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The immune privilege of the central nervous system is indispensable for damage 

limitation during inflammation in a sensitive organ with poor regenerative capacity. 

It is a longstanding notion which has down the years acquired a lack of precision in 

its definition and a number of misconceptions. In this article we address these issues 

and re-define CNS immune privilege in the light of recent data. We show how it is 

far from absolute and how it varies with age and brain region. Immune privilege in 

the CNS is often mis-attributed wholly to the blood-brain barrier. We discuss the 

pivotal role of the specialization of the brain’s afferent arm in adaptive immunity, 

which results in a lack of cell-mediated antigen drainage to the cervical lymph nodes 

although soluble drainage to these nodes is well described. It is now increasingly 

recognized how immune privilege is actively maintained as a result of the 

immunoregulatory characteristics of the CNS resident cells and their 

microenvironment. 

 

 

Immune privilege down the ages 

 

Privilege: “a right, advantage, or immunity granted to or enjoyed by a person, or class of 

persons, beyond the common advantages of others” [1]. 

 

The concept of “immune privilege” in the central nervous system (CNS) has a long 

history. That antigens trapped within the brain parenchyma evade systemic 

immunological recognition has been shown as early as 1921 in Japan. Back then, Y 

Shirai observed that rat sarcoma grew well when transplanted into the mouse brain 

parenchyma, but not when implanted subcutaneously or intramuscularly [2]. Murphy and 

Strum extended these findings in 1923 by demonstrating that if recipient spleen was co-

transplanted with the foreign tumour in the brain parenchyma, it inhibited the tumour 

growth [3]. This showed that the survival of the foreign tumour within the brain 

parenchyma was occurring as a result of disconnection from the systemic immune 

system. These were the first indications of what was later to be termed “immunological 

privilege” by Billingham and Boswell [4]. Over the years, these observations have been 
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shown to hold true for tissue grafts [5], bacteria [6], viruses [7] and vectors [8], which all 

evaded immune recognition when delivered to the brain parenchyma. Around the same 

time as the brain’s “immune privilege” was being discovered, the blood-brain barrier 

(BBB) was under study, and the two concepts grew together. This had two consequences. 

First, the brain’s “immune privilege” assumed a more absolute meaning, rendering it too 

strong a descriptive term for the brain’s relationship with the immune system (Box 1). 

Secondly, “immune privilege” was inappropriately wholly attributed to the BBB (see 

previous article), whereas other features such as the specialization of afferent 

communication from CNS to nearby lymphatic organs and the nature of the CNS 

microenvironment are much more pertinent (Box 1). In this article, we aim to update the 

definition of the brain’s “immune privilege” in the light of current evidence. 

 

Absolute and relative immune privilege 

 

Privilege evokes a concept of advantage gained by an individual with respect to the 

common advantages of others (Oxford English Dictionary).  It is neither an absolute nor 

an immutable state.   The seminal experiments described above are entirely consistent 

with the concept of “immune privilege” – they do not infer or require any qualification of 

“absolute” or “partial” privilege since there was no evidence in these experiments that 

immune privilege is absolute. The “immune privilege” of the brain is certainly not 

absolute but relative to other organs. Also, Shirai’s rat sarcoma might have survived well 

in the brains of his mice since it was neoplastic. We now know that non-tumoral 

intracerebral xenografts do not survive, although their rejection is delayed [9]. 

 

Compartmentalization of immune privilege 

 

The central nervous system is organized into different compartments: the parenchyma 

proper, the ventricles containing choroid plexus and cerebrospinal fluid (CSF), and the 

outer meninges (Figure 1). In the same 1923 paper, Murphy and Strum had described 

how rejection of the foreign tumour within the brain occurred if it approached the 

ventricle [3]. This has now also been shown to be the case for other antigens. When 
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injected intracerebroventricularly (ICV), foreign tissue grafts were rejected [10], Bacille 

Calmette-Guerin (BCG) resulted in delayed-type hypersensitivity lesions in the choroid 

plexus [11], and influenza virus elicited humoral and cytotoxic T cell responses [7]. As 

far as adaptive immunity is concerned, the privilege of the CNS is therefore 

compartmentalized, being confined to the parenchyma. 

 

The relative immune privilege of the CNS also extends to the innate immune response 

[12]. Injection of lipopolysaccharide in the skin elicited neutrophil and monocyte 

recruitment within 2 hours. In the brain parenchyma, such an acute myelomonocytic 

infiltration did not occur. Monocyte recruitment was delayed to the third day after 

injection and only occurred with 10-fold higher doses of lipopolysaccharide (LPS); 100-

fold doses were needed for the density of brain-infiltrating monocytes to approach that 

seen in skin. There is evidence of compartmentalization of “innate immune privilege” as 

well. In contrast to brain parenchyma, ICV injection of LPS resulted in a 

myelomonocytic response in the choroid plexus identical to that seen in skin [12]. Also, 

injection of interleukin (IL)-1β or tumour necrosis factor (TNF)-α in brain parenchyma 

resulted in selective neutrophilic and monocytic infiltration respectively while a mixed 

infiltrate was observed when either cytokine was injected into skin [13]. It is now clear 

that “immune privilege”, involving both innate and adaptive immune responses, is 

limited to the CNS parenchyma proper. The immune reactivity of the ventricles, choroid 

plexus, meninges and circumventricular organs is similar to that of the periphery. 

 

Within the CNS parenchyma, there is evidence of further compartmentalization. When a 

standardized mechanical lesion was induced in murine spinal cord and cerebral cortex, 

larger numbers of neutrophils and macrophages were observed in spinal cord [14]. Also, 

the delayed neutrophil infiltration seen after intracerebral LPS challenge was restricted to 

white matter – it was not seen in grey matter [12]. 
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The immune response: afferent and efferent arms compared 

 

The apparent lack of communication between the CNS parenchyma and the peripheral 

immune system could be due to “privilege” in the afferent or efferent arms of the immune 

response, or both. Intracerebral injection of BCG [15] and adenovirus [7] was ignored by 

the peripheral immune system as shown by T cell and antibody response studies, 

suggesting that the afferent arm was deficient. By pre-immunizing animals with skin-to-

skin grafting before implanting the foreign skin graft in the brain parenchyma, Peter 

Medawar established that the efferent arm was relatively intact [5]. In his words, “it is 

concluded that skin homografts transplanted to the brain submit to but cannot elicit an 

immune state”. However one could argue that the circulating immunized leucocytes’ 

access to the intracerebral skin graft was facilitated by the tissue trauma sustained during 

implantation surgery. Therefore, Matyzak et al injected BCG in the brain parenchyma of 

rats and allowed the mild acute inflammatory response to subside and the blood-brain 

barrier to reform, before challenging the animals with BCG in adjuvant subcutaneously 

[6]. This resulted in a delayed-type hypersensitivity (DTH) response with bystander 

demyelination and axon damage, securing the hypothesis that the efferent arm was intact. 

These experiments showed that the afferent arm was responsible for most of the 

“adaptive immune privilege” observed in the brain. 

 

Afferent arm 

 

The afferent arm of the immune response involves antigen presentation to naïve T cells 

resulting in their priming and activation. In most tissues, antigen transport to draining 

lymph nodes and spleen is crucial in generating such a primary immune response, and 

occurs in two ways: (1) by the emigration of professional antigen presenting cells 

(APCs), dendritic cells (DCs) bearing antigens from the immune-challenged site to local 

lymph nodes, and (2) by the drainage of soluble antigens in lymph, representing cellular 

and fluid routes respectively (Figure 2). 
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Cellular route 

 

Immunocytochemical studies have also failed to demonstrate the presence of cells with 

the immunophenotype of DCs in the uninflamed brain parenchyma or perivascular space 

although they are present in the meninges and choroid plexus [16]. Indeed the uninflamed 

brain is incapable of priming naïve T cells in situ [17]. Once inflammation is established, 

DCs appear within the brain parenchyma [16] and a recent study has correlated the 

appearance of DCs with rejection of xenografts [18]. 

 

Although macrophages bearing myelin antigens have been described within cervical 

lymph nodes of monkeys with experimental autoimmune encephalomyelitis (EAE) and 

multiple sclerosis (MS) patients [19], there is no reliable evidence that inflammatory cells 

bearing CNS antigen migrate out of the CNS parenchyma. When living DCs are injected 

into the brain parenchyma they do not emigrate to local lymph nodes [20] but do 

following ICV injection or if excessively large numbers of cells in large volumes are 

injected intraparenchymally [21,22,23]. A critical component for the interpretation of 

these experiments is the recognition that the injected volumes must be sufficiently small 

so as not to overwhelm the limited extracellular volume of the brain parenchyma [24], 

must avoid the ventricles and meninges, and must limit damage to the brain tissue.  

 

Rather than migrating out of the CNS parenchyma to prime T or B cells in cervical lymph 

nodes, DCs accumulating in the inflamed CNS may do their job in situ. There is recent 

evidence that DCs isolated from the CNS of mice with proteolipid protein (PLP)-induced 

EAE are able to prime naïve PLP-specific T cells ex vivo in the absence of PLP peptide 

[25]. Whether this happens in vivo remains to be shown. The presence of lymphoid 

follicle-like structures within the less-immune-privileged meninges has been 

demonstrated in mice with progressive-relapsing EAE [26] and patients with secondary 

progressive MS [27]. These ectopic lymphoid organs were shown to harbour a network of 

follicular DCs and B cells, suggesting local maintenance of B cell responses. 
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Fluid route 

 

Soluble antigen drainage from brain parenchyma occurs and is well characterized. 

Although the brain lacks a conventional lymphatic system, 50% of radiolabelled albumin 

injected in the caudate nucleus was recovered from deep cervical lymph [28]. The 

pathway for this drainage is along perivascular spaces of capillaries and arteries, which 

are in continuity with the subarachnoid space [29]. From there, fluid drains through 

discrete channels in the cribriform plate into lymphatics in the nasal submucosa and thus 

cervical lymph [30]. 

 

In a series of experiments, Cserr and colleagues demonstrated that antigen injected within 

the brain parenchyma and ventricles drains to cervical lymph nodes, where it elicits an 

antibody response far superior to that achieved after intravenous or intralymphatic 

administration, yet failed to elicit a DTH or effective cytotoxic T cell response [31]. This 

indicates a skewing towards B cell and T helper 2-type responses. Soluble antigen might 

not even have to travel as far as the cervical lymph nodes to elicit an immune response. 

DCs present in the non immune privileged regions of the CNS such as the CSF [32] and 

meninges may take up antigen. It has been shown that labelled DCs injected into the CSF 

reaches the cervical lymph nodes where they preferentially target B cell areas, again 

indicating a skewing towards a humoral response [20]. Furthermore, there is evidence for 

a tolerizing effect of intracerebral soluble antigen. For example, an ICV infusion of major 

basic protein (MBP) resulted in protection against MBP-induced EAE [33]. This has been 

substantiated by a more recent study in which cervical lymph node cells isolated from 

mice injected with ovalbumin in the striatum were intravenously transferred to donor 

mice, effectively protecting them from an ear DTH response to the same antigen [34]. 

 

Therefore, unlike other tissues, the afferent arm of the immune response in the brain lacks 

a cellular pathway for antigen transport, which is heavily dependent on the fluid route 

(Figure 2). Interestingly, a similar situation has been observed in the anterior chamber of 

the eye, which is another “immune-priviliged” site [35]. Local phagocytic cells ingested 

fluorescent latex beads after injection in the anterior chamber of the eye and the dermis of 
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the ear pinna. However labeled uveal phagocytes did not migrate to regional lymph 

nodes, unlike their dermal counterparts. On the other hand, injection of soluble 

fluorescent ovalbumin in the anterior chamber resulted in its appearance in the draining 

lymph nodes [35]. Similar experiments in the brain will reinforce the dichotomy between 

the cellular and fluid routes of antigen access to the peripheral immune system, which is 

likely to be the strongest determinant of “immune privilege”. 

 

Efferent arm 

 

The efferent arm of the immune response to CNS antigens is also specialized to confer a 

degree of “immune privilege”, but once again this is relative rather than absolute. The 

entry of monocytes, B cells and T cells into the CNS is highly regulated and has been 

discussed in the previous article.  

 

Once antigen-specific T cells make it to the CNS parenchyma, they face a variety of 

formidable challenges before they can exert their effector function. The most significant 

obstacle is death by apoptosis. All cells in the CNS express fasL which results in 

apoptosis of incoming fas-positive T cells [36], irrespective of antigen specificity [37].  If 

they survive, T cells need to recognize their cognate antigen in the context of major 

histocompatibility complex (MHC). However constitutive expression of MHC is minimal 

in the normal CNS [38]. Once inflammation is established, upregulation of MHC occurs, 

although this is highly regulated in neurones [39]. T cells within the CNS parenchyma 

also face regulation by astrocytes, microglia and neurones. Astrocytes secrete 

unidentified soluble factors which inhibit T cell proliferation and cytokine production 

[40] or induce regulatory T cells [41]. During inflammation, microglia express B7-H1, a 

homolog of the costimulatory molecule B7 which interacts with T cell PD-1 and 

negatively regulates T cell activation and cytokine production [42]. They also upregulate 

indoleamine 2,3-dioxygenase [43], resulting in a microenvironment rich in 

immunoregulatory tryptophan metabolites [44]. Recent data shows that neurons secrete 

transforming growth factor (TGF)-β and make cell-to-cell contact with activated T cells 

converting them into regulatory T cells independent of their antigen specificity [45]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 
Despite such rigorous regulation, T cells are still capable of initiating disease or 

contributing to pathogenicity. 

 

Compared to T cells, B cells do not need to reach their target in the CNS parenchyma to 

exert their pathogenic effects. B cells in non-immune privileged CNS regions produce 

antibodies and the best testimony is the presence of unique oligoclonal bands in CSF, 

which are not present in serum, in a variety of inflammatory CNS disorders. We know 

that a germinal centre-like reaction occurs in the CNS [46] and the recently-described 

meningeal lymphoid neogenesis provides a putative anatomical location [26,27]. These 

antibodies may diffuse into the immune-privileged CNS parenchyma to exert their 

pathogenic effects. One of the ways in which antibodies exert their pathogenicity is by 

complement activation leading to lysis via terminal membrane attack complex formation. 

Neurones, as well as rodent (but not human) oligodendrocytes are particularly susceptible 

to such lysis since they express significantly lower levels of membrane complement 

regulators (such as CD35, CD46, CD55 and 59) compared to other nucleated cells [47].  

 

The innate immune system’s effector arm is also modified in the CNS, where microglia 

are the resident macrophages. They are of bone marrow origin and belong to the 

monocytic lineage; yet they have a downregulated phenotype in comparison with other 

tissue macrophages [38]; this is related to their location in the CNS microenvironment 

(Table 1). Once inflammation is established however, microglia upregulate most 

immunophenotypical markers depending on the inflammatory context. The exclusion of 

plasma proteins plays a part since microglia in BBB-deficient areas display a more 

activated phenotype [48,49]. Neurones and astrocytes play an important role in 

suppressing microglial behaviour by means of cell-to-cell contact and secretion of 

immunosuppressive factors (Box 2). Similar to macrophages elsewhere, microglia are 

sensitive to the effects of anti-inflammatory cytokines such as TGFβ1, IL-4 and IL-10 

[50]. However TGFβ1 is produced within the naïve and inflamed brain [51,52]; this 

cytokine has been shown to be important in downregulation of microglial responses 

minimizing inflammation and thus brain damage, for instance in prion disease [53].  
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Immune privilege in the inflamed CNS 

 

As mentioned in several instances above, the “immune privilege” of the CNS is severely 

undermined once inflammation is established. This may occur for several reasons: 

breakdown of the blood-brain barrier resulting in dilution of the immunosuppressive 

effects of the CNS microenvironment, local immunostimulatory effects of cytokines and 

chemokines, facilitation of antigen drainage to the periphery, appearance of DCs and 

establishment of tertiary lymphoid tissue in the meninges. 

 

Age-dependent effects 

 

Relative innate “immune privilege” in the brain is influenced by age. For instance 

microglial reactivity is increased at extremes of age. Recently-established immature 

microglia in the developing brain are phagocytic [54] and microglia in aged rodents [55] 

have an activated phenotype. In both cases, they are responding to dying neuronal 

elements which occurs as part of brain development or senescence. Another age-related 

phenomenon relates to acute neutrophilic infiltration of the brain parenchyma in response 

to variety of insults, which occurs readily in juvenile rodents but not postnatally or in 

adulthood [56,57] – this might explain the probable susceptibility of children to head 

injuries or CNS infections. 

 

Concluding remarks and future perspectives 

 

CNS immune privilege is indispensable for damage limitation during inflammation in a 

sensitive organ with poor regenerative capacity. Yet, it is important to understand that the 

“privilege” we are dealing with in the CNS does not relate to the absolute absence of 

immunological components but rather their elaborate regulation. This is similar to the 

concept of the BBB, which as discussed in the previous article, is a highly regulated 

rather than absolute structure. Box 1 lists what CNS “immune privilege” is and is not. 

The principal determinants of “immune privilege” include the specialization of the 

afferent arm of the adaptive immune response, which is skewed away from cell-mediated 
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towards soluble antigen drainage, and the regulated immunosuppressive 

microenvironment of the CNS.  

 

Although progress has been made, we do not yet possess a thorough understanding of the 

molecular mechanisms underlying the induction and maintenance of CNS “immune 

privilege”. The afferent pathway is almost certainly not only about the absence of cell-

mediated antigen egress; the soluble pathway may also result in active tolerization in 

cervical lymph nodes, which have been shown to be responsible for nasal mucosal 

tolerance [58], though how this happens is still unclear. Egress of T cells from the CNS 

has just been described [59]; it would be interesting to know whether centrally generated 

regulatory T cells follow this route. Several molecular interactions accounting for the 

inhospitality of the CNS to inflammation have recently been discovered, but this is 

probably the tip of the iceberg. For instance, triggering receptor expressed on myeloid 

cells-2 (TREM2), expressed by microglia, has been found to be essential for phagocytosis 

of apoptotic neurones in the absence of inflammation [60], but its ligand remains 

unknown. The mysterious qualities of the astrocyte-conditioned medium [61,40,62,63,41] 

is another holy grail. The “window of susceptibility” to acute inflammation in juveniles 

also remains unexplained, as does the activated phenotype of microglia in the aged brain. 

The picture is far from complete…. 
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TABLE 1 
 
 
Microglial and macrophage immunophenotype compared 
 
 
 
Molecule Resting microglia Macrophage References 
    
CR3 + ++  [48,64] 

FcR + +  [65,64] 

CD68 +/- +++  [66] 

MHCI + ++  [67] 

MHCII + ++  [68,67] 

DC SIGN - +/-  [69] 

CD80 - +  [70] 

CD86 - +  [70] 

CD40 - +  [71] 

LCA +/- ++  [72] 

CD4 + ++  [48] 

sialoadhesin - +  [49] 
 
 
Note: Once inflammation is established, microglia upregulate most immunophenotypical 
markers depending on the inflammatory context. CR3, complement receptor 3; FcR, Fc 
receptor; DC SIGN, dendritic cell-specific ICAM (intracellular adhesion molecule)-3 
grabbing nonintegrin; LCA, leucocyte common antigen; – no detectable expression; +, 
++ and +++ increasing levels of expression. 
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BOX 1 
 
 
What is immune privilege (not)? 
 
 
Immune privilege is: 

 relative 

 confined to CNS parenchyma 

 applicable to both adaptive and innate immunity 

 mostly a result of specialization of the afferent arm in adaptive immunity 

 active as well as passive 

 

 

Immune privilege is NOT: 

 absolute 

 wholly explicable by the blood-brain barrier 

 present in meninges, choroid plexus, circumventricular organs and ventricles 

 preserved after systemic immunization 

 preserved at extremes of age 

 preserved in the inflamed CNS 

 applicable to antibody production 

 wholly passive 
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BOX 2 
 
 
Regulation of microglial phenotype and function by CNS resident cells and their 

products 

 

ASTROCYTES 

 Unidentified soluble factors. Sievers’ group has shown that circulating 

monocytes and splenic macrophages can assume the ramified morphology and ion 

channel characteristics of microglia after culture on astrocytic layers or exposure 

to astrocyte-conditioned medium [62,63]. Soluble factors have also been 

implicated in astrocytic inhibition of stimulated microglial IL-12 production [61]. 

 

NEURONES 

 Neuronal activity suppresses the inducibility of MHC Class II by microglia as 

shown by sodium channel blocking experiments with tetrodotoxin. This was 

shown to occur via electrical activity-related neurotrophin secretion by neurones, 

and was partly due to agonism at the microglial p75 neurotrophin receptor [73]. 

 Neuronal CD200 – microglial CD200L interaction. CD200 is expressed by 

neurones and when knocked out resulted in spontaneous microglial activation and 

a worse disease outcome in EAE [74]. This occurs through microglial expression 

of CD200L [75]. 

 Neuronal fractalkine – microglial CXCR1 interaction. Fractalkine is a 

chemokine tonically released by neurones; knock-out of its receptor CX3CR1, 

which is expressed by microglia, resulted in an exquisite sensitivity of microglia 

to inflammation and resultant neurotoxicity [76]. 

 Neuronal CD47 – microglial signal regulatory protein (SIRP)-1α interaction. 

CD47 and SIRP1α are members of the immunoglobulin superfamily expressed by 

neurons and microglia respectively [77,78]. Ligation of SIRP1α has been shown 

to downregulate phagocytosis and LPS-induced TNFα production through 

phosphorylation of its ITIMs (immunoreceptor tyrosine-based inhibition motifs), 
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which in turn recruit and activate src homology phosphatases (SHP1 and SHP2) 

thus negatively regulating cell signalling cascades by dephosphorylation [79]. 

 Neuronal CD22 – microglial CD45 interaction. Neurones secrete CD22 which 

binds to microglial CD45, a transmembrane protein tyrosine phosphatase, and 

inhibits LPS-induced TNFα  production [80].  

 Various neuropeptides and neurotransmitters such as vasoactive intestinal 

peptide, calcitonin gene-related peptide, norepinephrine and α-melanocyte 

stimulating hormone have been shown to be immunosuppressive [81]. 

 

ASTROCYTES & NEURONES 

 Prostaglandins are synthesized by both astrocytes [82] and neurones [83]. 

Prostaglandin E2 downregulates inducible microglial activation and cytokine 

expression [84]. 15-deoxy-prostaglandin J2, a natural PPARγ (peroxisome 

proliferator-activated receptor-γ) agonist arising from the non-enzymatic 

conversion of prostaglandin D2, downregulates microglial LPS-induced nitric 

oxide and cytokine production and IFNγ-induced MHC Class II upregulation 

[85].  
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Legend to Figure 1 
 
Central nervous system compartments. Brain parenchyma is bathed in CSF produced 
by the choroid plexus, a specialized vascular organ situated in the ventricular system. 
CSF in the ventricles is continuous with CSF in the subarachnoid space between the outer 
surface of the brain and the outer meninges. Circumventricular organs are brain regions 
lacking a blood-brain barrier. 
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Legend to Figure 2 
 
The immune arc in CNS parenchyma and periphery compared. An adaptive immune 
response is generated by the afferent arm of the adaptive immune system. Typically 
antigen reaches DCs in the draining lymph nodes via soluble (green) or cellular (yellow) 
routes. Soluble antigen drains by bulk flow via lymphatic channels. Alternatively cells in 
the tissue such as local immature DCs or other leucocytes ingest antigen and transport it 
to the draining lymph nodes. Whichever way the antigen reaches the lymph nodes, it is 
there presented to naïve T cells and B cells by professional antigen presenting cells such 
as mature DCs. This results in a priming of antigen-specific T cells and B cells. The 
efferent arm of the immune response (red) involves the traffic into the tissue of cells of 
the innate (neutrophils and macrophages) and adaptive (T cells and B cells activated via 
afferent arm) immune systems. Note: * CNS refers to parenchyma only since the immune 
arc in non-parenchymal sites such as meninges shares similarities with peripheral tissues. 
Width of arrows is directly proportional to activity of involved arm, while broken arrows 
(║) represent absent or non-detectable activity. +/++ reduced, +++ robust, - absent or 
non-detectable. 
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