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Highlights 

• Clonal propagation has been suggested as important traits for plant invasions  
• Carbohydrates stored in the stolon can be mobilized to buffer stress conditions 
• We simulated fragmentation and sea-water submergence in a clonal invader 
• Stolons, as a source of carbohydrates, allows the expansion of clonal invaders 

 

 

Abstract 

Clonal plants are frequently affected by process of disturbance as fragmentation. The 

capacity of these fragments to survive and grow after disturbance has important 

implications for the expansion of clonal plants, and could have special consequences 

for the colonization of new environments by invasive clonal species. Stolon 

internodes of clonal plants represent important reserve organs. These storage 

structures can play a crucial role in the survival and re-growth of clonal plants after an 

event of disturbance. In this study we simulated physical disturbance by 

fragmentation of clones of the stoloniferous invader Carpobrotus edulis into ramets 

with short and long stolon lengths, and a subsequent event of seawater submergence 

and de-submergence. Ramets with long stolons showed a significantly higher total 

biomass than ramets with short stolons, supporting the idea that stolon length is 

related with the amount of reserves stored and with the benefit reported in terms of 

growth. Our results showed that the benefit of having long stolons was also important 

for clonal fragments that suffered a process of seawater submergence. Our study 

suggests that the use of stolon as a source of resources can represent a suitable 

mechanism for colonization of coastal sand dunes by the aggressive invader C. edulis. 
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1. Introduction 

Clonal propagation allows the production of a number of ramets that can remain 

physically connected through stolons or rhizomes, forming large structures that may 

occupy considerable areas (Cain, 1997; Hutchings et al., 2004; Klimes et al., 1997; 

Oborny and Price and Marshall, 1999). These large clonal structures may frequently 

be affected by processes of disturbance that tear them up into fragments of different 

size (Barrat-Segretain and Bornette, 2000; Latzel and Klimesŏvá, 2009; Stuefer and 

Huber, 1999). The capacity of these fragments to survive and re-grow after 

disturbance has important implications for the expansion of clonal plants, and could 

play a crucial role in the colonization of new environments by invasive clonal species 

(Dong et al., 2010, 2012; Konlechner et al., 2016; Lin et al., 2012; Song et al., 

2013a;). In particular, in rocky coasts, clonal structures as rhizomes or stolons can be 

very often fragmented by intense wave action (Maun, 1994), and long-distance 

transported by sea waves, representing an important dispersion strategy after tempests 

(Aptekar and Marcel, 2000; de la Peña et al., 2011; Harris and Davy, 1986a, 1986b; 

Huiskes, 1979; Konlechner and Hilton, 2009). Specifically, in coastal sand dunes 

species, it has been showed that both seeds and clonal structures play an important 

role in the colonization of new environments (Harris and Davy, 1986a, 1986b). Even 

more, plant establishment on coastal sand dune can be more successful from clonal 



 4 

fragments than from seeds, because of the large amount of stored reserves in clonal 

organs (Maun, 2009).  

  Seawater submergence can be a common situation for plants inhabiting rocky 

coast and foredune habitats. Water submergence usually produces a photosynthetic 

collapse, due to critical reduction of light and gas exchange, with the resulting energy 

crisis for the plant. Generally, after the energy crisis the plant will suffer a depletion 

of carbohydrates that cannot be fully restocked by the acceleration of glycolysis or the 

induction of fermentative metabolism (Bailey-Serres and Voesenek, 2008; Colmer 

and Voesenek, 2009; Sairam et al., 2008;). Damages caused by submergence in the 

plant can continue after de-submergence due to post-anoxic injury (Sarkar et al., 

2006). In addition, seawater can induce salt injure on chloroplasts, affecting electron 

transport, and consequently reducing photosynthetic efficiency (Gao et al., 2015; 

Larcher, 1995). Saltwater increase the concentration of Na+ and Cl- in plant tissues, 

altering ionic ratios in plants and producing ion toxicity (Barrett-Lennard and 

Shabala, 2013; Grattan and Grieve, 1998; Rhoades et al., 1999). As a result, saltwater 

can have a negative impact on growth, compromising plant development and survival  

(Barrett-Lennard and Shabala, 2013; Im et al., 2014) 

 Stolon connections allow clonal plants to be physiologically integrated (i.e. to 

shareresources between connected modules). During the last decades, many studies 

have been oriented to explore the benefits of this integration for the colonization of a 

wide variety of environments by clonal plants (e.g. Alpert and Mooney, 1986; Alpert, 

1999; Hartnett and Bazzaz, 1983; Roiloa et al., 2014c; Roiloa and Retuerto, 2006; 

Slade and Hutchings, 1987). However, the potential benefits for clonal plants of the 

reserves storage in the stolons have been less explored (but see; Dong et al., 2012, 

2011, 2010; Isogimi et al., 2014; Lin et al., 2012; Stuefer and Huber, 1999; You et al., 
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2014). By storing resources, stolons can play a decisive role in the survival and re-

growth of clonal plants after disturbance events. Resources stored in the stolon can be 

mobilized helping to buffer stress conditions (Goulas et al., 2001; Stuefer and Huber, 

1999; Suzuki and Stuefer, 1999), and therefore can represent an additional benefit 

from clonal attributes.  

Carpobrotus edulis L. is a stoloniferous invader that inhabits coastal habitats 

wheretheir clonal clumps may experience natural disturbances, as tempests, with 

fragmentation of the clonal system in pieces of different size, These may be wash 

down by the sea and later returned to land. In this study, we simulate physical 

disturbance in C.edulis by fragmenting their clones into ramets with short and long 

stolon lengths, and a subsequent event of seawater submergence and de-submergence. 

The objective of this study is to determine the role of stolons as storage organs in 

maintaining photochemical activity and growth of C. edulis clones after fragmentation 

and seawater submergence. Recent studies have been conducted to determine the 

importance of clonal integration (i.e. resource sharing between connected modules of 

the clone via stolons) in the expansion of C. edulis (Roiloa et al., 2014a, 2014b, 2013, 

2010). However, the role of clonal structures as storage organs and their potential 

contribution to the expansion of this invader has not yet been investigated. 

Specifically, we aim to respond to the following questions: (1) does stolon 

length affect photochemical activity and growth of C. edulis after physical 

fragmentation? Because stolons can act as reserve organs (Goulas et al., 2001; Stuefer 

and Huber, 1999; Suzuki and Stuefer, 1999), and the stolon length may be positively 

correlated with the amount of reserves stored (Dong et al., 2010), we expect that 

increased stolon length will positively affect the photochemical activity and growth of 

the fragmented ramets. (2) Are growth and photochemistry of longer ramets less 
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affected by a stressful event of seawater submergence? Because reserve storage could 

be critical to mitigate the carbohydrate crisis due to submergence (Striker, 2012), we 

predict that the benefits of increased stolon length, in terms of growth and 

photochemical activity, will be greater for ramets subjected to seawater submergence.  

2. Material and methods 

2.1. Study species 

Carpobrotus edulis (L.) N.E. Br. is a mat-forming succulent plant native to the Cape 

(South Africa), and currently an aggressive invader in all the Mediterranean climate 

areas around the world, where it colonizes rocky coast and coastal sand dunes 

(D’Antonio, 1993; D’Antonio and Mahall, 1991; Traveset et al., 2008; Vilà et al., 

2008). C. edulis propagates clonally by the production of stolons, showing a radial 

growth with a structure of nodes and internodes that allows an effective colonization 

of the surrounding area (Wisura and Glen, 1993).  

2.2. Experimental design 

Forty similar size un-rooted ramets of C. edulis were collected in a dune system in 

Quiaios (Portugal) (40°13'N, 8°53'W). Each ramet was obtained by excising the 

fourth unit from the apex of a maternal clump. Normally, the fourth unit from the 

apex represents in C. edulis a well-developed ramet. This protocol allowed to 

standardize the age, size and developmental stage of the plant material used in the 

experiment. Ramets were collected from a total of 10 maternal clumps (4 ramets from 

each) separated from each other by at least 50 m. Because plant material was 

collected over a relatively large area, we assume that each clump represents a 

different genotype. The experimental design included two crossed factors: ‘stolon 
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length’ (short, long) and ‘seawater submergence’ (submerged, non submerged) (see 

Fig. 1). To test the effect of stolon length as a storage organ we prepared ramets with 

short (2.11 ± 0.09 cm, mean ± SE) and long (9.06 ± 0.18 cm, mean ± SE) stolons by 

cutting the appropriated length with scissors. We did not observe any negative effect 

of cutting the stolon (as sudden death or diseases). Long and short stolons 

significantly differed in length (F1,38 = 1095.752, P < 0.001), but not in initial fresh 

biomass of the ramets (F1,38 = 3.041, P = 0.089). To test the effect of seawater 

submergence on plant performance, half of the ramets in each ‘stolon length’ 

treatment were seawater submerged during 48h in a unique cycle, and the other half 

were not. Submerged ramets (leaves + stolon) where immersed in a 20cm-depth tray 

with seawater, whereas non-submerged plants remained in a tray without water. We 

used seawater collected from the Atlantic Ocean, in the proximities where C. edulis 

inhabit (ca. 34 g salts/L water; Na 11 g/L water). After this, all the ramets were 

planted individually in 5L plastic pots filled with sand from dunes where C. edulis 

inhabits. These treatments imitate natural conditions, where clones of C. edulis 

inhabiting rocky coasts are fragmented into pieces of different size by the action of 

storm waves, transported along the shore and stranded later on the beaches and 

foredunes. Although the period of seawater submergence could be quite variable, 

submergence during 48h is a realistic scenario for C. edulis, where plant fragments 

are abandoned again in the beach after a relatively short period of time. Ramets from 

each of the original maternal clumps were equally represented in each combination of 

treatments. Each treatment was replicated 10 times. The experiment was carried out in 

a greenhouse at the University of Santiago de Compostela (Spain) during 3 months, 

from March 27 until harvest on June 29. All the ramets were randomly arranged in the 
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greenhouse. Plants grew under a natural day/night light cycle and were watered 

regularly to prevent water stress.  

2.3. Growth and physiological measurements 

Growth: At the end of the experiment, ramets were harvested individually, divided 

into shoots (leaves and stolons) and roots, oven-dried at 60 °C to constant weight and 

weighed to the nearest 0.0001 g (Mettler AJ100, Greifensee, Switzerland). Total mass 

was calculated for each ramet as the sum of shoot and root dry mass. In addition, the 

proportional biomass allocated to roots was also determined as the ratio root/total 

mass (root mass ratio, RMR). 

Chlorophyll fluorescence: Chlorophyll fluorescence parameters were measured every 

30 days from the start of the experiment in all the ramets by the saturation pulse 

method (Schreiber et al. 1998), using a portable fluorometer (MINI-PAM 

photosynthesis yield analyser; Walz GmbH, Effeltrich, Germany). The maximum 

(Fv/Fm) and actual (ΦPSII) quantum yield of photosystem II (PSII) were determined 

as follows: Fv/Fm was calculated as (Fm - F0) / Fm (Bolhàr-Nordenkampf et al., 

1989), where F0 and Fm are, respectively, the minimal and maximal fluorescence 

yield of a dark-adapted sample, when all PSII reaction centres are fully open (i.e. all 

primary acceptors oxidized). The Fv/Fm ratio provides information on the efficiency 

of excitation energy capture by open PSII reaction centres (Butler and Kitajima, 1975) 

and is correlated with the amount of carbon gained per unit of light absorbed (Bolhàr-

Nordenkampf and Öquist, 1993). On the other hand, ΦPSII was calculated as (F′m - 

Ft) / F′m (Genty et al., 1989), where F′m is the maximal fluorescence yield reached in a 

pulse of saturating light with an illuminated sample, and Ft is the fluorescence yield of 

the leaf at a given photosynthetic photon flux density. This parameter was measured 
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under the natural ambient light of 285.5±13.4 µmol m–2 s–1 (mean ± SE, n =120). 

ΦPSII is a measure of the fraction of the light absorbed by chlorophylls associated 

with PSII that is used in photochemistry (Maxwell and Johnson, 2000) and can be 

used to predict CO2 assimilation rates (Andrews et al., 1995; Edwards and Baker, 

1993). 

Leaf spectral reflectance: Immediately after the chlorophyll fluorescence 

measurements, spectral reflectance parameters were determined in all the ramets, 

using a portable spectrometer (UniSpec Spectral Analysis System; PP Systems, 

Haverhill, MA, USA). Specifically, we determined the chlorophyll content index 

(CHL), and the photochemical reflectance index (PRI). CHL was calculated as R750 / 

R700, where R750 and R700 are reflectances at 750 and 700 nm, respectively. The 

CHL is significantly correlated with the chlorophyll content of leaves (Lichtenthaler 

et al., 1996; Wood et al., 1993). PRI was calculated as (R531 - R570) / (R531 + 

R570), where R531 and R570 are reflectances at 531 and 570 nm, respectively. This 

index is correlated with net CO2 uptake and photosynthetic radiation-use efficiency 

(mol CO2 /mol photons) (Filella et al., 1996; Gamon et al., 1997 Peñuelas et al., 

1995). 

2.4. Data analyses 

Total mass and RMR were compared by two-way ANOVA, with ‘stolon length’ and 

‘seawater submergence’ as between-subject effects. Differences in chlorophyll 

fluorescence (Fv/Fm and ΦPSII) and spectral reflectance (CHL and PRI) parameters 

were analysed by repeated measures two-way analysis of variance (ANOVAR), with 

‘stolon length’, and ‘seawater submergence’ as between-subject effects and ‘time’ as 

the within-subject effect. Total mass was log10-transformed to meet the requirements 
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of parametric statistical tests. Significance levels were set at P<0.05. Statistical tests 

were performed with SPSS 15.0 (SPSS, Chicago, IL, USA). 

3. Results 

In our study, all the fragments developed roots and survived after the disturbances, 

denoting the capacity of C. edulis to colonize a new environment even after these 

stressful treatments. Total dry mass of ramets was significantly affected by stolon 

length and seawater submergence treatments. Short stolon ramets showed a 

significant lower total mass than long stolon ramets (Table 1, Fig. 2a). Likewise, 

seawater submergence reduced significantly the total mass of the ramets, and this 

effect was not dependent on stolon length (Table 1, Fig. 2a). However, the 

proportional biomass allocated to roots (RMR) was not affected by any of the 

experimental treatments (Table 1, Fig. 2b). 

 Seawater submergence significantly reduced the maximum quantum yield of 

PSII (Fv/Fm) and the chlorophyll content index (CHL) (Table 2, Fig. 3a,c). For the 

CHL index, the effect of seawater submergence depended on time, being the 

differences between non-submerged and submerged ramets greater at the middle of 

the experiment (Fig. 3c). The actual quantum yield of PSII (ΦPSII) and the 

photochemical reflectance index (PRI) were not significantly affected by ‘stolon 

length’, ‘seawater submergence’ or their interaction (Table 2). 

4. Discussion 

Our results supported the hypothesis that increased stolon length positively affects the 

growth of C. edulis (hypothesis 1), but did not sustain that this benefit was 

proportionally greater for seawater submerged ramets (hypothesis 2). Plants growing 
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in coastal habitats, especially those occupying rocky coasts, are frequently exposed to 

unpredictable disturbances as tempests (Bauer et al., 2009; Maun, 2009). In the case 

of clonal plants, the systems of connected ramets are frequently fragmented in pieces 

of different size, swept away to the sea by the action of waves, and later dropped 

again to the dune (Aptekar and Marcel, 2000; Harris and Davy, 1986b; Konlechner 

and Hilton, 2009). In this context, the capacity of the fragments to survive and re-

grow after disturbances will be key for the colonization of new environments and for 

population maintenance. The storage of resources in reserve structures, as stolons, 

may contribute to increase survival, and therefore it has been considered an advantage 

for plants inhabiting recurrently disturbed habitats (Goulas et al., 2001; Stuefer and 

Huber, 1999; Suzuki and Stuefer, 1999;). 

 In our study, seawater submergence significantly reduced the amount of light-

harvesting antenna pigments, as expressed by CHL values, photochemical activity of 

PSII, as estimated by Fv/Fm, and growth. Similar results have been obtained by 

Mangora et al. (2014), who found a reduction of Fv/Fm due to submergence in three 

mangrove species. We demonstrate that chlorophyll fluorescence (Fv/Fm) and 

spectral reflectance parameters (CHL) can be used as functional indicators of the 

effect of seawater submergence in processes related to photochemical efficiency. 

Previous studied have also showed that chlorophyll fluorescence parameters are 

successful at detecting saltwater flooding stress (Naumann et al., 2008). In addition, 

our results showed that the negative effect of seawater submergence at physiological 

level (evidenced by the reduction of the photochemical efficiency) was transferred to 

a reduction in growth, linking physiological and morphological responses. The 

negative impact of submergence for plants has been previously reported. 

Submergence reduces light and diffusion of CO2 (required in chloroplasts for 
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photosynthesis) and O2 (required in mitochondria for respiration), conducting to a 

reduction of the photosynthetic activity and energy crisis that produce cellular damage 

(Bailey-Serres and Voesenek, 2008; Colmer and Voesenek, 2009; Gibbs and 

Greenway, 2003). In addition, salinity may alter ionic ratios in plants (Grattan and 

Grieve, 1998), produce specific ion toxicity (Rhoades et al., 1999), and change the 

allocation of macro and micronutrients within plant tissues (Hu et al., 2007). All these 

adverse effects may damage photosynthesis by stomatal closure and by salt-induced 

injury on chloroplasts, especially on electron transport (Gao et al., 2015; Larcher, 

1995;). Abou Jaoude et al. (2013) have found that saltwater flooding damages plants 

more severely than freshwater flooding, and Naumann et al. (2008) reported that net 

photosynthesis decreased significantly more after three-days submergence in 

saltwater compare to freshwater submergence. Interestingly, our results showed a 

negative effect of seawater in plants that were shallowly submerged for a relatively 

short period of time, and thus expand previous effects found after a long period of 

submergence in profundity (Mangora et al., 2014). However, because our design does 

not include a freshwater submergence treatment, we cannot identify the source 

(submergence or salinity) of the negative effect encountered in plants under seawater 

submergence conditions. 

 Our results showed a significant increase in growth (total biomass) for those 

ramets fragmented in larger pieces (long stolon treatment), as we predicted in our first 

hypothesis. Stolons act as important reservoirs for carbohydrate storage, and 

consequently might be crucial for recovering after a process of fragmentation. 

Reserves stored in the stolons can be remobilized favoring plant re-growth and 

helping to buffer the negative impact of disturbance (Goulas et al., 2001; Stuefer and 

Huber, 1999; Suzuki and Stuefer, 1999). It seems logical that the increase in stolon 
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length will be positively related with the increase in the amount of resources stored, 

and consequently with benefits obtained by the plant (Dong et al., 2010). In our study, 

ramets with long stolons produced a significantly higher total biomass than ramets 

with short stolons, supporting the idea that stolon length is related with the amount of 

reserves stored and with the benefit reported in terms of growth. Previous studies also 

suggested that the variation in the sprouting ability of the clonal invader Ammophila 

arenaria in New Zeland was caused by variations in the growth reserves stored within 

the rhizomes (Konlechner et al., 2016). In a manipulative experiment with 39 

stoloniferous native and invasive plant species Song et al. (2013a) examined the 

regeneration capacity of single-node fragments with or without attached stolon 

internodes. Similarly to our results, the presence of stolon internodes increased 

regeneration rate and subsequent growth. However, although results from Song et al. 

(2013a) suggest that the capacity for resource storage in stolon internodes may play 

an important role for clonal plants expansion, it did not seem to differ between native 

and invasive species. More studies comparing the importance of clonal organs, as 

storage organs, between exotic invaders and exotic non-invaders, or between species 

with different degree of invasiveness, would be necessary to better elucidate the 

contribution of these clonal traits to plant invasions.   

Our results also showed that the biomass allocation (estimated by the root 

mass ratio, RMR) was not significantly affected by the stolon size. In spite of having 

less reserves, ramets with short stolons did not increase significantly the proportional 

biomass allocated to roots, as we could expect from the optimal partitioning theory 

(i.e. plants will increase the proportional biomass allocation to the structures 

responsible of acquiring the most limiting resource) (Bloom et al., 1985; Thornley, 

1972).  Instead, root: total biomass maintained invariant scaling relations with stolon 
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length. Similar results in other species have been interpreted as evidence that 

evolutionary pressures, more specifically, biomechanical and hydrodynamic 

constraints, could be acting to maintain allometric ratios at specific values (Sanchez-

Vilas and Retuerto, 2007).  

 The benefit derived from the role of stolons as reserve organs is especially 

important for clonal plants inhabiting coastal habitats, where the process of 

disturbance frequently include fragmentation and seawater submergence (Aptekar and 

Marcel, 2000; de la Peña et al., 2011; Harris and Davy, 1986b; Konlechner and 

Hilton, 2009). One of the harmful consequences of seawater submergence is the 

carbohydrate crisis. Photosynthesis activity is collapsed due to submergence and salt 

stress, and the plant mobilizes the carbohydrates stored to sustain energy production. 

These carbohydrates are not restocked and their depletion conducts to cell death 

(Bailey-Serres and Voesenek, 2008; Colmer and Voesenek, 2009). Under this 

situation of stress, the presence of a high accumulation of carbohydrates may be 

critical to allow the recovery after seawater submergence (Striker, 2012). In this 

sense, ramets of C. edulis with long stolon may buffer the process of fragmentation 

and seawater submergence, increasing the probability for re-colonization. However, 

to confirm the mechanism behind this finding, mobilization of stored resources must 

be traced, allowing a more reliable interpretation of our results. Future studies should 

trace and quantify the mobilization of internal resources to elucidate the real 

ecological function of clonal storage structures in plant invasions.  

Success in long-distance dispersion (movement of individuals from their birth 

location to another place that might be colonized, sensu Bullock et al., 2002) can 

imply important consequences for plant invasions (Trakhtenbrot et al., 2005). In 

coastal habitats, clonal structures can be fragmented and long-distance transported, 
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representing an important mechanism for dispersion and colonization of new coastal 

environments (Harris and Davy 1986a, 1986b). In this sense, the use of stolons as 

storage organs could be playing an important role in the expansion of clonal invaders 

(Dong et al., 2012, 2011, 2010; Konlechner et al., 2016; Lin et al., 2012). Attributes 

associate to clonal propagation have been recently suggested as important traits for 

plant invasions (Liu et al., 2006; Song et al., 2013b). Most of the studies have been 

focused on the benefits of physiological integration (Song et al., 2013b; Wang et al,. 

2008; Yu et al., 2009) for clonal invaders, and recent studies explicitly conducted 

with C. edulis have reported benefits of clonal integration at physiological and 

morphological level (Roiloa et al., 2016, 2014a, 2014b, 2013, 2010). However, this is 

the first research exploring the benefit of clonal structures as storage organs for the 

invader C. edulis. Our study suggests that the use of stolons as a source of resources 

can represent a suitable mechanism for colonization of new coastal dunes habitats by 

the aggressive invader C. edulis. In this regard, our results indicate that C. edulis 

inhabiting rocky coast could be considered as a source of propagules, with potential to 

be transported along shore by waves and colonize new coastal habitats. This 

information is particularly interesting for managing plant invasions.    
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LEGEND FIGURES 

FIG.1 Schematic representation of the experimental treatments with stolon length 

(short, long) and sea water submergence (submerged, non submerged) as main factors 

See text for experimental design details. 
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FIG. 2 Total mass in g (mean + SE) (a) and proportional biomass allocated to roots 

(determined as the root mass ratio, RMR) (mean + SE) (b) of short and long stolon 

ramets in sea water submerged and non submerged treatments. See Table 1 for 

ANOVAs results. 
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FIG. 3 Time-course of mean values (±SE) of chlorophyll fluorescence (Fv/Fm and 

ΦPSII, a and b panels respectively) and spectral reflectance (CHL and PRI, c and d 

panels respectively) parameters for short (dashed lines) and long (solid lines) stolon, 

and seawater submerged (closed symbols) or non submerged treatments (open 

symbols). See Table 2 for ANOVAs.  
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TABLE 1. Results of two-way analysis of variance (ANOVA) to examine the effects 

of stolon length and seawater submergence on total mass and biomass allocated to 

roots (root mass ratio, RMR). Values of P < 0.05 are in bold. See Fig. 2 for data. 

    

  

Effects Total mass  Root mass ratio (RMR) 

 df F P  df F P 

Stolon 1 9.188 0.004  1 2.332 0.135 

Submergence 1 66.044 <0.001  1 0.612 0.439 

Stolon x submergence 1 1.902 0.176  1 0.006 0.939 

Error 36    36   
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TABLE 2. Results of two-way repeated-measure analysis of variance (ANOVAR) 

with stolon length and seawater submergence as between-subject effects for 

differences in maximum and actual quantum yield of PSII (Fv/Fm and ΦPSII, 

respectively), chlorophyll content index (CHL) and photochemical reflectance index 

(PRI). Values of P < 0.05 are in bold. See Fig. 3 for data. 

 

 Fv/Fm  ΦPSII  CHL  PRI 

Between-subject effects df F P  df F P  df F P  df F P 

Stolon 1 0.892 0.351  1 0.182 0.672  1 2.257 0.142  1 2.711 0.108 
Submergence 1 4.738 0.036  1 2.016 0.164  1 10.544 0.003  1 1.245 0.272 

Stolon x submergence 1 0.818 0.372  1 0.540 0.467  1 0.335 0.566  1 0.924 0.343 

Error 36    36    36    36   
Within-subject effects                

Time 2 11.541 <0.001  2 26.845 <0.001  2 108.741 <0.001  2 17.334 <0.001 
Stolon x time 2 1.571 0.215  2 0.432 0.651  2 0.016 0.542  2 2.462 0.092 
Submergence x time 2 1.720 0.186  2 0.066 0.936  2 0.097 0.031  2 0.919 0.404 

Stolon x submergence x time 2 0.555 0.576  2 0.267 0.766  2 0.014 0.588  2 0.884 0.417 
Error 72    72    72    72   


