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Abstract 

In the present study, an in-vitro mouth model to quantify salt release from food structures 

has been developed.  In this instance biopolymer gels were used as model food systems. 

The model aimed to reproduce key phenomena occurring during oral processing, such as 

diffusion through the sample and compression. Salt release profiles from different gels 

(gelatin, gellan and alginate), under quiescent conditions and compression, were determined 

at temperatures of 25 and 37°C.  In-vitro results indicated that salt release is affected both 

by the type of gelling agent and by temperature. When melting took place, release occurred 

within seconds. However, when diffusion through the biopolymer matrix was the controlling 

parameter, the time scale was in the order of hours. It has been shown that compression of 

the gel only affects release when fractures occur. This is believed to be a consequence of 

increased surface area. Finally, a mathematical model has been compiled to predict release 

profiles when diffusion is the controlling mechanism.   

Keywords: Biopolymer, Gel, Salt Release 
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1. Introduction 

Intake of salt is a nutritional requirement, but excessive consumption has been linked to 

heart disease and stroke (Cook, et al., 2007; Law, Frost, & Wald, 1991).  Historically, salt 

has been added to foods both to enhance flavour and as a preservative (Sleator & Hill, 

2007). In many cases, the removal of salt in excess of around 30% is not possible without 

adversely affecting the sensory characteristics of the product (Desmond, 2006).  Foods such 

as soups, sauces, cereals and processed meats can account for around three quarters of a 

consumer’s daily salt intake. Thus, these foods lead to many people exceeding their 

recommended allowance, often without their knowledge.  Therefore, achieving the 

consumption target set by the Food Standards Agency (6g/day by 2010) is not possible 

without the food industry making significant efforts.  

In order to reduce salt levels in processed foods, the behaviour of salt in food structures 

needs to be well understood (Durack, Alonso-Gomez, & Wilkinson, 2008).The development 

of an in-vitro mouth system for this purpose is a relatively novel idea.  The models that have 

been developed thus far tend to involve mechanical chewing of solid foods. Work by Xu, 

Bronlund, & Kieser, (2005) investigated the development of a mechanical jaw using 

actuators.  The authors attempted to mimic the chewing cycles of a person, focusing on the 

motion of the jaw during processing. Work by Prinz, Janssen, & de Wijk, (2007) focused 

more on the use of equipment to mimic conditions produced by tongue movement, and allow 

changes to the material to be observed as a result of this mixing.  For liquid products the 

focus has been on flavour release. Researchers Boland, Delahunty, & van Ruth, (2006) and 

Juteau, Cayot, Chabanet, Doublier, & Guichard, (2004) have studied release of volatile 

components from gels.  These studies indicated that the measurement of volatile release in 

a static environment does not compare to actual perception, suggesting that more dynamic 

in-vitro systems or in-vivo methods are needed.  Similarly, Elmore & Langley, (1996) have 

attempted to develop a dynamic measurement using a sealed vessel, where volatiles 

released from material can be analysed over time.  Koliandris, Lee, Ferry, Hill, & Mitchell, 
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(2008) investigated release rates of salt and ethyl burate (used as an artificial flavour) from 

gels into water.  Liquid gels of bovine gelatin and locust bean gum were made at varying 

concentrations.  The release from the material injected into a beaker of water was recorded 

after twenty seconds using a sodium ion probe.  Researchers also investigated salt release 

from solid gellan and kappa-carrageenan/locust bean gum mixes.  Water was added 

following two large strain compressions and sodium concentrations after twenty seconds of 

the samples was recorded.  Differences in these levels were related to strain at rupture and 

to the extent of fracture in the compression experiments. 

The perception of flavour in a product is a combination of factors, including the experience of 

gustatory and olfactory sensations (Verhagen & Engelen, 2006).  The complexity of the 

system combined with the diversity of an individual’s experience makes it challenging to 

critically assess products in-vivo. This problem can be mostly overcome using trained panels 

and repeated testing, but this route requires training and ethical approval, which is time and 

resource intensive (Carpenter, Lyon, & Hasdell, 2000).  Trying to mimic the conditions 

experienced during the eating process would prove invaluable when attempting to 

reformulate products, as their behaviour could be tested in-vitro.  The conditions of release 

of salt in food products can have a large impact on its perception by the consumer.  An 

example of this is seen where high viscosity fluids containing the same salt as a low 

viscosity version are perceived as less salty.  This is due to differences in mixing, a higher 

viscosity fluid takes longer to mix with saliva and as a result less material comes into contact 

with the perceiving surfaces (Ferry, et al., 2006).  Many studies have been undertaken trying 

to link sensory perception with product properties and formulation. Malone, Appelqvist, & 

Norton, (2003b) studied the link between lubrication properties of hydrocolloids and 

emulsions and perceived smoothness and fattiness. van Vliet, (2002) also investigated a 

similar problem, commenting on links between texture perception and mechanical properties 

of products. These studies suggested that links can be made, but that the relationship 

between perception and material properties is complex. 
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In order to produce a working model, which can relate to the oral processing of products, the 

conditions that are experienced in the mouth need to be identified.  The process can be 

approximated by partitioning it into three main sections (Heath, 1991; Malone, Appelqvist, & 

Norton, 2003a). Firstly, the oral processing stage.  For liquid products this is a relatively 

short stage lasting approximately two seconds, and involves taking in the product and mixing 

it with saliva (Ertekin & Aydogdu, 2003).  The product will experience low shears and a 

limited amount of mixing in this time.  Initial processing for a solid product takes longer. The 

product is broken down into smaller pieces by chewing, while mixing with saliva to allow the 

formation of a soft bolus.  The second stage is oral propulsion. This is thought to be the level 

which has the most influence on the breakup of complex liquid structures such as emulsions 

(Malone, Appelqvist, et al., 2003a).  This stage involves the movement of the tongue towards 

the top palate, squeezing and inducing flow towards the back of the mouth, ready for 

swallowing.  Here the fluid will experience high shears and forces, along with further mixing, 

before finally being swallowed (van Vliet, 2002). The final stage is swallowing, a small 

amount of material is retained by the oral surfaces which can then go on to play a further 

role in perception as salt is released by diffusion (Prinz, Huntjens, & de Wijk, 2006).   

Hydrocolloids are widely used in food formulations, mainly as thickeners and gelling agents.  

However they are of increasing interest for use in designing complex food structures.  An 

example exists in the use of gel particles in the place of fat droplets for low fat foods 

(Malone, Appelqvist, et al., 2003b).  Research has been carried out in the area of flavour 

release from hydrocolloids, showing that gel structure can affect the release of volatiles 

(Boland, Buhr, Giannouli, & van Ruth, 2004; Koliandris, et al., 2008). However, molecular 

sizes of the flavour compounds are likely to be greater than those of sodium ions 

(approximately 0.1nm).  Currently, the main application for controlled release from gels 

seems to be in drug release.  Mangione, et al., (2007) uses an in-vitro approach to look at 

carrageenan structure effects on drug release in a franz cell.  This work, and others 
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(Dortunç, 2001), (Murata, Miyashita, Kofuji, Miyamoto, & Kawashima, 2004), show that gels 

can be used to control release, and that manipulating them can alter release profiles. 

Overall, the aim of this work was to develop an in vitro system for following release of salt 

from structures, which can be related to oral processing. Initial experiments provide data on 

NaCl release from three common food grade gels into water.  The phenomena which govern 

the release were investigated and related to polymer type and concentration, salt 

concentration and temperature. 

2. Experimental 

2.1. Materials 

Experiments were carried out using three commercially available food grade biopolymers: 

250 bloom gelatin from porcine skin (Sigma); low acyl gellan (Kelcogel); and sodium alginate 

(Sigma).  All were prepared as per manufacturer instructions, outlined below.  The different 

formulations made for comparison are detailed in Table 1.  All sample concentrations are 

percentage weight concentrations. 

  Table 1.

 

2.1.1. Gel Preparation 

Gelatin samples were made by adding dry gelatin and NaCl to a beaker, then adding distilled 

water to make the total sample weight of 100g.  The beaker was then covered, stirred and 

heated to approximately 60oC and left to dissolve for 30 minutes. The samples were then 



6 
 

poured into plastic cylinders (76mm height, 22mm diameter), covered with Parafilm and 

chilled at 6oC for 24 hours. Gellan samples were prepared in a similar way at 90 oC, however 

the NaCl was added at the end of the 30 minutes stirring time, allowing the gellan powder to 

dissolve more efficiently.  Samples were then set and stored as with gelatin.  Alginate 

samples must be set chemically with the addition of Ca ions.  Sodium alginate solutions with 

the desired alginate concentration were made up by heating a total sample weight of 100g to 

80oC, and stirring until the alginate was fully dissolved.  The liquid solution was then poured 

into a length of 12mm diameter dialysis tube, which was then sealed and immersed in a 

water bath containing 100ml of distilled water and 1% calcium chloride.  Due to the 

dimension restrictions of the dialysis tube alginate samples had a reduced diameter and 

increased height compared with the other samples. 

2.2. Methods 

Experiments were carried out using two experimental setups.  Firstly, a baffled jacketed 

vessel (75mm in diameter, 112mm in height) was used to study release of salt from a 

system under application of low shear.  Secondly, a square jacketed vessel (200mm by 

100mm and 50mm in height), beneath a 40mm diameter texture analyser (Stable Micro 

Systems, TA XT2) probe to investigate the effect of cyclic compression during release.  Both 

systems were fitted with a conductivity probe (Mettler Toledo, inlab 710 platinum 4-cell 

conductivity probe) and overhead stirrer (25mm diameter propeller type).  Vessel 

specifications are shown in Figure 1. 

2.2.1. DSC Experiments 

Phase transitions of the prepared gelatin were investigated using DSC (Perkin-Elmer DSC7).  

Gelatin samples were prepared in the same way as for release experiments and were 

heated at 10˚C /min from 5 to 45˚C.  All experiments were performed in triplicate. 

2.2.2. Salt Release Experiments 
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Each of the formulations was tested to follow the release of NaCl from the gel structure to a 

surrounding volume of water.  Samples of each gel were cut into 3g (±0.1g) cylindrical 

segments (22mm diameter, approximately 7.5mm height) from the preparation cylinders.  

These were then covered and replaced in the fridge. The vessel was set up and filled with 

200ml of distilled water and allowed to equilibrate at 25˚C while stirring at 100rpm to ensure 

a completely mixed environment.  The conductivity probe was then placed into the vessel 

and set to record every 2 seconds.  A single gel sample kept in place by a wire mesh was 

then added to the vessel 10 seconds after data logging was started. 

Experiments were carried out for 4 hours at both 25˚C and 37˚C, and performed in triplicate. 

Gelatin experiments at 37˚C reached a maximum significantly before this time and so were 

performed for 20 minute runs. 

NaCl release from the structures was followed using a conductivity probe in the main body of 

water.  Maximum expected conductivity was calculated from calibration curves that had been 

previously obtained.  Actual maximums tended to vary from the expected value due to 

drifting probe calibration and slight sample variability.  Consequently, results have been 

normalised and presented as a fraction of total release. 

 

2.2.3. Mathematical Modelling 

Effective diffusivities of each system can be obtained using the diffusion mode in COMSOL 

multiphysics (COMSOL Inc. Burlington, MA, USA), with comparison to the experimental 

data.  The system was drawn in 3D using the transient diffusion model showing the gel 

sample within a volume of water.  The diffusion equation (1) was used.  Physical properties 

(density and heat capacity) for both gel and water were set using COMSOL default values 

for water. 

∂ c/∂ t+∇ (-D∇ c)=0 (1) 
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Where c is concentration of salt, t is time and D is diffusivity.  The diffusivity of the water was 

set to a high value (10m2/s) to represent a completely mixed vessel.  External boundaries of 

the water were set to insulated, and temperature was fixed at the desired test level. The 

program was linked to MATLAB and run for a number of diffusivities within the sample and 

compared to average experimental data for each experiment.  Values for diffusivity were 

estimated by minimising the sum of squares between experimental and theoretically 

predicted data. 

2.2.4. Compression testing 

For the second stage of experiments, the effect on release of repeated compression of the 

gel samples was studied to mimic some oral processing.  The tank geometry was changed 

to allow a flat bottom surface to be used with a texture analyser.  Samples were fixed within 

the vessel by lowering the compression arm to contact point.  200ml of water was then 

added and compressions were carried out every 3 minutes over a 20 minute period.  

Conductivity was recorded as per the initial experiments.  Control tests with no compression 

were carried out as a baseline.  Following this, tests using a low strain (30%) and high strain 

(75%) were conducted.  Alginate samples were not tested in this section since the sample 

dimensions made compression difficult to carry out and compare. 

Figure 1
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3. Results and Discussion 

3.1. Release experiments 

DSC curves for gelatin samples were obtained.  Samples of approximately 20mg were 

heated at 10˚/min.  The peak melting point for all three concentrations of gelatin was 

approximately 32˚C, with an increase in energy required to melt the samples being 

proportional to increasing gelatin concentration.   

Figure 2 shows the release of ions from gel samples as a function of time at 25˚C.  The 

results were similar for all samples. Initially, there was a fast release which slowed as 

equilibrium was reached. Experiments at 25˚C resulted in relatively slow release rates, with 

90% release of salt taking approximately 2 hours; this would be expected for a diffusion-

controlled process (Crank, 1975).  At 37˚C the results for gellan and sodium alginate are 

similar to the release profiles at 25˚C.  However, a slightly faster release rate was observed, 

as expected for diffusion at the higher temperature (Figure 3).  Figure 4 shows the results for 

gelatin.  Release does not occur on the same time scale at 37˚C as for gellan and alginate.  

When added to the water, the gelatin sample begins to melt releasing salt at a much faster 

rate, with the final salt level being reached after around 10 minutes instead of the 3 hours 

required at 25˚C.  The release follows a sigmoidal pattern, with a lag phase initially followed 

by an increase in concentration which slows as the final equilibrium concentration was 

achieved. 

Results showed good repeatability proving the method useful for gathering data on salt 

release from a variety of structures. Between each polymer concentration some difference 

was observed suggesting that increasing polymer concentration slows release from the 

structures, due to greater physical interference from polymer chains within the structure.  

However, for the concentrations used here the results were not significantly different. 
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Figure 2

 

Figure 3
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Figure 4

 

3.2. Mathematical Modelling 

In order to calculate the effective diffusivities a model was developed using COMSOL.  The 

system was set up to assume pure Fickian diffusion within the gel samples.  This model can 

therefore be used for the results exhibiting diffusion behaviour.  The code was run as a script 

coupled with MATLAB, altering the effective diffusivity to minimise the sum of squares 

between actual and calculated values.  Figure 5 shows a sample comparison of calculated 

and experimental data. Initially the predicted salt released was faster than the measured salt 

release, but overall there was close agreement between methods.  The initial difference 

could be attributed to a lag in recording in the physical system. 



12 
 

Figure 5

 

Table 2 and Table 3 show a list of estimated effective diffusivities gathered from the model at 

25˚C and 37˚C respectively. Values varied slightly with concentration across samples.  The 

results were very close to the value of free diffusion of sodium ions in water given in the 

literature (1.334x10-9) (Lide, 2004).  This indicates that the sodium ions move through the gel 

structure somewhat slower than in water, although not significantly so.  A similar finding was 

reported by Floury, Rouaud, Le Poullennec, & Famelart, (2009), showing that the effective 

diffusivities of sodium ions through cheese into the saliva was influenced by the structure, 

with the observed rates varying with age and composition of the cheese.  For gelatin similar 

experiments were previously carried out using silver ions, which have a similar size to 

sodium.  The nature of the gelatin’s open network structure means that diffusion of silver 

ions was unaffected, at least in the range of concentrations used (Yabuki, 1927).  A similar 

situation must exist for gellan, whereby the structure generated during gelation was not 

sufficiently dense to prevent small ions diffusing through. Details from a recent review, 

(Miyoshi, 2009) show that most of the water within the gellan structure remains as clusters of 

free water which sodium ions would diffuse through at a normal rate.  There are some 

studies in which diffusion through gel structures was shown to be slower than water (Stiles, 
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1920).  However the methods were set up specifically to calculate the values on a small 

scale.  Furthermore, the magnitude of differences between water and gels used was very 

small, the same order as the differences seen in this work. 

  Table 2.

  

  Table 3.

 

3.3. Compression effects 

Figure 6 shows three repeat stress/strain curves for a single gelatin sample.  As can be seen 

the structure is viscoelastic under the small strains where the curves overlap for each 

compression.  These results can be correlated with a low force environment. In order to 

investigate structure breakdown effects on salt release, repeat compressions at 75% strain 

was carried out.  This could be likened to chewing of large particles or fracturing from oral 

propulsion of smaller particles in the mouth.  At larger compressions (75% strain, Figure 7) 

the curves change with each compression.  Initially, there is a large peak where the gel 

begins to break.  On subsequent compressions the gel is further broken up, and smaller 

sections are pushed out from under the probe. 
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Figure 6

 

Figure 7

 

Figure 8 shows release results for gelatin.  At low compressions salt release was unaffected.  

This is as to be expected as the gel deforms but does not break. Bot, van Amerongen, 

Groot, Hoekstra, & Agterof, (1996) showed that compression up to the fracture point leaves 

gelatin relatively unchanged, and so no increase in release rate was expected.  As can be 
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seen in Figure 8 cyclic compression of the samples does show an effect on release profiles 

at the higher strain of 75%.  There is a distinct increase in release rate after each 

compression.  This effect is likely to be a result of the increase in surface area generated 

when the gel is fractured, as discussed previously.  

Figure 8

 

The release from different hydrocolloid gels is shown in Figure 9. This figure shows that 

there are initial similarities between gelatin and gellan samples in the region before 

compression, which corresponds to pure diffusion. However gelatin reaches a higher 

maximum.  It appears that this is a result of the nature of the gels fracture.  Gelatin tended 

towards multiple failures, resulting in many small segments, which mix into the bulk and 

have a large surface area.  The gellan samples tended towards large fractures and 

deformation while remaining in a single block or splitting into two large sections.  Similar 

behaviour has been reported by Harris, Smith, Campbell-Lynch, & Shelton, (2008), where 

gellan with different cross linkers were subjected to similar strain experiments.  The gels split 

diagonally through the middle of the sample, but remained in large parts.  These different 

fracture properties result in different surface areas being exposed. This leads to differences 

in the release profiles gained, since diffusion rates will depend upon surface area. 
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Figure 9

 

For gellan, Harris, et al., (2008) showed that in some cases water is expelled from the 

structure on compression, although this is not evident in our study.  If water were expelled 

during the compressions it would be expected to release salt at a faster rate.  It is possible 

that the high levels of salt added, needed to form cross links, affected the behaviour of the 

gel, giving structures and mechanical properties which are different above the critical ion 

concentration of the gellan (Tang, Tung, & Zeng, 1996).  This would explain our 

observations. 

The model that was developed for diffusion can be used to investigate how salt release time 

is dependent on gel sample size and whether this fits to the observations made during 

compression experiments.  Firstly, by comparing the release times under compression data, 

an estimate of particle sizes present after compression can be calculated.  Secondly, salt 

release times for an emulsion type product with salt containing gel droplets can be 

calculated.  Currently, some low fat spread products use gel encapsulated oil droplets to 

control lipophilic volatile release and so a similar approach for salt may be relevant (Malone 

& Appelqvist, 2003).  In order to model these systems, the cylinder geometry used in the 

previous models was altered to an equivalent volume sphere geometry.  This made 



17 
 

automation of the model more practical and is a better representation of an emulsion type 

product with gelled droplets.  However it does change the surface area of samples with the 

same volume. 

The time taken to release 70% of the contained salt for a range of sample sizes relevant to 

those used in this study is shown in Figure 10. The maximum point shows time for a sphere, 

which is volume equivalent to cylinders used in previous experiments.  The time predicted 

for the sphere to release 70% of the contained salt is around 30% longer than actual data for 

the cylinder, this is due to the reduction in surface area (by about 25%) caused by the 

geometry change.  The time taken to release 70% of the contained salt for experiments at 

75% compression in gelatin would be expected for spheres with a radius of around 3.6 mm.  

The time to release 50% salt in gellan again is predicted to be around 30% slower than in 

the actual cylindrical data, here the results taken from the 75% compression experiments 

would be expected for spheres with a radius of around 6 mm (Figure 10).  This indicates that 

the increase in salt release rate seen is due to the increase in surface area caused by 

breakup under compression, and that gelatin breaks into smaller segments than gellan.  In 

both cases the particle sizes would be smaller for cylinders and in reality irregular shapes 

are formed.  Studies into particle sizes created during mastication have shown that a range 

of particles sizes are created.  Jalabert-Malbos, Mishellany-Dutour, Woda, & Peyron, (2007) 

show that for a range of foods, sizes from 0.4-4mm with a median around 2mm were found 

when ready for swallowing.  Mielle, et al., (2010) show particle sizes after 4 and 8 chews of 

peanuts which vary over a similar range.  This places the sample sizes created from 

compression experiments at the very beginning of mastication.  Figure 11 shows expected 

release times for small gelled emulsion droplets (20-60 microns).  Release at this scale is 

very fast (less than 1 second), indicating that this alone would not form an effective method 

for controlling salt release. 

For all instances, increasing radius does not give a linear increase in time.  An analytical 

solution to this situation can be found in Crank, (1975) as a sphere in a stirred media.  This 
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has been applied in the release of volatiles in emulsion droplets which are of comparable 

scale and time to release 50% of the contained volatiles is described by: 

t1/2=(0.162r2)/D 

Where t1/2 is time to release 50% material, r is droplet radius and D is diffusivity.  This means 

that time to release a set percentage of salt will increase proportionally with radius squared. 

Figure 10

 



19 
 

Figure 11

 

4. Conclusions 

It can be concluded that the in-vitro method of testing salt release from hydrocolloids is 

reliable and repeatable.  In the future this will be extended to include different structures 

which can be compared with the gel experiments carried out in this study.  Release curves 

gathered from the different hydrocolloids (gelatin, gellan and alginate) show there is very 

little to impede the diffusion of sodium ions out of the structure into the surrounding media.  

Compression effects on the release rate are evident and are predominately a result of the 

gel’s structure.  In the single phase structures tested there is no evidence of increased 

release rate with compressions that do not cause fracture of the structure.  When 

compressions are significant enough to cause fractures within the samples, the release 

increases depending on the extent of failure and increased surface area. Gelatin, tending 

towards many discrete pieces released a greater amount of its salt content than gellan, 
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which compressed forming fractures, but staying in a single piece.  It is agreed that for 

semisolids at least, deformations during oral processing are important (Finney & Meullenet, 

2005), and that the deformations themselves can affect the outcome.  We have shown that 

there is not much control for salt release using these gels, however more complex structures 

may allow other release profiles to be designed. 

Modelling the process has allowed effective diffusivities of each system to be obtained, and 

while they do not vary significantly to that of water, the values can be used to predict release 

rate from a variety of different geometries and conditions which match analytical solutions for 

similar systems in Crank (1975). 
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Table 1: Materials and sample formulations used in all the experiments 

 

Table 2: Effective diffusivities of sodium ions for tested samples at 25˚C 

Values for effective diffusivity at 25˚C used within the diffusion model in COMSOL which 

best-fitted experimental data were taken. 

 

Table 3: Effective diffusivities of sodium ions for tested samples at 37˚C 

Values for effective diffusivity at 37˚C used within the diffusion model in COMSOL which 

best fitted experimental data were taken. 
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Figure 1 Vessel diagrams for two experimental setups used in this study 

 

 

Figure 2 Salt release over time into 200ml of water from 3g cylinders of 3% alginate, 1% 

gellan and 8% gelatin at 25˚C. 

 

Figure 3 Comparison of salt release into 200ml of water over time from 3g cylinders of 1% 

gellan at 25 and 37˚C 

 

Figure 4 Salt release into 200ml of water over time of 3g cylinders of 6,8, and 10% gelatin at 

37˚C 

 

Figure 5 Comparison of model output and experimental results of salt release over time from 

3g cylinders of 0.5% gellan at 25˚C 

 

Figure 6 Stress strain curves for 3 sequential compressions of a 3g cylinder of 8% gelatin.  

Tests were performed at a constant rate of 1mm/s to a strain of 30% 

 

Figure 7 Stress strain curves for 6 sequential compressions of a 3g cylinder of 8% gelatin.  

Tests were performed at a constant rate of 1mm/s to a strain of 75%. 

 

Figure 8 Salt release over time (into 200ml of water) from 3g cylinders of 8% gelatin at 25˚C 

at 0%, 30% and 75% strain.  Samples compressed to 75% were not reproducible and are 

presented as individual experiments. 
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Figure 9 Salt release over time into 200ml of water from 3g cylinders of 1% gellan and 8% 

gelatin at 25˚C at 0% and 75% strain. A single experiment is shown for gelatin and gellan at 

75% strain for comparison since results were not repeatable. 

 

Figure 10 Time to release 50% and 70% salt from gellan spheres of varying radius, data is 

generated using COMSOL 

 

 

Figure 11 Time to release 90% salt from emulsion droplet sized gellan spheres of varying 

radius, data is generated using COMSOL. 

 

 


