, 10,000 U/mL) February 28/95 (10; 100 U/mL) January 1/82 (1000; 5000; 10,000 U/mL) October 10/95 (1000 U/mL) Dec 7/01 (2.5 mg/0.5 mL)	LMWH: dalteparin (Fragmin) LMWH: enoxaparin (Lovenox) LMWH: tinzaparin (Lovenox) UFH: heparin sodium UFH: heparin sodium UFH: heparin sodium UFH: heparin sodium UFH: heparin sodium UFH: heparin sodium DFH: heparin sodium UFH: heparin sodium	Pfizer Aventis Aventis Pharmion Am. Pharm Partners B. Braun Baxter Health Care Hospira Pharmacia and Upjohn Marsam Pharms LLC Glaxo Smith Kline	Injection Injection Injection Injection Injection Heparin Injection Injection

LMWH=low molecular weight heparin and UFH=unfractionated heparin.

Examples of clinical trials on oral absorption of heparins

Type of heparin	Drug delivery system	Mechanism of action	Results	Ref.
UFH	Piece of bread (7 g)	Effect on lipid metabolism	Slight increase in aPTT, marked decrease in triglyceride, slight	[61]
UFH	In 0.9% saline	Binding to cytokine and potent immune	decrease in choicesteriol, truth and truth. Clinical improvement of rheumatoid arthritis	[62]
LMWH	Buffer pH 4.0 and 7.0	modulatory action NA	No detectable plasma activity after oral administration of either	[60]
LMWH	NA	Anticoagulant and antithrombotic	LM WH delivery system Treatment of corticosteroid-resistant ulcerative colitis in	[63]
UFH	SNAC in 10/15 mL syrup	properties Mediation of passive absorption of non-	combination with suitastiazine Oral heparin/SNAC can be safely delivered to the postoperative	[65]
UFH	Liquid in 200 mL of water	covatent comptex Diffusion? Not yet elucidated	1rrA patient Plasma anti-Xa activity increased as soon as 5 min after drug administration, peaked at 120 min, and was still increased 72 h after administration	[64]

Motlekar and Youan

bioavailability.

Examples of in vivo studies on rectal absorption of heparins

Animal model	Type of heparin	Drug delivery system	Mechanism of action	Results	Ref.
Rat	UFH	Oil+sodium laurylsarcosinate (1–3 mg/kg)	Penetration enhancing effect of surfactant	Dose-dependent effects and kinetics comparable to those of IM administration. F	[94]
Rodent Primates	[35S]heparin	Sodium cholate (Sch) or sodium deoxycholate (DOC)	Penetration enhancing effect of Sch. Abd DOC	Improved by 20x at teast Absorption through the rectal mucosa with DOC only. Partial thromboplastin time (PTT) was less remetive test of hencein absorption than the	[93]
Rat Human	LMWH (Fragmin)	Microenema Sch (10-20 mg/mL)	Penetration enhancing effect of surfactant	plasma lipase activity Sch facilitates absorption of LMWH	[92]
LMWH=low molec	cular weight heparin and UFH=	=unfractionated heparin.			

7
\leq
=
Т.
Τ.
T T -
<u></u>
$\mathbf{\Sigma}$
-
7
a
_
5
0
_
-
\leq
01
L L
—
2
1
0)
0
÷
0
_

Examples of in vivo studies on nasal absorption of heparins

Animal model	Type of heparin	Drug delivery system	Mechanism of action	Results	Ref.
Rat	Enoxaparin, dalteparin, UFH	0.25% Tetradecylmaltoside (TDM) solution	Increased nasal permeability	Increased bioavailability of LMWH from ~4% in the absence of TDM to ~19% in the presence of TDM but not	[106]
Human	UFH	Solution vapor	Anticoagulant action and vagal activation	Prolonged onset and completion of blood clotting and decreased heart rate	[105]
Human	UFH	Nebula nebulizer	Possible neutralization of eosinophil cationic protein and reduction of	Protection with respect to nasal allergen challenge	[104]
Human	UFH	Nebulizer connected to a nasal adaptor	eosinophil recruitment Protective role against AMP provocation by inhibition of mast cell activation	Significant attenuation of the release of histamine and tryptase induced by AMP challenge	[103]

Motlekar and Youan

UFH=unfractionated heparin and AMP=2-amino-2-methyl-1-propanol or β -aminoisobutyl alcohol.

NIH-PA Author I	Table 5	
or Manus		parins
ĝ		hel

Examples of in vivo studies on pulmonary absorption of heparins

Animal model	Type of heparin	Drug delivery system	Mechanism of action	Results	Ref.
Newborn rat	UFH	Serpin-heparinoid complex	Effect on free thrombin generation	Inhibitors of thrombin generation on fetal distal lung epithelium superior to the corresponding non-covalent mixtures	[110]
Rat	Enoxaparin, dalteparin, UFH	Tetradecyl-beta- maltoside (dimethyl-beta- cvclodextrin	Increased drug transport by both agent acting mainly on cell membrane	Enhanced pulmonary absorption of LMWH	[111]
Rat	UFH	Krebs-Ringer phosphate solution	Simple diffusion	50% absorption occurred in 9.2 h. No saturation of absorption when conc. was raised to 1000×	[144]
Guinea pigs	UFH= multiparin, LMWH=Fragmin	Chlorocresol+in nebula nebulizer	Anti-inflammatory properties	Significant inhibition of allergen- induced eosinophil infiltration when administered directly to the airways	[112]
Guinea pigs	ИҒН, ԼМѠН	Ultrasonic nebulizer	Possible inhibition of inflammatory cells and reduction of inflammatory mediator release	Anti-airway anti-allérgic inflammatory activity	[117]
Rabbit	UFH	Ultrasonic nebulization+tight fitting mask	Effect on alveolar fibrin generation	Suppression of soluble collagen and hydroxyproline accumulation, and abrogation of histologic features of lung fibrosis	[113]
Rat Rabbit	UFH, LMWH (ardeparin)	Solutions and powder of micro particles in insufflator	Influence on tight junction complex of epithelial cells	Rapid onset of action (t_{ij}) =40 min. Inhibition of thrombosis and emphysema	[114]
Sheep	UFH	Disposable raindrop nebulizer	Blockade of inositol triphosphate receptors in various tissues	No effect on baseline specific lung resistance but attenuated antigen- induced bronchoconstriction in a dose- dependent fashion	[115]
Mice	UFH		Anticoagulant properties	No evidence of acute or long-term toxicity in lung or other tissues. Duration of response increased with dosage	[109]
Rat Dog Human		Ultrasonic nebulizer		0	
Human	UFH	Disposable raindrop nebulizer	Non-anticoagulant action more likely related to a modulation of mediator release	Inhaled heparin prevents exercise- induced asthma without affecting histamine-induced bronchoconstriction and aPTT	[145]
Human	UFH	Sidestream jet nebulizers	Anticoagulant	No effect on pulmonary function Dose-dependent increased of anti-Xa activity	[146]

NIH-PA Author	Table 6
Manuscript	

Experimental model	Type of heparin	Drug delivery system	Mechanism of action	Results	Ref.
Human epidermis in vitro	UFH	Short, high-voltage (HV, U~100 V) pulses	Alter ionic and molecular transport	First demonstration of a chemical enhancer effect for transdermal	[129]
Rat skin in vitro	UFH	Electroporation device (voltage across skin ~40	Stabilize skin permeability caused by high voltage pulse	transport by HV pulsing Skin electroporation increased transdermal mannitol up to 5× with	[128]
Rabbit ear in vitro	LMWH (Certoparin), UFH	V=iontophoresis Solution	Local anticoagulant action	macromolecules Topical administration of LMWH prevents the occurrence of	[122]
				unombosis at the traumate anastomosis site to a similar degree	
Pig skin in vitro	³ H-heparin	Sonicator (frequency: 20 kHz), iontophoresis with Ag/AgCl	Formation of transport pathways by Ultrasound+Control of flux by	as neparun Ultrasound under low frequency (20 kHz) with iontophoresis enhances	[126]
Human skin in vivo	LMWH: dalteparin sodium	disc electrode (0.45 mA/cm ⁻) J-Tip® needle-less injection device	electric current Mechanical removal/bypass of the stratum corneum	transdermal transport of heparin LMWH equally effective as the standard needle but was significantly more comfortable. Ease of	[131]
Human cadaver skin in vitro	ИҒН ԼМѠН	Liposome Phospholipon® 80 and sphingomyelin	Penetration enhancer effect	administration Molecular weight (LMWH>UFH) and formulations influenced the penetration. No conclusion of	[124]
Pig skin in vitro	LMWH (dalteparin)	Low frequency ultrasound (20 kHz)	Ultrasound mediated-increased skin permeability	pharmacological effect Sustained anti-factor Xa (aXa) levels in the blood (F=6% in 24 h). SC and IV resulted in temporary elevations of aXa	[125]
Rat skin in vivo Human skin in vivo	UFH UFH	Liposome spraygel (Lipohep® 2400 IU/g)	Antithrombotic and antiphlogistic action	Efficient with compression therapy in the treatment of superficial vein thrombosis	[123]

Motlekar and Youan