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Abstract 

This paper presents the parametric estimation of the rates of technical change and total 

factor productivity (TFP) growth of 7,462 Korean manufacturing firms for the period 

1987 to 2007. Two alternative formulations of technical change measured by the time 

trend and the general index approaches are estimated with panel data models assuming 

flexible functional forms. Several extensions of each approach are also considered and 

their benefits and limitations are discussed. In addition to making estimates of the TFP 

growth and its decomposition, the paper compares the parametric TFP growth measure 

with the non-parametric Solow residual serving as a benchmark. Several hypotheses 

related to technology level, firm sizes, industrial sectors, skill biased technological 

change and macroeconomic and industrial policies are tested to explain the growth 

patterns and heterogeneity in technical change, input biases and TFP growth rates. 

Using second regression analysis, the paper explores the determinants of TFP growth 

and their policy implications.  

Key words: Total factor productivity; technical change; manufacturing industry; 

determinants of growth. 

JEL classification: C23, C51, D24, L25, L60 

                                                 
1
 Corresponding author, e-mail: donghoh@infra.kth.se 

2
 heshmati@snu.ac.kr 

3
 hansl@infra.kth.se 



 3 

1. Introduction 

Dynamic modeling of production functions has long been regarded as one of the 

interesting research topics by theoretical as well as applied researchers. The reason for 

its popularity is that finding appropriate production functions plays an important role in 

analyzing total factor productivity (TFP) growth and its decomposed sources. If a rich 

set of panel data is available, more sophisticated modeling can be conducted, enabling 

applied researchers to provide more reliable and practicable policy implications with 

respect to TFP growth. Considerable effort has been devoted to quantifying the rate of 

TFP growth and its components, and the following four main methodological strands 

have resulted: (a) econometric estimation of cost and production functions, (b) Divisia 

indexes, (c) exact index numbers and (d) nonparametric methods using linear 

programming (Diewert, 1981).  

The econometric approach, which has dominated the applied research in the field of 

industrial economics, often assumes that technical change is generally represented by a 

simple time trend. It has a strong point in that it reveals long-run trends of technical 

change in an appropriate way when examining the behavior of manufacturing industries. 

This strong point comes from the fact that capital equipment, which rarely shows abrupt 

change over time, is the main determinant of long-run technical change and productivity 

growth. However, the use of the time trend model has been criticized for being merely 

the reflection of our ignorance about technical change. This weakness of the time trend 

model is overcome by the seminal work by Baltagi and Griffin (1988), in which the 

time trend is substituted by a general index in order to depict the unknown state of 

technology. The advantages of the general index model over the standard time trend 

model are summarized in Baltagi and Griffin (1988). The main advantage of the general 

index model is that it does not require any assumptions on the behavior of technical 

change.  

We use parametric approaches to measuring TFP growth, technical change, returns to 

scale, biases in technical change and input elasticities of Korean manufacturing 

industries. The aforementioned two main strands of production functions, the time trend 

model (hereafter, TT1 model) and the general index model (hereafter, GI1 model), are 

used as a starting point of our model specifications in capturing the patterns of technical 

change. We also extend the TT1 and GI1 models since the basic models fail to provide 

firm-specific measures of technical change. The failure arises when: (a) the TT1 and 

GI1 models cease to provide firm-specific technical change if technical change is 

neutral, (b) firms confronting the same inputs and output prices yield the same measures 

of TFP growth, technical change, and returns to scale, for instance. In this sense, the 

TT1 and GI1 models play no role in measuring firm-specific TFP growth, technical 

change, returns to scale and biases insofar as one of the above conditions arises. Only 

intercepts are firm-specific with these specifications, which might not be sufficient to 

capture the economically meaningful firm-specific heterogeneity. Hence, it is necessary 

to alleviate the implicitly restrictive assumptions imposed on the conventional basic 

approaches. To consider this alleviation in our dynamic modeling, we allow flexibility 

by using less restrictive patterns in technical change.  



 4 

In order to examine TFP growth and its relevant measures with these alleviated 

assumptions and to provide more economically meaningful concepts inherent in the 

measures, we have extended the two basic models. The first extension of the TT1 model 

incorporates firm-specific technical change, and is labeled as the TT2 model, which 

adopts the Cornwell et al. (1990) model, where the time-varying technical inefficiency 

of the Cornwell et al. (1990) model is interpreted as the firm-specific neutral rate of 

technical change. The second extension of the TT1 model, the TT3 model, removes 

inherited restrictions further, by making all components firm-specific. All the 

interaction terms of time and input factors are set to be firm-specific in the TT3 model. 

The corresponding two extensions of the GI1 models are as follows. The GI2 model 

interprets the time-varying firm-specific technical inefficiency of the Lee and Schmidt 

(1993) model as neutral firm- and time-specific technical change. The GI3 model 

generalizes the GI2 model by allowing both neutral and non-neutral components of 

technical change to be firm- and time-specific. The parametric TFP growth measures 

are also further compared with the non-parametric Solow residuals. The latter serves as 

a benchmark.  

This paper employs the aforementioned six models to investigate the patterns in TFP 

growth of Korean manufacturing industries for the „roller-coaster period‟ of 1987-2007. 

The following are the reasons for choosing the study period. After the Korean War in 

1950, Korea showed a very rapid economic growth due to state-led economic planning 

during the 1960s and 1970s. The manufacturing industries have been chosen to be the 

main engines for developing the economy ever since this period. In the 1980s, right 

after the assassination of General Park Jeong Hee, most of the state-led economic 

planning was challenged. This challenge was regarded as an attempt to remove the old 

regime and to replace it with a new one, although the latter was autocratic from the 

political point of view. High-ranked bureaucrats attempted to transform the economy 

into a freer market system with export-driven and conglomerate-friendly policies (Lee, 

2002).  

The Korean economy continued to grow until 1997, and reached per capita GDP of 

$10,000 in that year. However, the economy encountered the Monetary Crisis in 

November 1997. Macroeconomic statistics show that the economy was affected 

severely by the Crisis. GDP decreased by 6.7 percent in 1998 and fixed investment 

contracted by almost 40 percent. Average monthly bankruptcies surpassed 3,000 in 

1998. However, the economy recovered shortly after, and the government declared that 

the Crisis was formally ended in 2001. Despite this quick recovery from the 1997 crisis, 

another Crisis in 2003, the Credit Crunch Crisis, emerged and was overcome shortly 

after in the same year. The Credit Crunch Crisis was somewhat different from the 

Monetary Crisis in that the former was initiated by the high debts of households while 

the latter was initiated by the poor capital structure of enterprises. 

Unlike previous studies, many of which employ macroeconomic tools to investigate the 

„roller-coaster period‟, we examine this period from the microeconomic perspective. 

This attempt was justified for the following reasons. The microeconomic investigation, 

as a substitute of the macroeconomic approach, is likely to yield unexplored information 

about the crises. The rationale of this counterpart study is that the total sum of the 

behavior of micro agents is not necessarily the same as the aggregate macroeconomic 

output (Dopfer et al., 2004). We employ the aforementioned six econometric models in 
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investigating firm-level TFP growth and its component during the roller-coaster period. 

We also use a large number of observations to guarantee robust and informative 

empirical investigation results.  

The number of unique firms in our sample is 7,462 and the total number of observations 

is 60,868. A comparison is made of the measures of TFP growth and rate of technical 

change in the manufacturing industry. We also compare the scale properties of the 

industry regarding input elasticities, returns to scale, and input and scale biases 

calculated from the competing models. The determinants of TFP growth and their 

impacts are also investigated.  

The rest of the paper is organized as follows. Data on the Korean manufacturing 

industry is presented in Section 2. Section 3 provides the theoretical framework of 

modeling TFP growth, technical change, input elasticities, returns to scale, and input 

and scale biases. Section 4 discusses the model specifications, estimation methods, 

specification tests and empirical results. Finally, Section 5 briefly concludes this paper.  

2. Data 

The data used in this study covers the period 1987-2007. The administrative data has 

been retrieved from the Korea Information Service (KIS-VALUE). The initial data set 

consists of 180,159 observations on 8,579 audited manufacturing firms in Korea.. 

Observations containing missing values in both the fixed assets and the value added 

have been removed. Then, missing values in fixed assets, value-added and number of 

employees were imputed by employing the bootstrapping imputation approach 

suggested by Little and An (2004).  

Three variables are used in the empirical examination of the production function and 

computation of TFP growth. The value-added of each firm is used as a measure of 

output (Y ).
i
 Capital stock and labor (K and L) are used as input variables. Fixed assets 

are used as a proxy for capital stock following Fu et al. (2008). We use the number of 

workers as a measure of labor input. Value-added and capital are deflated by using the 

consumer price index with 2000 as a base year. All the variables are transformed to 

logarithmic form before estimating the production function.  

All the firms are grouped according to their size and technology levels to investigate 

their productivity growth according to these firm characteristics. Firms are categorized 

into four size classes based on the number of employees: fewer than 10, 10 to 50, 50 to 

300, and over 300 employees. The criteria for the technology levels are obtained from 

the OECD (2003). Every firm is categorized into one of four technology levels: high 

tech, high-medium tech, medium-low tech and low tech groups. 
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Table 1. Descriptive statistics of key variables used in this study 

 Mean  StdDev  Median  Maximum  Minimum   

Value added (billion KRW) 19,999.6  158,130.2  4,158.9  13,575,657.1  0.4   

Capital stock (billion KRW) 51,768.1  419,084.9  6,502.8  23,510,943.3  3.0   

Number of employees  316.8  1,471.0  98.0  59,019.0  1.0   

 

Table 1 provides summary statistics including the means, medians and standard 

deviations for the input and output variables used in this study. The fact that all the 

variables have mean values larger than the median indicates that the distributions of all 

the variables are skewed to the right. This means that a large number of firms have 

operated with small inputs and small output levels, and relatively few firms have 

operated with large inputs and output levels. The skewness of value added, capital and 

labor variables are 42.0, 27.6 and 21.6, respectively.  

 

 

Figure 1. Development of average values of inputs and output. 

Figure 1 shows the development of the mean values of value added, capital and 

employees over time. The value added increased on the whole during 1987-1995, 

whereas it shows a decreasing trend afterwards. The decreasing trend in average value 

added from 1995 indicates that the value added had started to decrease two years before 

the Monetary Crisis. A huge drop in the average value added can also be found for 2003. 

As already discussed, the economy suffered from the Credit Crunch Crisis in this year, 

as a result of which the affordability of consumers shrank substantially. The average 

number of employees constantly decreased during the study period. It is also shown that 

the average number of employees and capital dramatically decreased from 1995, 

indicating that the input factor market had already been affected two years before the 
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Monetary Crisis. In 2003, a huge drop of input factors may be noted. In summary, 

markets for output and inputs had already been affected two years before the Monetary 

Crisis, whereas all the inputs and output were affected by the Credit Crunch Crisis at the 

same time as the crisis emerged. From these trends, one would expect a rather large 

fluctuation in the TFP growth of the Korean manufacturing industries, in particular 

during the two crises.  

Table 2. Descriptive statistics of inputs and output by size and technology level of firms 

  Y (Bil. KRW)   K (Bil. KRW)   L   Number 
of obs. 

Percent  
(%) 

Cum. Perc.  
(%) 

  Mean S.D.   Mean S.D.   Mean S.D.   

By size  

  micro  608.1  951.3   1746.6  3959.2   6.5  1.9   709 1.2 1.2 

  small  1847.8  6428.3   3354.6  4498.9   31.4  11.0   15357 25.2 26.4 

  medium  6441.7  6804.1   12249.2  18602.1   131.4  67.8   34148 56.1 82.5 

  large  90910.1  369518.0   251547.0  976670.8   1343.0  3325.9   10654 17.5 100 

By technology level  

  High tech  31054.5  347406.3   69194.1  764582.0   435.5  2554.8   7245 11.9 11.9 

  High-medium 

tech  

16401.1  99671.6   40201.7  288035.3   277.4  1398.4   26139 42.9 54.8 

  Medium-low 

tech  

22097.6  147556.9   67528.5  493035.6   280.4  1256.2   16807 27.6 82.4 

 Low tech 18005.3  44117.0    43451.2  133776.5    390.1  784.4    10677 17.5 100 

 

Table 2 presents the descriptive statistics of the key characteristics of firms, i.e., the size 

and technology levels of firms. Value added, capital and labor are increased as firm size 

increases. For all the three variables, large discrepancies can be found between large 

and small firms. For example, the average value added of large firms is at least fifteen 

times larger than those of micro firms. The capital stock and labor of large firms are 

also larger than those of smaller firms. Although around 80% of our sample firms are 

categorized as small and medium firms, their output and employment shares are only 

around 20.4% and 14.9% of the total, respectively. As for the mean value of the 

variables by technology levels, although the number of firms in the high-technology 

level is smaller than in the other technology levels, the average output of the 

high-technology manufacturing sector is larger than that of the medium- and 

low-technology manufacturing sectors. The average input factors of firms in the high 

tech sector are on the whole larger than those in the other technology levels.  

3. Models 

3.1. Productivity and technical change 

We assume that the firms‟ production function is best described as the following 

relationship between output, inputs and technology:  
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(1) ( )Y f X t    

where Y  is a scalar output, X  is a vector of inputs ( 1 )j J   , and t  is the time 

trend variable representing technology. Taking total differential of equation (1) gives us 

the following equation:  

(2) 
j j t t

j jj

j

f X f f
Y X X

Y Y Y
    ,  

where the “dot” over a variable represents its growth rate. In equation (2) 
jf  is the 

marginal product of the thj  input, and 
j  is the corresponding input elasticity.  

We assume that the firms minimize cost and the input markets are competitive. Then, 

the relationship in equation (2) can be rewritten as:  

(3) ( 1)t
j jj j

j j

f
Y S RTS SX X

Y
     ,  

where 
jS  is the cost share of thj  input, and jj

RTS   denotes the returns to 

scale. The left-hand side of equation (3) is referred to as the Divisia index of TFP, 

expressed as:  

(4) DIV jj

j

Y STFP X    

If price data is available to obtain the input cost shares, the above TFP growth measure 

can be calculated without an econometric estimation. Otherwise, econometric 

estimation of a production function is necessary. The main advantage of using a 

parametric approach over the non-parametric approach of the Divisia index is that, by 

avoiding the assumption of constant returns to scale, one can decompose TFP growth 

into technical change ( )tf Y  and scale (( 1) )jjj
RTS S X   components as indicated 

in equation (3), but at the cost of assuming a functional form for the input and output 

relationships.   

3.2. Time Trend (TT) and General Index (GI) Models 

In estimating our models, the following production model with panel data is assumed:  

(5) 0it it ity u   x ,  

where ity  is the log output of the producer i  ( 1 )i N    at time t  ( 1 )t T   , 

itx  is the corresponding vector of J  inputs and   is a 1J   vector of unknown 

parameters to be estimated. In this study the composed error term, itu , is specified as:  
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(6) it i t itu v      

where i , t  and itv  represent firm-specific effects, time-specific effects and 

statistical noise, respectively. Random effects, which cannot be controlled for by the 

producers, are captured by the error term, itv , such as advantages or disadvantages in 

the location of the firm, access to labor, measurement errors in the dependent variables 

and left-out explanatory variables. We assume that this random error term is 

independently and identically normally distributed with zero mean and constant 

variance, 2

v . The firm-specific effect, i  is a factor representing producer efficiency, 

and the time-specific effect, t , is a factor representing the exogenous rate of technical 

change (Heshmati, 2002). In order to avoid over-parameterization of the model the 

firm-specific effects, i , are replaced by industry-specific effects, d . Also, we 

assume a translog form of the production since it provides a good second-order 

approximation to a broad class of functions (Kneller and Andrew Stevens, 2003).  

In the time trend model, the trend variable, t , is used as a regressor along with the 

input factor variables, x . The time-specific effect is specified as a linear function of a 

time trend. The basic time trend (TT1) model is written as:  

(7) 
2

0

1 1

2 2
it t tt j jit jk jit kit jt jit d it

j j k j

y t t x x x x t v                ,  

where t  is a single time trend representing the exogenous rate of technical change. The 

d  is fixed industry-specific effects to be estimated. The TT1 model is assumed to 

satisfy the symmetry and convexity conditions.  

In the general index model (GI1) of Baltagi and Griffin (1988), the trend variable t  is 

replaced by ( )A t , where ( ) ( 1 )A t t T    are parameters to be estimated. The 

corresponding production function with the general index representation of technical 

change is given by  

(8) 0

1
( ) ( )

2
it j jit jk jit kit jt jit d it

j j k j

y x A t x x x A t v             ,  

where the time trend and its square terms are replaced by 1T   fixed time-specific 

( )A t effects. The GI1 model is also assumed to satisfy the symmetry and convexity 

conditions.  

Since technical change is defined as the log derivative of output with respect to time, 

( )y t  , the rate of technical change (TC) in the TT1 model is given by:  

(9) TT1TC t tt jt j

j

t x        

And the corresponding rate in the GI1 model is given by:  
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(10) GI1 { ( ) ( 1)} 1TC jt j

j

A t A t x
 

     
 

   

The TC expressed in equation (9) and (10) can be decomposed into components 

associated with pure time (neutral) effect and input variables (non-neutral) effects. 

These components in the TT1 model are t ttt  , and jt jj
x , respectively. In the 

GI model these components are { ( ) ( 1)}A t A t   and { ( ) ( 1)} jt jj
A t A t x   , 

respectively. It is worth noting that there are some problems inherent in the nature of 

technical change in the TT1 model. First, the rate of technical change either increases 

( 0)tt   or decreases ( 0)tt   linearly as a function of time. Second, with 

unbalanced panel data, it is not clear whether the trend variable, t , for a firm entering 

in period   (1 )T   should start from   or from 1. Third, in cases when the time 

span is relatively short or very long, a time trend model might not represent the 

exogenous technical change appropriately. Those problems are avoided in the GI1 

model by estimating one parameter for each time period in ( )A t .  

Technical change can be biased towards a particular input. For an input j, bias ( )jB  in 

technical change is measured from j jB S t   , where Sj is the output elasticity of 

input j. A positive (negative) value of 
jB  implies that technical change is relatively 

thj  input using (saving). Zero value of jB  indicates that technical change is not 

biased towards any particular input, i.e., technical change is neutral (Kumbhakar and 

Hjalmarsson, 1993). In the TT1 model, TT1 j jtB    which is a constant, and its sign is 

simply determined by the sign of 
jt . Hence, input bias in technical change derived 

from the TT1 model is firm- and time-invariant. In the GI1 model, however, input bias 

varies over time since GI1 [ ( ) ( 1)]j jtB A t A t    .  

Like the input bias, scale bias in technical change can also be derived from 

SB RTS t   , where jj
RTS  . In the TT1 model, the scale bias is given by 

1TT jtj
SB  . Similarly, in the GI1 model, the scale bias is given by 

1 [ ( ) ( 1)]GI jtj
SB A t A t     . The scale bias in the TT1 model is firm- and 

time-invariant, while in the GI1 model it is time-varying.  

By using equations (3) and (9), TFP growth in the TT1 model is calculated as follows:  

(11) TT1 TT1 TT1( 1)TC RTSTFP jj

j

x      

where 
j j j jk k jtk

y x x t         , and jj
RTS  . If RTS  is greater than 

(equal to or less than) one, then there are increasing (constant or decreasing) returns to 

scale. Similarly, TFP growth in the GI1 model is as follows:  
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(12) GI1 GI1 GI1( 1)TC RTSTFP jj

j

x      

where ( )j j j jk k jtk
y x x A t         , and jj

RTS  .  

In the above two TFP growth measures, the difference between TFP growth and 

technical change is entirely attributed to RTS . If the production technology exhibits 

constant returns to scale, then TFP growth is identical to the rate of technical change.  

3.3. Extensions of Time Trend Model 

Although technical change in the TT1 model ( TT1TC ) can be firm- and time-specific 

because input variables vary across firms, technical change is not firm-specific when the 

components related to input variables are all zero. This restrictive feature can be 

removed by extending the TT1 model in a much more flexible manner. For this study 

we use the model proposed by Cornwell et al. (1990) for these extensions. Using their 

model, but changing the context from technical efficiency to technical change, the TT2 

model is specified as:  

(13) 
1

2
it dt j jit jk jit kit jt jit it

j j k j

y x x x x t v             

where dt  are industry- and time-specific intercepts. By replacing dt  with a 

parametric function of time, the TT2 model considers the industry-specific effect in 

technical change. The model for the intercept ( dt ) given in this study is specified as 

follows:  

(14) 
2

1 2 31 2dt d d dt t          

where 1d , 2d  and 3d  are unknown parameters to be estimated. Hence, dt  is a 

quadratic function of time, varying across industries. The temporal pattern of dt  is 

flexible, and no further assumption is required. The rate of technical change in the TT2 

model is thus expressed as follows:  

(15) TT2 2 3TC d d jt j

j

t x        

Thus, 2TTTC  is industry-specific, and it changes over time even when all input 

variables are zero. The pure component of technical change 2 3d d t   is 

industry-specific. Industry-specific effects are not incorporated in the non-neutral 

technical change component, jt jj
x . In other words, the restriction imposed in this 

specification incorporates the temporal pattern across industries only with the pure 

technical change. The TFP growth of the TT2 model is as follows:  
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(16) TT2 TT2 TT2( 1)TC RTSTFP jj

j

x     

where TT2RTS  and 
j  are returns to scale and elasticity of thj  input, respectively.  

Although the TT2 model is successful in making the pure component of technical 

change industry-specific, non-neutral technical change is still restrictive like the TT1 

model. Now we consider another extension of the TT2 model, the TT3 model, which 

allows for estimation of industry-specific non-neutral rate of technical change. The 

production function of the TT3 model is as follows:  

(17) 
1

2
it dt j jit jk jit kit jd jit it

j j k j

y x x x x t v             

where dt  is the same as in the TT2 model, and 
jd  ( 1 )j J    are 

industry-specific unknown parameters to be estimated.  

The rate of technical change obtained from the most general time trend model, TT3 

model, is given by:  

(18) TT3 2 3TC d d jd j

j

t x        

TFP growth of the TT3 model is the same as in equation (16) except that the subscript 

TT2 is replaced with TT3.  

It should be noted that input bias and scale bias in the TT2 model are the same as in the 

TT1 model, but in the TT3 model they are industry-specific. For input j , 
TT3 j jdB    

and its sign is simply determined by the sign of jd . Scale bias is expressed as 

3TT jdj
SB  .  

3.4. Extensions of General Index Model 

Under the specification of the GI1 model an implicit restriction is imposed on the 

temporal pattern of technical change across industries. This means that technical change 

varies over time, but it is the same across industries if components related with the input 

variables are all zero. This undesirable feature of invariant technical change across 

industries can be removed in such a way that the rate of technical change is industry- , 

time- and firm-specific. In this study we eliminate the restriction in two ways. In the 

first extended model, the GI2 model, by using Lee and Schmidt (1993) we make pure 

technical change industry-specific by specifying the production function as follows:  

(19) 
1

( ) ( )
2

it d j jit jk jit kit jt jit j

j j k j

y A t x x x x B t           
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where d  are industry-specific parameters. In equation (19) d , ( )A t  and ( )jB t  are 

unknown technology parameters to be estimated. Thus, the rate of technical change in 

the GI2 model is expressed as:  

(20) GI2 [ ( ) ( 1)] [ ( ) ( 1)]TC d jt j j j

j

A t A t x B t B t          

In equation (20), the industry specific effect is inherited in the pure component of 

technical change, [ ( ) ( 1)]d A t A t   . The non-neutral component of technical change is 

[ ( ) ( 1)]jt j j jj
x B t B t   . Note that industry-specific effects are not incorporated in 

the non-neutral component of technical change of the GI2 model. Also note that, unlike 

the extensions of time trend models, no functional form of technical change is assumed 

here. This is useful when the time span of panel data is narrow.  

The GI2 model can be further extended when every ( )A t  in equation (8) is replaced by 

industry-specific general indexes. The production function in the GI3 model is 

expressed as  

(21) 
1

( ) ( )
2

it d j jit jk jit kit jit jd j

j j k j

y A t x x x x B t            

where 
jd  are unknown parameters to be estimated. The rate of technical change in the 

GI3 model is written as:  

(22) GI3 [ ( ) ( 1)] [ ( ) ( 1)]TC d j jd j j

j

A t A t x B t B t          

The GI3 model is much more flexible than the GI1 or GI2 models in that the 

industry-specific effects of the pure and non-neutral component of technical change are 

inherent in both.  

Input bias and scale bias in the GI2 model are the same as those in the GI1 model. In the 

GI3 model, however, input bias and scale bias are both industry- and time-specific. 

These measures are expressed as:  

(23) 

TT3

TT3

[ ( ) ( 1)]

[ ( ) ( 1)]

j jd j j

jd j j

j

B B t B t

BS B t B t





   

   
  

 

3.5. Non-parametric Approach 

This subsection provides a traditional measure of the TFP growth rate by the Solow 

residual approach. We begin with the following production function  
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(24) ( )it it it itY A F K L     

where itY , itK  and itL  represent value added, capital stock and labor employment of 

firm i  in period t . itA  is a Hicks neutral technology index, which allows for shifts of 

the production function over time. By totally differentiating equation (24) and dividing 

it by Y , the following growth equation is obtained:  

(25) 
k lY Y K K L L A A           

where k  and l  represent elasticities of output with respect to capital and labor, 

respectively. By assuming constant returns to scale, l  can be replaced with 1 k . 

Then, equation (25) can be expressed as follows:  

(26) (1 )k kSR Y Y L L K K           

where the Solow residual SR  is equivalent to the estimate of TFP ( )A A . Following 

the tradition in the literature, we specify the production function, ( )F  , as the 

Cobb-Douglas functional form.  

4. Empirical results 

4.1. Estimation Methods 

In panel data literature, estimation of error component models has been developed in 

two main directions, the fixed effects (FE) and the random effects (RE) models. FE 

models assume that i  and t  are fixed and correlated with the explanatory variables, 

and RE models assume that i  and t  are random and not correlated with the 

explanatory variables. The choice between the FE and RE models affects various 

properties such as the efficiency, unbiasedness and consistency of estimated parameters. 

Hence, it is essential to choose the appropriate model to properly describe the nature of 

a data set. Here, we set up the following step for choosing the appropriate model: (i) in 

the TT1 and GI1 models, the firm-specific intercepts, i , are substituted by the 

industry-specific intercepts, d , (ii) the least-squares dummy variables (LSDV) method 

and the maximum likelihood estimation (MLE) method are employed to estimate the 

two models with FE and RE, respectively, (iii) the Hausman test is applied to choose the 

appropriate estimation method of the two alternative models, (iv) the chosen estimation 

method is assumed to be applicable to the extended models, (v) industry-specific 

intercepts, d , are included in the six model specifications instead of firm-specific 

intercepts. The assumption in (v) is necessarily imposed due to two reasons associated 

with the large data set: first, in terms of interpretation, it is not meaningful to observe 

fixed effects of individual firms because well-specified industry groups or firm sizes are 

a better target for the analysis; second, it is a quite time-consuming and challenging task 

for the specification and estimation if firm-specific intercepts are incorporated in 
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nonlinear models such as the GI2 and GI3 models.  

The results of the Hausman test signify that the FE model describes the nature of our 

data set better than the RE model. Hence, we use the FE model when estimating the six 

model specifications. The TT1, TT2, TT3 and GI1 models are linear and estimated 

using the LSDV method, while the GI2 and GI3 models are nonlinear and estimated by 

the MLE method. For each model, we assume that 2(0 )it vv i i dN     and itv  are 

independent of the explanatory variables. To capture the industry-specific features of 

TFP growth and technical change, 21 industry dummy variables are used following the 

industry classification rule of the OECD (2003).  

4.2. Specification Test and Model Selection 

The six model specifications (TT1, TT2, TT3, GI1, GI2 and GI3) outlined above are 

used to estimate the TFP growth and its decomposed components of Korean 

manufacturing firms for the period 1987-2007. In all the models the null hypothesis of 

constant returns to scale is rejected in favor of variable returns to scale at the 1% level 

of significance. The fit of the 2R  values is quite high, 0.83, in all the models. The 

estimates of the parameters of the models are omitted in this paper to save space.  

Although different assumptions on the behavior of technical change are inherent in each 

of the six models, it is essential to take into consideration the models that are 

appropriate for describing our data set. The obstacle to choosing the appropriate models 

is that our six models are not nested in a single super model. The TT1 model is nested in 

the TT2 and TT3, and the TT2 model is nested in the TT3. However, the GI1 model is 

not nested in the GI2 or GI3 models, but the GI2 model is nested in the GI3 model. 

Furthermore, the TT models are not nested in the GI models, and vice versa. We use the 

J test to choose the appropriate models among the non-nested models. For the nested 

models, the log-likelihood ratio test (LR test) is used to select appropriate models.  

We report the best of the TT models, followed by the model selection among the GI 

models. We perform a LR test on the TT1 model against the TT2 and TT3 models. The 

LR test on these nested hypotheses (TT1 vs. TT2 and TT1 vs. TT3) rejects the TT1 

model at the 1% level of significance. The result of the LR test on the TT2 and TT3 

models also rejects the TT2 model in favor of the TT3 model. Thus, the test results give 

us conclusive evidence that the TT3 model is the best of the models with time trend 

model specifications.  

The J test on the GI1 and the GI2 models shows that the GI1 model is not preferred to 

the GI2 model at the 1% level of significance. The J test result between the GI1 and the 

GI3 models shows that GI1 model is not preferred to the GI3 model at the 5% level of 

significance. The LR test between the nested GI2 and the GI3 models shows that the 

GI3 model is chosen at the 1% level of significance. Hence, the model specification 

tests on the GI models indicate that the GI3 model is the most appropriate model.  

We test the preferred TT model, TT3, against the preferred GI model, GI3. The J test on 

this model selection procedure is inconclusive. When discussing the TFP growth rate 

and its components, the results for both the TT3 and GI3 models are reported. The 
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results for the TT1, TT2, GI1 and GI2 models can be obtained from the authors upon 

request.  

4.3. Input Elasticities and Returns to Scale 

The elasticities of output with respect to capital and labor inputs, 
j , are calculated 

from ,  ,j jy x j l k      . The returns to scale (RTS) are calculated from the sum of 

the input elasticities. These input elasticities and returns to scale vary across firms and 

over time.  

Table 3. Mean elasticity and returns to scale based on TT3 and GI3 models 

 TT3  GI3 

 Capital Labor RTS  Capital Labor RTS 

Mean by size                

  Micro  0.314 0.627 0.941  0.318 0.610 0.927 

  Small  0.321 0.656 0.976  0.322 0.646 0.968 

  Medium  0.344 0.661 1.004  0.336 0.658 0.993 

  Large  0.382 0.657 1.039  0.373 0.662 1.035 

Mean by technology level         

   High tech  0.337 0.693 1.025  0.319 0.664 0.983 

   High-medium tech  0.337 0.682 1.019  0.336 0.658 0.994 

   Medium-low tech  0.348 0.644 0.993  0.346 0.651 0.997 

   Low tech  0.361 0.602 0.963  0.347 0.647 0.994 

Sample mean  0.344 0.659 1.003  0.339 0.655 0.993 

Sample StdDev  0.062 0.081 0.050   0.056 0.060 0.039 

 

Table 3 presents the average elasticities with respect to firms‟ size and technology 

levels. The last two rows provide the overall sample mean and standard errors of input 

elasticities and RTS. The hypotheses of zero input elasticities are rejected for both 

inputs in each of the two models since the t-statistics based on the estimated elasticities 

and their standard errors are larger than 2. The overall mean elasticities of output with 

respect to capital and labor slightly differ between the TT3 and GI3 models, but are of 

reasonable size. The capital elasticities of the TT3 and GI3 models are 0.344 and 0.339, 

respectively. The labor elasticities of the TT3 and GI3 models are 0.659 and 0.655, 

respectively. The fact that the labor elasticity is larger than the capital elasticity 

indicates that the increase of labor is more effective than the increase of capital for 

producing more output. Interestingly, the TT3 model exhibits increasing returns to scale, 

whereas the GI3 model exhibits decreasing returns to scale. The null hypotheses of 

constant returns to scale were rejected at the 1% level of significance for both models. 

This signifies that the Korean manufacturing firms in our sample are of sub-optimal size. 

It should be noted that, compared to industry level, a larger variation in each of the 

measure is found at the firm level.  

The relationships between the size and elasticities are also presented in Table 3. A priori, 

one might expect that the degrees of capital and labor utilization will increase as the size 
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of a firm increases, which is confirmed by the empirical results. Another interesting 

finding is that the returns to scale are positively correlated with firm size, and large 

firms exhibit increasing returns to scale while smaller firms exhibit decreasing returns 

to scale. This seems to reflect the feature of Korean industrial policies which was based 

on the state-led economic system, giving preference to large enterprises. This also 

signifies that the Korean economy needs industrial policies which foster small and 

medium enterprises (SMEs) to efficiently adjust their input factors so that they yield 

desirable higher levels of outputs.  

The relationship between the technology level and elasticities are also presented in 

Table 3. Interestingly, compared with the low-tech manufacturing industry, the 

high-tech manufacturing industry has low capital elasticity and high labor elasticity for 

both the TT3 and GI3 models. In the high-tech industry, which requires creativity and 

inventiveness to bring into value added, it is essential for firms to employ well-educated 

and well-trained workers rather than to accumulate physical capital. Hence, the fact that 

the quality of labor force is quite important in the high-tech industry is reflected in the 

high labor elasticity. On the other hands, it is more effective for firms in the low-tech 

industry to replace workers with machinery because simple and monotonous work 

stages are more efficiently accomplished by machinery than by the labor force. 

Therefore, on average, the labor (capital) elasticity of high-tech industry is larger 

(smaller) than that of low-tech industry.  

4.4. Technical Change 

The development of the mean rate of technical change is shown in Figure 2. The overall 

mean rate of technical change is almost the same in the two models, and varies between 

2.0 percent and 2.2 percent per year. All the TT models predict monotonic technical 

progress during the study period, from 0.8% in 1987-1988 to 3.6% in 2006-2007.  

The estimated rates of technical change in the general index models, on the other hand, 

do not show a smooth uniform pattern over time. From Figure 2 we see fairly large 

variations in the rate of technical change during 1995-2000. Technical regress in this 

period coincides with the Monetary Crisis; as discussed in the Data section, large 

decreases in the utilization of inputs and output variables can be found from 1995, i.e. 

two years before the Monetary Crisis. However, any distinct technical regress during 

the Credit Crunch Crisis cannot be observed among the six models. The poor capital 

structure of Korean enterprises before the Monetary Crisis seems to be reflected in the 

technical regress which was preceded by the crisis, whereas the Credit Crunch Crisis 

caused by the high debt of households does not seem to be associated with technical 

change in the production of enterprises. 
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Figure 2. Mean rate of technical change based on TT1-TT3 and GI1-GI3 models 

 

 

Table 4. Average technical change and its component based on TT3 and GI3 models 

  TT3   GI3 

  PUT NNT TCH   PUT NNT TCH 

Mean by size         

  Micro  0.052  -0.036  0.016   0.063  -0.055  0.008  

  Small  0.043  -0.020  0.023   0.050  -0.027  0.023  

  Medium  0.035  -0.013  0.021   0.039  -0.021  0.019  

  Large  0.028  -0.004  0.024   0.034  -0.013  0.021  

Mean by technology level         

   High tech  0.025  0.000  0.025   0.040  -0.016  0.024  

   High-medium tech  0.023  0.007  0.030   0.038  -0.017  0.020  

   Medium-low tech  0.037  -0.016  0.021   0.036  -0.017  0.019  

   Low tech  0.034  -0.023  0.011   0.026  -0.004  0.022  

Sample mean  0.029  -0.006  0.023   0.036  -0.015  0.021  

Sample StdDev  0.029  0.022  0.017    0.179  0.174  0.056  

Note 1: PUT: pure component of technical change, NNT: non-neutral component of technical change, TCH: overall 

rate of technical change.  

Note 2: Figures are calculated by the weighted mean, where weight is the value-added share of each firm.  

The mean estimates of technical change by firm size classes are given in the upper panel 

of Table 4. Prior knowledge of the Korean industrial policies, which aim at fostering 

large firms, might make us expect large firms to exhibit a higher rate of technical 

progress. Interestingly, however, such expected tendencies cannot be found in our 

results. Instead of showing obvious relational patterns between the rate of technical 

change and size, the components show somewhat distinct patterns. That is, the pure 

component (non-neutral component) in the technical change of smaller firms is 

relatively larger (smaller) than that of larger firms. This indicates that smaller firms 

might not be good at coordinating input factors which are related to technical change, 

although their potential for achieving technical progress is relatively high.  
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The average rates of technical change by technology levels are also provided in the 

lower panel of Table 4. The results of TT3 and GI3 show quite different patterns; first, 

the pure component of technical change in the TT3 (GI3) model is negatively 

(positively) related to the technology levels; second, the non-neutral component of 

technical change in the TT3 (GI3) model is positively (negatively) related to the 

technology levels; third, the average of technical change in the GI3 model is positively 

related to the technology levels, whereas the TT3 model shows no systematic 

association with respect to technology levels. These differences originate from the 

assumptions that we made concerning the flexible specification of technical change.  

4.5. Input Biases 

The overall mean input biases for all six models are presented in Table 5. Note that 

input and scale biases of the TT1 and TT2 models are constant. In general, the results 

differ across models, but are mostly of reasonable sizes. However, despite this 

difference, the patterns of factor using/saving biases are similar among the models, i.e., 

showing capital saving and labor using. Compared with the time trend models, the 

factor biases in the general index models are slightly larger. Another interesting fact is 

that the variations of input biases of the general index models are much larger than 

those of the time trend models.  

The mean scale bias and the associated standard errors are presented in the last two 

columns of Table 5. The temporal variations of scale bias in all the models are rather 

small, around 0.2% per year. Like the input biases, variations of scale bias in the general 

index models are higher than those of the time trend models.  

Table 5. Overall input bias and scale bias technical change 

  Capital   Labor   Scale 

 Model Mean S.D.   Mean S.D.   Mean S.D. 

TT1  -0.66  0.00   0.90  0.00   0.24  0.00  

TT2  -0.62  0.00   0.85  0.00   0.23  0.00  

TT3  -0.61  0.34   0.82  0.48   0.22  0.33  

GI1  -0.75  3.90   0.92  4.32   0.17  1.56  

GI2  -0.78  3.93   0.96  4.42   0.19  1.52  

GI3  -0.71  3.85    0.91  4.26    0.20  1.55  

 

4.6. Total Factor Productivity Growth 

The development of the mean rate of TFP growth is shown in Figure 3. The overall 

mean rate of TFP growth is almost the same among the competing models, around 2.5% 

per year. The TT models show increasing trends in the rate of TFP growth over time, 

whilst the rate of TFP growth based on GI models does not show any systematic trends. 

The development patterns of the GI models mostly coincide with that of the Solow 

residual approach. Considering that the Solow residual approach is set as the reference 
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for TFP growth measures, the GI models appear to suitably describe the actual rate of 

TFP growth. In addition, patterns of the rate of TFP growth in all the six models are 

very much similar to those of the technical change components, which signify that 

technical change is the main contributor to the TFP growth.  

The average rates of TFP growth by firm size, technology level and industry are shown 

in Table 6. The mean rates of TFP growth differ among the six models, but are of 

reasonable size. In all the model specifications, the mean rate of TFP growth of large 

firms is found to be higher than that of small and medium enterprises (SMEs). This 

trend might come from the fact that the Korean industrial policies mainly focus on large 

firms rather than SMEs. A priori one would expect the average TFP growth of the high 

tech industry to be higher than that of other industries having a lower technology level, 

which is confirmed by the results. To sum up, large firms and high technology 

industries show a higher rate of TFP growth in the Korean manufacturing industry.  

As regards the industry-level TFP growth, the mean rate of TFP growth differs among 

the models, but is of reasonable size except for the pharmaceutical industries. The 

pharmaceutical industry shows quite high growth rate in the TT3 model, whereas it 

shows a negative growth in the TT2 model. This result is related, not to any data 

problem but to the model specification and its suitability for studying heterogeneous 

industrial sectors. It is a common problem in applied economics research to obtain 

contradicting results when employing competing models for measuring TFP growth. 

The interesting fact deduced from Table 5 is that the radio, television and 

communication equipment branch (TELCOM) shows an annual growth rate of more 

than 3%, regardless of model specifications. It seems to reflect the dramatic expansion 

of the branch in Korea in the last decade. The shipbuilding branch (SHIPBT), which is 

one of the strong branches of the Korean economy, also shows a high rate of TFP 

growth for all the six models. The chemical sector, which was chosen as one of the 

main industries in the Five-Year Economic Development Plans during the 1960s and 

1970s in Korea,
1
 is among the unexpected results. It does not show such a high TFP 

growth, only around 2%, in all the models. 

 

                                                 
1
The Five-Year Economic Development Plans were set up by the Korean government in order to select 

and develop the industrial sectors, especially heavy industries, for the period 1962-1981. 
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Figure 3. Average TFP growth by year based on Solow Residual (SR), TT1-TT3 and GI1-GI3 

models 
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Table 6. Average rate of TFP growth based on TT1-TT3 and GI1-GI3 models (%) 

 TT1  TT2  TT3  GI1  GI2  GI3   

By size        

   Micro  1.49  2.00  2.89  1.47  1.35  1.75   

   Small  2.04  2.20  2.14  2.31  2.32  2.32   

   Medium  2.23  2.23  2.31  1.91  1.90  1.92   

   Large  2.43  2.51  2.87  2.41  2.48  2.59   

By technology        

   High tech  3.40  2.94  3.56  3.31  3.28  3.39   

   High-medium tech  2.39  2.54  3.36  2.21  2.26  2.34   

   Medium-low tech  1.98  2.38  2.40  1.94  2.07  2.14   

   Low tech  1.93  1.80  1.11  2.14  2.13  2.25   

By industry        

   PHARMA  2.81  -5.34  27.83  2.19  1.66  1.11   

   OFFCOM  2.13  0.73  1.28  2.13  2.03  2.31   

   TELCOM  3.45  3.07  3.67  3.37  3.35  3.45   

   AIRCFT  3.00  -2.10  0.01  1.25  1.06  1.31   

   CHMCAL  1.73  1.41  2.13  1.76  1.90  1.93   

   MCHINE  2.67  3.65  3.28  2.31  2.38  2.40   

   ELECTR  2.37  2.29  3.14  2.35  2.29  2.43   

   MEDOPT  2.64  1.60  2.41  2.60  2.53  2.60   

   MTRVHC  2.92  3.52  4.82  2.55  2.55  2.69   

   RAILEQ  3.01  -0.88  -0.32  2.16  2.04  2.16   

   COKENU  1.36  1.91  6.79  3.04  3.16  3.46   

   RUBBER  2.57  2.20  2.14  2.42  2.33  2.48   

   NONMTL  1.44  1.24  1.17  1.44  1.55  1.59   

   METALS  1.60  2.00  1.84  1.32  1.53  1.55   

   FABMTL  2.37  2.30  2.08  2.25  2.38  2.40   

   SHIPBT  3.10  4.53  3.08  2.79  2.90  3.02   

   RECYCL  2.19  2.77  2.07  2.59  2.57  2.63   

   FOODBT  2.07  1.46  1.02  2.09  2.08  2.22   

   TEXTIL  2.04  2.99  1.26  2.53  2.47  2.59   

   WOODCK  1.73  2.16  1.07  1.95  1.94  2.02   

   PULPPR  1.54  1.11  1.11  1.81  1.84  1.94   

Mean  2.38  2.45  2.75  2.32  2.37  2.46   

S.D.  1.23  1.80  2.08  5.28  5.23  5.28   
Note 1: The full list of classification of industries is presented in the Appendix.  

Note 2: Rates of TFP growth are calculated by weighted mean, where the weight is the value added of each firm.   

   

The Spearman rank correlation of TFP growth rates for the six models are given in 

Table 7. All the pairs of cases are positively correlated. The correlation coefficients of 

the models are reasonable, highly statistically significant and within the range of 

0.13-0.99. The highest correlation coefficient among the models is found between the 

GI1 and the GI3 models (0.998) and the lowest surprisingly between the two accepted 

TT3 and the GI3 models (0.135). The low correlation is attributed to the differences in 

the two modeling approaches‟ ability to capture the dynamics of technical change. As is 

shown, the time trend models, in spite of being able to predict the average rates 

reasonably well, are not able to capture the erratic temporal patterns of technical 

change.  
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Table 7. Correlations between the TFP mean values of the models; Spearman correlation 

coefficients 

 TT1  TT2  TT3  GI1  GI2  GI3   

TT1  1.000       

TT2  0.673
a
  1.000      

TT3  0.593
a
  0.869

a
  1.000     

GI1  0.189
a
  0.147

a
  0.136

a
  1.000    

GI2  0.190
a
  0.154

a
  0.140

a
  0.993

a
  1.000   

GI3  0.186
a
  0.149

a
  0.135

a
  0.998

a
  0.992

a
  1.000   

Note: The superscript 
a
 indicates statistical significance at less than 1% level of significance.     

4.7. Second Stage Regression Analysis of TFP growth 

In order to find the intensities of the individual determinants of TFP growth, we conduct 

a second stage regression analysis. Since we have six sets of firm-level TFP growth 

rates, we use each TFP growth rate as a dependent variable in this second stage 

regression analysis. Independent variables considered as determinants of TFP growth 

are as follows: capital intensity, market competition condition, wage growth, age and 

patenting activities of firms, and dummy for conglomerate membership.  

Capital intensity is considered as a measure of firm-specific knowledge embodied in the 

machinery and equipment in production. Hence, firms with a higher level of capital 

intensity are expected to have high asset specificity and more variability in capital 

utilization. The possibility of increase in the rental cost of unused capital makes firms 

use their production resources efficiently (Jung, 1991). However, empirical studies 

show somewhat mixed results. For example, Lim (1980) and Sheehan (1997) give 

support to the positive relationship between the level of capital intensity and the firms‟ 

performance, whereas Ferrier et al. (1998) and Mahadevan and Kalirajan (2000) report a 

negative effect of capital intensity on production. In this paper, the ratio of capital to the 

number of employees is defined as the capital intensity. The growth rate of capital 

intensity is used as one of the determinants of TFP growth. We have named it CAPINT.  

Regarding the relationship between the performance and the competitive condition of a 

market, two different points of view exist. Neoclassical economists support a positive 

relationship between the two measures, arguing that the elimination of slacks promotes 

the performance. Schumpeterians assert a negative relationship, pointing out that 

monopoly rents induce entrepreneurs to invest in R&D activities and thus promote the 

dynamic performance. Empirical studies also provide different results. Nickell (1996), 

Aghion et al. (2001) and Boone (2001) find some support for the view that competition 

improves performance, whereas Dasgupta and Stiglitz (1980) substantiate the 

Schumpeterian view. We measure the competition by using the Herfindahl index, 
2

ii
s  where is  is the market share of the thi  firm. We have named it MKTCOM. 

Note that the Herfindahl index close to unity indicates a less competitive market 

condition.  

The relationship between wages and TFP growth also needs to be examined. Since TFP 

growth is positively associated with the labor productivity, firms exhibiting a high level 

of TFP growth also tend to yield a high labor productivity growth. Considering that 
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firms‟ labor demand is mainly determined by labor‟s productivity, it is likely that wages 

will increase if the employee is more productive. Hence, we expect a positive 

relationship between the wage growth and the growth of TFP. In order to examine this 

relationship, the growth rates of total compensation of each firm are calculated and 

labeled as WGGRTH.  

A fourth factor related to TFP growth is the age of the firm. The two main theoretical 

strands concerning the age and productivity are quite different: positive effect vs. 

negative effect. The theory on the positive impact of age suggests that older firms, 

having more experience and enjoying the benefits of learning, tend to yield a better 

performance than newer firms (Stinchcombe, 1965). The other strand of theoretical 

research shows that older firms, not being prone to change and having bureaucratic 

ossification that goes with age, lack the flexibility to rapidly adjust to changing 

circumstances (Marshall, 1920). In line with the aforementioned conflicting theoretical 

strands, empirical studies also show quite different results. Two such cases with 

conflicting results are Majumdar (1997) and Kutsuna et al. (2002). Here, we calculate 

the age of the firm by the number of years of operation, and label it as AGE.  

As already found in the relationship between technical change and productivity growth, 

technical change is highly correlated with productivity growth. The rate of technical 

change is mainly driven by the creation and maintenance of intellectual property rights, 

which are commonly represented by patenting activities (Basmann et al., 2007). Hence, 

patenting activities, the outcome of which affects the innovative activities of firms 

(Crépon et al., 1998), are expected to be positively related with total factor productivity 

growth. We assume here that patenting activity is captured by the number of patents 

published and refer to it as PATENT. The patent data is from the Korea Industrial 

Property Rights Information Server (KIPIRS). The number of patent publications for 

each firm is computed and merged with the administrative register data. 

Strongly state-led industrial policies have matured chaebols which are Korean-specific 

conglomerates. The chaebols are family-controlled, diversified business groups, and 

have dominated the Korean economy for several decades. Many applied studies on the 

chaebols and productivity growth, such as Lim (1999), suggest that chaebol firms have 

a higher productivity growth than non-chaebol firms. They argue that the chaebol 

leadership has been central to Korean economic growth and technological advancement. 

Kim et al (2006) find that chaebol firms have a better access to capital and are able to 

adjust their capital structure to optimal level much faster than their non-chaebol 

counterparts. However, more recent studies, such as Kim (2006), argue that the 

chaebols‟ productivity level was much lower than that of non-chaebols for the period 

1991-1998. To find rigorous evidence from the firm-level data for a long period, we 

examine the effect of chaebol membership on the productivity growth. Following the 

definition of chaebols by Kim (2006), we have created a dummy variable for this 

category and named it CHAEBOL.  

When attempting to isolate the relationships of the six firm-specific characteristic 

variables above and TFP growth, it is essential to control for other independent 

variables that are likely to affect the TFP growth. This is also important in dealing with 

the heterogeneity of firms in our sample. Among the various firm-specific attributes that 

are shared by firms, we have chosen the following control variables: KOSPI dummy, 
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year dummy and industry dummy.
2
 The KOSPI dummy is included in order to isolate 

the effect of chaebols since most chaebol branches are listed companies and part of the 

KOSPI index.  

To model the second stage regression analysis, each of the six TFP growth measures is 

used as a dependent variable along with the six independent variables above. The 

fixed-effects type of regression is used to find the parameter estimates. Table 8 presents 

the parameter estimates of the second stage regression. Overall, the estimation results 

show a good fit.  

In all six models, the coefficient of the CAPINT is negative and statistically significant 

at the 1% level of significance, suggesting that high capital intensity decreases TFP 

growth. This result might come from the fact that most of the excess capital stock 

became obsolete during the economic recession in the aftermath of the 1997 Monetary 

Crisis.  

Regarding the market competition, the signs as well as significant levels differ across 

different model specifications. Results of the TT models support the hypothesis that 

higher competition decreases TFP growth at the 1% level of significance, whereas 

results of the GI models yield inconclusive and insignificant results for this relation. 

From these results it can be concluded that the low competitive conditions for Korean 

manufacturing industries have increased their productivity. In other words, an 

oligopolistic market condition has increased the performance of the Korean 

manufacturing industry. Considering that the Korean economy is mainly led by several 

giant conglomerates, chaebols, this is quite reasonable. Despite such findings, however, 

we cannot say that this oligopolistic market condition will continuously yield high 

productivity growth. This suggests that the results should be interpreted with caution for 

future industrial planning.  

The estimated coefficients of WGGRTH are of different sizes and signs. In the TT 

models, we obtain the expected (positive) signs, supporting our hypothesis. In the GI 

models, however, we obtain unexpected (negative) signs, which in the GI3 is 

statistically significant at the 1% level of significance. The large decline in wages 

during the Monetary Crisis might be reflected in the GI models. With these conflicting 

results, unfortunately, we fail, in line with our hypothesis, to establish a relationship 

between wage growth and TFP growth.  

We observe a positive and statistically significant coefficient for the AGE variable 

among all the model specifications. This helps us to choose one of the strands which 

describe the positive relationship between the age of firms and their performance. Based 

on this, we can say that old firms enjoy the benefits of accumulated skills, management 

and technology in achieving a higher productivity growth. This implies that industrial 

policies for sustaining old enterprises need to be developed to increase the performance 

of the manufacturing industries.  

We can also observe a positive and statistically significant coefficient for the PATENT 

                                                 
2
KOSPI is the Korea Composite Stock Price Index, which is the index of all common stocks traded on the 

Stock Market Division. 
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variable among the model specifications. These results coincide with our expectation 

that growth in patenting activities increases the rate of TFP growth by stimulating 

innovativeness of firms. Hence, future industrial policy must be oriented towards 

protecting intellectual property rights, especially for fostering technical progress. This 

policy implication is in line with Kang et al. (2008), who argue that the policy for credit 

guarantees for technology needs to be revised, since the allocation of credit guarantees 

to technology firms is not consistent with the policy program objectives.  

All the estimated coefficients of the CHAEBOL variables are positive, signifying that 

the TFP growth of chaebols is superior to that of non-chaebol firms. The statistically 

significant levels of estimates are different among the six models. In the TT models it is 

statically significant at less than the 5% level of significance, whereas in the GI models 

none of our specifications yield significant results. Like the results of the market 

condition, however, these results need to be interpreted with caution in any future policy 

making.  

Table 8. Results of second stage regression analysis of determinants of TFP growth (n = 53,618) 

 
Expected 

sign 
TT1 TT2 TT3 GI1 GI2 GI3 

Intercept  2.64e-03  -2.10e-01a   2.62e-01a  3.02e-02 2.94e-02 2.32e-02 

CAPINT (+/-)  -3.86e-03a   -3.53e-03a   -3.74e-03a   -2.70e-03a   -3.16e-03a   -2.86e-03a 

MKTCOM (+/-)  1.04e-02a   2.67e-02a   1.36e-02a  -5.90e-03 -4.69e-03 6.27e-05 

WGGRTH (+) 1.58e-04  4.26e-04b   1.11e-03a  -6.97e-04 -7.85e-04  -1.35e-03a 

AGE (+/-)  3.63e-05a   5.30e-05a   3.71e-05a   3.44e-05c   3.82e-05b   5.87e-05a 

PATENT (+)  4.71e-06a   6.67e-06a   1.02e-05a   1.82e-05a   2.01e-05a   1.92e-05a 

CHAEBOL (+/-)  4.45e-04a   4.19e-04b   1.06e-03a  4.67e-04 5.16e-04 7.15e-04 

R2  0.574 0.444 0.322 0.420 0.425 0.414 

adj R2   0.573 0.444 0.322 0.419 0.425 0.414 

Note: The superscripts a, b and c indicate statistical significance at less than 1, 1-5 and 5-10 levels.    

5. Conclusion 

In this paper, we consider estimation of total factor productivity growth, technical 

change and its related measures using firm level panel data for the Korean 

manufacturing industry for the period 1987-2007. In order to obtain more robust results, 

we employ competing flexible model specifications, along with the non-parametric 

Solow residuals approach serving as a benchmark. In doing so, we use six different 

model specifications: the time trend model, the general index model, and their 

extensions. The extensions of the two basic models allow for incorporation of 

firm-specific heterogeneity in technical change and its underlying components. These 

models are employed to analyze firm-level manufacturing data. Along with the 

examination of TFP growth, we also attempt to identify the determinants of TFP growth 

by means of second stage regression analysis and quantify the individual factor impacts.  

The results of the model selection tests are mixed. Among the TT models, the most 
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general TT3 model is found to be the appropriate model specification. Among the GI 

models, the most general GI3 model is chosen as the appropriate model. In these two 

model specifications the firm-specific rate of technical change is set up in the most 

flexible manner. Using test statistics, we fail to choose the best model between the 

non-nested TT3 and GI3 models. However, examination of the patterns of TFP growth 

and technical change enables us to choose the GI3 model as the best model among our 

six model specifications.  

Based on the empirical results, it is possible to make several concluding points. First, 

the results of the returns to scale provide different perspectives: increasing returns to 

scale in the TT3 model and decreasing returns to scale in the GI3 model. Second, labor 

elasticity is larger than capital elasticity in all the model cases. Third, similarities exist 

in the overall rate of technical change among the two groups of models, whereas TT 

models and GI models yield different patterns during the study period. Fourth, all of the 

TT models yield an increasing trend in the rate of technical change, while all the GI 

models show a negative rate of technical change for 1995-1998. The results in the GI 

models signify that the productivity started to degenerate two years before the Monetary 

Crisis. Fifth, neither the difference in firm size nor the difference in technology levels 

shows a distinct difference in the temporal patterns of technical change, whereas they 

are related to the components of technical change. Sixth, evidence of model dependency 

exists in the input and scale biases, but its discrepancy is of reasonable size. Seventh, 

the overall average rate of TFP growth is almost the same for all the models. Eighth, 

temporal patterns of TFP growth of the TT models exhibit an increasing trend, whereas 

those of the GI models almost coincide with the Solow residual approach without 

showing systematic smooth patterns. Ninth, the result of the second regression indicates 

that i) the capital intensity growth and the competitive market condition are negatively 

related to the rate of TFP growth, ii) the age and patenting activities of the firm 

positively affect its TFP growth, and that iii) the TFP growth rate of chaebols is higher 

than that of non-chaebol firms.  

To our knowledge, this paper is the first attempt to analyze the TFP growth, based on 

firm-level data, of the Korean manufacturing industry by employing competing 

parametric flexible model formulations and rigorous sensitivity analysis. We believe 

that this study provides information about TFP growth that can be useful in industrial 

policy decision makings. Studies using other forms of model specification, such as 

Stevenson (1980), are also believed to contribute to strengthening the robustness of the 

results.  
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Appendix 

Table 9. Classification of industries 

Acronym  Explanation  SIC 

PHARMA  Pharmaceuticals  2423  
OFFCOM  Office accounting and computing equipment  30  
TELCOM  Radio television and communication equipment  32  
AIRCFT  Aircraft and space craft  353  

CHMCAL  Chemicals w/o pharmaceuticals  24 exc.2423  
MCHINE  Machinery and equipment  29  
ELECTR  Electrical equipment and apparatus  31  
MEDOPT  Medical precision and optical instruments  33  

MTRVHC  Motor vehicles trailers and semi-trailers  34  

RAILEQ  Railroad equipment and transport equipment  352-359  
COKENU  Coke refined petroleum product and nuclear fuel  23  
RUBBER  Rubber and plastic products  25  
NONMTL  Other non-metallic mineral products  26  

METALS  Basic metals  27  
FABMTL  Fabricated metal products except machinery and equipment  28  
SHIPBT  Building and repairing of ships and boats  351  
RECYCL  Manufacturing n.e.c. recycling  36-37  

FOODBT  Food products, beverage, and tobacco  15-16  

TEXTIL  Textile products leather and footwear  17-19  
WOODCK  Wood and products of wood and cork  20  
PULPPR  Pulp paper products printing and publishing  21-22  

Note: SNI is the standard industrial code.   

                                                 
i
 The gross output is not considered as an alternative measure to value added since quantities of material 

inputs are not available in the KIS-VALUE data. 


