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Abstract

It has been found that the adsorption of antigens onto chitosan particles is an easy and unique mild loading process suitable to
be used with vaccines. In order to increase the stability of this particles and to prevent an immediate desorption in gastrointestinal
fluids, a coating process with sodium alginate was developed. One of the challenges of this developing process was to keep the
particles in the nanosized range in order to be taken up by M-cells of the Peyer’s patches. The observed inversion of the particles’
zeta potential values after coating suggested the presence of an alginate coating layer. These results were confirmed by FTIR
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and DSC techniques. Additionally, in vitro release studies showed that the presence of the alginate layer around th
was able to prevent a burst release of loaded ovalbumin and to improve the stability of the nanoparticles in simulated
fluid at 37◦C. The optimisation of the coating process resulted in 35% (w/w) for the loading capacity of the coated p
SEM investigations confirmed a suitable size of the coated nanoparticles for the uptake by M-cells.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Chitosan; Sodium alginate; Ovalbumin adsorption; Coated nanoparticles; Mucosal vaccination

1. Introduction
ing
o its
The
aces
ainst
uce
∗ Corresponding author. Tel.: +351 239859927;
fax: +351 239827126.

E-mail address:olga@ci.uc.pt (O. Borges).
1 Present address: Enzon Pharmaceuticals, 20 Kingsbridge Road,

Piscataway, NJ 08854, USA.

In recent years, mucosal vaccination is be
considered as a subject of great interest due t
advantages above the i.m. or s.c. application.
presence of specific antibodies in mucosal surf
has long been recognized as the first barrier ag
pathogens entrance. The most effective way to ind
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mucosal immunity (i.e., secretory IgA) is to administer
a vaccine directly to the mucosal surface. Additionally,
the existence of a common mucosal immune system
allows successful targeting of vaccines to inductive
compartments within mucosa-associated lymphoid
tissues, inducing local humoral responses in lymphoid
tissues at distant mucosal loci (Alpar et al., 1998). Both
intranasal and oral routes have been used in several
studies to achieve this goal. Particularly, the oral
administration permits targeting of a suitable vaccine-
loaded delivery system to the ports of entry (so-called
M-cells) of the largest inductive lymphoid tissue in
the body, the intestine. The oral route is well accepted
and easily allows the vaccination of large populations.
However, the acidic environment of the stomach and
the presence of enzymes make the oral delivery of vac-
cines a challenge where is difficult to achieve high and
reproducible effects. In order to solve these difficulties,
a considerable number of polymeric microparticulate
systems are under investigation to deliver vaccines
to the intestine while protecting them from adverse
conditions that could affect their bioactivity (Singh and
O’Hagan, 1998). Another important aspect is that these
delivery systems could act as imunostimulants or adju-
vants, increasing the immunogenicity of poor immune
response antigens (Jabbal-Gill et al., 1999; Singh and
O’Hagan, 1999).

Nevertheless, from a pharmaceutical perspec-
tive, it became evident that further advances in
the formulation of delivery platforms needs to be
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elevated temperatures, high shear rates or the pres-
ence of organic solvents were avoided. This method has
also been described by other groups that reported good
adsorption capacities for different substances (Mi et al.,
1999; Hejazi and Amiji, 2002). In the case that the chi-
tosan particles are not very porous, the antigen will be
preferentially adsorbed to the particle surface. This can
cause stability problems because processes like desorp-
tion or the attack of the antigens by enzymes or acidic
substances from the body fluids may occur. These
obstacles may be overcome by coating those particles
with an acid resistant polymer, like sodium alginate.

The two chosen polymers chitosan and sodium
alginate, for this novel delivery platform are naturally
occurring polysaccharides. They are polyelectrolyte
polymers of opposite charges, biocompatible and
biodegradable, and show a good safety profile.
Furthermore they have been used as pharmaceutical
excipients. Chitosan is the deacetylated form of chitin
comprising copolymers of glucosamine andN-acetyl
glucosamine linked by�-(1-4) linkages. The primary
amino groups lead to special properties that make chi-
tosan very interesting for pharmaceutical applications.
Sodium alginate is also a hydrophilic polymer and
comprisesd-mannuronic (M) andl-guluronic acid
(G) residues joined linearly by 1,4-glycosidic linkages
(Johnson et al., 1997). The wide pharmaceutical appli-
cability of alginates is, to a large extent, associated with
their gel-forming capacity. Di- or polyvalent cations
(calcium being the most widely studied example) can
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ntroduced in order to increase both the stability of
ntigens in the gastro-intestinal tract and the up
f antigen-containing particles by the M-cells. O
f the parameters that should be addressed is
ize of the particles. It is well known that the size
he particles should be below 10�m in order to be
aken up by M-cells of the Peyer’s patches in the
Eldridge et al., 1991; Jani et al., 1992). Moreover, the
reservation of antigen stability during encapsula

s also essential for the development of a succe
ontrolled release vaccine delivery platform.

Chitosan microparticles as an oral and intran
accine delivery system were already used in
roup showing promising capabilities (Van der
ubben et al., 2001a,b, 2003; Bivas-Benita et
003). In these studies, the vaccine was loaded
ild and simple but effective adsorption method.

his method, deleterious preparation conditions,
nduce the gelation by cross-linking of the guluro
cid units (Rajaonarivony et al., 1993; Johnson et
997). Sodium alginate has been used for prepa
anoparticles (Rajaonarivony et al., 1993; Gonza
erreiro et al., 2002), microspheres (Wu et al., 1997
undueanu et al., 1999; Takka and Acarturk, 19
ulkarni et al., 2001; Chan et al., 2002; Coppi et
002), microcapsules (Esquisabel et al., 2000) and
eads (Kulkarni et al., 2001), for oral delivery. In
articularly, the use of alginate microparticles as
ntigen delivery system has been described in se
ublications and there are some indications that
re able to induce a mucosal and systemic imm
esponse in a variety of animal species by both ora
ntranasal administration (Cho et al., 1998; Bowersoc
t al., 1999; Rebelatto et al., 2001).

Over the last years, sodium alginate has
een used as a coating material for cells with s
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advantages. It seems that the coating acts as a barrier
to microbial contamination, and thus improved
survival prospects of the coated cells (Kampf et al.,
2000). In another study, the coating is performed to
protect donor mammalian cells against antibodies
and cytotoxic cells of the host immune system,
allowing the transplantation of cells in the absence of
immunosuppression (de Vos et al., 2002).

This manuscript describes the development of a
true nanocoating procedure, whereas other publica-
tions describing the entrapment of cells, liposomes
(Machluf et al., 2000) or microspheres (Ramdas et
al., 1999; Hejazi and Amiji, 2002) in an alginate gel
matrix. This is, as far as we know, the first time that
the construction of a nanosized alginate-coated chi-
tosan delivery system is described with the particularly
aspect that the antigen is adsorbed to the chitosan par-
ticles surface.

2. Materials and methods

2.1. Materials

Chitosan was purchased from Primex BioChemicals
AS (ChitoClearTM, Avaldsnes, Norway). According to
the provider’s specifications, the degree of deacety-
lation is 95% (titration method) and the viscosity is
8 cP (1% solutions in 1% acetic acid). Low viscosity
sodium alginate was kindly donated by ISP Technolo-
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model (output control “1”); Sonics & Materials,
Inc., Danbury, USA). Sonication was maintained for
additional 15 min and the agitation for 60 min at room
temperature (RT). The suspension was centrifuged for
30 min at 3500 rpm (2800×g) and the supernatant
was discarded. The particles were re-suspended twice
in Millipore water, centrifuged again for 30 min and
the supernatants were discarded. The particles were
frozen in liquid nitrogen and freeze-dried overnight
using a Christ freeze-dryer (Osterode am Harz, Ger-
many). The dry powder was kept frozen until further
use.

2.3. Loading of the particles with ovalbumin

The first step of the loading procedure was the
suspension of the freeze-dried particles in a phosphate
buffer (pH 7.4) placed in an ultrasound bath for 30 min
in order to disaggregate the particles. The loading
was done by incubating a solution of ovalbumin
with chitosan particles under mild agitation at room
temperature. The various concentrations used are
presented inTable 1.

The loading efficacy and the loading capacity
of the uncoated particles were calculated by an
indirect way, quantifying the protein that remained in
solution. After incubation, an aliquot of the particle
suspension was centrifuged at 14,000 rpm for 30 min
and the protein in supernatant was quantified by
BCA-protein assay (PIERCE, Rockford, USA) using a
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ies Inc. (MANUCOL LB®, Surrey, UK). Ovalbumi
OVA; grade V; minimum 98%) was purchased fr
igma Chemicals (St. Louis, USA) and all the oth

eagents used were of analytical grade. All solut
ere prepared in Millipore water.

.2. Preparation of chitosan particles

Chitosan particles were prepared by the pre
tation/coacervation method described previou
Berthold et al., 1996). Shortly, chitosan was dissolv
t a concentration of 0.25% (w/v) in a solution with
v/v) of acetic acid and 1% (w/v) of Tween® 80. The
ormation of the particles was achieved after the a
ion of 3.5 ml of sodium sulfate solution (10%, w/v)
00 ml of the chitosan solution. The addition was m
t a rate of 1 ml/min under mild agitation (<50 rp
nd continuous sonication (vibracell sonicator; 600
icroplate reader with a 590 nm filter (Bio-Rad mo
50, Veenendaal, The Netherlands). The absorb
eading value was corrected subtracting the ave
bsorbance reading obtained in the BCA-pro
ssay from that one of the supernatants of unlo
anoparticles prepared exactly in the same co

ions. The corrected OD value was then used
alculate the concentration using the standard c
repared at same time from individual ovoalbu
tandards.

The drug loading capacity (LC) and load
fficacy (LE) were calculated from the followi
quations:

LC (%, w/w) = (total amount of ovalbumin− non-
bound ovalbumin)/weight of the particles× 100
LE (%) = (total amount of ovalbumin− non-bound
ovalbumin)/total amount of ovalbumin× 100
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4) 2.4. Coating of the nanoparticles with alginate

Various amounts of the ovalbumin-loaded particle
suspension were added under agitation to various
solutions of sodium alginate (Table 1). The suspension
of the particles was maintained under agitation with
a magnetic stirrer for 20 min at RT. The suspension
was then centrifuged for 10 min at 1600 rpm and the
supernatant was discarded. To chemically cross-link
the alginate at the particle’s surface, the particles were
re-suspended in 0.524 mM CaCl2 solution and kept
under agitation for another 10 min. For the characteri-
zation of the nanoparticles (Section2.5) the optimised
formulation batch was used as given inTable 1
(system D).

2.4.1. Evaluation the desorption during the
coating procedure

During the incubation of the particles with sodium
alginate, aliquots of the particles suspension were col-
lected, centrifuged at 14,000 rpm for 30 min and the
protein in the supernatant was assayed with a BCA-
protein assay as described in Section2.3.

Statistical methods used in this section include
descriptive statistics (arithmetic mean and standard
deviation) and Student’st-test.

2.5. Characterization of the nanoparticles

2.5.1. Morphology
par-
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The morphology and surface appearance of the
icles were examined by scanning electron microsc
SEM). One drop of the particles suspension was pl
n a gold-coated plate and maintained at least 12
oom temperature in a desiccator for complete dry
f the sample. The dry samples were coated with a
old layer using Emitech K650X large sample co
Emitech, Kent, UK) and observed with a Jeol JS
700F field emission scanning electron microsc
JEOL BV, Schiphol-Rijk, The Netherlands).

.5.2. Size and zeta potential measurements
The particle size and zeta potential were evalu

y a dynamic light scattering technique with a Zetas
000HSA (Malvern Instruments, Bergen op Zoo
he Netherlands). Zeta potential determinations w
ased on electrophoretic mobility of the nanoparti

n diluted aqueous suspensions. These measure
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were performed at least in triplicate with independent
particle batches.

2.5.3. FT/IR studies
The coated particles were washed with Millipore

water, centrifuged and the sediment was freeze-dried
overnight (Labconco, Kansas City, USA). The coated
and uncoated particles were kept in desiccator at
room temperature until analysis. The IR spectra of the
samples were recorded using a Fourier-transformed
infrared spectrophotometer instrument FT/IR–420
Jasco (Jasco Inc., Tokyo, Japan) with attenuated total
reflection (ATR).

2.5.4. Differential scanning calorimetry (DSC)
DSC scans were recorded using a differential scan-

ning calorimeter (DSC-50, Shimadzu Co., Kyoto,
Japan). Two to four milligrams of the dry particles
were accurately weighed into aluminium pans with-
out seals and heated from 25 to 350◦C at a heating rate
of 10◦C/min under a nitrogen flow of 20 ml/min.

2.6. In vitro release studies

The ovalbumin release from the coated and uncoated
particles was performed in simulated intestinal fluid
(SIF) as described in USP XXIV. The nanoparticles
suspensions were added (1:4) to individual tubes
containing the release medium previously equilibrated
at 37◦C and placed in a shaker bath adjusted to
5 om
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a lank
n same
c lanks
f d in
S

n-
t and
u of
0 ra-
s ath
a tein
w sions

of unloaded particles were analysed under the same
conditions and were used as a blank for the correction
of the OD value of the samples analysed with BCA-
protein assay as described in Section2.3. Additionally,
the unbound ovalbumin in the particle’s suspension was
also determined in order to calculate the amount of the
ovalbumin encapsulated in the beginning of the assay.

All experiments were performed at least in triplicate.

2.7. SDS-polyacrylamide gel electrophoretic
(PAGE) analysis of released ovalbumin

Samples from the loading and coating particle sus-
pensions were centrifuged at 14,000 rpm, the super-
natants were collected and the concentration was
adjusted in order to have the same theoretical concen-
tration (i.e., assumption of 0% of loading efficiency)
of the protein. Alginate-coated chitosan nanoparticles
loaded with ovalbumin were diluted (1:5) in buffer
phosphate pH 7.5 at 37◦C and incubated overnight at
50 rpm. An aliquot was collected and centrifuged. The
ovoalbumin samples were then suspended in the load-
ing buffer and heated for 5 min at 100◦C just before
the run.

The SDS-PAGE was performed with gels composed
of 12% acrylamide, cast and run in Tris–glycine buffer.
Gels were stained with 0.1% Coomassie brilliant blue
in 10% of acetic acid in a solution of methanol:water
(1:1).

3

3

ins
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b , the
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p ved
b tein
0 rpm. At appropriate time intervals, samples fr
ach tube were filtered with a low protein-bind
lter (MILLEX ®GV—0.22�m; durapore PVDF
embrane; Millipore, Malsheim, France) follow
y centrifugation for 20 min at 14,000 rpm and
valbumin in supernatant assayed with a BCA-pro
ssay. Simultaneously, coated and uncoated b
anoparticles suspensions were submitted to the
onditions and the filtered samples were used as b
or correction of the BCA-protein assay as describe
ection2.3.
For the determination of the total protein co

ent, 0.5 ml of the suspensions of the coated
ncoated particles were incubated with 1.5 ml
.085N hydrochloric acid solution (pH 1.2) in an ult
ound bath for 30 min, followed by 3 h in a water b
t 37◦C. The samples were filtered and the pro
as assayed by the BCA-protein assay. Suspen
. Results and discussion

.1. Preparation of the vaccine delivery system

The preparation of the delivery system conta
hree main steps, the manufacturing of the chito
articles, their ovalbumin loading by adsorption
nally the coating with sodium alginate. The format
f the chitosan particles by a precipitation process
odium sulphate has been described by several au
Berthold et al., 1996; Roy et al., 1999; Van der Lubbe
t al., 2001b). They all describe an existing correlat
etween the necessary amount of sulphate ions
olecular weight and deacetylation degree of
olymer. The loading of the cationic particles with
rotein is a very mild process, which can be achie
y suspending the particles in a solution of the pro
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Fig. 1. Loading capacity of the particles during the different stages of the coated particles preparation. Results for the different systems (A–E).

in an appropriate buffer. The adsorption of the protein
onto chitosan particles is mainly caused by ionic inter-
action of the chitosan amino groups with the carboxyl
groups of protein substrate in a buffer phosphate solu-
tion of pH 7.4 with high buffer capacity. According to
previous work done in our laboratory (Van der Lubben
et al., 2001b), the loading capacity of ovalbumin at
a chitosan particles concentration of 1% (w/v) is not
substantially influenced in the range of 0.5–2% (w/v)
ovalbumin. Therefore, an ovalbumin concentration of
0.5% (w/v) was used as loading solution resulting in
a sufficient high loading capacity. For instance, for the
system A, as shown inFigs. 1 and 2, the loading capac-
ity and the loading efficacy were about 40 and 80%,
respectively. It was also found from the measurements

of the unbound protein at different time points during
the loading process that the adsorption equilibrium is
rapidly reached. This means that the protein is bound
to the surface of the particles and that the adsorption
process of the ovalbumin to the particles surface
occurs immediately after the addition of the protein
solution to the particle suspension. Better loading
capacity results (p< 0.00001) of the uncoated particles
were found when the ratio particles/ovalbumin in the
loading suspension was decreased from 2 (Table 1
systems A, B and E) to 1.6 (Table 1system D) while
the loading efficacy (uncoated particles) was not
different (p= 0.15) between the systems.

The third step of the preparation was the coating
of the chitosan nanoparticles with alginate solution.

F es of t nt system
(

ig. 2. Loading efficacy of the particles during the different stag
A–E).
he alginate-coated particles preparation. Results for the differes
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To our knowledge this coating process has not been
described in literature earlier. Consequently, the first
part of this work is focused on the selection of the
appropriate conditions and experimental methodology
for the coating process with sodium alginate. For that
purpose several systems with different ratios sodium
alginate/chitosan particles have been investigated with
the main objective to obtain a stable particle suspen-
sion. In the majority of the first trials an immediate
flocculation was observed, particularly in systems with
higher particles concentration. The formation of these
agglomerates was easily observed because of the for-
mation of a precipitate and a clear supernatant. Systems
with a ratio alginate/particles > 2 have shown to be sta-
ble. Thus, in the following optimization steps of the
coating methodology always ratios higher than 2 were
used.

Another important parameter studied was the
desorption of ovalbumin from the particles during the
coating process. The addition of the sodium alginate
solution to the suspension of the loaded particles
resulted in a new adsorption equilibrium characterized
by the different concentration of protein and by the
presence of alginate polymer that can compete with
the interaction of the charges at the particle’s surface.
A significant decrease of the loading capacity of
the coated particles was observed in all the systems
(p< 0.05 for systems B–E). Furthermore, we have
observed that modifications in the pH of the coating
medium can also modify the adsorption equilibrium of
t ro-
c s to
b chi-
t d
6 3.4
a rved
m not
s as it
w ween
l ess.
T ted
n
w d
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w ,
t the
e cacy
(

3.2. Characterization of the nanoparticles

3.2.1. Morphology, size and zeta potential
measurements

The precipitation of chitosan with sodium sulphate
using ultrasounds for homogenisation led to the for-
mation of particles in the nanoscale size (Table 2).
One of the major currently described drawbacks of this
technique is the high polydispersity of the obtained
nanoparticles (Tang et al., 2003). We have observed
nanoparticles with sizes ranging between 100 and
1000 nm. The mean hydrodynamic diameter of the
obtained particles after the precipitation process was
684 nm and the size increased after the freeze-drying
process (Table 2). This is a direct consequence of parti-
cle aggregation during the drying process. To overcome
particle aggregation the use of trehalose as a lyopro-
tectant was tried at concentrations of 3.3, 5 and 7%
(w/v). A complete redispersibility of the freeze-dried
nanoparticles in all trehalose concentrations and the
maintenance of the particle size could be observed by
light microscopy and dynamic light scattering tech-
nique. However, we optimised the duration of the
freeze-drying process in order to avoid the use of cryo-
protectants as they would interfere with the coating
process.

SEM observations of the coated particles (Fig. 3b)
indicated that the size range of the particles remained
unchanged. This result indicates the feasibility of
coating of ovalbumin-loaded chitosan nanoparticles
w
s arti-
c is
a is a
c con-
c

tly
r en-
e , the
c rti-
c tem
w cles
i teps
o f the
d nt of
e ed a
p
t d in
he protein. In our first experiments, the coating p
ess was carried out at pH 5.5. This pH value seem
e the most favourable for the interaction between

osan and alginate as the pKa of the chitosan is aroun
.5 and the pKa of the sodium alginate is between
nd 4.4. However, at this pH value, we have obse
ore than 60% of ovalbumin desorption (data

hown). For that reason a pH 7.4 was adopted
as observed to have the better compromised bet

oading capacity and efficiency of the coating proc
he highest loading capacity for the alginate-coa
anoparticles was achieved with system D (p= 0.086
hen compared with system B andp= 0.032 compare
ith system E). On the other hand, the compar
ith system B (p= 0.001) and E (p= 0.004) showed

hat this option (system D) was achieved on
xpenses of a slight decrease of the loading effi
Fig. 2).
ith a thin layer of alginate. SEM images (Fig. 3a)
howed some small particles (<100 nm) and a p
le’s agglomerate. However, it is not clear if this
consequence of the freeze-dry process or if it

onsequence of the sample preparation (particle’s
entration of the sample) for the SEM.

The stability of many colloidal systems is direc
elated to the magnitude of their zeta potential. In g
ral, if the value of the particle zeta potential is large
olloidal system will be stable. Conversely, if the pa
le zeta potential is relatively small, the colloid sys
ill agglomerate. The surface charge of the parti

s of substantial importance in all the production s
f these coated particles because the efficiency o
ifferent steps is directly related to the establishme
lectrostatic interactions. Chitosan particles show
ositive value of about 37 mV (Table 3), which explains

he stability of the particle suspensions in water an
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Table 2
Size of the chitosan nanoparticles in different stages of the preparation process

Cumulant Z average (nm), mean± S.D. Polydispersity, mean± S.D.

After the precipitation process 643.2± 171.7 (16 batches) 0.379± 0.168 (16 batches)
After lyophilization process 955.6± 161.0 (3 batches) 0.387± 0.129 (3 batches)

several buffer systems. After adsorption of ovalbumin,
the particles are still positively charged with values
higher than 30 mV. During the coating procedure an
inversion of the surface charge of the particles to nega-
tive values was observed. This zeta potential inversion
explains the difficulties that were found in preventing
the formation of particles agglomerates during the coat-
ing process. After complete adsorption of the alginate
to the particles, a surface charge of the particles of about
−35 mV was found (Table 3). This zeta potential inver-
sion is a strong indication of the presence of an alginate
coating on the surface of the particles.

F s. (A)
A ting
p

Table 3
Zeta (ζ) potential of unloaded, ovalbumin-loaded chitosan nanopar-
ticles and alginate-coated chitosan nanoparticles

Zeta potential (mV), mean
average± S.D.

Empty chitosan
nanoparticles

+37.0± 3.6 (seven batches)

Ovalbumin-loaded
chitosan particles

+41.3± 6.4 (five batches)

Alginate-coated
chitosan particles

−34.9± 8.3 (five batches)

3.2.2. Differential scanning calorimetry
As shown inFig. 4, the DSC scans of the chitosan

polymer exhibited an endothermic peak at about 66◦C
that has been attributed to the evaporation of absorbed
water. The exothermic baseline deviation beginning
around 250◦C indicates the onset of chitosan degra-
dation (Khalid et al., 2002). The analysis of the DSC
curves for chitosan particles showed two additional
endothermic peaks at about 237 and 275◦C. The peak
at 237◦C is probably related to the breakdown of weak
unspecific electrostatic interactions. The second peak
is probably related to the cleavage of the electrostatic
interactions between the polymer and the sulphate ions.

Fig. 4. Differential scanning calorimetry curves of chitosan,
unloaded chitosan particles and sodium sulphate.
ig. 3. Scanning electron micrographs of chitosan nanoparticle
fter freeze-dry and ressuspending in water. (B) After the coa
rocedure with sodium alginate.
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Fig. 5. Differential scanning calorimetry curves of sodium alginate,
uncoated chitosan particles and alginate-coated particles. The DSC
investigation was conducted using the unloaded particles.

After the coating process with sodium alginate, the
particles exhibited a completely different behaviour
as shown inFig. 5, which means that an alteration
occurred in the composition of the particles. In the DSC
scans, the two endothermic peaks disappeared and no
endothermic peak was found in the temperature range
studied. In fact, a gradual appearance of an exothermic
behaviour was detected starting around 200◦C that
coincides with the exothermic behaviour of the sodium
alginate as referred to in several publications (e.g.,

Gonzalez-Rodriguez et al., 2002) as the decomposition
of the polymer. These observations strongly support
the presence of alginate molecules linked to the
surface of the chitosan particles: when the temperature
of the sample reaches values around 200◦C, the two
phenomena, the exothermic contribution from the
alginate and the endothermic contribution from the
chitosan particles determine the shape of the curve.

3.2.3. FTIR characterization
The FTIR spectra of chitosan and the chitosan par-

ticles, sodium alginate, and the coated particles are
shown inFigs. 6 and 7, respectively.

In the chitosan spectra the strong and broad peaks
in the 3400–3200 cm−1 ranges correspond to combined
peaks of O H stretching and intermolecular hydrogen
bonding. The NH stretching from primary amines are
overlapped in the same region.

The C O stretching (amide) peak near 1633 cm−1

and N H bending (amide and amine) peak near
1542 cm−1 was observed as well. The intense peak at
1414 cm−1 belongs to the NH stretching of the amide
and ether bonds give the peaks in the fingerprint region
of the spectra, where the symmetric stretch of CO C
is found around wave numbers of 1065–1027 cm−1. In
the chitosan particles the peak of 1558 cm−1 is shifted
to 1535 cm−1 and the relative intensity of this peak is

tosan a
Fig. 6. FTIR spectra of chi
 nd unloaded chitosan particles.
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Fig. 7. FTIR spectra of sodium alginate, uncoated chitosan particles and alginate-coated chitosan particles. The FTIR investigation was conducted
using the unloaded chitosan particles.

reduced. In addition the peak related with CN stretch
(1414 cm−1) has almost disappeared in the chitosan
particles. Similar observations are reported for chi-
tosan particles prepared with tripolyphosphate (Xu and
Du, 2003). These observations are in agreement with
the fact that the sulphate ions interact with the pri-
mary amino groups of the chitosan, resulting in the
formation of cross-linked chitosan particles (reticula-
tion process).

Sodium alginate as a carboxylate salt showed a
strong asymmetric stretch at 1605 cm−1. The frequency
of carbonyl absorption is lowered compared to the
value found for the parent carboxylic acid due to a
resonance phenomenon. The carboxyl and carboxy-
late groups are present at wave number of about
1000–1400 cm−1. From the FTIR analysis spectra of
the coated particles we were able to distinguish the
presence of these three peaks that are different from
those of the chitosan uncoated particles. As conclusion
of these findings, the results clearly show the existence
of alginate coating layer around the chitosan particles.

3.3. Release studies

In a preliminary study, we observed that the tem-
perature is an important determinant for the integrity
of the chitosan particles placed in different pH buffers.
The particle integrity was monitored by turbidity
transmission measurements at 500 nm. In fact at room
t sions
o d in

simulated intestinal fluid (SIF). In contrast, when the
chitosan particles were added to the same solutions
(SGF and SIF) at 37◦C, a loss of integrity was
observed translated with high values of transmission
measurements. Thus, the complete release of the
ovalbumin from the chitosan particles in SIF at 37◦C
(Fig. 8) is directly related to the loss of integrity of
the particles and less with a simple desorption phe-
nomenon. In contrast, the coating of the particles with
alginate increased the stability of the particles (lower
values of transmission measurements) in SIF at 37◦C
resulting in a slower release rate of ovalbumin. After
7 h more than 60% of ovalbumin was still found in the
alginate-coated particles. These release studies also
suggest that the formation of an alginate layer increases

Fig. 8. Release behaviour of ovalbumin from alginate-coated and
u ◦ -
s

emperature we were able to obtain stable suspen
f the particles in simulated gastric fluid (SGF) an
ncoated chitosan particles in SIF at 37C. Individual points repre
ent the mean averages from three assays.
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Fig. 9. Electrophoretic analysis on SDS-12% PAGE with Coomassie
brilliant blue staining. Shown are solutions of ovalbumin before
conjugation to the nanoparticles (lane 1), ovoalbumin from the super-
natant remaining after the conjugation (lane 2), ovoalbumin from the
supernatant remaining after the coating with alginate (lane 3), ovoal-
bumin released from alginate-coated chitosan nanoparticles (lanes
4–6).

the stability of the chitosan particles and reduces the
release of the adsorbed protein from these particles.

3.4. SDS-PAGE

The main task of this work was the development
of an appropriate method for the encapsulation of
antigens to an optimised delivery platform. With this
method the protein antigen was never exposed to
potentially harsh conditions, such as the contact with
organic solvents or mechanical agitation or sonication.
The SDS-PAGE (Fig. 9) of the released ovalbumin
from the particles showed identical bands for the
entrapped (lanes 4–6) and native ovalbumin (lane 1)
and there were no additional bands to indicate the
presence of molecular weight aggregates or fragments
greater or less than 45 K (the molecular weight of
ovalbumin). Hence, the data suggest that the structural
integrity of ovalbumin was not significantly affected
by the entrapment procedure.

4. Conclusion

This work describes a new nanosized mucosal vac-
cine delivery system, consisting of chitosan particles
that are prepared by cross-linking with sodium sul-
phate. The chitosan nanoparticles are loaded under

very mild conditions with a model antigen (ovalbu-
min), which was negatively charged in the used buffer
systems. The validity of an easy and economic loading
process was shown. In order to increase the stabil-
ity of the loaded chitosan particles at physiological
temperature in SGF and SIF a coating process with
sodium alginate was developed. This coating process
was optimized in such ways that only small amounts
of ovalbumin were desorbed during the coating process
and the antigen released from the coated nanoparticles
was strongly reduced in comparison to the uncoated
chitosan nanoparticles. Hence a nanosized delivery
platform is described with improved features of anti-
gen stability in simulated gastrointestinal fluids. In vivo
studies are under way to show the efficacy of these sys-
tems for mucosal vaccination.
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