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ABSTRACT: PAMPS/MMT composite electrolytes with high ionic conductivities were 

prepared by solution-casting method. The influences of Na-MMT contents on the ionic 

conductivities and mechanical properties of PAMPS hydrogel electrolyte were characterized 

and the electrochemical properties of supercapacitor with PAMPS/MMT composite 

electrolytes were investigated. The addition of Na-MMT can increase the ionic conductivities, 

tensile strength of PAMPS. PAMPS/MMT composite electrolyte has the superior integrated 

performance of ionic conductivities and tensile strength when the mass fraction of Na-MMT 

is about 5~7%, the ionic conductivity is 5.91×10-2 S cm-1 and the tensile strength is 8.9 MPa. 

The capacitor exhibits ideal behavior for the electronic double-layer capacitance. The specific 

capacitance and the cycling stability of PAMPS/MMT composite electrolytes are enhanced in 

comparison with that of PAMPS. Thus it provides a promising composite polyelectrolyte for 

supercapacitor. 
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1 Introduction 

  Solid-polymer electrolytes with the advantages of compactness, reliability and 

freedom from leakage have been used widely for different electrochemical devices, 

such as rechargeable batteries, electrochromic displays and supercapacitors [1-3]. They 

can be classified into dry solid-polymer electrolytes, gel-polymer electrolytes and 

composite-polymer electrolytes. Gel-polymer electrolytes (GPEs) always exhibit high 

conductivity than that of dry solid-polymer electrolytes. Various polymers [4-8], such 

as poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), poly(acrylonitrile), 

Poly(ethylene glycol) (PEG), poly(vinylidene fluoride) (PVDF) and so on, have been 

reported to form GPEs with conductivities ranging between 10-4 and 10-3 S cm-1 under 

ambient conditions. GPEs have high swell capacity of ionic or salt solutions to 

improve their ionic conductivities, and also have good mechanical properties such as 

flexibility and stretchability. Which has arousing the interest in flexible and wearable 

energy devices for application in flexible and stretchable electronics, and have been 

reported not only could be useful for fully wearable energy storage devices, but also 

have high efficient performance [9-11]. GPEs are generally prepared using organic 

solvents. In contrast, aqueous GPEs have a better application prospect for the cost and 

environmental security to consider, although those commercial supercapacitors utilize 

non-aqueous organic electrolytes can reach cell voltage as high as 3V [12-13].  

 Hydrogels are three-dimensional polymeric networks which due to the presence of 

chemical cross-linkages or physical entanglements with corresponding water 

absorption capacity. Hydrogels can be classified as neutral or ionic, including anionic, 
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cationic and zwitterionic, based on the nature of the pendant groups in the precursor. 

The neutral polymer electrolytes include PEO, PVA and PEG can be leveraged as 

matrix for solid polymer electrolyte because of their good film formability and easily 

be changed into gel or hydrogel. The neutral GPEs such as PEO obtain higher 

conductivity values in solvent-free polymer electrolytes only when the polymer is in 

the amorphous state, when the temperature is higher than 70 °C, i.e., the melting point 

of PEO [14]. The ion conductivities of the neutral GPEs can also be increased at 

ambient temperature by blending with ionic polymer, exactly as in PVA matrix mixed 

with poly (acrylic acid) [15]. Except for acrylic acid, the ionic monomers with amino, 

sulfonate, cyano group and the others can be polymerized into ionic polymer with 

higher ionic conductivities [16-18]. 2-acrylamide-2-methyl propanesulfonic acid (AMPS) 

is an amphiphilic compound in which the sulfonic acid groups make it water-soluble 

and salt resistant, amide groups make it thermal-stable and hydrolysis resistant. 

Polymer polymerized from AMPS (PAMPS) can obtained higher conductivity based 

on the ionic molecular structure in comparison with the neutral GPEs. PAMPS has 

being blended or grafted with the other polyelectrolyte in fuel cell for its advantage on 

ion transportation, water absorption and retention capacity [19-20].  

  Hydrogels properties such as mechanical, thermal, electrical properties and 

responsiveness can be improved by preparing a composite polyelectrolyte from 

inorganic material and polymer. The addition of inorganic material improves the 

proportion of amorphous region in polymer, helps chain segments move easily, 

meanwhile, increases the interface stability between polyelectrolyte and electrode. 
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The composites from polymer and clays have been researched widely [21], of which 

sodium montmorillonite (Na-MMT) shows a better performance in water-absorption, 

ion-exchange and water-dispersive capacities. As far as the application of 

supercapacitor is concerned, electrolytes affect the capacitance, operation voltage, 

energy density and power density. Electrolytes with higher ion conductivity and good 

mechanical properties are worth developing. Here, the PAMPS/MMT composite 

hydrogels were prepared, and the influences of Na-MMT on the tensile strengh, ionic 

conductivities of PAMPS were investigated. They are potential candidates as a 

component for electrochemical capacitors, and the performances of the PAMPS/MMT 

composite were explored when used for GPEs of supercapacitors. 

2. Experimental 

2.1 Material 

   2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) (Aladdin, 98%) and N'N- 

methylene-bis-acrylamide (MBA) (Aladdin, 97%) were used as received. Potassium 

persulfate (KPS) (Aldrich, 98%) was used after recrystallized. Potassium hydroxide 

(KOH) (96%, Sinopharm Chemical Reagent Co. Ltd) used without any purification. 

Na-montmorillonite (Na-MMT) (95%) was sourced from Fenghong Co.. Activated 

carbon, acetylene black, PVDF powder and N-methylpyrrolidone (NMP) were 

purchased from Sinopharm Chemical Reagent Co. Ltd., deionized water was used in 

all reactions. 

2.2 Synthesis of the PAMPS/MMT composite hydrogel 

  A series of PAMPS/MMT composite electrolytes with different weight contents of 
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Na-MMT were prepared by solution-casting method. Dissolve 3g AMPS in 20mL 

deionized water and pour them into a reactor, and then Na-MMT was put into the 

solution for ultrasonic 24h to well disperse the clay particles. Subsequently, the 

solution with a certain amount of MBA crosslinker (3% in weight) and KPS initiator 

(0.4% in weight) were added to the reactor while stirring. The determination of the 

amount of MBA and KPS is seen details in Supplementary Information. Afterwards, 

the homogeneous liquid mixtures were poured into a PTFE mould at a vacuum drying 

oven for desiccation (12h at 70�). The schematic representation of the synthesis 

technique of PAMPS/MMT composite is illustrated in Fig.1. PAMPS hydrogel was 

also prepared with the above method for comparison.  

2.3 Fabrication of the electrochemical capacitors (EC)  

  An electrochemical capacitor was fabricated by sandwiching the GPE between the 

two electrodes as shown in Fig. 2. The electrodes used in ECs are self-made activated 

carbon electrodes. Activated carbon was grinded into powder, mix activated carbon, 

acetylene black and PVDF binder (8:1:1 by weight), then a required amount of NMP 

was added into the mixed powder dropwise with constant stirring to form slurry, then 

the slurry was agitated in an ultrasonic water bath for 30 min for a better dispersion. 

After that, the slurry was taken out and coated on the porous nickel sheets uniformly 

which used as current collectors, leave the sheets in vacuum drying oven in 70� for 

24h to get the final activated carbon electrodes. PAMPS/MMT composite hydrogel 

simultaneously served as separator and electrolyte, and was sandwiched between two 

symmetrical self-made activated carbon electrodes, the composite electrolyte used 
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must be soaked in 4mol/L KOH solution till its weight keeps unchanged, which 

means KOH solution entrapped in polyelectrolyte is saturated, the swelling capacity 

(WKOH/ g g-1) is 8wt% and calculated according to the equation: 

       %100
1

12 ×
−

=
W
WWWKOH              (1) 

where W1 is the weight of the polyelectrolyte which was dried in vacuum drying oven 

in 70� till its weight gets unchangeable, while W2 is the weight of the polyelectrolyte 

which was immersed in 4mol/L KOH solution till its weight gets unchangeable. 

2.4 Characterization 

  X-ray diffraction (XRD) curves were recorded using a Rigaku D/Max-2550 

diffractometer with Cu-Kα radiation (λ=1.5418Å). Fourier transform infrared 

spectroscopy (FT-IR) was performed on a FT-IR spectrometer (PE 1650). The 

thermal stability of PAMPS/MMT composite hydrogel was characterized using a 

thermogravimetric analysis (TGA) (TG 209 F3 Netzsch, Germany) with a heating rate 

of 10�/min under N2 atmosphere. Tensile test was performed with a CMT4104 

electronic universal tester (MTS Ind. Co., China), and stretched at a constant velocity 

of 10 mm/min. 

The measurement of ionic conductivity of the PAMPS/MMT composite hydrogel is 

carried out by electrochemical impedance spectroscopy (EIS) using CHI660B 

electrochemical workstation. The GPEs was sandwiched by two stainless steels with 

the mode of SS/PAMPS/MMT/SS (SS notes stainless steels). The bulk ionic 

conductivity (σ) of the PAMPS/MMT composite electrolyte were determined from 

the complex impedance spectra in the frequency range between 0.01 Hz and 100 kHz 
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with a perturbation of 5 mV rms using the equation [22] 

           
AR

L
b •

=σ                   (2) 

where L, A and Rb are the thickness, area, and bulk resistance (calculated from 

high-frequency intercept on the real impedance axis of the Cole-Cole plot), 

respectively. 

  The cyclic voltammograms (CV) were carried out with different scan rates using a 

two-electrode configuration. Life-cycle tests were performed with galvanostatic 

charge-discharge measurements (GCD), the specific capacitance (C) of the ECs was 

calculated from the discharge curves of the charge-discharge plots using the equation 

[23]:  

Vm
tIC

Δ
Δ

=              (2) 

where I is the constant current, ∆t is the time required to change the potential by ∆V, 

∆V is the potential difference, and m is the weight of activated carbon in the electrode, 

respectively. 

3 Results and Discussion 

3.1 Structure of PAMPS/MMT composite hydrogel 

 Fig. 3 recorded infrared spectra of pristine Na-MMT, PAMPS and PAMPS/MMT 

composite, respectively. From the FT-IR spectrum of PAMPS/MMT, it can be shown 

that the absorption peaks at 2960～2850 cm-1 are related to C-H stretching of PAMPS 

molecules, the peaks at 1646 cm-1 and 1559cm-1 are attributed to the bending of NH 

bonds and the peak at 1372cm-1 is related to S=O of PAMPS, respectively. The peaks 
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at 1036 cm-1 and 461 cm-1 are attributed to the stretching and the bending of Si-O 

band, respectively. The peak at 522 cm-1 is assigned to the Si-O-Al bending vibration 

of the silicate layers [24], which indicates that the existence of MMT clay layers 

although somewhat overlapping between bands originating from both clay and 

PAMPS. On comparing the FTIR spectra of MMT, the intensities of peaks due to 

Si–O and Al–O of MMT are reduced for its small addition in polymer matrix. The 

composites were analyzed by X-ray diffraction to obtain the structure of the clay in 

the polymer matrix. Fig.4 exhibits the XRD patterns of Na-MMT, PAMPS/MMT 

composite hydrogel with 3% MMT, 5% MMT, 7% MMT and 9% MMT, respectively. 

As shown from the XRD pattern of Na-MMT, the diffraction peaks of Na-MMT are 

at 7.0°, 20.0°, 26.7°, 28.4°, 35.0°, 42.3° and 54.4°, respectively [25]. These 

characteristic peaks are disappeared after composited with PAMPS just a broad peak 

at ca. 15°～30°, which indicates that the weak crystallization of PAMPS/MMT 

composite and laminar structure of MMT has been disappeared. The XRD pattern of 

pure Na-MMT shows a strong peak at 2θ = 7.0° which corresponds to an interlayer 

space of d = 12.6 Å. In the XRD patterns of PAMPS/MMT composite with 3% and 5% 

MMT, no peak appears at 2θ = 7.0° indicating that MMT layer has been exfoliated in 

hydrogel matrix. In the XRD patterns of PAMPS/MMT composite with 7% and 9% 

MMT, a small peak at 2θ = 7.0° indicating that not all the MMT were intercalated and 

the nocomposite with partially exfoliated structures were obtained. As it can be 

observed, clay has a better dispersion in polymer matrix when a small addition was 

employed, and the agglomeration occur always at a larger addition of MMT. MMT is 
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an expandable clay mineral and has colloidal activity. The clay layers are held 

together by a relative weak intermolecular force, and water or hydrophilic molecules 

easily penetrate into the interlayer region.  

3.2 Mechanical properties of PAMPS/MMT composite hydrogel 

  The relationship between content of Na-MMT and tensile strength of the 

PAMPS/MMT composite hydrogels were studied. According to the data in Table 1, 

the tensile strength of PAMPS/MMT composite hydrogels increased with the 

increasing amount of Na-MMT firstly, the tensile strength reached the maximum 

value of 8.9 MPa when the content of Na-MMT is ca. 7%, which is higher than that of 

PAMPS hydrogel with the value 6.9 MPa. This should be related with the addition of 

Na-MMT. The small addition is favor of Na-MMT dispersed in PAMPS. MMT layers 

were exfoliated into the hydrogel homogeneously according the analysis of XRD. The 

well-dispersed inorganic particles in polymer can also act as physical cross-linking 

points. In other word, the cross-linking density of the composite hydrogels increased 

and obtains the higher mechanical properties. The tensile strength of PAMPS/MMT 

composite hydrogels decreased when loading increased, and the value at 11% is even 

lower than that of PAMPS hydrogel. This may be related with the agglomeration of 

Na-MMT in PAMPS hydrogel. The inorganic particles are gathered easily to form 

aggregation for too close each other when add a large amount of Na-MMT. These 

aggregations act as the point of stress concentration when stretching the hydrogel and 

make the tensile strength decreased. 

3.3 Thermal properties of PAMPS/MMT composite hydrogel 
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  Thermal stability and decomposition behavior of the PAMPS and PAMPS/MMT 

composite hydrogel were characterized through TGA. As shown in Fig.5, which 

indicate a two-step degradation pattern for both hydrogels. The weight loss around 

220� may be ascribed to the decomposition of the sulfonate groups, amino groups 

and the other side chains of PAMPS molecule. The second degradation step starts at 

about 300� is mainly attributed to degradation of cross-linking bridge and polymer 

backbone. In the first stage of 200�~300�, PAMPS/MMT hydrogel exhibits the 

higher thermal stability than that of PAMPS, which should be ascribed to the 

interreaction between Na-MMT layer and the ionic groups of PAMPS. In the second 

stage of 300�~500�, the same thermal stabilities occur in both hydrogels, which 

should be ascribed to the combined action of cross-linking and crystallization of 

PAMPS molucule. The addition of Na-MMT results in higher cross-linking density 

and increasing the thermal stability, meanwhile, the crystallinity of PAMPS decreased 

when the degree of cross-linking density increased, which may weaken the thermal 

stability.  

3.4 Conductivity of PAMPS/MMT composite hydrogel 

  As basic and important element of polyelectrolyte used in electrochemical 

capacitors, ionic conductivity of the PAMPS/MMT GPEs were examined and the 

influenced of the addition of Na-MMT were studied. Fig.6 (a) is the electrochemical 

impedance spectra of with different proportions of PAMPS/MMT composite 

electrolyte, and Fig.6 (b) is the enlarged part of the impedance response at high 

frequency region. From the enlarged figure, it can be found that the influence of 



11 
 

Na-MMT on PAMPS/MMT composite electrolyte has a similar trend with that of 

tensile strength. The data has been listed in Table 2. Firstly, the ionic conductivity 

increases with increasing the amount of Na-MMT and the maximum value reaches up 

to 5.91×10-2 S cm-1 when the mass fraction is 5%, and then the ionic conductivity of 

PAMPS/MMT composite electrolyte began to decrease with increasing Na-MMT 

continually. The improvement of ionic conductivity in PAMPS/MMT composite 

electrolyte represents good current supply for the supercapacitors, and it can be 

explained mainly in two aspects. The one is the improvement of tensile strength can 

enhance the interface stability between polyelectrolyte and electrode. Inorganic MMT 

particles dispersed well in PAMPS matrix increased the degree of physical 

cross-linking. The other is the inorganic MMT particles can increase the size of 

amorphous region of PAMPS and create the hole of ion transportation in the area of 

particle surface [26-27]. PAMPS embedded into Na-MMT lamellae and decreased the 

degree of crystallinity of polymer when the content of Na-MMT is relatively low, 

which is in favor of ion movement in polyelectrolyte. Meanwhile, Na-MMT has good 

ion-exchange capability which is also a contribution to ionic conductivity. The ionic 

conductivities decreased when Na-MMT loading increased, it should be attributed to 

the lack of interactions between the inorganic particles and the polymer for the sake of 

the crude dispersion. High ionic conductivity at room temperature and good 

mechanical properties or dimensional stability is the required fundamental 

performance of polyelectrolyte when used in electrochemical supercapacitor [28].  

According the research above, we can think that the superior combination properties 
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of PAMPS/MMT GPEs can be obtained are in the range of 5~7% with Na-MMT.  

3.5 Electrochemical performance of the PAMPS/MMT GPEs 

  CV was studied with a potential range of 0 ~ 1V at the scan rate of 20 mV/s. As 

seen in Fig.7 (a), there are no peaks caused by redox reactions in both GPEs, the 

shape of CV plots is close to a rectangular one, which suggests a nearly ideal behavior 

for the electronic double layer capacitor (EDLC). The resulting rectangle areas from 

PAMPS/MMT composite electrolyte is larger than that from PAMPS electrolyte, 

which reveals that specific capacitance value of activated carbon-based 

supercapacitors applying PAMPS/MMT GPE is higher than that of PAMPS GPE. The 

specific capacitance (C) from CV plots is defined by this equation: 

Vmv
SC
Δ

=
2                      (4) 

where S is the rectangle area, v is the scan rate, m is the weight of activated carbon in 

the electrodes, ΔV is the potential difference, respectively. The specific capacitance 

of PAMPS/MMT GPE based supercapacitor calculated by the equation (4) is 22 F g-1, 

which is higher than 20 F g-1 of the PAMPS GPE based supercapacitor. Considering 

that there is no pseudocapacitive material in electrode, the capacitance enhancement is 

mainly due to the better EDLC's behaviour, which means the PAMPS/MMT 

composite electrolyte is superior to the PAMPS polyelectrolyte being applied to EC. 

CV plots of EC assembled with PAMPS/MMT GPEs at different scan rates is 

presented in Fig. 7 (b). With the increase of scan rate, the CVs kept the shape of a 

rectangular and the current value is found to increase with increasing the scan rate, 

which is in accordance with the equation dtCdVI /=  of EDLC. The currents (I) are 
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very stable and unchanged through cycling, which indicates that the ionic in the 

solution entrapped in the polymer matrix transports smoothly. Fig.8 (a) shows the 

galvanostatic charge–discharge curves for the EC with the PAMPS, PAMPS/MMT 

composite polyelectrolyte and 4M KOH aqueous solution electrolyte at a current 

density of 10 mA g-1, respectively. Almost linear charge and discharge curves were 

observed, which corresponds to those of the ideal EDLC. It is also indicated that good 

electrode/electrolyte interface was formed in each experimental EC and that the 

experimental EC successfully worked as an EDLC. Moreover, the curves for all the 

three electrolytes were very similar, probably due to the high ionic conductivity and 

good contact with the electrode of the polyelectrolytes as well as the KOH aqueous 

solution electrolyte. The specific capacitance was calculated from the discharge curve 

of 4M KOH aqueous solution electrolytes, PAMPS/MMT composite electrolyte and 

PAMPS electrolyte are 25, 22 and 20 F g-1, respectively. The low values of the 

capacitances may be for the imperfection of the self-made activated carbon electrode. 

However, we still find that the capacitance of PAMPS/MMT GPE was closed to that 

of 4M KOH aqueous solution electrolyte, which implies the good transportation of the 

ion entrapped in PAMPS/MMT GPE. Comparing with PAMPS GPE, the higher 

capacitance of the composite polyelectrolyte means Na-MMT doped in PAMPS does 

in favor of improving ion transportation. Cycling performance is another critically 

important characteristic for evaluating the stability of EC. The discharging cycles at a 

current density of 0.2 A g-1 were tested. As seen from Fig.8 (b), the PAMPS/MMT 

GPE based EC exhibits a cycling stability of 90% retention up to 1000 cycles, which 
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is better than 70% retention of PAMPS GPE based EC. This result suggests that the 

PAMPS/MMT GPE is more stable under charge-discharge cycles and keeping good 

interfacial contact with the activated carbon electrodes. 

4 Conclusions 

  PAMPS/MMT composite hydrogel with high ionic conductivities were prepared 

successfully in the present of MBA cross-linker and KPS initiator. With KOH 

solution as the conducting salt, the electrochemical properties of supercapacitor with 

PAMPS/MMT as polyelectrolyte were also explored. The addition of Na-MMT can 

increase the ionic conductivities, tensile strength of PAMPS. When the content of 

Na-MMT is lower, MMT layers were exfoliated into PAMPS hydrogel 

homogeneously and the well-dispersed inorganic particles in polymer matrix can act 

as physical cross-linking points to make the higher mechanical properties. Meanwhile, 

the degree of crystallinity of PAMPS decreased with increasing the cross-linking, 

which is in favor of ion movement in polyelectrolyte and therefore the higher ionic 

conductivity was obtained. The MMT particles easy to form aggregation for too close 

each other when load increasing. These aggregates act as the point of stress 

concentration when stretching the hydrogel and make the tensile strength decreased. 

The same trend occurred in the influence of Na-MMT on the ionic conductivities of 

PAMPS/MMT for these aggregates hampered the ion transportation in the 

polyelectrolyte. The capacitor applying PAMPS and PAMPS/MMT GPE as 

electrolytes exhibits ideal behavior for the electronic double-layer capacitance. The 

specific capacitance and the cycling stability of PAMPS/MMT composite electrolytes 
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are enhanced in comparison with that of PAMPS. The capacitor performances are 

close related to the fabrication of the capacitor device including the electrode 

materials. PAMPS/MMT GPE has exhibited the properties in mechanical strength, 

ionic conductivity and thermal stability which are meeting with applied in solid 

supercapacitor. It should be a promising GPE for supercapacitor if further optimizing 

design of the device. 
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Fig.1 Schematic presentation of the experimental method 

Fig.2 Schematic presentation for the EC model  
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Fig.4 XRD patterns of PAMPS/MMT composite hydrogel with different proportion of 

Na-MMT  

Fig.5 TGA thermograms of PAMPS and PAMPS/MMT composite hydrogel  

Fig.6 (a) EIS of PAMPS/MMT GPEs, (b) the partial enlarge plots of EIS 

Fig.7 (a) CV plots of the EC based on PAMPS and PAMPS/MMT GPE, (b) CV plots of the 
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Fig.1 Schematic presentation of the experimental method 

 
 
 

 
Fig.2 Schematic presentation for the EC model 

 
 

 

4000 3500 3000 2500 2000 1500 1000 500

c

b

	
  

	
  

A
bs

or
ba

nc
e	
  
(%

)

Wavenumber	
  (cm-­‐1)

a 	
  P AMP S
b 	
  P AMP S /MMT
c 	
  MMT

a

 
 

Fig.3 FT-IR spectra of (a) PAMPS, (b) PAMPS/MMT composite hydrogel and (c)Na-MMT  
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Fig.5 TGA thermograms of PAMPS and PAMPS/MMT composite hydrogel 
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Fig.4 XRD patterns of PAMPS/MMT composite hydrogel with different proportion of Na-MMT 

 



21 
 

 
 

0.0 0.2 0.4 0.6 0.8 1.0
-­‐0.04

-­‐0.02

0.00

0.02

0.04

	
  

	
  

I	
  /
	
  A

U 	
  /	
  V

	
  P AMP S
	
  P AMP S /MMT

(a )

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

-0.1

0.0

0.1

 

 

I /
 A

U / V

 80mv/s
50mv/s 

 20mv/s
 10mv/s

(b)

 
Fig.7 (a) CV plots of the EC based on PAMPS and PAMPS/MMT GPE, (b) CV plots of the EC 

based on PAMPS/MMT GPE at different scan rates 
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Fig.8 (a) Galvanostatic charge–discharge curves of the EC with (1) PAMPS GPE, 

(2)PAMPS/MMT GPE and (3) 4M KOH aqueous solution electrolyte; (b) cycling performance of 
ECs based on PAMPS and PAMPS/MMT GPE at a current density of 0.2 A g-1 
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Table 1 Tensile strength of the PAMPS/MMT composite hydrogel with different proportion of 
Na-MMT 

Na-MMT (wt%) Tensile strength (MPa) 
0 6.9 

3% 7.2 
5% 8.3 
7% 8.9 
9% 7.9 

11% 6.3 
 
 
 
Table 2 Ionic conductivity of the PAMPS/MMT composite electrolyte with different proportion of 

Na-MMT 
Na-MMT (wt%) σ  (S/cm) 

0  6.30×10-3 
3%  2.87×10-2 
5%     5.91×10-2 
7%     4.83×10-2 
9%     4.23×10-2 

11%  2.86×10-2 
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1. Swelling capacity and ionic conductivity of PAMPS hydrogel as a function of KPS 

loading weights (Fig. S1) 

2. Swelling capacity and ionic conductivity of PAMPS hydrogel as a function of 

MBA loading weights (Fig. S2) 
3. Tensile strength of PAMPS hydrogel as a function of MBA loading weights (Fig. 

S3)  
 



 

 

  As shown in Figure S1., both the swelling capacity and the ionic conductivities of PAMPS 

hydrogel were all increased with increasing the content of KPS first, and then decreased with 

load increasing. It should be due to the molecular weight of PAMPS is increased with 

increasing the content of KPS when KPS in a small amount, and the larger macromolecule 

has more swell capacity which is contributed to the ionic conductivity of PAMPS hydrogel. 

As the consequential KPS load increasing, the capacity of polymerization would be increased 

for the higher concentration of free radicals, which results in the decreasing of molecular 

weight of PAMPS. The lower molecular weight of PAMPS has the lower swelling capacity 

and so decreased the ionic conductivity of PAMPS hydrogel. 
. 
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Figure S1. Swelling capacity and ionic conductivity of PAMPS hydrogel as a function of KPS 

loading weights 



  
 As shown in Figure S2., both the swelling capacity and the ionic conductivities of PAMPS 

hydrogel were all decreased with increasing the content of MBA. The cross-linking density is 

increased when increasing the content of cross-linking agent, and hindering the movement of 

chain segment of PAMPS. So the swelling capacity is decreased and the ionic conductivities 

of PAMPS hydrogel were decreased accordingly. 
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Figure S2.  Swelling capacity and Ionic conductivity of PAMPS hydrogel as a function of MBA 

loading weights 
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Figure S3. Tensile strength of PAMPS hydrogel as a function of MBA loading weights 

 
As shown in Figure S3., the tensile strength of PAMPS hydrogel is increased with 

increasing the contents of MBA. The linear molecule of PAMPS was transfer into the three 

dimensional network with the addition of cross-linking agent, and the enhanced cohesion 

strength of PAMPS is resist the relative slippage of the molecular chain when stretch PAMPS 

hydrogel.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 


