
Scalable Keyword Search over Relational Data Streams by Aggressive Candidate
Network ConsolidationI

Savong Boua, Toshiyuki Amagasaa, Hiroyuki Kitagawaa

aCenter for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan

Abstract

Keyword search over relational streams is useful when allowing users to query on streams without understanding the
details about the streams and query language as well. There have been several research works on this direction, and
the state-of-the-art approaches exploit Candidate Networks (CNs), which are schema-level descriptions of possible
joining networks of tuples, and generate query plans based on CNs. However, in fact, the performance of these ap-
proaches seriously degrades in particular when the maximum size of CNs (Tmax) and/or the number of query keywords
are large due to the explosive increase in the number of CNs. To cope with this problem, we propose a novel query
plan called MX-structure to consolidate CNs as much as possible. We suppress explosive blowup of nodes in query
plans by consolidating all common edges among CNs. The experimental results prove that the proposed algorithm
performs much better than the state-of-the-art approaches.

Keywords: Keyword search, relational streams, candidate network

1. Introduction

With the recent trends of Cyber Physical Systems [11,
22], Internet of Things [10, 27], etc., the number of
real-time information sources has been explosively in-
creasing. Besides, it has become common to extract5

information from various social media, such as Twit-
ter and Facebook, in real-time for making analysis of
diverse social activities. Such stream data sources can
typically be modeled as relational streams, where struc-
tured records (relational tuples) are transmitted. There-10

fore, the importance of query processing over relational
streams has been increasing.

When querying relational streams, keyword search is
considered to be an attractive and practical approach
due to several reasons. One of the major reasons is that15

users do not need to learn neither (potentially) compli-
cated query language, like CQL [5], nor the schemas
of streams being queried, which are also very compli-
cated in many real applications. Instead, what they only
need to do is to give several query keywords. So far,20

keyword search over permanently-stored relational data

IThis work is an extend version of a conference paper “An Im-
proved Method of Keyword Search over Relational Data Streams by
Aggressive Candidate Network Consolidation. DEXA (1) 2016: 336-
351”.

[23, 21, 26, 15, 4, 14] has been extensively studied, but
only a few works have addressed keyword search over
relational streams [19, 24].

In the works [19, 24], they employ candidate25

network-based approach for improving query perfor-
mance. Specifically, for a given set of query keywords
and a parameter that defines the maximum size of re-
sulting networks of tuples (Tmax), they first enumerate
all candidate networks (CNs) that represent all possi-30

ble combinations of keyword occurrences on join paths,
and the generated CNs are merged to generate a query
plan. Then, the actual streams are processed according
to the query plan. More precisely, in S-KWS [19], a
set of CNs are merged only if they share at least one35

leaf node called root, and possible sub-trees are merged
to remove redundant processing as much as possible.
In SS-KWS [24], common partial networks are merged
more aggressively from every leaf node of CNs, thereby
generating more compact query plans.40

However, it should be noted that the performance of
S-KWS and SS-KWS considerably degrades when the
number of query keywords and/or network size (Tmax)
are increased. The increase of these two parameters
causes rapid increase in the number of CNs, which re-45

sults in a lot of common partial networks remain unin-
tegrated. To exemplify the problem, let us take TPC-H

Preprint submitted to Elsevier July 30, 2019



dataset [2] as an example. When the number of key-
words and Tmax are increased from four to five, the num-
ber of CNs increases from 3,600 to 85,803 [24]. Like-50

wise, the total number of edges in the query execution
plans exponentially increases from 4,276 to 73,596 in
S-KWS and from 7,486 to 222,040 in SS-KWS. (More
detailed discussion can be found in Section 5.2.) Thus
the performance of S-KWS and SS-KWS would dete-55

riorate in particular when dealing with a lot of query
keywords and/or large-scale relational streams consist-
ing of many relations. As reported in [13], the average
query length to the search engines has been increasing.
For example, the ratio of queries containing more than60

five words has increased by 10% every year, while that
of single keyword queries has decreased by 3%.

How can we cope with such exponential blow up of
CNs and the complication of query plans? If we con-
sider the edges in CNs, each of them can be associated65

to one of the primary/foreign-key relationships between
two tables, whose number is in general small. In other
words, CNs include intensive duplicates of edges rep-
resenting the same primary/foreign-key relationships in
the schema. In the above example, when the number of70

keywords and Tmax are increased from four to five, the
total number of unique edges in all CNs grows linearly
from 1,088 to 3,536. Therefore, we can cope with the
problem of CN’s exponential blow up, if we consolidate
the edges representing the same primary/foreign-key re-75

lationship into one edge when generating a query plan.
It will lead to great performance improvement.

This paper proposes a novel approach to processing
keyword search over relational streams by taking into
account the above idea. Specifically, an MX-structure is80

proposed to consolidate common edges in different CNs
as much as possible. The experimental results reveal
that the proposed approach greatly outperforms compar-
ative methods in both CPU running time and memory
usage.85

2. Problem Statement

In this section, we first introduce keyword search on
relational databases. As a common basis, graph repre-
sentation of a relational database is used to define the
semantics of keyword search [25]. In a data graph,90

each node represents a tuple, and an edge represents
a primary/foreign-key reference between two tuples.
Now, let us assume a relational schema and a database
that conforms to the schema. Keyword search on the
database is to find all minimal total joining networks of95

tuples (MTJNT) [15], which is defined in Definition 1.

Definition 1. Given a set of user-specified query key-
words, {k1, k2, . . . , kn}, keyword search on the database
is to find all minimal total joining networks of tuples
(MTJNT) [15] that meet the following conditions:100

• Total: All keywords are contained in each joining
network of tuples.

• Minimal: Removing any tuple from a joining net-
work leads to loss of eligibility for query results.

Figure 1(c) shows an example of MTJNT. Note that105

the maximum size of joining networks is bounded by
parameter Tmax.

In contrast to conventional relational data, relational
streams [5] can be modeled as possibly unbounded se-
quences of relational tuples that conform to relational110

schemas. In other words, each tuple in a stream can be
represented by a pair of 1) a relational tuple and 2) a
timestamp of a discrete and ordered time domain, e.g.,
integer. Thus tuples are regarded that they arrive accord-
ing to their timestamps. Figures 1(a) and 1(b) illustrate115

a sample schema and its instances.
When dealing with (relational) streams, we often use

sliding windows to convert an infinite stream of tuples
to a relation of finite tuples. In such window semantics,
two tuples can be joined only if both tuples are in the120

sliding window.
Having defined relational streams and sliding win-

dows, keyword search over relational streams is defined
in Definition 2.

Definition 2. Given a set of query keywords125

{k1, k2, . . . , kn}, a maximum network size Tmax, and
a window specification W, keyword search over
relational streams continuously:

• Reports new MTJNTs when new tuples are deliv-
ered.130

• Invalidates the affected MTJNTs due to aging of
tuples.

3. Existing Works

S-KWS [19] and SS-KWS [24] are the predecessors
of this work. In this section, we briefly overview these135

works.

3.1. Overview

In S-KWS and SS-KWS, the process of keyword
search on relational streams comprises two main steps:
preprocessing and filtering steps as shown in Figure 3.140

2



(a) Schema. (b) Instances.

(c) All partial results that need to be kept for future evaluating as streams of tuples arrive.

Figure 1: An example of keyword search “Tokyo, Mouse” on relational streams in Figure 1(b). Notice that Tmax is set to three. The joining networks
of tuples (JNTs) in red box are MTJNTs because they contain all query‘s keywords, while the rests are not MTJNTs as shown in Figure 1(c).

Preprocessing step Given a schema, a set of query
keywords, and Tmax, all Candidate Networks
(CNs) [19, 24] are generated. Candidate Network
(CN) is defined in Definition 3.

Definition 3. Given a schema, a set of query key-145

words, and Tmax, a Candidate Network (CN) is a
tree, where:

• Each node represents a relation.

• Each edge represents a relational join opera-
tion.150

• All CNs must conform to the concept of
MTJNT [15].

Figure 2 shows all CNs that are generated from
schema in Figure 1(a) for relational keyword
search “k1, k2”. In each CN, each node represents155

a tuple set, and line linked between two nodes rep-
resents their relationship. Only one single node
(tuple set) is also a CN as long as it contains all
keywords of the given query. For example, in CN
1, node (tuple set) “C{k1k2}” refers to all tuples160

from table “Customer” that contain both keywords
“k1” and “k2”. In CN 5, node “PS{}” is referred to
all tuples from table “Purchase” that does not con-
tain any keyword in relational keyword search “k1,
k2”. Then a query plan is created by combining all165

CNs.

Filtering step In this step, the query plan is evalu-
ated over relational streams. When new MTJNTs

are detected due to arrivals of new tuples, they
are reported. On the other hand, expired tuples170

are removed by using either eager or lazy ap-
proaches [19].

Figure 2: All CNs created from schema in Figure 1(a) for query
“k1, k2”. Notice that the label under each node is a tuple set, and “C”
is referred to table “Customer”, “PS” is referred to table “Purchase”,
and “P” is referred to table “Product”. The keyword inside the curly
bracket is referred to the keyword of the given query that each node
contains. Notice that, for this example, Tmax is set to 3.

3.2. S-KWS

S-KWS [19] is one of the pioneering works for this
search framework. In this work, for each CN, the root175

node is defined as the node containing one chosen query

3



Figure 3: General framework.

keyword. Then, left-deep operator tree is created for
each CN.

To improve performance, they propose a query plan,
called an operator mesh, by grouping all left-deep oper-180

ator trees that share the same root into a cluster so that
all common join operators can be consolidated, result-
ing in improved performance by sharing common oper-
ations on the same data. For example, suppose we have
keyword search, {k1, k2}, over relational streams whose185

schema is shown in Figure 1(a), and Tmax is set to three,
all CNs are shown in Figure 2. Suppose that the root
node is chosen as a node that contains query keyword
k1. Then, an operator mesh is created by combining all
CNs into different clusters as shown in Figure 4.190

When processing relational streams, all partial results
are cached in each operator’s buffer for efficient retrieval
of matched results. However, caching all partial results
is the main performance bottleneck due to its high mem-
ory cost.195

Figure 4: Operator mesh that has several clusters created from all CNs
in Figure 2. Notice that black-filtered circles are root nodes.

3.3. SS-KWS

SS-KWS [24] is a successor of S-KWS and can be re-
garded as the state-of-the-art approach. The novel idea
of SS-KWS is to aggressively merge more sub-networks
in CNs not only focusing at a single leaf, but also at200

all leaves. Unlike S-KWS, the root is the center node
(the node with the shortest paths to all leaf nodes) of
the CN. Besides, instead of the operator mesh, a query
plan, called a lattice, is created. It combines all CNs
by sharing common sub-trees except for the root nodes205

in CNs as much as possible. If Tmax is at least four,
some processing is shared among CNs in the lattice.
However, if Tmax is set to smaller than four, no CNs
can share processing. In the same above example where
Tmax is set to three, the lattice for all CNs in Figure 2 is210

shown in Figure 5. Nodes marked with double lines are
root nodes; black colored nodes are leaf nodes; and the
rests are other non-leaf nodes. For node C{k1k2} acts as
both root and leaf node. As can bee seen, even though
all CNs are consolidated into a lattice, no sub-trees can215

be shared, which means no process can be shared (e.g.,
common edge P{k1} − PS {} in CNs 11 and 12, and edge
P{k2} − PS {} in CNs 5 and 12 are not consolidated).

To reduce partial results, SS-KWS proposes
selection/semi-join approach by dividing the buffer of220

each node into three sub-buffers: N (not joinable), W
(waiting), and R (ready). It adopts a bottom-up probing
sequence. If the tuple is joinable with other tuples, it
is stored in sub-buffer W; otherwise, in N. If MTJNT
of any CN is detected, all related tuples are moved225

to sub-buffer R. Thus SS-KWS successfully reduces
memory usage compared to S-KWS.

Figure 5: Lattice for all CNs in Figure 2

4



Figure 6: An example of keyword search “Tokyo, Mouse” on rela-
tional streams in Figure 1(b) by using SS-KWS approach.

3.4. Scalability Issues in Existing Approaches

We discuss the scalability issues of these approaches.
As a common problem, the number of CNs grows ex-230

ponentially as the number of keywords and/or Tmax in-
crease. This gives a significant impact on both time and
space.

In S-KWS, partial results are maintained in the
buffers in an operator mesh. Due to the insufficient shar-235

ing of the common sub-trees in CNs; e.g., in the op-
erator mesh, a lot of edges connecting the same tables
are not consolidated, because they are either in differ-
ent clusters or do not have the same root node. Conse-
quently, in query processing, a lot of partial results have240

to be duplicated in buffers and need to be processed in-
dependently.

The problem of the insufficient low sharing of the
common sub-trees also occurs in SS-KWS because it
is impossible to consolidate internal common paths be-245

cause 1) sharing is only allowed for common sub-trees,
and 2) root nodes are not allowed to be shared. There-
fore, the number of unconsolidated paths grows rapidly
as the number of CNs grows. For the same reason as dis-
cussed above, such duplicated paths cause high memory250

consumption in the internal buffers and also cause high
computational cost for duplicated intermediate results.

For example, by using S-KWS, to process keyword
search “Tokyo, Mouse” on relational streams in Fig-
ure 1(b), all partial results shown in Figure 1(c) need255

to be kept for future incoming tuples. As can be seen,
the partial results are quite a lot compared with the in-
coming stream tuples. Similarly, if SS-KWS is used, the
partial results that need to be kept are smaller as shown
in Figure 6. Though, the tuple with timestamp four260

is duplicated three times for different matching evalu-
ation purposes. The total number of such evaluations
increases if the number of keywords increases and Tmax

Figure 7: Example of processing keyword search “Tokyo, Mouse” on
relational streams in Figure 1(b) by using the proposed approach. Red
label represents matchability to CN 9, and blue label to CN 8.

becomes longer.

4. Proposed Approach265

4.1. Main Ideas

For the sake of easy detection of matched results, the
existing approaches either keep all partial results sepa-
rately or duplicate tuples multiple times, which leads to
very poor performance. We observe that if all partial re-270

sults are consolidated together without any duplicate tu-
ples, performance will be less impacted by the length of
queries because unnecessary duplicate evaluations can
be largely reduced . The proposed approach is based on
this idea. The proposed approach keep all partial results275

in a labeled graph with each label representing matcha-
bility to each CN. Moreover, matched results are tracked
by the labels.

For example, in the proposed approach, to process
keyword search “Tokyo, Mouse” on relational streams280

in Figure 1(b), all partial results are kept together as
shown in Figure 7. As can be seen, no tuples are dupli-
cated, and each tuple is evaluated only one time. More-
over, matched results can be easily detected through la-
bels of connected tuples. For example, the network of285

three connected tuples marked by the red label (marked
in the red-broken-line box) is detected as a matched re-
sult because it contains all keywords and conforms to
CN 9.

4.2. Overview290

Our proposed framework for keyword search over re-
lational streams has the same general processing frame-
work as the existing approaches [19, 24] that involve
two main steps as explained in Section 3. The first step
is to create all CNs from the given keyword search and295

5



schema of relational streams. Then, a query plan is cre-
ated by combining all CNs together for efficient pro-
cessing. In the second step, the query plan is directly
evaluated against the incoming relational streams to find
the query results. Our proposal is to create a better query300

plan. For this purpose, we propose a novel query plan
representation, called MX-structure (maximal-sharing
structure), that combines all CNs by consolidating all
common edges. By MX-structure, we can avoid re-
dundant nodes and edges to be expanded. To enable305

the processing of MX-structure over relational streams,
we introduce fine-grained node buffers and branch maps
for managing existing partial/full query results. To deal
with expiration of tuples, we adopt lazy approach [19]
where expired tuples are removed when node buffers are310

probed.

4.3. MX-Structure

First, we introduce the proposed MX-structure by
starting from its construction as follow. First, each CN
is marked by one unique ID, which is used to detect315

its matched MTJNTs. In each CN, the root node (and
the output node as well) is determined as the centered
node (the node with shortest paths to all leaf nodes).
Then, all CNs are merged in such a way that all edges
are unique; e.g., edges in MX-structure are created only320

for different combinations of nodes regardless of their
positions (root or leaf). Such information needs to be
maintained as well. In the sequel discussion, we denote
by () a leaf node and by [] a root node. Notice that,
in MX-structure, each source node and each edge repre-325

sent selection operation and join operation between two
connected nodes, respectively. MX-structure is defined
in Definition 4.

Definition 4. Given a set of CNs, MX-structure is a la-
beled graph that is generated by combining all CNs, and330

consists of:

• Nodes: Represent relations.

– Root nodes: Represented by []. The numbers
inside [] represent IDs of the CNs which in-
clude this node as the roots.335

– Leaf nodes: Represented by (). The numbers
inside () represent IDs of the CNs which in-
clude this node as leaf nodes.

– Normal nodes: Represented by nodes that do
not have both [] and () marks.340

• Edges: Represent relational join operations.

Algorithm 1 MX-structure Construction
Input: CNs

1: Initialize MX-structure MX
2: for each CN do
3: for each edge do
4: if edge not exists in MX then
5: add that edge into MX
6: end if
7: add id of that CN of that edge in MX;
8: if each node is either root or leaf node then
9: add id of that CN into MX to mark leaf or root

node of CN.
10: end if
11: end for
12: end for

• Labels of Edges: Represent the sets of CNs that
contain the edges.

The pseudo code to construct MX-structure is shown
in Algorithm 1. Basically, all CNs are added to an MX-345

structure one by one. When adding a new CN, we take
each node/edge and check its existence; we add one
only if it has not been added yet. Next, ID of the CN is
added to each of its nodes/edges in MX-structure. The
information about each CN’s root and leaf nodes is also350

maintained.
Figure 8 illustrates an example of MX-structure for

all CNs in Figure 2 (Notice that all CNs in Figure 2
are generated for keyword search “k1, k2” on relational
streams whose schema is shown in Figure 1(a)). Nodes355

marked with double lines show root nodes, and black
nodes are leaf nodes. The label on each edge represents
the set of IDs of the corresponding CNs. The numbers
in () and [] are the IDs of CNs corresponding to the
leaf and root nodes, respectively.360

Figure 8: MX-structure for all CNs in Figure 2

6



Figure 9: Node buffer of node C{k1} of MX-structure in Figure 8

4.4. Query Evaluation in MX-Structure

To evaluate queries over relational streams using
MX-structure, we need to track the matching status of
each tuple to the respective CNs. For example, let
us look at Figure 8. If all joins between all edges365

(P{k1}-PS{}-P{k2}) of CN 12 are detected, tuples that
contribute to form MTJNT of CN 12 need to be out-
put as a query result. This is allowed by the fine-
grained status management of (existing) tuples using
node buffers. More precisely, for each incoming tuple,370

its join-ability is checked according to the probing se-
quence, and is stored in an appropriate sub-space in a
sub-buffer w.r.t. the corresponding CN, which is allo-
cated dynamically when necessary. Thus the proposed
scheme achieves better performance while consuming375

less memory space.

4.4.1. Node Buffers

Several concepts are important to understand node
buffers of MX-structure. Statuses “not joinable” and380

“joinable”, “partially matched”, and “fully matched” of
a tuple are defined in Definitions 5, 6, and 7, respec-
tively.

Definition 5. The status of a tuple in a node is marked
as “not joinable” if it cannot be joined with other tuples385

in the child nodes of any CN. Otherwise, its status is
marked as “joinable” w.r.t. one or more CNs.

Definition 6. A tuple with “joinable” status is consider
as “partially matched” to one or more CNs if it is not in
the MTJNTs of those respective CNs.390

Definition 7. A tuple with “joinable” status is consider
as “fully matched” to one or more CNs if it is in the
MTJNTs of those respective CNs.

For example, in Figure 7, tuples with timestamp val-
ues 1, 2 and 4 have the “fully matched” status to the395

CN of the MTJNT, which is marked by red broken-line
box. Similarly, tuples with timestamp values 4, 7 and
5 have the “fully matched” status to CN of the MTJNT,
which is marked by green broken-line box. However,
tuples with timestamp values 6 and 7 have the “par-400

tially matched” status to the CN, which is marked by
red edge. Tuples with timestamp values 2 and 3 have the
“partially matched” status to the CN, which is marked
by green edge.

In MX-structure, each node buffer is divided into two405

sub-buffers, N and WR. Sub-buffer N is for storing tu-
ples that are not joinable, while WR is for storing tuples
that are joinable with other tuples. Moreover, sub-buffer
WR is divided into sub-spaces according to the CNs it
belongs to. Each sub-space records joinable tuples to its410

matched CNs. In the following discussion, we denote
∼n as the sub-space for tuples that are fully matched (as
part of the complete query results) w.r.t. CN n, whereas
n as the sub-space for tuples that are partially matched
(not part of the complete query results) w.r.t. CN n.415

The table in Figure 9 shows the buffer of node C{k1} of
MX-structure in Figure 8. As can be seen, node C{k1}
appears in CNs 4 and 5. For this reason, some sub-
spaces are created in sub-buffer WR; e.g., {4,∼5}means
that tuples partially match CN 4 and fully match CN 5.420

Note that we dynamically create sub-spaces when nec-
essary to avoid the allocation of unnecessary (unpopu-
lated) sub-spaces.

4.4.2. Probing Sequence
425

To systematically evaluate queries, for each incoming
tuple, we check its joinability with other existing tuples
in the node buffers in other child and/or parent nodes,
and such probes are performed in the leaf-to-root di-
rection; if a new tuple arrives at a leaf node, then we430

probe its parent nodes; otherwise, we first probe the
child nodes, then probe the parent nodes. More pre-
cisely, when probing child nodes, we probe existing tu-
ples in both sub-buffers N and WR if the nodes being
probed are at the leaf level, but do so only for WR if435

the nodes are at non-leaf levels. If it turns out that
the incoming tuple is not joinable with any other tu-
ples in the node buffers in the child nodes, then cur-
rent probing is finished, and the tuple is stored in sub-
buffer N (not joinable); otherwise, it is stored in a sub-440

space in sub-buffer WR that corresponds to the CN(s) to
which the incoming tuple contributes to form the result-
ing MTJNT(s). Then, only parent nodes w.r.t. those cor-
responding matched CNs will be subsequently probed.

7



If the incoming tuple contributes to form MTJNT(s)445

of CN(s), the CNs become active. The set of active CNs
is defined as follows:

cnactive = cnedge ∩ (cnlea f ∪ cnecsubspace) (1)

where cnedge is the set of IDs of CNs assigned to the
connected edge(s) being traversed, cnlea f is the set of450

IDs of CNs assigned to the leaf node(s) if the probed
child node(s) is a leaf node, and cnecsubspace is the set of
IDs of CNs of non-empty sub-spaces in the child node.
Note that, if the probed child node is a non-leaf node,
cnlea f is empty. Similarly, in sub-buffer N, cnecsubspace455

is also empty. Determining active CNs is beneficial to
avoid unnecessary probings due to the fact that inac-
tive CNs in child nodes can never be active in parent
nodes. Thus, once active CNs are determined by prob-
ing child nodes, only the parent nodes that are connected460

via edges of active CNs are probed, thereby avoiding
unnecessary probings at the upper levels.

Let us look at Figure 10(a) as an example. Notice
that only node buffers that store tuples are shown for
simplicity. Let us assume that tuples t1 and t2, which465

are 1) of tables P and PS, resp., 2) t1 contains key-
words k1 and t2 does not contain any query keyword,
and 3) they are joinable with each other and arrive in
this order. When t1 arrives, we immediately probe the
parent nodes PS{} and PS{k2}, because P{k1} is at the470

leaf level. As a result, it turns out that t1 is not join-
able because of empty node buffers in PS{k2} and PS{},
and is stored in the sub-buffer N in P{k1}. Afterwards,
when t2 arrives, we probe the child nodes, C{k1}, P{k1},
C{k2}, and P{k2}. Since buffers of nodes C{k1}, C{k2},475

and P{k2} are empty, probing is ended. When probing
P{k1}, t2 turns out to be joinable with t1 w.r.t. CNs 11
and 12.

By applying the formula explained above1, we get
cnactive = {11, 12}, so 1) t1 is moved to the sub-space480

{11, 12} in sub-buffer WR, and 2) t2 is stored in sub-
space {11, 12} in sub-buffer WR in the respective nodes
as shown in Figure 10(b). For subsequent probings of
parent nodes, only active CNs (CNs 11 and 12) are
taken into consideration. In this case, PS{} has no parent485

nodes, so probing is finished.

4.4.3. Branch Map

In MX-structure, in many cases, root/output nodes are

1We have cnedge = {11, 12} (edge PS{}-P{k1} belongs to CNs 11
and 12), cnlea f = {10, 11, 12} (node P{k1} is a leaf node of CNs 10,
11, and 12), and cnecsubspace = {} (t1 is currently in sub-buffer N). As
a result, we get cnactive = {11, 12}.

(a) When t1 arrives, it is stored in P{k1}. When t2 arrives, it probes
P{k1}.

(b) t2 can be joint with t1, so move them to subspace {11, 12} of
their respective nodes

Figure 10: Example of probing sequence.

internal (non-leaf) nodes in one or more CNs. In addi-490

tion, since probing proceeds in the leaf-to-root direc-
tion, we need to maintain for each tuple in the root
node its matching status so that we can output new
MTJNTs as soon as they are detected. To this end, we
use a map called branch map to track whether there are495

matched tuples in all nodes from all leaf nodes up to the
root/output node of any CN. More precisely, a branch
map is attached to each joinable tuple in the root/output
nodes. A branch map has several bits corresponding to
the branches from the leaf (or leaves). When all bits are500

set to one, the MTJNT that contains the root tuple is out-
put as a result. For example, node PS{} in MX-structure

8



(a) When t3 arrives, it probe PS{}

(b) t3 can be joint with t2, so move t3 and t2 to subspace {5, 12}
and {5, 11, 12} of their respective node

Figure 11: Example of probing sequence

in Figure 8 is the root node of CNs 5, 11, and 12, and
it has two branches for each CN. Figure 13 shows the
branch maps of this node (PS{}). Since each CN has two505

leaf nodes, each map has two bits which are initialized
by zero.

Continued from the example in Figure 10(b). Since
tuples t1 and t2 of edge PS{}-P{k1} that belongs to CNs
11 and 12 are joinable, the first bits of CNs 11 and 12510

corresponding to edge PS{}-P{k1} are set to one.
Suppose tuple t3 in P{k2} has arrived (Figure 11(a)),

and is joinable with t2 w.r.t. active CNs 5 and 122. Then,

2We have cnedge = {5, 12} (edge P{k2}-PS{} belongs to CNs 5 and

Figure 12: CN 12 is matched, so its MTJTNs is returned as query
result. All related matched tuples are moved to the appropriate sub-
space.

t3 is kept in subspace {5, 12} of node P{k2} as explained
earlier (Figure 11(b)). Moreover, t2 is now joinable to515

CNs 5, 11, and 12, so it is moved to subspace {5, 11, 12}
of node PS{}. Since node PS{} is the root node, the sec-
ond bits corresponding to edge P{k2}-PS{} in the exist-
ing branch map for active CNs (CNs 5 and 12) are set to
one. Since all bits of CN 12 are set to one, CN 12 is de-520

tected as matched, and its matched MTJNT is returned
as a query result. Then, all matched tuples are moved to
the appropriate sub-spaces of their fully matched CN 12
as shown in Figure 12 for subsequent processing.

Figure 13: Branch maps for node PS{} of MX-structure in Figure 8

12), cnlea f = {5, 12} (node P{k2} is a leaf node of CNs 5 and 12),
and cnecsubspace is empty (t3 has just arrived). As a result, we get
cnactive = {5, 12}.

9



4.4.4. Dynamic Generation of Sub-spaces525

As explained earlier, we dynamically populate sub-
spaces when necessary because 1) generating all pos-
sible sub-spaces requires huge memory spaces, and 2)
only a few sub-spaces are used in query processing. To530

this end, we populate a new sub-space according to the
following formula:

cnnewsubspace = cnoldsubspace ∪ cnactive (2)

where cnnewsubspace and cnoldsubspace are respectively the
new sub-space and the existing sub-space marked by535

IDs of CNs for each joinable tuple. Notice that, if
tuple just arrives or is currently in sub-buffer N, its
cnoldsubspace is empty.

4.4.5. Dynamic Maintenance of MX-Structure
Purging the expired tuples is important in query pro-540

cessing with MX-structure. We employ a lazy approach
as proposed in [19]; i.e., expired tuples are deleted dur-
ing probing node buffers when their timestamps are
known to be expired. The detailed procedure is as fol-
lows:545

1. Delete the expired tuples from the node buffers.
2. For each expired tuple, we determine the CN(s)

where the expired tuple belongs, and, for each CN,
we update the statuses of all tuples that are joinable
to the expired tuple as follows:550

(a) If there are joinable tuples in the parent node
in the CN, we move the tuples that are join-
able with the expired tuple to sub-buffer N
(not joinable). Also, if they contain branch
maps, we modify the bit corresponding to the555

affected branch from 1 to 0.
(b) If there are joinable tuples in the child

node(s) in the CN, we move the tuples that
are joinable with the expired tuple to sub-
space of “partially matched” if their status is560

“fully matched”.

4.5. Algorithm Details

The proposed algorithm is shown in Algorithm 2.
This algorithm works as follows. If the incoming tu-
ple, t0, belongs to a non-leaf node, it probes child nodes565

by calling function Probe child nodes (Line 3). This
function returns joinable to child = true if there are
joinable tuples in child nodes with the incoming tuple.
Otherwise, it returns joinable to child = false, which
results in finishing the current probing, and t0 is stored570

in sub-buffer N (Line 4).

This function Probe child nodes works as follow.
For each sub-space of sub-buffer WR in each child
node (and sub-buffer N if child node is leaf node),
cnactive is computed by Equation (1). If cnactive is not575

empty, it checks each tuples in that sub-space (Line 2–
5). If there are tuples joinable with the incoming tuple,
joinable to child is set to true (Line 6), and function
Match CN is called to check if any partially matched
CNs in cnactive are fully matched (Line 7). This function580

returns joinable to child (Line 12).
In function Match CN, each CN in cnactive is checked

if there are fully matched CNs. First, appropriate sub-
space, cnnewsubspace, is computed by Equation (2) (Line
1). Then, for each partially matched CN, branch map585

is updated (Line 2). There are fully matched CNs if
the parent node is the root node and all bits in the
branch map are set (Line 3–4). If any fully matched
CN is found, its MTJNT is returned as a result, and sub-
space, cnnewsubspace, are updated according to the fully590

matched CN (Line 5–6). Finally, all matched tuples are
moved to the appropriate sub-space cnnewsubspace (Line
8).

Back to the main algorithm, if the incoming tuple
is from leaf nodes or joinable to child is true, subse-595

quent parent nodes are probed until no parent nodes
have joinable tuples (Line 8–18) by calling function
Probe parent nodes (Line 10) following similar pro-
cedure above.

4.6. Discussion600

In this section we elaborate the computational com-
plexity of all algorithms, by investigating their cost in
terms of the number of probings. Assume that the total
number of relations in the schema of relational streams
is S , the average number of tuples within the window of605

each relation is n, the number of query keywords is m,
and the maximum size of CN is Tmax.

In mesh of S-KWS, the root nodes must be keyword
nodes which contain one particular chosen keyword,
so the number of possible root nodes is O(S ∗ 2m-1).610

Therefore, the maximum number of nodes in mesh is
O((S ∗ 2m-1)Tmax ). Then, the maximum number of prob-
ings between tuples in mesh is O((S ∗ 2m-1)Tmax ∗ n).

Similarly, in lattice of SS-KWS, root nodes can be
both keyword and non-keyword node, so the maximum615

number of root nodes are O(S ∗ 2m). Therefore, the
maximum number of nodes in lattice is O((S ∗ 2m)Tmax ).
Then, the maximum number of probings in mesh is
O((S ∗ 2m)Tmax ∗ n).

For the proposed MX-structure, the total number620

of nodes is O(S ∗ 2m) because all nodes are unique.

10



Algorithm 2 MX-structure Evaluation
Input: Tuple t0 just from streams, MX-structure MX

1: joinable to child = false
2: if t0 from non-leaf nodes then
3: joinable to child = Probe child nodes (t0, MX)
4: Put t0 in sub-buffer N if joinable to child = false
5: end if
6: if t0 from leaf nodes or joinable to child = true then
7: put t0 in set joint tuples
8: while 1 do
9: for each t in set joint tuples do

10: s jtp = Probe parent nodes (t, s jtp, MX)
11: end for
12: if s jtp is empty then
13: break;
14: else
15: set joint tuples = s jtp
16: clear s jtp
17: end if
18: end while
19: end if
Function: Probe child nodes (t, MX)

1: joinable to child = false
2: for Each child nodes do
3: for Each sub-space, sp, in WR (and N if child node is

leaf node) do
4: if cnactive not empty then
5: for Each tuple t1 in sp joinable with t do
6: joinable to child = true
7: Matched CN (cnactive, MX)
8: end for
9: end if

10: end for
11: end for
12: Return joinable to child
Function: Probe parent nodes (t, s jtp, MX)

1: for Each parent node, pn do
2: if cnactive not empty then
3: for Each tuple t1 in pn joinable with t do
4: Matched CN (cnactive, MX)
5: put t1 in s jtp
6: end for
7: end if
8: end for
9: Return s jtp

Function: Matched CN (cnactive, MX)
1: Compute cnnewsubspace
2: for Update branch map of each CN in cnactive do
3: if All bits in branch map set to 1 then
4: if Parent node is root node then
5: Return all matched tuples (MTJNT) as result
6: Update cnnewsubspace to fully match to ∼CN.
7: end if
8: Move all matched tuples into appropriate sub-

space cnnewsubspace
9: end if

10: end for

However, the common middle nodes of different CNs,
which distance from any leaf nodes is bigger than or
equal to three might be probed multiple times. There-
fore, we would like to find the maximum number of625

such CNs. Notice that, each CN has at least two leaf
nodes with at least two different keywords. Therefore,

Table 1: Parameters used in the experiments.
Parameter Range and default
Window size (mn) 10, 20, 30, 40, 50
Keyword frequency (%) 0.003, 0.007, 0.01, 0.013
# of keywords 2, 3, 4, 5
Tmax 2, 3, 4, 5

the maximum number of all common middle nodes is
O(S ∗2m-2). Then, the maximum number of those CNs is
O((S ∗ 2m-2)Tmax-3). Therefore, the maximum number of630

probings in MX-structure is O([S ∗2m + (S ∗2m-2)Tmax-3 ∗

(S ∗ 2m-2)] ∗ n) or O([S ∗ 2m + (S ∗ 2m-2)Tmax-2] ∗ n).

5. Experimental Evaluation

5.1. Setup and Datasets

SS-KWS [24], full mesh (FM) and partial mesh (PM)635

of S-KWS [19], and our proposed algorithm were im-
plemented by using C++. All data structures and tem-
porary data were entirely kept in the memory. All ex-
periments were performed on Intel Core i7 CPU 870
@ 2.93GHz x 8 computer with 31.4 GiB memory in640

Ubuntu 13.10 (64 bits).
We used two types of datasets, synthetic and real

datasets. For synthetic dataset, we used TPC-H dataset
[2], which is about the transactions between customers
and products. It is mainly used for testing performance645

of commercial DBMSs. In this dataset, there are 8 ta-
bles and 61 fields. Due to lack of real data stream
datasets, we simulated DBLP [1], published in 2015,
so that we could work on it as we work on real rela-
tional streams. The simulation was done by attaching650

time stamp to each tuple in DBLP dataset. And the sim-
ulator read tuples in the order of their timestamps and
sent tuples continuously to the filtering system. DBLP
dataset has 4 tables and 11 fields.

As explained earlier, SS-KWS performs better than655

FM and PM of S-KWS when the tuples coming from
relational data streams mostly match CNs that have
common edges at leaf nodes, where a lot of process-
ings can be shared among those matched CNs. There-
fore, for experimental purposes, we separately prepare 2660

datasets, one of which gives advantage to SS-KWS and
the other gives advantage to S-KWS. Then, we investi-
gate how the proposed algorithm can handle both kinds
of datasets.

Parameters used in the experiment are shown in Ta-665

ble 1. We varied these parameters and compared the
performance of the proposed algorithm with compara-

11



tive algorithms, SS-KWS and PM/FM of S-KWS. The
default parameters are written in bold.

5.2. Comparison of Query Plans670

We first made a comparison of the number of edges,
memory usage, and construction time of query plans of
all approaches because they have great impact on the
performance. For this experiment, we only used two
parameters, number of query keywords and Tmax, be-675

cause other parameters do not have any impact on the
construction of query plan. We varied the number of
query keywords and Tmax from 2 to 5.

The results are shown in Figures 14, 15, and 16 for
DBLP and Figures 17, 18, and 19 for TPCH.680

When the number of query keywords and Tmax are
increased, the number of CNs increases. As a result,
construction time, memory usage, and the total number
of edges in the query plan of all approaches increases
for both datasets because more CNs need to be added to685

the query plan.
We notice that there is an exponential increase of

the number of edges in SS-KWS and S-KWS, which
is caused by the explosion of number of CNs whose
edges cannot be consolidated in their query plans. How-690

ever, the growth of the proposed scheme is almost
linear because it consolidates unique edges into one,
and the total number of unique edges, which are the
primary/foreign-key relationships between two tables in
the schema (which is usually comparatively small), in695

all CNs slightly increases as the number of CNs in-
creases. As a result, the query plan of the proposed
scheme consumes less time and memory than those of
the comparative approaches.

In the proposed approach, all edges need to be main-700

tained by the ID of each corresponding query. There-
fore, the maintenance time is still high but less expen-
sive than adding new edges and nodes to the query plan
of the comparative approaches. However, IDs of all
CNs that have common edge are maintained together705

as a singe value, so the memory space for storing the la-
bels of edges in the query plan of the proposed approach
is far smaller than creating new edges and nodes in the
query plans of the comparative approaches.

As a result, even though the query plan of the pro-710

posed approach is much more compact than those of the
comparative approaches, the improvement of query plan
construction time is not so significant than the compar-
ative approaches, but the proposed approach consumes
much less memory space.715

Notice that the explosive increase in size of query
plans indicates that the performance of S-KWS and SS-
KWS will greatly degrade when the number of query

keywords and Tmax increase, while the proposed scheme
can scale well with the increase in number of query key-720

words and Tmax.

(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 14: DBLP dataset: Number of edges in the query plans

12



(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 15: DBLP dataset: Construction time of query plans

5.3. Performance Comparison
5.3.1. Dataset Giving Advantage to SS-KWS

This experiment was done on the datasets of DBLP
[1] and TPCH [2] specially prepared so that SS-KWS725

(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 16: DBLP dataset: Memory usage of query plans

outperforms S-KWS. We compared CPU running time,
memory usage, and total number of probings. The re-
sults for DBLP are shown in Figures 20, 21, 22 and 23.
Figures 24, 25, 26 and 27 show the results of TPCH

13



(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 17: TPCH dataset: Number of edges in the query plans

dataset.730

First, we measured the CPU running time and the
memory usage when varying the number of keywords
(Figures 20(a) and 20(b) for DBLP and Figures 24(a)

(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 18: TPCH dataset: Construction time of query plans

and 24(b) for TPCH). As can be seen, for both datasets,
CPU running time and the memory usage in FM/PM735

and SS-KWS increase exponentially, but do not in the
proposed scheme. As an evidence, the number of prob-

14



(a) # of keywords = 2.

(b) # of keywords = 3.

(c) # of keywords = 4.

(d) # of keywords = 5.

Figure 19: TPCH dataset: Memory usage of query plans

ings also exponentially increases in FM/PM and SS-
KWS as shown in Figures 20(c) for DBLP and 24(c)
for TPCH. This is due to the explosion in the size of740

the query plans of FM/PM and SS-KWS as explained

in the above experiments. Similar tendency can be ob-
served when varying Tmax from two to five (Figures 21
and 25).

Next, we increased the size of window from 10 min,745

20 min, 30 min, 40 min, and 50 min. As expected,
when the size of window increases, the CPU running
time, memory usage, and number of probings of all ap-
proaches also increase as shown in Figures 22 and 26 for
DBLP and TPCH respectively. This is because fewer750

tuples in the buffers of all approaches are expired and
deleted as a result of the increase in the size of win-
dow. Figures 23 (DBLP) and 27 (TPCH) show the im-
pact on the performance of all approaches when vary-
ing keyword frequency. When the keyword frequency755

increases, more tuples tend to contain the keywords of
the query. As a result, there were more tuples that need
to be joint. Therefore, the CPU running time, memory
usage, and number of probings of all approaches also
increase. Nevertheless, the total number of CNs does760

not increase when increasing window size and keyword
frequency. Therefore, there is no change in the size of
query plans of all approaches, which cause little impact
on the performance.

5.3.2. Dataset Giving Advantage to S-KWS765

Next experiment was done on the relational streams
of DBLP and TPCH. In this experiment, the datasets
were prepared to favor FM and PM of S-KWS. The
trend is similar to that in the above experiment.

The results are shown in Figures 28, 29, 30 and 31770

for DBLP. Figures 32, 33, 34 and 35 show the results of
TPCH dataset. As can be seen, the results are similar
to the above experiments. The proposed scheme greatly
outperforms the existing approaches for all experimen-
tal parameters. Notice that, FM/PM of S-KWS outper-775

forms SS-KWS for this dataset.

6. Related Work

So far, many proposals have been done to enable
keyword search on permanently-stored-relational data
[6, 3, 7, 9, 17, 23, 21, 28, 20, 26, 15, 4, 14, 18, 12]780

and few proposals on relational data streams [19, 24].
The works on keyword search on permanently-

stored-relational data [6, 3, 7, 9, 17, 23, 21, 28, 20, 26,
15, 4, 14, 18, 12] can be typically categorized into two
groups: graph-based approach and candidate network-785

based approach.
In graph-based approach, relational data is model as

connected graphs, where nodes represent tuples and
edges represent relationships between tuples. There-
fore, keyword search over relational data by using this790

15



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 20: DBLP dataset (advantageous to SS-KWS): Varying # of
keywords

approach is to find connected trees that contain all query
keywords. There are a lot of variants of this approach,
which aim at finding top-k connected trees. Some fa-
mous works are BANKS-I [8], BANKS-II [16], and
BLINKS [12]. BANKS-I [8] and BANKS-II [16] were795

proposed by using backward and bidirectional search-
ing techniques for efficient retrieval of top-k search re-
sults. BLINKS [12] proposes a bi-level indexing and
query processing scheme for top-k keyword search on
graphs. Data graphs are partitioned into blocks in order800

to reduce index space.
In candidate network-based approach, keyword

search over relational data is done by following two
main processing steps: 1) pre-processing step, and 2)
filtering step. In the pre-processing step, all results’805

templates, called candidate networks (CNs), are gen-
erated by using the given keywords and schema of re-
lational data. In the filtering step, all CNs are used
to evaluated against all tuples in the relational data
to find the search’s results. Evaluating all CNs inde-810

pendently is not efficient because a lot of CNs might
have some common parts, whose processing can be
shared. For this purpose, DISCOVER [15] and DBX-
PLORER [4] were proposed. In DISCOVER [15], a
plan is built by combining all CNs for efficient evalu-815

ation. DBXPLORER-II [14] adopts IR-style document-
relevance ranking technique to keyword search over re-
lational data. It focuses on computing top-k matches of
keyword search rather than all matches. Since the to-
tal number of CNs can be very big, and evaluation of820

all CNs is costly, [23] proposes an algorithm to rank all
CNs, and only top-k CNs are chosen to evaluate against
relational data. SPARK [18] proposes a simple but ef-
fective ranking method for processing keyword search
on relational databases. This new ranking method al-825

lows minimal accesses to the databases.
S-KWS [19] is the first work to enable keyword

search over relational data streams. Similar to previous
works for permanently-stored relational databases, all
possible CNs are created from the given keyword search830

and relational data streams’ schemas. They propose two
main approaches, full operator mesh and partial opera-
tor mesh, which make use of common edge attached to
the root nodes to elevate query searching. And the most
recent work to enable keyword search on relational data835

streams is SS-KWS [24], which is proved to outperform
S-KWS [19] when most tuples from the relational data
streams match CNs that have common edges at leaf-
nodes.

7. Conclusion840

In this paper, we have proposed an improved method
of keyword search over relational streams. In the pro-
posed scheme, candidate networks are merged into a
novel data structure called MX-structure, and keyword
search is efficiently processed based on the proposed al-845

gorithm with the help of MX-structure.
To prove the effectiveness of the proposed approach,

extensive experiments have been done on both synthetic
and real datasets. A variety of parameters, such as num-
ber of query keywords, Tmax, window size, and key-850

16



word frequency, are used to measure how they affect
the efficiency of the proposed approach and the com-
parative approaches. The experimental results show
that the proposed scheme significantly outperforms the
comparative approaches with regards to any parame-855

ters. Experimental results also prove that the perfor-
mance of the comparative approaches greatly degrades
when the number of query keywords and/or Tmax are
increasing because their query plans become exponen-
tially big in terms of number of edges, so their per-860

formances become inefficient. The proposed approach
can scale very well with respect to any parameter, and
in particular greatly outperforms the comparative ap-
proaches when the number of query keywords and/or
Tmax are increased. Therefore, our proposed approach865

is more suitable for real search engine.
In this work, we have noticed that CN-based ap-

proach has some limitations. In particular some CNs are
not used due to the biased keyword distribution in rela-
tional streams. For the future work, we plan to exploit870

such locality to enhance the performance by generating
and processing only CNs that can produce results.

In addition, currently, our proposed approach and the
comparative approaches, which are CN-based approach,
only support a single keyword search at a time over re-875

lational streams. It is close to impossible to process
multiple keyword searches at the same time by using
the above CN-based approaches because of the explo-
sive blow up of all CNs. This is important and we hope
that the idea of our proposed approach can be used to880

explore other approaches that does not rely on CN with
an attempt to enable the processing of multiple keyword
search over relational streams.

Acknowledgment

This work has been partly supported by the NICT885

BigClouT project.

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 21: DBLP dataset (advantageous to SS-KWS): Varying Tmax

17



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 22: DBLP dataset (advantageous to SS-KWS): Varying win-
dow size

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 23: DBLP dataset (advantageous to SS-KWS): Varying key-
word frequency

18



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 24: TPCH dataset (advantageous to SS-KWS): Varying # of
keywords

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 25: TPCH dataset (advantageous to SS-KWS): Varying Tmax

19



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 26: TPCH dataset (advantageous to SS-KWS): Varying win-
dow size

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 27: TPCH dataset (advantageous to SS-KWS): Varying key-
word frequency

20



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 28: DBLP dataset (advantageous to S-KWS): Varying # of
keywords

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 29: DBLP dataset (advantageous to S-KWS): Varying Tmax

21



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 30: DBLP dataset (advantageous to S-KWS): Varying window
size

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 31: DBLP dataset (advantageous to S-KWS): Varying keyword
frequency

22



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 32: TPCH dataset (advantageous to S-KWS): Varying # of
keywords

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 33: TPCH dataset (advantageous to S-KWS): Varying Tmax

23



(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 34: TPCH dataset (advantageous to S-KWS): Varying window
size

(a) CPU running times

(b) Memory usage

(c) # of probings

Figure 35: TPCH dataset (advantageous to S-KWS): Varying keyword
frequency

24



References

[1] Computer science bibliography. http://dblp.uni-trier.de/xml/,
2015.

[2] Tpc-h benchmark dataset. http://www.tpc.org/tpch/, 2015.890

[3] D. J. Abadi, D. Carney, U. Centinternel, M. Cherniack, C. Con-
very, S. Lee, M. Stonebraker, N. Tatbul, and S.B. Zdonik. Au-
rora: a new model and architecture for data stream management.
VLDB Journal, 12:120–139, 2003.

[4] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for895

keyword-based search over relational databases. In ICDE, 2002.
[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,

U. Srivastava, and J. Widom. STREAM: The Stanford data
stream management system. Technical Report , Stanford Info-
Lab, http://ilpubs.stanford.edu:8090/641/, 2004.900

[6] A. Arasu, S. Babu, and J. Widom. Cql: A language for con-
tinuous queries over streams and relations. In Workshop, DBPL
2003, Potsdam, Germany, 2003.

[7] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
authority-based keyword search in databases. In VLDB, Toronto,905

Canada, 2004.
[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudar-

shan. Keyword search and browsing in databases using banks.
In In Proceedings of ICDE, 2002.

[9] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilis-910

tic ranking of database query results. In VLDB, Toronto, Canada,
2004.

[10] M. Dyk, A. Najgebauer, and D. Pierzchala. Agent-based ms of
smart sensors for knowledge acquisition inside the internet of
things and sensor networks. ACIIDS, 9012:224–234, 2015.915

[11] L. Edward. Cyber physical systems: Design challenges. Univer-
sity of California, Berkeley Technical Report No. UCB/EECS-
2008-8. Retrieved 2008-06-07, 2008.

[12] H. He, H. Wang, Y. Wang, and X. Zhou. Blinks: ranked keyword
searches on graphs. In SIGMOD, 2007.920

[13] K. Hogan. Interpreting hitwise statistics on longer queries. Tech-
nicall report, Ask.com, 2009.

[14] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-
style keyword search over relational databases. In VLDB, 2003.

[15] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search925

in relational databases. In VLDB, Hong Kong, China, 2002.
[16] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. De-

sai, and H. Karambelkar. Bidirectional expansion for keyword
search on graph databases. In In Proceedings of VLDB, 2005.

[17] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword930

search in relational databases. In SIGMOD, Chicago, USA,
2006.

[18] Y. Luo, X. Lin, and W. P.S. Spark: top-k keyword query in
relational databases. In SIGMOD, 2007.

[19] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on935

relational data streams. In SIGMOD, Beijing, China, 2007.
[20] K. Mehdi, A. Aijun, C. Nick, G. Parke, S. Jaroslaw, and Y. Xiao-

hui. Meanks: meaningful keyword search in relational databases
with complex schema. In SIGMOD, Utah, USA, 2014.

[21] K. Mehdi, A. Aijun, C. Nick, G. Parke, S. Jaroslaw, and Y. Xi-940

aohui. Meaningful keyword search in relational databases with
large and complex schema. In ICDE, Seoul, Korea, 2015.

[22] O. Niggermann and V. Lohweg. On the diagnosis of cyber-
physical production systems. In AAAI, Austin Texas, USA,
2015.945

[23] O. Pericles, S. Altigran, and M. Edleno. Ranking candidate net-
works of relations to improve keyword search over relational
databases. In ICDE, Seoul, Korea, 2015.

[24] L. Qin, J. Xu Yu, and L. Chang. Scalable keyword search on
large data streams. In VLDB Journal, 2011.950

[25] D. Shaul, E. Gadi, G. Shai, and P. Eran. DTL’s DataSpot:
Database exploration using plain language. In VLDB, San Fran-
cisco, CA, USA, 1998.

[26] X. Yanwei, G. Jihong, and I. Yoshiharu. Scalable top-k keyword
search in relational databases. In DASFAA, Busan, Korea, 2012.955

[27] H. Zhang, C. Sanin, and E. Szczerbicki. Experience-oriented
enhancement of smartness for internet of things. ACIIDS,
9012:506–515, 2015.

[28] Z. Zhong, B. Zhifeng, L. Mong, and L. Tok. Towards an inter-
active keyword search over relational databases. WWW journal960

(companion volume), 24:259–262, 2015.

25


	Introduction
	Problem Statement
	Existing Works
	Overview
	S-KWS
	SS-KWS
	Scalability Issues in Existing Approaches

	Proposed Approach
	Main Ideas
	Overview
	MX-Structure
	Query Evaluation in MX-Structure
	Node Buffers
	Probing Sequence
	Branch Map
	Dynamic Generation of Sub-spaces
	 Dynamic Maintenance of MX-Structure

	Algorithm Details
	Discussion

	Experimental Evaluation
	Setup and Datasets
	 Comparison of Query Plans
	Performance Comparison
	Dataset Giving Advantage to SS-KWS
	Dataset Giving Advantage to S-KWS


	Related Work
	Conclusion

