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Abstract

The fusion and combination of images from multiple modalities is important in many applications. Typically,

this process consists of the alignment of the images and the combination of the complementary information.

In this work, we focused on the former part and propose a multimodal image distance measure based on

the commutativity of graph Laplacians. The eigenvectors of the image graph Laplacian, and thus the graph

Laplacian itself, capture the intrinsic structure of the image’s modality. Using Laplacian commutativity as a

criterion of image structure preservation, we adapt the problem of finding the closest commuting operators

to multimodal image registration. Hence, by using the relation between simultaneous diagonalization and

commutativity of matrices, we compare multimodal image structures by means of the commutativity of their

graph Laplacians. In this way, we avoid spectrum reordering schemes or additional manifold alignment steps

which are necessary to ensure the comparability of eigenspaces across modalities. We show on synthetic

and real datasets that this approach is applicable to dense rigid and non-rigid image registration. Results

demonstrated that the proposed measure is able to deal with very challenging multimodal datasets and

compares favorably to normalized mutual information, a de facto similarity measure for multimodal image

registration.
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1. Introduction

Image registration is an essential processing technique in applications that require the fusion or combi-

nation of information from different image sources and/or views [1, 2]. For example, in medical imaging,

the diagnostic and treatment planning benefit often from the complementary information from multiple

modalities, such as ultrasound and magnetic resonance [3] or from the study of temporal series of images5

for change detection of organs and tumors. The quality of the fused image depends highly on the accuracy

of the images alignment [4], which is done using image registration. Image registration arises whenever

images acquired from different sensors or from different scenes or at different times need to be compared
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or combined for analysis. The objective of image registration is to find a plausible spatial transformation

which aligns corresponding structures in two or more images. Typically, this is done by minimizing the10

distance between the images with respect to a transformation. Defining and measuring image distance or

similarity is a difficult and highly application-dependent task, especially for multimodal images. Existing

measures compare local intensities and features to find corresponding points in the images. When images

are acquired with different acquisition parameters or systems, local intensities and intensity gradients can

vary largely between the modalities. However, the global structure of such multimodal images is similar.15

In this work, we propose to compare the structure of multimodal images by analyzing the commutativity

of their graph Laplacians. We define the unnormalized graph Laplacian as L := D −W with matrices

W = (wij) and D = diag(
∑n
l=1 wil), where wij represents the similarity between image voxel or patch i

and j. The eigenvectors of the image graph Laplacian, and thus the graph Laplacian itself, capture the

intrinsic structure of the image, which is to some degree shared across modalities. Our work is based on the20

problem of finding the closest commuting operator [5] for manifold alignment. Relying on graph Laplacians

as image structure descriptors and using Laplacian commutativity as a criterion for image structure preser-

vation, we adapt the problem of finding the closest commuting operators to multimodal image registration.

By indirectly comparing the eigenspaces of graph Laplacians from multimodal images through Laplacian

commutativity, we avoid spectrum reordering schemes or additional steps of manifold alignment to ensure25

the comparability of eigenspaces across modalities.

When using spectral techniques in image registration, i.e., methods which use spectral decompositions

to study the structure of data sets, the underlying assumption is that two images are similar if their corre-

sponding graph Laplacians, as structural descriptors of the underlying manifold, have similar eigenvectors.

However, the graph Laplacians computed independently from different images may not share the same30

eigenspace [6–8]. For monomodal data, and under the assumption that the underlying manifolds are iso-

metric, the works in [6, 7] proposed spectrum reordering schemes. For multimodal data, where the isometry

assumption is not valid anymore, the eigenspaces may greatly differ [9]. To deal with this, an additional

step of manifold alignment is performed in [10] to ensure that the spaces are comparable across manifolds.

Similarly, in [8] an eigenfunction change of basis [11] was done to transform the new coordinates of the35

structural representation of one image into the same coordinate space of the other.

An alternative way is to use simultaneous diagonalization. A set of matrices is simultaneously diagonal-

izable, if there exists a single unitary matrix V such that VTAV is a diagonal matrix for each matrix A in

the set. This approach has been applied by [9, 12] to find a common eigenspace of multiple Laplacians. With

that, they extended methods based on spectral geometry, like Laplacian eigenmaps and diffusion maps, to40

the multimodal setting.

In [5], the authors proposed a new paradigm for multimodal spectral geometry. Their approach is based

on the fact that matrices are simultaneously diagonalizable if and only if they commute. Thus, instead of
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finding a common eigenspace via simultaneous diagonalization, they searched for new graph Laplacians that

commute and are as close as possible to the original graph Laplacians. The eigendecomposition of those45

closest commuting operators were then used for multimodal spectral analysis.

In this work, we propose to quantify structure resemblance between two multimodal images through

Laplacian commutators. If two multimodal images of the same object or scene are aligned, their structure

should be similar and hence also the Laplacian eigenspaces of their corresponding image graphs. Therefore,

we look for a (rigid or non-rigid) transformation that transforms one of the images such that the graph50

Laplacians approximately commute. This implies that they are approximately diagonalizable and hence

their structure is similar. This is in line with the works [13, 14], where a similar approach was used

for image color transformations. To the best of our knowledge, this is the first work using simultaneous

diagonalization in the context of dense image registration.

The remainder of this paper is structured as follows: We review the most important works related to our55

approach in Section 2. We introduce spectral methods in Section 3, including basic notions on manifolds

and graph theory. In Section 4, we overview the problem of approximate simultaneous diagonalization and

how this is related to the search for the closest commuting operators. In Section 5, we propose to use the

closest commuting operator to measure structure similarity in images and explain how to apply it to image

registration. Section 6 presents experimental results on synthetic and real datasets, followed by further60

discussion and conclusions in Section 7.

2. Related work

Classical registration methods can be divided into feature- and intensity-based methods [15, 16]. In

feature-based registration techniques, image features, such as points and contours, are extracted and aligned,

and the distance measure is defined on the extracted features. While being often more efficient, such meth-65

ods suffer from significant intensity variations in multimodal images, which makes it difficult to find enough

corresponding features for accurate matching. In intensity-based techniques, the distance measure is defined

directly on the intensity values of the image. A popular intensity-based measure for multimodal image reg-

istration is mutual information (MI) and its normalized version, normalized mutual information (NMI) [17].

Both estimate the shared information between the images to be registered by constructing intensity his-70

tograms over the images. MI and NMI have been successfully applied in various applications. However,

MI-based measures still may fail in the presence of high intensity variations and intensity gradients [18].

Furthermore, they are non-convex measures and may have local maxima [19].

In recent years, structural image representations have gained interest for multimodal registration, since

they allow transforming images into a common space where modalities can be directly compared. They rely75

on the assumption that internal self-similarities are preserved across modalities. The images are transformed
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to new representations that capture such self-similarities and where efficient monomodal measures, such as

the L1 or L2 distance, can be used for registration. Existing approaches have applied local gradient orien-

tation [20, 21], local entropy [10] and local patch distance [22–24] to find correspondences between images.

However, in these approaches only the information of local neighborhoods is compared and, moreover, the80

local self-similarity pattern can vary significantly between corresponding points in images [18].

Manifold learning techniques, which are commonly used for population analysis [25], have also begun to

be employed for image registration. Applied to individual images, such techniques allow obtaining a new

image representation that can help in finding image features and correspondences. For example, PCA [26]

and Isomap [27] were employed in [28, 29], respectively, to extract features of monomodal images to be used85

for affine registration.

Spectral methods are specific manifold learning techniques, which use spectral decomposition to study the

structure of data sets. Standard spectral methods find the eigenvectors of the Laplacian matrix of a graph,

which is constructed on the original high-dimensional data space. A (suitable weighted) graph Laplacian can

be viewed as a discretized version of the Laplace-Beltrami operator on Riemannian manifolds [30, 31], whose90

eigenfunctions are known to characterize the structure of the manifold and can be therefore interpreted as

a structural descriptor of the underlying manifold. Among other applications, spectral methods have been

used for dimensionality reduction, clustering [32], and shape analysis and alignment [7, 33–36].

For image registration, spectral methods have received limited attention. In [8, 10], multimodal images

were represented by the first embedding coordinate obtained with Laplacian eigenmaps [37] and diffusion95

maps [38], respectively, which allowed the use of monomodal distance measures in the context of rigid [10]

and non-rigid [8] image registration. In [6], the Log-Demons [39] was extended to deal with large defor-

mations by incorporating geometric information through the comparison of the eigenvectors of the graph

Laplacians constructed from images. However, this method was limited to monomodal images. The spectral

decomposition of a joint graph of two images or shapes was used in [18] for image matching and in [40] for100

surface matching.

3. Theoretical background

Let M be a compact, k-dimensional Riemannian manifold (i.e., a differentiable manifold whose tangent

spaces are equipped with an inner product), which is embedded into a d-dimensional Euclidean space.

Typically, k � d.105

The structure of the manifold can be studied through the eigenfunctions of the Laplace-Beltrami operator

∆M onM [33, 41, 42], which reduces to the common Laplace operator ∆f =
∑d
i=1

∂2f
∂r2i

, f :M→ R , f twice

differentiable and ri being the Euclidean coordinates, if the manifold is an open subset of the Euclidean

space. The eigenfunctions {vi}∞i=1 of ∆M, satisfying the Laplacian eigenvalue problem ∆Mvi = λivi,
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form a complete and orthonormal basis of the Hilbert space L2(M) with respective eigenvalues {λi}∞i=1,110

0 = λ1 ≤ λ2 ≤ · · · ≤ ∞. Any f ∈ L2(M) has a Fourier expansion in the basis {vi}∞i=1, thus allowing Fourier

analysis on manifolds. The eigenvalues {λi}∞i=1 are analogous to frequencies in the Euclidean case and the

eigenfunctions to the basis functions sine and cosine [33]. Low-frequency eigenfunctions, corresponding to

the smallest eigenvalues, describe the global structure of the manifold, while high-frequency eigenfunctions

capture the details [41, 42].115

A common way to discretize a manifold is by a graph structure. An undirected weighted graph is an

ordered pair G = (V,E) with a set of nodes V = {xi}ni=1, edges E ⊆ {1, . . . , n}2 and edge weights wij ∈ R+
0 .

Such a graph is constructed from a data set by assigning each data point sampled on an underlying manifold

(possibly together with additional features) to a node. For instance, for analysis of large populations of mas-

sive images, the nodes consist of the images and a single graph for the image population is constructed [43].120

For shape matching, the nodes are the points of the mesh, while for image registration, they consist of the

voxels or patches of the images and one graph is constructed per shape/image. The edge weights represent

a notion of similarity between data points. Two nodes xi, xj are connected with an edge if wij ≥ θ, θ ∈ R+
0 .

A popular choice is to use a Gaussian kernel, wij = w(xi, xj) = exp(− ‖ xi − xj ‖2 /2σ2), where σ > 0 is

the kernel bandwidth [37]. However, other options are possible (cf. [44]).125

As a discretization of the Laplace-Beltrami operator, the eigenvectors of a suitable graph Laplacian

discretize the eigenfunctions of the Laplace-Beltrami operator [31, 37, 45]. We define the unnormalized

graph Laplacian as Lu := D −W, and the random-walk graph Laplacian as Lrw := D−1Lu [30]. The

matrix W = (wij) is called the adjacency matrix, and D = diag(
∑n
l=1 wil) the diagonal degree matrix,

containing the degree of each node, i.e., the sum of weights connected to the node. For the case of data130

(e.g., voxels of the images) drawn from a non-uniform distribution, only the random-walk graph Laplacian

converges to the Laplace-Beltrami operator [30].

Both Laplacians are positive semi-definite matrices. They can be decomposed as L = VΛVT , VTV = I,

where V is the matrix of column eigenvectors of L and Λ = diag(λ1, . . . , λn) is the diagonal matrix of

corresponding eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn for both L = Lu and L = Lrw
1 [5, 9, 45].135

A popular spectral embedding technique is the Laplacian eigenmap algorithm [37]. It captures the

intrinsic low-dimensional structure of a manifold by finding an optimal embedding which preserves local

neighborhoods. This can be posed as the minimization problem

min
Y

YTDY=I

∑
ij

‖ yi − yj ‖2 wij ,

where Y = [y1, . . . , yn] ∈ Rd×n are the embedding coordinates and wij the similarity between input data

points, thus the edge weight between nodes xi and xj . By using the above objective function, neighboring

1Note that their eigenvectors and -values are not the same: Vu 6= Vrw, though they are related: the eigenvectors of L = Lrw

are generalized eigenvectors of L = Lu, i.e., LuVrw = λDVrw.
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points in the original space (wij large) receive a penalty if they are mapped far apart in the embedding space

(yi − yj large). Thus, by minimization of the objective function local neighborhoods are preserved. It can

be shown [37] that solving this minimization problem is equivalent to the generalized eigenvalue problem of140

the graph Laplacian, Lv = λDv, whose eigenvectors vi give the optimal embedding, with a diagonal degree

matrix D.

4. Simultaneous diagonalization of graph Laplacians

In various applications, such as shape matching or multimodal data analysis, the structure of two or

more manifolds have to be compared. Using spectral methods, this reduces to embedding the geometrical145

objects into the eigenspace of the Laplace-Beltrami operator and comparing those new representations.

If isometric objects are considered, the objects share the same spectral coordinates, since the Laplace-

Beltrami eigenspace is invariant under isometric transformations [46]. Isometric objects are, e.g., two shapes

representing the same object, but in different poses. However, even if the graph Laplacians from isometric

shapes share the same eigenbasis, they may not be directly comparable. This is due to three reasons. First,150

the eigenvectors are only defined up to a sign: if v is an eigenvector of L, Lv = λv, then L(−v) = λ(−v),

i.e., −v is an eigenvector with the same eigenvalue. Second, if the multiplicity of an eigenvalue is greater

than one, the eigenvectors corresponding to this eigenvalue may be in a different order or subject to an

orthonormal transformation. Spectrum reordering schemes have been proposed to deal with this type of

eigenspace incompatibility [6, 7, 46, 47]. Third, since many Laplacian discretizations are highly mesh155

sensitive, if the sampling sizes are different in the isometric manifolds, the eigenspaces may not be comparable

anymore. On the other hand, in the case of non-isometric manifolds, the eigenvectors of the individual

graph Laplacians differ strongly and are therefore inconsistent with each other. In particular, data sets from

different modalities lie on non-isometric manifolds, which makes it challenging to use spectral methods in

the multimodal case.160

As commented in Section 1, one possible approach to overcome this problem is a change of eigenbasis [6, 8].

Another approach is to perform simultaneous diagonalization of the graph Laplacians so that they share

the same set of eigenvectors. Two real n×n matrices A1,A2 are said to be simultaneously diagonalizable if

there exists a unitary matrix V (i.e., VTV = I) such that both VTA1V and VTA2V are diagonal matrices.

Thus, V is the joint eigenbasis of A1 and A2. If the matrices A1,A2 are not simultaneously diagonalizable,165

which is the case in many applications due to noise, discretization and other circumstances, one seeks to

find approximately joint eigenspaces.

Several numerical methods for the approximate simultaneous diagonalization of a series of square sym-

metric matrices have been proposed [48–53]. They search for a matrix V ∈ Rn×n such that VTA1V and

VTA2V are as close to diagonal matrices as possible. This can be done by solving the optimization problem
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J(A1,A2) = min
V∈Rn×n

VTV=I

2∑
i=1

‖ VTAiV −Diag(VTAiV) ‖2F , (1)

where Diag(A) denotes a matrix obtained by setting the off-diagonal elements of A to zero (following the

notation in [5]). The matrix norm ‖ A ‖F=
(∑

ij |aij |2
)1/2

is the Frobenius-norm. The existing numerical

methods differ in the way to solve the optimization problem and in the restrictions which are set to matrix170

V.

These joint eigenspaces can be used to analyze simultaneously the structure of multimodal datasets. This

was done in [9, 12, 54], where the eigenvectors and eigenvalues of a single graph Laplacian were replaced by

the joint eigenvectors and eigenvalues of multiple graph Laplacians.

Simultaneous diagonalization of matrices is closely related to commutativity of matrices. Two matrices

A1, A2 are simultaneously diagonalizable by a unitary similarity transformation if and only if they com-

mute [55], e.g., [A1,A2] := A1A2 −A2A1 = 0. This can be extended to the approximate case. In [56], the

authors showed that for symmetric matrices Ai ∈ Rn×n with ‖ Ai ‖F= 1, i = 1, 2, there exist two functions

δ1(x), δ2(x) with limx→0 δi(x) = 0, i = 1, 2, such that

δ1(‖ [A1,A2] ‖F ) ≤ J(A1,A2) ≤ nδ2(‖ [A1,A2] ‖F ).

In other words, almost commuting matrices (matrices that approximately commute, i.e., [A,B] ≤ δ for some175

small δ > 0 [57]) are almost simultaneously diagonalizable.

Together with Lin’s theorem [57], stating that almost commuting matrices are close to commuting ma-

trices, this implies that almost simultaneously diagonalizable matrices are close to simultaneously diagonal-

izable matrices.

Thus, instead of finding a matrix V, which approximately diagonalizes both matrices A1 and A2 as in

Eq. (1), one can seek commuting matrices Ã1, Ã2 that are as close as possible to A1,A2, respectively [5].

This problem can be formulated as

C(A1,A2) = min
Ã1,Ã2

2∑
i=1

‖ Ãi −Ai ‖2F s.t. ‖ Ã1Ã2 − Ã2Ã1 ‖2F= 0. (2)

The solutions to problem (2), the matrices Ã1, Ã2, are commuting matrices and therefore simultaneously180

diagonalizable.

It has been shown [5] that the problems of Eqs. (1) and (2) are equivalent in the sense that both

problems have the same minimal value
(
J(A1,A2) = C(A1,A2)

)
, the minimizers of J(A1,A2) are the

joint eigenvectors of the minimizers of C(A1,A2), and Ãi, i = 1, 2, are the closest commuting matrices of

the approximate joint eigenvectors V̂ of Ai with Ãi = V̂Diag(V̂TAiV̂)V̂T .185

A key difference between Eqs. (1) and (2) is that the former optimizes with respect to the joint eigenbasis,

while the latter does it with respect to the commuting matrices, thus having an explicit control over the
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structure of the matrices. This is an advantage when dealing with graph Laplacians since it allows restricting

the closest commuting matrices to plausible graph Laplacians. In contrast, in simultaneous diagonalization,

if V̂ is the joint eigenbasis that approximately diagonalizes two graph Laplacians L1,L2, then the almost

commuting graph Laplacians L̂i = V̂Diag(V̂TLiV̂)V̂T ≈ Li, i = 1, 2, do not necessarily fulfill the properties

of graph Laplacians (e.g., being symmetric and positive semi-definite). This was pointed out in [5], where

they obtained the closest commuting matrices among the subset of graph Laplacians by reformulating (2)

as:

min
{uk≥0}2k=1

(
2∑
k=1

‖ L̃k(uk)− Lk ‖2F +γ ‖ L̃1(u1)L̃2(u2)− L̃2(u2)L̃1(u1) ‖2F

)
, (3)

where γ ∈ R+ is a weighting parameter to determine the influence of the structure preserving term (first

term) over the commuting term (second term). Here, L1, L2 are the graph Laplacians and L̃1(u1), L̃2(u2)

are the almost commuting graph Laplacians, parametrized by the weights uk = (uk1 , . . . , u
k
M̃k

), k = 1, 2, of

the corresponding adjacency matrices W̃k, with M̃k = 1
2 |Ẽk| (due to symmetry) and

w̃kij(uk) =

u
k
l if (il, jl) or (jl, il) ∈ Ẽk

0 otherwise.

The new Laplacians L̃1, L̃2 are called the closest commuting operators (CCO).

This approach to multimodal spectral geometry has been successfully applied to shape matching and

clustering [5].

5. Application to multimodal image registration

Let IF , IM : Ω ⊂ Rd → R be the fixed and moving image, respectively, and φp : Rd → R
d a trans-

formation with parameters p, which maps points from the moving image space to the fixed image space.

Image registration finds a φp such that IF ≈ IM ◦ φp. The registration problem can be formulated as an

optimization problem, where the chosen distance or dissimilarity measure is minimized with respect to a

transformation. In general, the problem is ill-posed and a regularizer is added to the cost function of the

optimization to provide some control over the transformation, e.g., regarding differentiability properties.

The cost function to be optimized during registration is therefore

J (φp) = D(IF , IM ;φp) + µR(φp), (4)

with a distance measure D, a regularizer R and a regularization penality weight µ ∈ R. To solve the190

registration problem, Eq. (4) is optimized in an iterative manner.

We propose to use a (non-metric) distance measure based on the image structure similarity, conveyed by

the similarity of the eigenspaces of the image graph Laplacians.
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In this work, we follow the interpretation of [58] that an image is the embedding map of a higher

dimensional manifold. For each image I : Ω ⊂ Rd → R, we construct the corresponding image graph195

G = (V,E) with a set of nodes V = {xi}ni=1 and edges E. Each node xi consists of a voxel ui ∈ Ω and

a vector I(ui) = (I(u1i ), . . . , I(uNi )), I(ui) ∈ RN , of image intensities within a patch centered at ui, where

uji ∈ Ω are the voxels in the patch. If N = 1, the node consists only of voxel ui and intensity I(ui), and the

resulting graph is called voxel-based graph. For N > 1, the graph is patch-based.

We compute the weights by using (patch-based) bilateral filtering [59]:

wij = w(xi, xj) = exp

(
−
[
‖ I(ui)− I(uj) ‖2

2σ2
1

+ β
‖ ui − uj ‖2

2σ2
2

])
, (5)

so that voxels with similar intensities have a large weight only if they lie close in space. The parameters200

σ1 and σ2 play the role of scale parameters. Interpreted within the scale-space theory presented in [60], σ1

corresponds to the intensity scale or resolution in the domain of the sampled value (i.e., tonal scale) and

σ2 to the spatial scale (i.e., inner scale) at which the image is observed. The parameter β ∈ R+
0 corrects

for scale differences between the intensities and spatial coordinates by balancing the influence of the spatial

component. The corresponding image graph Laplacian (unnormalized and random-walk) is then constructed205

as explained in Section 3.

For image registration (see Eq. (4)), we look for a transformation φp that deforms the moving image IM

such that it is most similar to a fixed image IF . We assume that the images have the same size and origin,

such that they share the same voxel coordinates. From IF and IM ◦ φp, we obtain their corresponding

graph Laplacians LF and LM , respectively, as detailed in Section 3. Since the moving image changes with210

the transformation parameters p, we have that wMij = wMij (p) and LM = LM (wMij (p)). For simplicity of

notation, we suppress the dependence of the weights and write LM (p).

As presented in Section 3, the structure of a Riemannian manifold can be characterized by the eigenfunc-

tions of the Laplace-Beltrami operator, which can be discretized through the graph Laplacian. Therefore,

one can interpret the graph Laplacian of an image as a structure descriptor of the image and the similarity215

of graph Laplacian eigenspaces as a criterion of structural similarity between two images. By enforcing the

graph Laplacians of a fixed and moving image during registration to have a joint eigenspace, the structure

of the images can be aligned. Note that the joint eigenspace stands here for a basis which simultaneously

diagonalizes the graph Laplacians of both the fixed and moving image, in contrast with an eigenspace of the

Laplacian of a joint graph constructed using both images (see, e.g., [18]).220

One approach to register one image to another would be to search for a transformation such that the

graph Laplacians of both images are simultaneously diagonalizable, similar to the ideas in [9, 12]. To do

this, a possible image distance function could be

D(p) = D(IF , IM ;φp) :=‖ VTLFV −Diag(VTLFV) ‖2F + ‖ VTLM (p)V −Diag(VTLM (p)V) ‖2F . (6)
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Here, Eq. (1) has been used to approximate simultaneous diagonalization. For a minimizer φ∗p, the matrix

V approximately diagonalizes both LF and LM (p).

Figure 2 in Section 6.3 illustrates how the joint eigenspaces of aligned images diagonalize the image graph

Laplacians, in contrast to joint eigenspaces of misaligned images. This indicates that finding a transforma-

tion such that the fixed and moving image graph Laplacians are almost simultaneously diagonalizable (by225

minimizing Eq. (6)) is a suitable criterion for image registration.

However, the simultaneous diagonalization of large matrices is computationally expensive and can take

up to hours for large matrices. Typically, a registration algorithm is an iterative process, hence it is not

practical to compute the joint eigenspaces at each iteration. In [9], a faster method for sparse Laplacians

was presented. We overcome the high computational complexity by using the relation between simultaneous230

diagonalization and commuting matrices described in Section 4.

Our approach is to find the transformation parameters p, such that the two image graph Laplacians

LF and LM (p) almost commute, which has been shown to be equivalent to approximate simultaneous

diagonalization [56]. Additional regularization is used to constrain the matrix to preserve the structure of

the fixed graph Laplacian.235

Thus, we define the closest commuting operator distance (CCOD) as

D(p) = D(IF , IM ;φp) := α ‖ LFLM (p)− LM (p)LF ‖2F +(1− α) ‖ LF − LM (p) ‖2F . (7)

The first term D1(p) :=‖ LFLM (p)−LM (p)LF ‖2F measures how well the Laplacians commute. The second

term D2(p) :=‖ LF −LM (p) ‖2F ensures that the moving image has a Laplacian similar to the fixed image,

thus enforcing that the resulting LM (p) preserves the fixed image structure. The weighting parameter

α ∈ R+ controls the influence of both terms to the overall distance. This problem differs from the closest

commuting operator problem in Eq. (3), used in [5], in three aspects. First, the main difference lies in the240

interpretation of the underlying problem. In [5], the CCO of Laplacians of two modalities were computed

to obtain the eigenvectors of the CCO, the joint eigenvectors, as a more meaningful representation of the

data in comparison to the individual eigenvectors of the Laplacians. Due to differences in modalities and

presence of noise, the Laplacians are not exactly simultaneously diagonalizable and thus an approximate

solution is sought. Thus, both Laplacians are modified (to find this approximation) but not the actual data.245

In our formulation, we not only want to obtain the CCO’s of two modalities, but, in addition, one modality

is geometrically transformed to enforce the commutativity (as a proxy for structure similarity). This is done

by parametrizing the Laplacian of the moving image LM with the graph weights and the transformation

parameters.

Second, in contrast to Eq. (3), in Eq. (7) only the moving image graph Laplacian LM is modified and250

LF is fixed. Instead of modifying both Laplacians slightly, such that they commute, we modify only LM to

transform the underlying image data by a spatial transformation φp such that LF and LM (p) commute.
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Figure 1: Examples of image pairs from the different datasets used for image registration.

Third, in Eq. (3), the CCOs are compared to the original Laplacians such that they are as close as

possible to them. For our application, we do not want LM (p) as close as possible to LM . The moving

image is transformed during the registration process and in the end, LM (p) might be very different to LM .255

Therefore, LM (p) is compared to LF in the structure preservation term of Eq. (7) to ensure that LM (p)

has approximately the structure of the Laplacian of the fixed image.

We thus use CCOD (Eq. (7)) as a (non-metric) distance measure for image registration. Note that

CCOD is asymptotically a (pseudo-)metric (cf. Appendix A).

We solve min
p
D(p) using gradient-descent optimization methods. The computation of the derivatives of260

D with respect to the transformation parameters p for both normalized and unnormalized graph Laplacians

is detailed in Appendix B.

6. Experimental results

We evaluated CCOD on both synthetic and real multimodal datasets. We especially chose the datasets to

evaluate the performance of CCOD in challenging contexts (e.g. images with different intensity distribution,265

large deformations and missing structures).

We carried out experiments comparing the eigenspaces of images as well as distance curves and registra-

tion accuracy for global and local transformations (rigid and B-Spline). We compared CCOD to normalized

mutual information (NMI) and local NMI (LNMI) [61], which are state-of-the-art distance measures for

multimodal image registration.270

For the registration experiments using transformations modeled with B-Splines, we used a regularizer

penalizing second order derivatives:

R(φ) =‖ ∇xφ ‖=
∑
i,j

(
∂2φ(x)
∂xi∂xj

)2
, with φ : Rd → Rd being a spatial transformation (see Section 5).

6.1. Parameters

The parameters of CCOD were chosen semi-automatically. The registration experiments were performed

using a multiresolution strategy with three levels i = 1, 2, 3, and corresponding image sizes of 24+i in all

dimensions. For all experiments, we constructed patch-based image graphs using a cubic patch with edge
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length 2i for image level i. We estimated σ1 and σ2 in the Gaussian kernel of Eq. (5) by:

σ1 = median
i=1,...,n

j=NI(ui)
(k)

‖ I(ui)− I(uj) ‖2,

σ2 = median
i=1,...,n
j=Nui

(k)

‖ ui − uj ‖2,
(8)

where NI(ui)(k), Nui
(k) are the indices of the kth nearest neighbor of vector I(ui) and voxel ui, respectively.

We tested different values of k by taking ν% of the number of nodes in the graph with ν ∈ {5, 10, 50, 70, 100}.

The choice of β in Eq. (5), unless otherwise stated, was computed using

β =

max
i,j=1,...,n

‖ I(ui)− I(uj) ‖2

max
i,j=1,...,n

‖ ui − uj ‖2
. (9)

We chose α in Eq. (7) as α = D2

γ·D1+D2
, where D1 is the first term (the commutativity term; weighted by α)275

and D2 the second term (the structure preservation term; weighted by 1− α). When γ = 1, α accounts for

the different ranges of D1 and D2 and both terms contribute equally to the final distance. For all experiments

we chose γ = 0.7 (the commutativity term has a higher weight), which gave the best results.

We used the unnormalized graph Laplacian only for the synthetic dataset, where the multimodal images

have approximately the same intensity distribution (as specified in Section 6.2.1). For datasets, in which280

the ranges of the images to register are very different, we used the normalized version.

The most sensitive parameter is ν, which gives the percentage of number of nodes for determining the

number of neighbors k for estimating the scale parameters σ1 and σ2. This was the only parameter that

had to be adapted to each multimodal dataset. Empirically, we found that ν should be small, when both

multimodal images have a lot of texture. However, for the infrared-visual datasets ν = 100 gave the best285

result. Therefore, this parameter has to be carefully tuned for registration, similar to the fine tuning of the

number of histogram bins for NMI.

The algorithms were implemented in C++ using the Insight Segmentation and Registration Toolkit

(ITK2) and ran on a quad-core Intel (2 GHz CPU, 8 GB RAM). The average computation time when using

the proposed distance measure for 2D and 3D rigid registration was about 40 seconds and 21 minutes,290

respectively, and for non-rigid registration 10 minutes and 280 minutes, respectively.

6.2. Datasets

For the evaluation of CCOD, we used two different synthetic datasets, a dataset of infrared and visible

images of pedestrians and two clinical datasets. The selected datasets show a variety of multimodal images,

ranging from simple binary images (first synthetic dataset) to multimodal images with highly different295
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intensity distributions and missing structures (all real datasets, but in particular the infrared-visual and

second clinical dataset), to best explore the properties and limitations of the proposed distance measure.

Examples of image pairs from the different datasets are shown in Fig. 1.

6.2.1. Synthetic data

Data. The first synthetic dataset consists of seven multimodal binary images showing various shapes300

(original databases from [62, 63]). Each shape has two modalities: one with a black background and a

white object, the other with a light grey background and a dark grey object. For the second dataset, we

used six synthetic phantoms similar to those employed in [64]. Both the fixed and moving image contain a

geometrical object (a circle and a square, respectively), which is black with a white background or with an

intensity gradient.305

The aim of using this dataset is to illustrate the behavior of CCOD for image registration using simple

toy examples (see Sections 6.3, 6.4 and 6.5.1). NMI is known to perform badly when the images do not

have the same intensity distribution as in the second synthetic dataset. LNMI, however, was proposed to

overcome those short-comings.

Parameters. For the first synthetic dataset, we used ν = 100, meaning that k in Eq. (8) is equal to the310

number of patches or voxels in the graph, respectively. Since the images are binary, using the pairwise

intensity differences was enough to build the image graph, thus we set β = 0 in Eq. (5). For the second

synthetic dataset, best results were obtained with ν = 5 to compute k for cases where both images have

texture and ν = 50 where the moving image is binary. The parameter β was computed using Eq. (9). For all

the synthetic experiments, results are shown for the unnormalized Laplacian (similar results were obtained315

for the normalized one).

6.2.2. Visual-infrared data

Data. We used a dataset obtained from [65] consisting of eight pairs of infrared-visual images of pedestrians.

The images are single frames of stereo videos acquired with a FLIR Thermovision A40M (infrared videos)

and a Sony XCD-710CR Sensor (visual images). We extracted a region of interest around the pedestrians320

that includes background features in the visual images, that are not visible in the infrared images. Apart

from the different intensity distributions, these missing structures are challenging for intensity-based image

registration. By using this dataset, we assess how well CCOD can align global image structures when locally

structures are missing in one of the images.

Parameters. For the visual-infrared dataset, parameters for the random-walk graph Laplacian were com-325

puted as indicated in Section 6.1, with ν = 100 to compute k.
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Figure 2: Individual and joint eigenvectors (with image contours) of (i) graph Laplacians LF ,LM of an image pair IF , IM

before alignment and (ii) graph Laplacians LF ,LM (p∗) of an image pair IF , IM ◦ φ∗p after alignment using two datasets. (a):

fixed and moving images IF , IM before alignment and moving image after alignment (IM ◦φ∗p, bottom row); (b): two individual

eigenvectors of corresponding graph Laplacians; (c): joint eigenvectors V of graph Laplacians LF ,LM before alignment (middle

row) and V∗ of LF ,LM (p∗) after alignment (bottom row); (d) matrices VTLFV and V∗TLFV∗. The matrix V∗TLFV∗

is a diagonal matrix, indicating that the corresponding graph Laplacians after alignment are simultaneously diagonalizable as

opposed to the graph Laplacians before alignment.

6.2.3. Clinical data

Data. As a first clinical dataset (T1-T2 MR Brain Dataset), we used data obtained from the Brain Tumor

segmentation challenge (MICCAI 2012 BRATS Challenge [66]). The dataset consists of T1 and T2 weighted

magnetic resonance (MR) images of ten patients with ground truth alignment.330
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As a second clinical dataset (MR-US Brain Dataset), we used a public database of pre-operative T1-

weighted MR and intra-operative (pre-resection) freehand ultrasound (US) images of ten tumor patients

(BITE: Brain Images of Tumors for Evaluation [67]). Corresponding landmarks for each MR/US image pair

selected independently by three experts are provided.

By using clinical data, the aim is to test the performance of CCOD on image data with rich texture (T1-335

T2) and on data containing the same object, but with many structural and textural differences (MR-US).

Parameters. For both clinical datasets, parameters for the random-walk graph Laplacian were computed

as indicated in Section 6.1, with ν = 10 to compute k.

6.3. Simultaneous diagonalization for image registration

We performed experiments to support the use of simultaneous diagonalization (e.g., through Eq. (6) and340

CCO (Eq. (7)) for pairwise image registration.

Figure 2 shows individual and joint eigenspaces before and after image alignment of an image pair of

the first synthetic (top) and MR brain dataset (bottom). As we can see, the joint eigenspaces of the image

graph Laplacians LF and LM (moving image before alignment) are very different and the eigenvectors V

do not diagonalize the graph Laplacians (middle row). After image alignment with a transformation φ∗p345

(bottom row), the joint eigenspaces are similar to the individual eigenspaces of LF and LM (p∗) and the

matrix V∗TLFV∗ is closer to a diagonal matrix than before alignment. In particular, the distance in Eq. (6)

is 9.73 before and 0.0 after alignment (synthetic image pair) and 33.52 before and 18.72 after alignment (MR

brain image pair). Even for aligned images, Eq. (6) is not zero, meaning that the image graph Laplacians

of IF and IM ◦ φ∗p are not perfectly simultaneously diagonalizable. This can be explained by factors such350

as noise, but also by the different intensity distributions of the two image modalities.

6.4. CCOD for image registration

To assess the behavior of CCOD for measuring the similarity between images in pairwise registration,

we compare its distance curves with those obtained by NMI and show its value as objective function in a

registration experiment.355

Figure 3 displays the distance curves obtained by horizontally translating an image over another, using

an image pair of the first and second synthetic dataset. The distance values measured by both NMI and

CCOD are plotted for each translation. For the first image pair (Fig. 3, left), the curves based on both NMI

and CCOD have a global minimum3 for zero translation. However, while the distance curve of NMI has

multiple local extrema, the curve obtained by CCOD is smooth with a single extremum at zero translation.360

3NMI is a similarity measure. Maximizing NMI is equivalent to minimize the negative of NMI (which can be interpreted as

a distance measure).
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Figure 3: The moving images are translated horizontally over the fixed images for each image pair, respectively, to obtain

distance curves using NMI and CCOD.

Figure 4: Registration example using CCOD on an image pair of the first synthetic dataset. The iterations of the optimization

process for the registration of a moving to a fixed image are plotted against the value of CCOD.

For the second image pair (Fig. 3, right), the distance curve obtained with NMI presents several local

extrema and is not symmetric. In contrast, the curve obtained with CCOD is symmetric with a global

minimum around zero translation.

To assess the convergence of CCOD during pairwise registration, we performed an experiment, where

a rigidly transformed moving binary image is registered to a fixed image. The original images, taken from365

the first synthetic dataset, are shown in Fig. 4, together with some intermediate registration results and the

values of CCOD as cost function as the number of iteration increases. When misaligned, the value of CCOD

is high. The better the alignment with the fixed image is, the smaller the value of CCOD becomes. Figure 5

shows the CCOD surface as a function of two out of the three free parameters of the rigid transformation.

It can be seen that CCOD has a global minimum at the alignment of the images.370
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Figure 5: Registration example using CCOD on an image pair of the first synthetic dataset. The shape of CCOD as objective

function is shown by varying in each plot two parameters of the rigid transformation (rotation in radians, translations in pixels).

Left: Varying the translation in x and y; Middle: Varying the rotation angle and translation in x; Right: Varying the rotation

angle and translation in y. The evolution with the iterations of the registration process is shown as black points.

6.5. Image registration

We evaluated the registration accuracy of CCOD and NMI/LNMI on the selected datasets using global

(rigid) and local (B-Spline) transformation. For the rigid case, the transformations were randomly created

with a maximal translation and rotation (specified individually for each dataset, see below). We deformed

the moving image with these transformations and used their inverse as ground truth. For the local trans-375

formations, deformations were generated with a maximal pixel displacement using random displacements

of the control points of a dense B-Spline grid. We created the corresponding deformation fields and, to

ensure physically plausible transformations, smoothed them by a Gaussian kernel with standard deviation

σ = 8. We used the smoothed deformation fields to deform the moving images and the smoothed inverse

deformation fields as ground truth.380

The registration accuracy was measured by the Root Mean Square Error (RMSE) between the estimated

and ground truth transformation parameters. For rigid registration, we considered a 1 pixel or 1 mm error,

respectively, equal to a 1◦ error to quantify the translational and rotational displacement from the ground

truth in a single RMSE value. For both synthetic datasets, the accuracy is additionally measured by the

Dice coefficient between the objects in the aligned and transformed moving image. The Dice coefficient385

between two sets A and B is given by D = 2|A∩B|
|A|+|B| and measures the similarity of the two sets.

To test for significance of the results, we performed for all cases a Wilcoxon signed-rank test and reported

the corresponding p-values. Significant differences in the accuracy of NMI/LNMI and CCOD at p < 0.05

are printed in bold.

6.5.1. Synthetic data390

For the rigid case, 20 transformations were randomly generated with a maximal translation of ±30 pixels

and a maximal rotation of ±86◦. For the local transformations, a total of 10 deformations were generated

with a maximal pixel displacement of ±23. In total, we performed 230 rigid and 130 non-rigid registration
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Figure 6: Synthetic datasets used for registration. From top to bottom: fixed images, moving images (aligned with fixed image)

and (an example of) moving images deformed with rigid (third row from the top) and B-Spline (bottom row) transformation

with the contour of the fixed image in green. First synthetic dataset: Column one to seven; second synthetic dataset: column

eight to thirteen.

experiments for both NMI/LNMI and CCOD as distance measures. Figure 6 shows the image pairs of the

synthetic datasets together with examples of initial rigid and non-rigid misalignments.395

Table 1 shows the results. For the first synthetic dataset, both NMI/LNMI and CCOD were able to

measure the distance between the images accurately. That was confirmed by the high Dice coefficients of the

registration results. However, the registration using CCOD yielded higher Dice coefficients and significantly

(p < 0.001) smaller RMSE with less standard deviation. For the second synthetic dataset, the registration

results using CCOD were significantly more accurate (p < 0.001). On the first synthetic dataset with400

relatively large rigid deformations between the images, LNMI performed slightly worse than NMI. However,

LNMI was designed to deal with locally varying intensity distributions in images, which are present in the

second synthetic dataset. As expected, LNMI performed here much better than NMI, and slightly worse

than CCOD. For the global non-rigid deformations, LNMI is comparable to CCOD.

6.5.2. Visual-infrared data405

On the visual-infrared dataset, we performed pairwise rigid registration using the visual image as fixed

image. The particular challenge of this dataset is that the background structures of the visual image are not

seen in the infrared image, which shows only the pedestrian and the light source. In [65], it was reported that

MI-based similarity measure yielded good results on this dataset. Here, we explored the accuracy of CCOD

compared to NMI and, additionally, the robustness of both measures to the amount of initial displacement.410

We generated randomly two sets of rigid transformations (20 transformations for each set). For both sets,

the maximal rotation was ±45◦ and the maximal translation ±10 pixels for the first set and ±30 pixels for

the second set. In total, we performed 320 registration experiments both for NMI and CCOD as distance

measure.
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Table 1: Dice coefficients, mean registration errors (RMSE± standard deviation in pixels) and p-values for the synthetic

datasets.

First dataset Second dataset

RMSE Dice RMSE Dice

Rigid

NMI 0.138± 0.090 0.987± 0.009 3.937± 3.150 0.904± 0.055

LNMI 0.237± 0.123 0.986± 0.003 0.82± 0.886 0.982± 0.012

CCOD 0.040± 0.043 0.993± 0.007 0.276± 0.160 0.994± 0.004

p <0.001 <0.001

B-Spline

NMI 1.254± 0.085 0.968± 0.014 1.776± 0.127 0.960± 0.010

LNMI 1.168± 0.07 0.97± 0.004 1.63± 0.09 0.97± 0.012

CCOD 1.169± 0.085 0.984± 0.008 1.631± 0.120 0.971± 0.006

p <0.001 <0.001

Figure 7: Top row: two image pairs of the visual-infrared dataset. Bottom row: examples of initial rigid displacements of the

first rigid set and the second rigid set with the contours of the aligned image in green.
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Table 2: Mean registration errors (RMSE ± standard deviation in pixels) and p-values for the visual-infrared dataset on two

sets of rigid transformation.

1 2 3 4 5 6 7 8 Average

Rigid set 1

NMI
2.679 2.484 1.388 1.984 1.115 2.210 0.776 1.054 1.711

±2.656 ±1.541 ±1.141 ±0.669 ±0.269 ±1.288 ±0.195 ±0.859 ±1.471

CCOD
1.022 2.119 2.270 1.053 0.733 1.873 1.107 2.173 1.544

±0.221 ±0.987 ±0.519 ±0.561 ±0.176 ±0.160 ±0.192 ±0.746 ±0.789

p 0.011 0.430 0.003 <0.001 <0.001 0.261 <0.001 0.002 0.478

Rigid set 2

NMI
5.41 7.169 2.592 2.784 2.365 4.160 2.172 3.882 3.816

±3.45 ±2.437 ±2.260 ±0.958 ±2.687 ±2.329 ±2.107 ±3.452 ±3.044

CCOD
1.34 2.734 3.822 1.623 1.285 2.295 1.468 3.224 2.224

±0.39 ±1.260 ±1.918 ±0.772 ±0.917 ±0.814 ±0.502 ±1.158 ±1.393

p <0.001 <0.001 0.004 <0.001 0.090 0.007 0.784 0.546 <0.001

Figure 7 shows some examples of initial transformation of the two sets for two image pairs. Table 2415

shows the results of pairwise registration using CCOD and NMI on both rigid transformation sets. Despite

the missing background structures in the infrared images, CCOD yields low registration errors. As already

reported in [65], MI-based distance measures perform well on this dataset and the accuracy of NMI and

CCOD are comparable for the first rigid set of transformation. However, with increasing initial translation,

the error using NMI increases from 1.7 to 3.8 mm, while the error using CCOD only increases to 2.2 mm,420

yielding a significantly higher accuracy for CCOD over all image pairs (p <0.001).

6.5.3. Clinical data

First clinical dataset. Intensity non-uniformity (INU) is a common artifact in MR imaging due to the

inhomogeneity in the magnetic field and has an adverse effect on the performance of registration algorithms.

Despite of available methods to correct for such INU fields (see, e.g., [68]), registration techniques robust425

to those fields are advantageous. To test for this robustness, we added INU-fields (see Fig. 8) of various

strength to the images prior registration. The field was different for the fixed and moving image.

We generated randomly a total of 30 rigid transformation with a ±20 mm range for translation and

±20◦ range for rotation. Next, we created 10 non-rigid transformations with a maximum displacement of

±23 mm. We ensured (by controlling the positivity of the Jacobians) that the deformations were anatom-430

ically plausible. We performed in total 400 pairwise registrations (300 using rigid and 100 using B-Spline

transformations), taking the T1 image as fixed image and the T2 as moving image in all cases. The results
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Figure 8: Example of intensity non-uniformity fields added to the T1-T2 dataset. The fields were extracted from real T2

weighted MR acquisitions using a 1.5T system (Aera, Siemens Healthcare).

Table 3: Mean rigid and B-Spline registration errors (RMSE ± standard deviation in mm) and p-values for the T1-T2 dataset

with various strengths of intensity non-uniformity (INU) fields.

– 16% 24% 31% 40%

Rigid

NMI 0.124± 0.006 0.129± 0.008 0.132± 0.006 0.148± 0.057 0.157± 0.007

CCOD 0.128± 0.005 0.129± 0.007 0.141± 0.008 0.141± 0.007 0.141± 0.007

p 0.533 0.933 0.292 0.276 0.006

B-Spline
NMI 1.070± 0.016 1.078± 0.015 1.087± 0.014 1.106± 0.014 1.132± 0.014

CCOD 1.051± 0.016 1.062± 0.015 1.073± 0.015 1.083± 0.015 1.095± 0.016

p < 0.001 < 0.001 0.004 < 0.001 < 0.001

for rigid and B-Spline registration are shown in Table 3 and Fig. 9. For rigid registration, the differences

in accuracy between NMI and CCOD were non-significantly when adding no INU field and INU fields of

strengths 16%, 24% and 31%. The errors for both measures grew with increasing strength of the INU field.435

However, the errors using CCOD increased slower and were, for strong INU fields, lower than the errors using

NMI. In total, the error of NMI grew by 26% and the error of CCOD by 10%. For B-Spline registration,

CCOD yielded significantly lower average RMSE for all cases (all p ≤0.002). With increasing INU field, its

error increased in total by 4.2% while the error of NMI increased by 5.8%. However, although CCOD yielded

in some cases significantly better results, the differences in registration error between NMI and CCOD were440

in general very small and both measures performed comparably. Figure 9 shows registration examples of two

patients using CCOD as distance measure. The initial rigid and non-rigid displacements were successfully

recovered.

Second clinical dataset. The registration of US to MR images is a challenging task due to structural

differences in the MR and US images. In the selected MR-US Brain dataset, the structures common to MR445

and US are the ventricular system and the tumor. Here, we explored the ability of CCOD to recognize those
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Figure 9: Examples of T2 to T1 registration for patient HG0008 and patient HG0014. Random rigid (top row, column two

and five, respectively) and random B-Spline transformation (top row, column three and six, respectively); estimated transform

for rigid (bottom row, column two and five) and B-Spline registration (bottom row, column three and six) using CCOD as

distance measure. Blue arrows highlight regions where an initial misalignment was corrected by the registration.

structures in both images for the displacement estimation and we compared it to NMI.

We performed experiments in 3D and 2D. We created a 2D dataset by aligning the corresponding

landmark sets (our ground truth). We extracted corresponding 2D slices in axial, coronal and sagittal

direction of the MR and US volumes and transformed the US slices with randomly created transformations.450

We generated a total of 10 rigid transformation with a ±10 mm range for translation and ±10◦ range

for rotation to transform the US slices for the 2D dataset. We performed rigid registration to recover

the random rigid displacements and local registration using B-Spline transformations to correct for the non-

rigid deformations between pre-operative MR and intra-operative US. In total, we performed 200 registration

experiments on the whole 2D dataset. Table 4 shows the mean RMSE of the transformation parameters for455

2D rigid registration. We obtained a significantly lower RMSE (all p <0.001) with less standard deviation

using the proposed distance measure in comparison to NMI. The errors are around 1 mm, whereas the

errors for NMI are around 2.6 mm in average. Figure 10 shows some examples of registration results for

two patients using CCOD as distance measure. The rigid registration corrects for the randomly introduced

translation and rotation of the US image towards the MR (Fig. 10, top and middle row). Further local460

registration using B-Splines improves the alignment (visually confirmed in Fig. 10, bottom row).

On the original 3D dataset, we performed rigid registration using CCOD and NMI as distance measures

and we measured the registration accuracy by the average Euclidean distance between the corresponding

landmarks (Fiducial Registration Error, FRE, in mm). Table 5 shows the FRE before registration (using

the initial transformation provided with the database), and the FRE after rigid registration using CCOD465
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Table 4: Mean 2D rigid registration error (RMSE± standard deviation in mm) and p-values in the MR-US dataset.

01 02 03 05 06 10 11 12 13 14 Average

NMI
2.646 2.578 2.286 2.701 2.642 2.355 3.122 2.138 2.246 2.984 2.590

±1.122 ±1.330 ±1.086 ±1.003 ±1.297 ±0.995 ±1.337 ±1.428 ±1.308 ±1.377 ±1.257

CCOD
2.108 1.294 0.898 1.100 0.988 0.828 0.798 0.607 0.907 0.976 1.050

±1.038 ±0.809 ±0.528 ±0.651 ±0.516 ±0.581 ±0.355 ±0.342 ±0.519 ±0.396 ±0.716

p 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5: Euclidean distance (in mm) between Landmarks for 3D rigid registration in the MR-US dataset compared to results

reported in the literature.

02 03 05 06 10 11 12 13 14 Average

Initial 6.30 9.38 2.62 2.30 2.99 1.52 3.70 5.15 3.77 4.27± 2.31

NMI 5.10 8.08 2.30 2.58 2.70 1.71 3.77 4.24 4.02 3.83± 1.22

CCOD 4.81 4.58 2.52 1.76 2.27 1.53 2.63 4.20 2.82 3.01± 1.22

MIND [23] 4.59 4.55 2.34 4.17 3.56 2.45 2.73 4.41 4.53 3.7± 0.96

LMI [61] 4.05 3.74 2.72 2.23 2.84 3.94 2.29 2.67 2.9 3.04± 0.69

CoCoMI [69] 3.22 3.03 2.18 2.2 2.04 2.48 2.16 2.64 2.07 2.45± 0.43

SeSaMI [71] 1.8 2.54 2.59 1.73 2.74 1.35 2.78 2.91 2.16 2.29± 0.55

LC2 [70] 1.64 2.43 2.26 2.2 2.09 1.76 2.45 3.71 2.76 2.37± 0.61

and NMI as distance measures. CCOD yields in average lower registration errors than NMI and improves

the initial alignment.

The BITE database is used in the literature to evaluate registration methods developed for MR-US

image alignment. In addition to our results on rigid registration, we report in Table 5 FRE errors published

in [69, 70]. CCOD ranks average, comparing favorably to NMI, local mutual information (LMI, [61]) and470

modality independent neighborhood descriptor (MIND, [23]), but contextual conditioned mutual information

(CoCoMI, [69]), linear correlation of linear combination (LC2, [70]) and self-similarity weighted mutual

information (SeSaMI, [71]) have lower errors. This is not surprising since especially CoCoMI and LC2

are especially designed for MR-US registration. On the other hand, CCOD is a general measure, which

outperforms other general measures (NMI, LMI, MIND) for the task of MR-US registration. SeSaMI, which475

uses not only intensity but also gradient information, performs best.
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Figure 10: Examples of US to MR registration of patient 06 (left) and 13 (right). Random rigid transformation (top row);

estimated transform for rigid (middle row) and B-Spline registration (bottom row) using CCOD as distance measure. Blue

arrows highlight regions where an initial misalignment was corrected by the registration.

6.6. Computational complexity

In this work, our baseline for comparison is NMI, a de facto state-of-the-art similarity measure for image

registration. The complexity of NMI is dependent on the MI estimation approach. The implementation we

used is based on [72] and the complexity is O(sm2p) [73] (with derivative estimation), where s is the number480

of samples, m the number of histogram bins and p the number of transform parameters.

The complexity of CCOD is O(n3qp) [9], meaning that it scales linearly with the patch size q and the

number of transformation parameters p. It scales cubic with n, the number of rows of the image graph

Laplacian. As an illustration, Fig. 11 shows the computational time when varying those three parameters

in a toy example (using an image pair of the first synthetic dataset).485

7. Discussion and conclusions

The fusion and combination of images from multiple modalities is important in many applications.

Typically, this process consists of the alignment of the images and the combination of the complementary

information. In this work, we focused on the former part and, to this end, we proposed a new multimodal

distance measure for image registration based on the commutativity of image graph Laplacians.490

We build upon the recent framework of simultaneous diagonalization [9] and its equivalent formulation

of the closest commuting Laplacians [5] to define a metric between multimodal images accounting for how
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Figure 11: Analysis of the computational complexity of CCOD. Average time of CCOD evaluation when varying (a): the

number of nodes in the image graph, with three free transformation parameters and image size 128 × 128; (b) the number of

transformation parameters, with 256 nodes and image size 128 × 128; (c) the image size (number of pixels per patch), with

three transformation parameters and 256 nodes.

well the image Laplacians are simultaneously diagonalizable. We express the metric and its derivatives

with respect to the image transformation and thus perform optimization over these parameters. As in

[5], we employ the fact that almost commuting matrices are close to commuting matrices, which in turn,495

are simultaneously diagonalizable. We use this mathematical relationship to use Laplacian commutativity

as a criterion for image structure similarity. In contrast to [5], we do not use the eigendecomposition of

the closest commuting Laplacians for our analysis. We use the image Laplacian matrix to capture the

structural information and we consider that, if two images are aligned, then their eigenvectors are similar or,

equivalently, they will almost commute. Therefore, the main contribution is the adaptation and application500

of the mathematical framework presented in [5] to the problem of image registration and to show how this

approach successfully aligns images of multiple and challenging datasets.

Spectral methods have become popular techniques in several applications but have received limited

attention in dense image registration. In [6, 8, 10], the similarity of the spectral coordinates of two image

graph Laplacians was used to include the geometric structure into the registration problem. However, the505

method in [6] is only applicable to monomodal images, because of the incompatibility of eigenspaces of

non-isometric manifolds, as explained in Section 1. In [8, 10] the first embedding coordinate of Laplacian

eigenmaps and diffusion maps, respectively, were used, with suitable methods to make the eigenspaces

comparable, for multimodal image registration. Since it is computationally very expensive to compute the

spectral embeddings in each iteration, the embedding coordinates were used as a new representation of510

the images and those representations were registered. However, in general one cannot assume that the

transformation of a spectral representation of an image is the same as the spectral representation of a

transformed image.

We addressed several of the aforementioned limitations. First, CCOD is applicable to multimodal images

while transforming directly the image instead of their spectral representations without realignment of the515

eigenspaces. Second, the explicit computation of the spectral coordinates is avoided by using the relation
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between simultaneous diagonalization and commutativity of matrices as a criterion for image structure

preservation.

The formulation of CCOD is in spirit of the Laplacian colormaps presented in [13, 14]. However, our

framework and application show substantial differences. Eynard et al. transform the color space of an image520

by interpreting the structural similarity in terms of color and contrast. Our work, on the other hand, focuses

on the geometry of two multimodal images. Using CCOD as distance measure, the registration is guided

such that the geometrical structure of a transformed image is most similar to a given image. By doing so, we

have to consider not only linear transformations (as linear color mapping and spatial rigid transformations)

but also higher-order spatial transformation, such as B-Splines, which requires the optimization of a higher525

number of parameters (in the order of � 100). In addition, we introduced patch-based graph Laplacians to

be able to deal with high resolution 2D and 3D images. Additionally, to account for the different range of

graph Laplacians of different imaging modalities, we considered a normalized version of the graph Laplacian,

the random-walk Laplacian, and provided the corresponding derivatives of CCOD in Appendix B.

We tested the performance of the proposed image distance measure on very challenging both synthetic530

and real multimodal datasets. Results confirm that enforcing the commutativity of the graph Laplacians

favorably compares to NMI, a state-of-the-art measure for multimodal image registration. We tested the

proposed distance measure on datasets where NMI was expected to have a good performance (first synthetic

dataset, visual-infrared dataset and T1-T2 dataset) and on datasets where NMI was expected to have a

poor performance (second synthetic dataset and MR-US dataset) due to the presence of intensity gradients535

or very different intensity distributions. NMI assumes a global statistical relationship between intensities

and is therefore not suited for the registration of these datasets. On the first type of dataset (first syn-

thetic, visual-infrared and T1-T2) CCOD performed comparable to NMI. The improvements of CCOD with

respect to NMI are not very high. However, CCOD showed higher robustness to larger initial displace-

ments (visual-infrared). Despite the missing background structures in the infrared images, CCOD yields540

low registration errors on the visual-infrared images. On the other datasets (second synthetic and MR-US),

CCOD demonstrated a substantial increase in accuracy over NMI which, as expected, performed poorly

even for simple rigid transformations (see, e.g., the high RMSE and high variance for rigid registration in

Table 1 and Tables 4, and 5 for MR-US registration). On these two datasets, where NMI would not be a

good choice as distance measure, we additionally included results obtained using LNMI (second synthetic545

dataset) and results reported in the literature (MR-US dataset). LNMI (LMI for MR-US data), designed

to address some of the short-comings of NMI, outperformed NMI on these datasets, as expected. CCOD

obtained in most of the cases lower registration errors than LNMI. Compared to the results reported in the

literature, CCOD performed average on the MR-US dataset: it yielded better results than other general

measures (NMI, LMI, MIND) but it did not outperfom specific MR-US distance measures (CoCoMI, LC2).550

Self-similarity weighted mutual information (SeSaMI, [71]), which uses not only intensity but also gradient
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information, performed best.

It is known that topological changes in a graph (e.g. adding or removing edges) can significantly perturb

the eigenspace of the graph Laplacian. Thus, conventional spectral matching cannot handle missing data

(i.e., different structures in the images to register), since they produce two independent sets of eigenvectors555

that cannot be matched. In [5], the closest commuting operator is shown to be robust to topological noise

and produce single consistent representation. In this regard, from our experiments, we conclude that our

method can handle well: (i) missing correspondences between structures (as shown in Section 6.5.2 with

the infrared-visual data); (ii) different intensity distributions (as shown in Section 6.5.1 with the synthetic

dataset 2 and in Section 6.5.3 with the second clinical dataset); and (iii) non-uniform intensity distributions560

(as shown in Section 6.5.3 with the first clinical dataset). As long as a main structure is present in both

modalities, CCOD was robust to those missing objects and different (and possibly non-uniform) intensity

distributions.

CCOD is a rather global measure. Our results indicate that this is especially beneficial for large global

deformations (Tables 1, 2, 4, 5). In the case of smaller initial deformations (Tables 3), registration errors565

were lower and differences between NMI and CCOD are less relevant. Note that our approach for generating

the non-rigid deformations in Section 6.5.3 is only applicable to relatively small deformations. For larger

deformations, another procedure (for example as in [6]) should be employed to ensure anatomic plausability.

We used NMI as state-of-the-art multimodal distance measure for comparison. Despite its several ex-

tensions to deal with its limitations (e.g., [74]), NMI has become the de facto standard for multimodal570

registration, being one of the most successful multimodal distance measures and widely used in practice

(see, e.g., the studies in [75, 76]). When NMI fails, e.g., for MR-US registration, the distance measures

that have been proposed are rather specific for the application at hand. In the case of the very challenging

MR-US registration problem, one approach is to simulate an US image from the segmented MR image and

align the original US with the simulation [77]. Other extensions of NMI, as local NMI [61, 74] and phase575

NMI [64], or measures using image gradients [19], have shown to address successfully some shortcomings

of the original NMI. However, our objective was not to compare extensively different distance measures for

image registration or to find the best measure for all datasets, but to show that by using the commutativity

of image graph Laplacians, multimodal image structures can be successfully compared. With the proposed

CCOD, we presented a context-free, non-specific measure with good performance on very different and580

challenging multimodal datasets.

Amongst other data, we performed experiments on clinical data (MR and US brain images). Aligning

MR and US images in a well known and challenging problem, both for rigid and non-rigid deformations.

Regarding the T1-T2 MR data, the experiments using rigid transformations between images of the same

patient are realistic scenarios, because T1 and T2 scans are in general not aligned. In contrast, the ex-585

periments using B-spline transformations represent a less common scenario. Non-rigid distortions of brain
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images of the same patient may occur in follow-up studies (e.g., after tumor resection or for monitoring

neurodegenerative diseases such as Alzheimer’s). However, the evaluation of registration methods becomes

more difficult when using real data of either follow-up studies of the same patients or cross-sectional studies

analyzing changes of different patients, because of the lack of ground truth. Therefore, we used a synthetic590

registration scenario, as explained in Section 6.5.3. This allows us to assess the performance of CCOD on

clinical data with rich texture and local non-rigid distortions, but with a reliable evaluation using the ground

truth transformations.

The runtime of CCOD is, especially for 3D registration, its main limitation. The main influence have

the number of nodes used to construct the graph Laplacians (cubic scale) and the number of transform595

parameters (in particular for B-spline registration, where the number of control points can be very high).

To reduce computation time, we used patch-based image graphs instead of pixel/voxel-based graphs to

construct the Laplacians and to reduce their size. The size of the patches increases in higher resolution

levels. This may imply some information lost for detailed structures, resulting in less accurate registrations,

in particular for local transformations. Comparing the results of the two synthetic datasets, we can see600

that the RMSE values are higher for the second synthetic dataset. The main difference between the two

datasets is that the first one has only two different intensity values whereas intensity gradients, interpretable

as texture patterns, are present in the second one.

To improve the registration of images with texture, the proposed distance could be combined with a

suitable intensity-based measure that captures detailed structures. A similar strategy was followed in [6],605

where the Log-Demons framework was used in combination with the comparison of the individual eigenvec-

tors of the images graph Laplacians. Moreover, the Laplacian weights in Eq. (5) could be computed using

other type of information that could potentially improve the matching accuracy.

For the experiments on the clinical datasets, we did not use a combination of distance measures, as we

suggested above. In this work, it was not the objective to find the best distance measure for T1-T2 or MR-US610

registration. Instead, we showed that the comparison of image graph Laplacians is a suitable criterion for

multimodal registration of medical images. For future work, we plan to improve the registration accuracy by

using a combination of CCOD with a state-of-the-art distance measure, designed, e.g., especially for MR-US

registration.

A limitation of CCOD is that many parameters have to be selected (σ, β, k and the size of the patches615

for the patch-based image graph). The scale parameters can be explained in light of the scale-space theory

in [60]. The parameter σ1 can be interpreted as the tonal scale (intensity scale or resolution in the domain

of the sampled values), while the parameter σ2 can be interpreted as the inner scale (scale or resolution at

which the image is observed). The patch size N would be a scope parameter (outer scale) that describes the

spatial extent of the region of interest. The interplay between these parameters is given by n -the number620

of patches- and ν -related to the effective extent of the patch. Both σ1 and σ2 are adaptively computed

28



from the data using n and ν to characterize the structure up to an overall scaling and size. Our parameter

β corrects for scale differences between the intensities and spatial coordinates, but could be “absorbed” by

σ2 by setting σ2 ← σ2/
√
β. The performance of the measure is particularly sensitive to the choice of σi,

i = 1, 2, in Eq. (5). The sensitivity of the parameter σ for the representativity of the image graph was625

already mentioned in [37]. To overcome this problem, we provided automatic estimations for σ and β using

Eqs. (8) and (9), respectively.

Even though the eigenspaces are not computed explicitly, the proposed similarity measure is relatively

computationally expensive. Note that the most computational expensive part is not the storage of the

Laplacians itself, but the computation of the derivatives of the cost function when many parameters have to630

be optimized. This is not problematic for rigid transformations, where there are only three parameters in 2D

and six in 3D. However, for B-spline transformations, where hundreds of parameters need to be optimized,

the computation time increases with the number of control points. We addressed this problem by working

with patch-based image graphs instead of voxel-based. Another solution would be to parallelize the code

and possibly to subdivide the graph Laplacian for faster computation times.635

We have formulated the registration in an asymmetric way (the cost function is asymmetric), but CCOD

could eventually be used in a symmetric registration framework (e.g. by transforming both images simul-

taneously or by evaluating the distance on both images domains). Also, the framework of the CCO’s [5] is

extendable to more than two images, which is interesting for groupwise registration and template construc-

tion. Simultaneous diagonalization has already been used for more than two Laplacians. In [78], e.g., the640

coupled joint eigenspace of brain networks was used for longitudinal connectivity analysis. For group-wise

image registration, the overall aim would be to transform all images at the same time, such that their graph

Laplacians all have approximately the same eigenvectors. In our setting, one approach could be to transform

simultaneously all images such that pairwise image Laplacians almost commute. This could be measured as

the average of the CCO’s of all image pairs.645

The process of image fusion consists of the alignment of the images and the combination of the comple-

mentary information. In this work, we used the framework of the CCO’s for image alignment. However, the

proposed image distance CCOD could also be used to create the fused image (by minimizing the distance

between sources and fused image, similar to [13]) or as a measure of quality assessment in image fusion (i.e.,

the lower the CCOD between sources and fused image, the higher the quality).650

To conclude, we have presented a new approach to measure image similarity for image registration

and we have shown that the proposed distance measure based on Laplacian commutativity successfully

aligns images. It can handle different modalities and is robust to intensity non-uniformity and large initial

deformations, which is important for the combination of very different, complementary images. Thus, we

believe that it has a high potential for multimodal image registration and fusion.655
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Appendix A. Asymptotic Metric Property

Here we look at the metric properties of the proposed distance measure CCOD in Eq. (7).

A metric on the set of real matrices Rn×n is a function d : Rn×n ×Rn×n → R, satisfying the following

properties for any A,B,C ∈ Rn×n:

(P1) d(A,B) ≥ 0

(P2) d(A,B) = 0 iff A = B

(P3) d(A,B) = d(B,A)

(P4) d(A,C) ≤ d(A,B) + d(B,C)

(non-negativity)

(identity)

(symmetry)

(triangle-inequality)

660

If (P2) holds only in one direction (i.e., d(A,B) = 0 for some A 6= B), then function d is a pseudo-metric.

If d satisfies (P1)-(P3) but not (P4), d is called a semi-metric.

One can easily show that the Frobenius distance ‖ A−B ‖F is a metric, while the Frobenius norm of

the commutator ‖ AB −BA ‖F is not a metric, since neither (P2) nor (P4) holds. However, it can be

shown [56] that the norm of the commutator is asymptotically a pseudo-metric in the sense that it satisfies665

(P4) asymptotically for large matrices drawn from a “good” distribution (e.g., i.i.d. with uniform, normal

or Rademacher distribution). Therefore, we conclude that the proposed distance measure in Eq. (7) is

asymptotically a pseudo-metric.

In the image registration problem, we presume that, if the images are not aligned, their structure is

different. Moreover, in practice, the fixed and the moving image have not, even after registration, exactly670

the same image structure. Hence, their graph Laplacians do not fully commute and (P2) holds. This allows

us to conclude that the distance measure defined in Eq. (7) is asymptotically a metric.

Appendix B. Derivatives

For the optimization of the proposed distance measure CCOD in Eq. (7), the derivatives with respect

to the transformation parameters p have to be computed:

d

dp
D = α

d

dp
‖ LFLM (p)− LM (p)LF ‖2F +(1− α)

d

dp
‖ LF − LM ‖2F . (B.1)

More details on the computation of the derivatives can be found in the supplementary material.

For simplicity of notation, we suppress the superscript M for the moving image IM , the moving graph

Laplacian LM and corresponding weights wMij . The edge weights of the moving image graph Laplacian can

then be written as:

wij(p) = exp

(
−
[
g(p)

2σ2
1

+ β
‖ ui − uj ‖22

2σ2
2

])
(B.2)

with g : Rp → R,

g(p) =‖ I(φ(p, ui)− I(φ(p, uj)) ‖2 (B.3)
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and I(φ(p, ui)) = (I ◦ φ(p, u1i , . . . , I ◦ φ(p, uNi )).675

We can then rewrite Eq. (B.1) as

dD
dp

=

(
α

d

dL
D1 + (1− α)

d

dL
D2

)
d

dw
L

d

dp
w

where

D1

(
L
(
w(p)

))
=‖ LFL(w(p))− L(w(p))LF ‖2F ,

D2

(
L
(
w(p)

))
=‖ LF − L(w(p)) ‖2F .

Derivatives of the similarity term w.r.t. the edge weights

We determine the derivatives of

d

dL
Dk

d

dw
L(w) =

[
d

dL
Dk

∂

∂wij
L(w)

]
i,j=1,...,n

i<j

for k = 1, 2 and for the unnormalized and normalized graph Laplacian. For simplicity, we write lij(w) = lij .

1) Unnormalized graph Laplacian:

L = Lu = D−W

(a) for k = 1:

∂

∂wij
D1(L) =

∂

∂wij
‖ L(w)LF − LFL(w) ‖2F

= 2
(
(O2 − ((L(w)LF − LFL(w))(LF )T −O1 + (LF )T (L(w)LF − LFL(w)))

)
ij

with superindex ‘T’ denoting transpose,

O1 = (diag((LF )T (L(w)LF − LFL(w))), . . . ,diag((LF )T (L(w)LF − LFL(w))) and

O2 = (diag((L(w)LF − LFL(w))(LF )T ), . . . ,diag((L(w)LF − LFL(w))(LF )T ).

(b) for k = 2:

∂

∂wij
D2(L(w)) =

∂

∂wij
‖ LF − L(w) ‖2F= 2 (O + LF − L(w))ij

with O = (diag(L(w)− LF ), . . . ,diag(L(w)− LF )) ∈ Rn,n.

2) Normalized graph Laplacian:680

L = Lrw = D−
1
2 Lu = D−

1
2 (D−W)

(a) for k = 1:

∂

∂wij
D1(L) =

∂

∂wij
‖ L(w)LF − LFL(w) ‖2F
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= 2

(
1

O2
3

◦
(
−O3 ◦ (L(w)LF − LFL(w))LTF + W(w) ◦ (L(w)LF − LFL(w))LTF + O4

+ O3 ◦ (LTF (L(w)LF − LFL(w))) −W(w) ◦ (LTF (L(w)LF − LFL(w)))−O5

))
ij

with ◦ denoting the Hadamard product between two matrices,

O3 = (diag(D), . . . ,diag(D)) ∈ Rn,n,

O4 = (diag((L(w)LF − LFL(w))LTFW(w)T ), . . . ,diag((L(w)LF − LFL(w))LTFW(w)T ))) ∈ Rn,n,

O5 = (diag(LTF (L(w)LF − LFL(w))W(w)T ), . . . ,diag(LTF (L(w)LF − LFL(w))W(w)T ))) ∈ Rn,n.

(b) for k = 2:

∂

∂wij
D2(L(w)) =

∂

∂wij
‖ LF − L(w) ‖2F

=

(
2

O2
3

◦
(
O3 ◦ (LF − L(w))−W(w) ◦ (LF − L(w))−O6

))
ij

with O3 = (diag(D), . . . ,diag(D)) ∈ Rn,n

and O6 = (diag((LF − L(w))W(w)T ), . . . ,diag((LF − L(w))W(w)T ))) ∈ Rn,n.
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