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21

22 Abstract

23 A prerequisite for integrated crop model applications is the evaluation at the desired spatial and 

24 temporal scale. Here, we analysed the eco-hydrological model SWIM simulating crop yields. Historic 

25 simulations for winter wheat and silage maize from 1991-2010 were used to examine the model 

26 performance at the county level in reproducing the county statistics for crop yields. The focus laid on 

27 the replication of mean yield levels and interannual crop yield variability. Simulations of silage maize 

28 performed better than simulations of winter wheat with R2-values for interannual yield variability of 

29 0.72 and 0.26 respectively at the national level. In particular, silage maize showed a tendency to 

30 perform better in areas of lower soil water availability. The reasons for the clear superiority of silage 

31 maize were supposedly the short growing season, the lower susceptibility to pests and diseases and, 

32 hence, the direct translation of water stress into yield reductions. This signal was less evident for 

33 winter wheat and was additionally superposed of climate induced biotic and abiotic stresses – 

34 primarily originating in the cold season - which were not implemented in the model. Overall, the 

35 simulation bias seemed to originate rather from unconsidered processes than from uncertainties of 

36 input data or in model parameterisation.

37 Key words

38 SWIM, EPIC, eco-hydrological modelling, regional crop modelling, silage maize, winter wheat, 

39 Germany

40
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41 1. Introduction

42 High-yielding high-input systems (e.g. Germany) were identified as regions where weather variability 

43 has a relatively high explanatory power for yield volatility (Reidsma and Ewert, 2008; Ray et al., 

44 2015; Conradt et al., 2016). To understand and assess the complex interactions between biophysical 

45 and human induced crop growth factors or to predict the response of crop growth to climate 

46 change, mechanistic crop models are employed which are run independently or embedded in more 

47 complex modelling frameworks such as eco hydrological models (e.g. SWIM, Krysanova et al. (1998)) 

48 or integrated assessment models (Ewert et al., 2015).

49 Originally, such crop models had been developed for plot scale applications assuming homogeneous 

50 environmental conditions (Hansen and Jones, 2000; van Ittersum et al., 2003; Challinor et al., 2009). 

51 However, the application spectrum of crop models has expanded substantially ever since (Ewert et 

52 al., 2015), accompanied by the increased computational capacities. Crop models are now employed 

53 at all scales, at the field and farm level, at regional, national and global scale (Tan and Shibasaki, 

54 2003; Stehfest et al., 2007; Srinivasan et al., 2010; Balkovič et al., 2013; Nendel et al., 2013; 

55 Rosenzweig et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015b; Soltani et al., 2016; Müller et al., 

56 2017). Crop model estimations are used as inputs to economic agricultural models (Adams et al., 

57 1990; Bowes and Crosson, 1993; Rosenzweig and Parry, 1994; Parry et al., 2005; Rosenzweig et al., 

58 2013), form an integral part of Integrated Assessment Models (Ewert et al., 2015) and support 

59 decision makers who require crop simulations at the regional scale (Hansen and Jones, 2000; Priya 

60 and Shibasaki, 2001; Rötter et al., 2011) to design spatially explicit integrated policies (Ewert et al., 

61 2011; Ewert et al., 2015). Nevertheless, despite this wide application range, plot scale crop models 

62 still form the basis of all simulation exercises (Dhakhwa et al., 1997; Izaurralde et al., 1999; Saarikko, 

63 2000; Priya and Shibasaki, 2001; Tan and Shibasaki, 2003; Parry et al., 2005; Liu et al., 2007). A major 

64 challenge is ensuring the representativeness of plot scale results for larger regions either by the 

65 extrapolation and upscaling of parameters and model assumptions (Müller et al., 2017) or the 
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66 aggregation of input data (Hansen and Jones, 2000; Hoffmann et al., 2015; Zhao et al., 2015a; Zhao 

67 et al., 2015b). “Gridded” model applications run crop models at a defined raster of points for which 

68 input data are provided (Hoffmann et al., 2015; Müller et al., 2017). These rasters usually reflect 

69 data availability rather than the actual mosaic landscape heterogeneity. Moreover, the lateral 

70 hydrological fluxes of surface and subsurface runoff which form an integrative ecosystem 

71 component and impact on the soil water availability of the vegetation are missed out. Eco-

72 hydrological models are designed to overcome this deficit. They integrate regional scale water 

73 processes with soil characteristics and plant dynamics at the catchment scale. 

74 The integration of crop simulation approaches into hydrological models has frequently been 

75 reported (Arnold et al., 1998; Krysanova et al., 1998; Klocking et al., 2003; Liu et al., 2009; Albano et 

76 al., 2017). However, only a few studies have addressed multi-criteria model evaluation, and 

77 simultaneously addressed crop yields and hydrological aspects (Krysanova et al., 1999; Huang et al., 

78 2006; Luo et al., 2008; Srinivasan et al., 2010). Vegetation dynamics induce an essential feedback-

79 mechanism for hydrological fluxes in terms of root water uptake and subsequent transpiration. And 

80 although the overarching importance of vegetation dynamics on water circulation (modelling) has 

81 widely been recognised (Chen, 2015) the multiple range of evaluation criteria of eco-hydrological 

82 models have not been exploited yet. An explicit evaluation of crop yield dynamics adds an extra 

83 dimension of evaluation aspects to constrain overall model performance. However, in respect to the 

84 fundamental importance of vegetation dynamics for evapotranspiration and the latter being one of 

85 the most uncertain factors in spatial hydrological modelling (Conradt et al., 2012) and crop 

86 modelling (Cammarano et al., 2016), the explicit evaluation of the performance of vegetation 

87 dynamics within hydrological models has been widely neglected.

88 In this study, we used a simplified version of the well-established crop modelling approach of the 

89 Erosion Productivity Impact Calculator (EPIC) (Williams et al., 1989) embedded in the spatially 

90 explicit Soil Water Integrated Model (SWIM) (Krysanova et al., 1998) to simulate regional crop yields 
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91 for Germany. In contrast to other crop modelling studies, we use a model here that was pre-

92 calibrated and evaluated at hydrological gauge stations for all main catchments of Germany (Huang 

93 et al., 2010). By using a hydrologically calibrated model, the degrees of freedom for additional 

94 parameter changes are restricted to those with minor effects on hydrological processes. 

95 We explored simulated inter-annual yield fluctuations for the 20-year period of 1991 to 2010 for a 

96 representative winter crop, namely winter wheat (WW) Triticum aestivum L., and a representative 

97 summer crop, namely silage maize (SM), Zea mays L.. WW and SM are the main winter and summer 

98 crops grown in Germany in terms of area coverage and gross yields (Statistisches Bundesamt, 2012). 

99 We deliberately chose two crops with different growing seasons also to rationalise model 

100 performance based on the comparison between the respective simulations.

101 Just recently, several crop modelling studies for Germany were published (Nendel et al., 2013; 

102 Kersebaum and Nendel, 2014; Hoffmann et al., 2015; Zhao et al., 2015b; Soltani et al., 2016). These 

103 studies presented the evaluation of interannual yield variability simulations as a precondition for the 

104 assessment of, e.g., scaling issues, but, apart from Nendel et al. (2013), omitted a thorough 

105 discussion on the performance of the applied crop models at the regional scale.

106 Previous studies with SWIM have only peripherally addressed the performance of integrated 

107 vegetation dynamics at the regional scale and only for selected regions (Krysanova et al., 1998; 

108 Krysanova et al., 1999). Post (2006) evaluated the yield simulations of SWIM at three long-term sites 

109 in Germany. Mean yields were met quite satisfactorily but the simulation of a winter wheat long-

110 term trial (1954 – 2002) revealed problems matching interannual yield variability. A number of 

111 studies used various versions of EPIC around the globe simulating mean yields and year-to-year yield 

112 variability of different crops (Kiniry et al., 1990; Rosenberg et al., 1992; Moulin and Beckie, 1993; 

113 Easterling et al., 1996; Roloff et al., 1998; Brown and Rosenberg, 1999; Izaurralde et al., 1999; Huang 

114 et al., 2006; Luo et al., 2008; Srinivasan et al., 2010). Overall, these studies agreed that EPIC is well 
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115 suited to simulate mean crop yields, however, it has difficulties in replicating interannual yield 

116 variability.

117 The aim of our study is to provide a comprehensive and transparent evaluation of crop yield 

118 simulations for the whole territory of Germany within the framework of an eco-hydrological model, 

119 thereby establishing a reference for modelling efforts to consider crop yields and water household at 

120 the water shed scale under German conditions (food-water-nexus).
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121 2. Data and Methods

122 2.1 The eco-hydrological model SWIM

123 SWIM is a process-based, time continuous, semi-distributed watershed model which describes the 

124 impact of land use and land management on hydrological fluxes at the landscape scale in 

125 conjunction with plant growth dynamics and soil organic carbon and nitrogen turnover. It can be 

126 regarded as robust and well evaluated for hydrological conditions of German river-catchments 

127 (Krysanova et al., 1998; Krysanova et al., 1999; Hattermann et al., 2005a; Hattermann et al., 2005b; 

128 Huang et al., 2010). SWIM integrates the heterogeneous landscape by simulating homogeneous 

129 landscape units (i.e. hydrotops) of up to several hectare sizes at which site-scale crop growth 

130 processes and yields are simulated. 

131 2.2 The plant growth module of SWIM

132 The plant growth module of SWIM is essentially based on the EPIC crop model (Williams et al., 

133 1984), similar to SWAT (Arnold et al., 1998). The main features are the description of potential plant 

134 biomass growth using the Beer’s law equation (Monsi and Saeki, 1953) in conjunction with 

135 Monteith’s approach (Monteith, 1977) of photosynthetic active radiation and plant specific biomass-

136 energy conversion factors. Plant water uptake (and evaporation) is driven by the potential 

137 atmospheric demand (Ritchie, 1972). This was calculated by the Turc/Ivanov approach which was 

138 adapted for Germany following DVWK (1996) with the monthly adjustments suggested by Glugla and 

139 König (1989) and land use adjustment factors taken from ATV-DVWK (2002). Potential transpiration 

140 rates depend on the LAI and the overall atmospheric demand while actual soil water supply in the 

141 active rooting zone determines and limits actual transpiration. Daily potential biomass growth and 

142 LAI development are limited by factoring in the minimum stress factor (ranging from zero to one 

143 with one expressing no stress) of water and temperature. Water stress is the proportion of potential 

144 atmospheric demand and actual plant-available water in the rooting zone. The temperature stress 

145 factor is a function of the crop specific base and optimum temperature, and daily mean temperature 
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146 (Krysanova et al., 1998). It approaches one at optimum temperature and decreases rapidly above 

147 this temperature. Yield is the product of aboveground biomass and a plant specific harvest index.

148 In contrast to previous SWIM applications, we slightly modified the standard crop growth 

149 calculations as described by Krysanova et al. (1998) by (i) introducing hydrotop-specific dynamic 

150 harvest dates, (ii) including a modification factor for potential plant biomass increase depending on 

151 day length and (iii) coupling phenology dynamics, i.e. leaf-area-index (LAI) with the biomass 

152 development via the plant specific leaf area and the respective biomass allocation fraction into 

153 leaves (for more details refer to S1).

154 2.3 Input data

155 The general soil map of Germany “BÜK 1000” with a resolution of 1:1 000 000 (Hartwich et al., 

156 1995), the digital elevation model provided by the NASA Shuttle Radar Topography Mission (SRTM), 

157 the CORINE 2000 land cover map (CEC, 1995; Bossard et al., 2000), and the standard subbasin map 

158 of the Federal Environmental Agency (Umweltbundesamt) were used as spatial input data. Daily 

159 weather data for each subbasin were generated from the climate and precipitation station network 

160 of the National Meteorological Service of Germany (DWD). For more details on the input data set, 

161 hydrological model calibration and evaluation procedures, we refer to Huang et al. (2010).

162 Some of the “BÜK 1000” soil types were adjusted for plant-available water. Previous studies with 

163 SWIM (not shown here) have shown that yield overestimations in the federal state of Brandenburg 

164 were related to overestimations of plant-available water (soil parameter). According to a region-

165 specific soil characterisation of typical central eastern soil types (MLUR, 2013) respective “BÜK 

166 1000”-soils overestimate plant-available water. We thus lowered this parameter for respective soil 

167 types. This adjustment was applied uniformly across all catchments (see S0).

168 2.4 SWIM-crop-simulations
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169 The model was applied at the five main river basins of Germany (Elbe, Danube, Rhine, Weser, Ems) 

170 plus bordering catchments of Maas, Oder and the coast of the North and Baltic Sea (Fig.1). Crop 

171 yield simulations were carried out for the historical period of 1991 to 2010. SWIM simulated mono-

172 cultures, i.e. one model run assumed one crop type across the whole cropland area continuously in 

173 time. Between harvests and the next sowing a standard cover crop was planted. We did not 

174 distinguish region specific crop cultivars, so only one set of crop parameters of WW and SM was 

175 used (Tab. 1). Mean sowing and harvest dates for WW and SM were delineated from the phenology 

176 data base of the German Weather Service (DWD, 2017) (for data processing details see S2). 

177 Aggregated at county level over 20 years (1991-2010) and across all counties, the mean sowing data 

178 for WW and SM was 10th October and 28th April with a standard deviation of +/-5 and +/-2 days 

179 respectively. The growth routines of EPIC require the estimation of potential heat units (PHUs; °C) 

180 accumulated by a crop from sowing to maturity. They were calculated based on the crop specific 

181 base temperature, the mean sowing and harvest dates and mean daily temperature of Germany 

182 from 1990-2010 and adjusted for day length (see 1.1.2 in S1). Optimum nutrient supply was 

183 assumed. This is a common assumption in crop modelling studies (Brown and Rosenberg, 1999; 

184 Izaurralde et al., 1999; Luo et al., 2008; Zhao et al., 2015b; Soltani et al., 2016) and justified for a high 

185 yielding cropping area such as Germany. German farmers usually apply fertilisers according to crop 

186 demand (Boogaard et al., 2013; Conradt et al., 2016), and Balkovič et al. (2013) identified Germany 

187 as a region with almost no N stress.

188 Management operations such as plant protection measures, plant growth enhancement treatments, 

189 soil management, or carry-over effects of crop rotations were not included in the simulations. This 

190 was justified since Reidsma and Ewert (2008) identified Germany as a region in which impacts of 

191 climate factors on crop yields dominate over management effects (in contrast to other regions in 

192 Europe). This is further supported by the study of Conradt et al. (2016) who used different statistical 

193 modelling approaches to replicate interannual yield variability across Germany. Yield variability was 
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194 best explained by climatic explanatory variables and could not be improved by the inclusion of non-

195 climatic variables.

196 Tab. 1 Key crop parameters. * In case temperature sums are not accumulated over the growing season and thus the 

197 dynamic harvest date is not reached SM and WW were harvested at these fixed dates.

198 2.5 Yield data

199 Yield data at county level (NUTS3) were collected using reports from the various statistical 

200 authorities of the federal states of Germany (Lüttger, A., pers. comm.). The yield statistics generally 

201 result from a Germany-wide applied uniform sampling procedure. At the basic level, yields are 

202 surveyed from randomly selected fields. In the second step, these basic yields are area-weighted and 

203 directly up-scaled to the federal country and the national level. County level yields are derived only 

204 in a subsequent third step from the federal country yields by multiplying their value with a county-

205 specific factor resulting from a separate yield reporting (pers. comm., Troegel, T., Statistics Office 

206 Berlin-Brandenburg, 2017).

207 All original yield data are reported in reference to fresh matter. We converted these values from 

208 fresh to dry matter (DM) yields using conversion factors of 0.86 and 0.35 for WW grain yield and SM 

209 aboveground biomass, respectively (per. comm., Kurz, R., Statistics Office Berlin-Brandenburg, 

210 2011).

211 Nendel et al. (2013) and Hoffmann et al. (2015) discuss the necessary caution when statistical yield 

212 data are used as described. Nevertheless, these data are currently the best available quantitative 

213 information on yields at the county, federal state and national scale. 

214 2.6 Evaluation of yield simulations

215 The performance of yield simulations was assessed in respect of their means and their interannual 

216 variability. van Ittersum et al. (2013) recommended a period of at least 15 years to capture the 

217 interannual water-limited yield variability, and 10 years for capturing observed yields in high-yielding 
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218 environments. We regarded statistical measures of yield time series to be robust when they were 

219 calculated for a time span of 20 years. We used time series of observed years for the period 1991-

220 2010 reported for German counties and carried out simulations for the same period addressing the 

221 same scale. Counties in which the cropland area was less than 10% of the total county area were 

222 excluded. This left 264 out of 402 (status 2011) counties in total for the analyses. 

223 Simulated and reported yields were evaluated at the county, basin, federal state and national scale 

224 (by cropping area-weight averaging. Equivalent averages from the statistical data for the basin and 

225 county level data were area-weighted according to the area of simulated cropland within the part of 

226 the counties which overlap with the catchment area.

227 Fig. 1)in respect of their temporal means and their interannual variability. The interannual variability 

228 was analysed using the first-differences approach. It minimises the effect of systematic trends in 

229 time series such as slowly changing crop management (Lobell and Field, 2007).

230 Simulated yields at hydrotop level were aggregated to the county, basin, federal state and national 

231 level  by cropping area-weight averaging. Equivalent averages from the statistical data for the basin 

232 and county level data were area-weighted according to the area of simulated cropland within the 

233 part of the counties which overlap with the catchment area.

234 Fig. 1 Map of spatial aggregation levels

235 The analysis was limited to yields on soil types suitable for WW and SM cropping. This information 

236 was delineated from the soil quality map for Germany (Müller et al., 2007). For WW and SM, only 

237 soils with soil quality rating scores of above 50 and 20 respectively qualified for analysis.

238 Since observed mean yields at county level reflect an unknown distribution of cropping areas and 

239 respective simulated values are based on a static selection of hydrotops limited to distinct soil 

240 quality levels, we calculated the difference between simulated and statistical cropping areas and 

241 tested for the explanatory power of such spatial differences for mean yields and interannual 
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242 variability of yields. Results were further evaluated for their sensitivity to soil parameters and their 

243 spatial distribution, and to terrain altitude and heterogeneity.

244 2.7 Statistical measures and software

245 The systematic bias was accessed using the relative error E (Addiscott and Whitmore, 1987; Smith et 

246 al., 1996). Positive values of E denote that the model tends to underestimate mean yields while 

247 negative values denote a systematic overestimation of mean yield simulations. We also used the 

248 relative root mean square error (rRMSE) as a measure of coincidence. It indicates the mean 

249 deviation of the simulated data from the statistical data relative to the statistical data and is given in 

250 %.

251 The association between simulated and statistical yearly yield fluctuations was quantified using the 

252 the coefficient of determination R2. R2 quantifies how much of the variability in the statistical data is 

253 described by the model.

254

255 All statistical analyses were carried out with R using the standard “stats” package (R Core Team, 

256 2016).

257
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258 3. Results

259 3.1 Mean patterns at county level

260 The mean statistical WW yields increased from lowest values (<5 t ha-1) in the central eastern part to 

261 highest levels in the north-western edge (up to >8 t ha-1) of Germany. The central western area and 

262 the south part of Germany were characterised by medium to high yields (6-8 t ha-1) (Fig. 2a). The 

263 simulated WW yields revealed a similar pattern with a tendency to underestimate yields in the 

264 north-western part and to overestimate yields towards the mountainous regions in the east and 

265 south (Fig. 2b & c). 

266 Fig. 2 Comparison of statistical and simulated mean winter wheat yields.

267 Statistical mean yields of SM were lowest (less than 14 t ha-1) in the central eastern part of Germany 

268 similar to WW. From there,  positive gradientsoccured towards the central west and the south 

269 reaching values of around 17 t ha-1 (Fig.3a). Simulated SM yields showed a similar pattern, with a 

270 tendency for overestimations at the coastal zones and some mountainous regions. 

271 Underestimations scattered in the middle of western Germany (Fig. 3 b & c).

272 Figure 3: Comparison of statistical and simulated mean silage maize yields.

273 The spatial pattern of under- and overestimation became more clear when we distinguished 

274 between counties where statistical mean yields fell within the range envelop of simulated minimum 

275 and maximum yields per county and those areas where statistical mean yields left that envelope 

276 (Fig. 4).

277 Out-of-the-envelope overestimations of WW occurred often in the mountainous regions of the 

278 south east, with no continuous pattern. Underestimations of WW are mainly located in the lowlands 

279 of north-western Germany. SM yields showed the same spatial pattern but with a much lower 

280 extend of over- and underestimations. 

281 Figure 4 Consistency between observed county yields and simulated yields at the hydrotop level.
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282 Statistical analysis corroborated the association of WW yield overestimations with higher altitudes. 

283 There was a strong negative correlation (r= -0.7, p<=0.05) between E and the mean altitude per 

284 county. In contrast, the rRMSE decreased with increasing altitude for SM resulting in a slight 

285 negative correlation between rRMSE and the mean county altitude (spearman’s correlation: -0.23, 

286 p<=0.05).

287 Under- and overestimation were partly affected by the discrepancy between the mean total 

288 simulated area and the mean reported area use for WW and SM cropping in the counties.

289 The proportion of the actually cropped area covered by the simulations is shown in Fig. 5. The actual 

290 WW cropping amounted to less than 50% of the simulated while the actual cropping areas of SM 

291 often fell below 25% of the simulated area. The distribution of area discrepancies did not show a 

292 distinct pattern across Germany, neither for WW nor SM, such as altitude effects.

293 Fig. 5 Proportion of mean actual cropland to simulated cropland for WW and SM.

294 The difference between real and simulated crop coverage had no significant influence on the 

295 simulated mean WW yields. In contrast, the simulated mean SM yields decreased with the extent of 

296 the SM cropping area discrepancy (spearman’s correlation: -0.28, p<=0.05). 

297 In respect of the relative error, overestimations of WW and SM yields increased slightly with the 

298 increasing discrepancy in cropping area. This correlation was stronger for SM (-0.28, p<=0.05) than 

299 for WW (-0.13, p>=0.05).

300 Soil characteristics affected the mean yield levels and the bias of simulated yields. Correlations 

301 differed by soil depth. The soil water holding capacity (WHC) of the first two soil layers with a mean 

302 depth of 28 cm showed the highest positive impact on mean yields while the saturated conductivity 

303 (SC) of the third layer (ca. 28 – 52 cm) for WW, and the third and fourth layer (ca. 53 - 91 cm) for SM, 

304 showed the highest negative impact. Here, “negative” implied that with decreasing conductivity 
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305 more water is actually stored in the soil and the two soil parameters complement each other in 

306 terms of total available soil water.

307 At county level, a negative correlation (-0.2, p<=0.05) between WW relative errors and the mean 

308 WHC values indicated a tendency to underestimate yields in counties with relatively drier soil 

309 conditions and to overestimate yields in counties with relatively wetter soil conditions. A slightly 

310 positive correlation (0.2, p<=0.05) between E and the absolute range of WHC showed a tendency to 

311 underestimate in counties where the variability of cropped soils is higher and to overestimate in 

312 counties where the variability of soils is lower. No correlations for the rRMSE were found. 

313 For SM, deviations (rRMSE) decreased with increasing WHC at county level (-0.19, p<=0.05) and 

314 overestimations increased with the range of WHC (E~range WHC, -0.19,p<=0.05). 

315 3.2 Interannual variability of crop yields

316 3.2.1 County level

317 Interannual yield variability (expressed as standard deviation from 1991-2010) of statistical yield for 

318 WW and SM increased with the extent of the cropping areas. It decreased with mean altitude or 

319 altitude’s standard deviation which reflected the decreasing cropping area with higher altitudes.

320 The association between statistical and simulated relative interannual changes was quantified by the 

321 R2 associated with their linear relationship. The spatial distribution of this correlation with the 

322 county as basic unit is shown for both crops in Fig. 6.

323 Fig. 6 R2-values between simulated and statistical relative interannual yield changes for winter wheat and silage maize

324 The R2-values of SM were generally higher than those of WW with no consistency between their 

325 spatial patterns. About 7% of the WW cropping area had R2-values higher than 0.5 and ca. 52% of 

326 the WW cropping area had R2-values lower than 0.25. The respective values for SM were 35% and 

327 41%.
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328 We tested the association between R2-values and the discrepancy between observed and simulated 

329 cropping area, topographic characteristics and soil parameters. 

330 There was no correlation between the R2-values and the deviation between observed and simulated 

331 cropping area (-0.12, p>=0.05). The R2-values for WW, but not for SM, were slightly negatively 

332 correlated with the mean county altitude (-0.13, p<=0.05) but not with the altitude’s standard 

333 deviation (-0.1, p>=0.05), the latter a measure of relief energy.

334 The R2-values showed low negative correlations with WHC (county mean of simulated hydrotops) of 

335 the first two layers for both crops (WW: -0.16, p<=0.05, SM: -0.24, p<=0.05), indicating a tendency to 

336 better associations at soils with lower water holding capacity and thus higher susceptibility to water 

337 stress. Furthermore, R2-values were often better (WW: 0.25, p<=0.05, SM: 0.22, p<=0.05) in areas of 

338 higher soil variability, i.e. higher absolute range of WHC for WW and higher standard deviation of 

339 WHC for SM within a county.

340 Additionally, we tested for a relationship between R2-values and the mean simulated yield level. For 

341 WW, there was only a very slight negative correlation of -0.14 (p<=0.05). SM showed a stronger 

342 negative correlation of -0.36 (p<=0.05). This indicated a better model performance at lower yield 

343 levels which again suggested that simulations results were better in areas of higher soil water 

344 restrictions.

345 3.2.2 At federal state and catchment level

346 The aggregation from smaller to larger spatial units was expected to increase statistical quality 

347 measures by levelling out random simulation errors. Table 2 presents the improvement of R2-values 

348 from county to federal state, catchment and national level. The aggregation effect was larger for SM 

349 than WW and slightly larger for the aggregation at catchment level than at federal state level for 

350 both crops. The aggregation to the largest unit, i.e. national level, only showed an improvement for 

351 SM but not for WW.
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352 Table 2: The aggregation effect expressed as the difference between the R2-values between the area-weighted yields at 

353 the different aggregation levels (federal country, basin, state) and the arithmetic mean R2-values averaged from the 

354 single R2-values received for the individual counties within a spatial level. 

355 Improvements of the two crops were spatially not consistent. At catchment level, WW mostly 

356 profited in the Ems catchment from the aggregation while SM showed the largest improvements in 

357 the Rhine, Elbe and Weser catchment. At federal state level, the association improved slightly in 

358 Lower Saxony for WW. Aggregated SM results improved most in North Rhine-Westphalia, Baden-

359 Wuerttemberg, Hessen and Mecklenburg-Vorpommern.

360 Inspecting our results of interannual yield variability at catchment and federal state level graphically, 

361 (Figs. 7-10) we noticed that some years systematically appeared to show opposing trends. Most 

362 notably were the years 2007/2008 of the WW simulations. While statistical WW yields decreased in 

363 2007 and increased in 2008, the opposite is true for simulated yields. This was not the case for SM 

364 simulations.

365 Figure 7 Simulated and statistical interannual variability of WW at catchment scale

366 Figure 8 Simulated and statistical interannual variability of WW at federal state scale

367 Figure 9 Simulated and statistical interannual variability of SM at catchment scale

368 Figure 10 Simulated and statistical interannual variability of SM at federal state scale

369 Statistical WW and SM yields showed opposing trends in 2007 and 2008 while model simulations of 

370 WW and SM yields exhibited similar trends. This led to the fact that SM simulations followed the 

371 interannual variability as opposed to the WW simulations.

372

373 4. Discussion 

374 4.1 Mean yields
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375 The model showed the capacity to reflect the spatial yield variability across the given range of soil 

376 and climate combinations with one set of parameters for each crop. At least for wheat, several 

377 European modelling studies also indicated that a homogeneous crop parameterisation was sufficient 

378 to capture the mean spatial yield pattern of WW across Germany (Therond et al., 2011; van Bussel et 

379 al., 2011; Angulo et al., 2013; Balkovič et al., 2013).

380 Sources of divergences, though, were manifold: simulated mean yields were calculated against the 

381 unknown number of actually cropped fields, yield relevant factors might not have been sufficiently 

382 included, the spatial heterogeneity of climate and soil conditions was not sufficiently represented to 

383 the model or translated by the model. Over- and underestimations of the mean yield level by the 

384 modelling approach used were the consequence.

385 Generally, overestimations can be explained by the negligence of stress factors other than water 

386 limitations, such as frost damage in winter, pests, diseases, weeds, extreme events or local nutrient 

387 stress. All of these possible yield reductions, either directly or indirectly climate related, were more 

388 likely to occur in mountainous regions where cropping areas are exposed to high relief changes and 

389 thus more extreme weather conditions, especially in winter. These circumstances probably explain 

390 the presented trend of yield overestimations, especially of WW, in higher altitudes. This is also 

391 consistent with the lower relevance of other growth factors than water stress for the crop yield of 

392 SM compared to WW (Roßberg, 2016).

393 Underestimations seemed to correlate with relatively lower WHCs for both crops, overestimations 

394 vice versa respectively. The model might have underestimated the soil water budget. One clustered 

395 area of underestimations in the north-western centre lied within the Weser catchment. While WHC 

396 values for the first 28 cm were above 60%, saturated conductivity of the third layer was relatively 

397 high (up to 145 mm h-1), which caused fast soil water drainage. Additionally, during the calibration 

398 process of the hydrological fluxes for the Weser, SC values were universally calibrated fourfold 

399 higher than the values given in the “BÜK 1000”. This might explain the underestimations of yields in 
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400 the Weser catchment by routing the water too quickly out of the landscape into the rivers. It also 

401 indicated a trade-off between optimum parameter settings of hydrological fluxes on the one hand 

402 and plant growth processes on the other. It definitely highlighted the importance of soil 

403 parameterisation for the quality of crop model results.

404 The importance of reliable soil parameters was also shown in the crop modelling study by Nendel et 

405 al. (2013) in which the accuracy of mean WW yield predictions by the agro-ecosystem model 

406 MONICA (Nendel et al., 2011) for the federal state of Thuringia (Germany) improved more using 

407 additional soil information than higher resolution climate data. Zhao et al. (2015b) generally 

408 overestimated WW yield levels for Germany (Fig.4b & c in Zhao et al. (2015b)). Noticeably, their 

409 single soil parameter of plant available water was set to 21% which is similar to the value which we 

410 had found to be too high for some light soils in the eastern and northern part of Germany (see 2.3).

411 In addition to the biophysical factors that cause over- and underestimations, there are others that 

412 can lead to miss-estimations towards both sides of the tolerance envelope.

413 The share of different hydrotops assumed for the calculation of county yields was uncertain and 

414 might have created local under- and overestimation. A more guided selection of hydrotops could 

415 probably decrease this deviation 

416 Similarly, the resolution of climate data can create biases in crop yield simulations. Zhao et al. 

417 (2015a) showed that the influence of the climate input data resolution on the quality of yield 

418 simulations depended highly on the heterogeneity of the terrain. A heterogeneous landscape 

419 required higher resolution input data to reflect yield differences. The density of German weather 

420 stations generally increases in the western and southern parts of Germany (Fig. 2 of Huang et al. 

421 (2010)) which seems to reflect the more heterogeneous terrain compared to the northern lowlands. 

422 However, the resolution might not be sufficient for the simulation of crop yields to match observed 

423 yields in mountainous regions.



20

424 Some of the mountainous regions are also border regions of Germany (Huang et al., 2010). So, 

425 missing data from outside Germany might lead to an interpolation error that can be confused with 

426 other errors specific for the mountain regions.

427 Noteably, the replication of mean yields was generally better for SM than WW across all Germany. 

428 The differences between the two crops in respect to the main drivers of the simulations were the 

429 different lengths of the growing seasons, different soil coverage and different crop parameter 

430 settings. In reality, the difference in their photosynthetic pathways as C3- and C4-plants constitutes 

431 an additional factor which could explain model discrepancy because this is considered only very 

432 simplistically in the model by different biomass-energy ratios.

433 The relatively short growing season of SM significantly reduces the complex impact of growth drivers 

434 in conjunction with a lower susceptibility of SM to diseases. WW also possess a range of 

435 compensation mechanism which are not implemented in the model, neither are growth reducing 

436 pests and diseases. The more robust nature of SM was also reflected in its lower sensitivity to soil 

437 quality changes. It can be cropped on marginal lands because of its higher water use efficiency 

438 (Sadras et al., 2007) as long as this efficiency advantage is not compensated by too densely planted 

439 SM. This would make SM populations more susceptible to water scarcity due to a high transpiration 

440 demand on relatively lower quality soils. Taking all these aspects together, mechanistic EPIC-type 

441 crop models might be still better suited to simulate SM growth and development than WW.

442

443 4.2 Interannual variability of crop yields

444 The modelling framework (input data, parameterisation, process resolution) generally better 

445 captured the SM than the WW interannual yield variability in conjunction with a trend to perform 

446 better in areas with lower plant available water in terms of soil parameterisation.
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447 The advantage of SM simulations can be attributed to the direct effect of weather patterns on plant 

448 growth of SM than WW due to the shorter growing season and less mechanism for compensation 

449 during the growth period. The current model structure seemed to be better suited for SM than for 

450 WW in this respect.

451 Technically, the simulations of both crops only differed in their individual crop parameter settings, 

452 soil coverage and the extend of growing season but not in process resolution. The model does not 

453 distinguish between C3 and C4 plant physiology and their different responses to drought stress. 

454 Maize has recently been shown to be more sensitive to drought stress than wheat (Daryanto et al., 

455 2016; Fahad et al., 2017). Since model results, especially SM results, were better in areas with 

456 relatively lower soil water availability we hypothesise that the response to water stress is the 

457 decisive factor for SM yield variability and is reflected realistically by the model – not least due to its 

458 simple causal relationship and the absence of other growth reducing factors. Additionally, dense 

459 cropping of SM on marginal land might produce a stronger response to drought due to a higher 

460 absolute water demand per unit area than WW.

461 The better modelling performance for SM could again be explained also by a relatively lower pest 

462 and disease susceptibility indicated by the generally lower plant protection treatment intensity of 

463 SM than of WW (Roßberg, 2016). WW growth has a higher dependency on indirect, weather induced 

464 biotic stresses which are not implemented in the model. For example, Jahn et al. (2012) reported 

465 mean yield losses of WW due to the main fungal diseases in Germany of up to 0.7 t ha-1 with a high 

466 interannual and spatial variability. WW plants are exposed to the cold winter season and transition 

467 seasons which prolongs the time of potential stress impacts relative to SM. Bare frost damage for 

468 example can have wide spread impacts on plant development (e.g. Landwirtschaftskammer 

469 Niedersachsen, 2007, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2009) and 

470 influence regional-scale yield fluctuations but are not implemented in the growth module employed 

471 here.
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472 In some years, the discrepancies between simulated and reported years between WW and SM were 

473 particularly peculiar as for example in 2007 and 2008. In both years the simulations indicated 

474 opposite interannual changes compared to the statistical yields for wheat, but not for maize. This 

475 could be the impact of a widespread outbreak of the yellow barley dwarf virus during the relatively 

476 warm and wet spring 2007 (Amann and Ott, 2007) which was frequently reported in agricultural 

477 news reports across Germany and might have affected the health of young wheat plants as well. 

478 However, the given weather conditions were interpreted by the model as optimal growing 

479 conditions for WW without water or temperature stress and thus led to higher yields. On the 

480 contrary, in 2008 temperatures were lower compared to 2007 and the WW model simulated lower 

481 yields accordingly (water stress is not apparent in both years). In reality, lower temperatures 

482 reduced the risk of the outbreak of crop diseases and provide better crop growth conditions than 

483 warm plus wet conditions. 

484 Better predictions of yield variability in areas with lower soil water holding capacities could indicate 

485 an overriding effect of limited water supply on plant development over other growth determining 

486 factors. In areas of higher water supply, a conglomerate of indirect climate-induced stress factors or 

487 management interventions tune the interannual yield changes but cannot be disentangled by SWIM.

488 An additional source of uncertainty is induced by the  model parameters describing crop growth. On 

489 the one hand, there is the intrinsic uncertainty of the real value of a crop parameter, for example the 

490 biomass-energy ratio. On the other hand, there is the uncertainty due to regional differences of crop 

491 varieties such as PHUs, sowing and harvest dates. In some of our preliminary simulations, we 

492 analysed the impact of county-scale adjusted crop biomass-energy ratios and PHUs. The impact on 

493 interannual yield predictions was negligible although they could be used to tune yield levels.

494 The difference between simulated and statistical cropping area had no explanatory power for the 

495 model accuracy of interannual yield variability. Conradt et al. (2016) as well showed that the actual 

496 cropping area of WW and SM in Germany had no explanatory weight for interannual yield volatility.
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497 The aggregation to larger scales generally improved the R2-values as expected. The improvement 

498 was noticeably larger for SM than WW. SM generally showed a more robust and spatially 

499 homogeneous pattern of interannual yield changes with random errors cancelling out at larger scale. 

500 This is also reflected by the highest improvements in the largest catchments. The course of WW yield 

501 changes, especially for the years 2007/2008, showed opposing trends among the simulations, i.e. 

502 counties, and did not cancel each other out via aggregation. This again indicated rather systematic 

503 than random simulation errors due to missing growth decisive processes.

504

505 5. Conclusions

506 Our main conclusion is the attribution of the systematic difference in the quality of simulations 

507 between a winter and a summer grown crop to the model’s lack of sensitivity to some real crop 

508 growth limitations particularly during winter time. Missing crop growth response to biotic 

509 disturbances is a typical phenomenon of winter crop simulations and has been reported in other 

510 studies (Brown and Rosenberg, 1999; Izaurralde et al., 1999; Nendel et al., 2013). Simulations of 

511 silage maize clearly performed better than winter wheat. Additionally, silage maize showed a 

512 tendency to perform better in areas of lower soil water availability. In summary, the reasons for the 

513 clear superiority of silage maize simulations were the short growing season, the lower susceptibility 

514 to pests and diseases and, hence, the direct translation of water stress into yield reductions which 

515 also explained the better performance in drier areas. This signal was less pronounced for winter 

516 wheat and was additionally superposed with climate induced biotic and abiotic stresses – primarily 

517 originating in the cold season - which were not implemented in the model. Overall, modelling 

518 deficiencies seemed to originate rather in unconsidered processes than in uncertainties of input data 

519 and in model parameterisation.
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520 We recommend a complementary study which quantifies the errors introduced by the missing plant 

521 growth processes, by the false estimation of cropping area of individual crops, and by the universal 

522 tuning of soil parameters on the hydrological fluxes to give a better estimate of the propagation of 

523 these uncertainties on hydrological model results.
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Table 1

parameter winter wheat silage maize

sowing date 10/10 28/04
harvest date* 21/09 31/10
accumulated heat units at maturity [°C] 1424 936
harvest index 0.42 1
biomass-energy ratio [kg m2 MJ-1 ha-1 d-1] 0.3 0.33
optimum growth temperature [°C] 15 20
base temperature[°C] 0 6
maximum LAI 6 8
maximum rooting depth [m] 1.2 1
biomass allocation fraction to leaves 0.2 0.2
Specific leaf area [cm2 g-1] 161 220

Table 2

spatial unit r2-values delta r2-values
winter wheat silage maize winter wheat silage maize

Danube 0.26 0.35 0.04 0.07
Elbe 0.32 0.71 0.05 0.34
Ems 0.52 0.43 0.15 0.20
Rhine 0.18 0.69 -0.03 0.35
Weser 0.38 0.56 0.06 0.30
average (river basins) 0.33 0.55 0.05 0.25
Schleswig-Holstein 0.21 0.00 0.03 -0.27
Saxony 0.23 0.28 0.04 -0.01
Saarland 0.06 0.52 0.01 0.09
Thuringia 0.17 0.36 -0.05 0.14
Saxony-Anhalt 0.38 0.71 0.03 0.15
Rhineland Palatinate 0.05 0.37 -0.03 0.15
Lower Saxony 0.50 0.42 0.10 0.16
Brandenburg 0.30 0.84 0.00 0.17
Bavaria 0.32 0.56 0.08 0.23
Mecklenburg Western 
Pomerania

0.11 0.63 0.00 0.26

Hesse 0.08 0.37 0.03 0.27
Baden-Wuerttemberg 0.41 0.77 0.06 0.29
Northrhine-Westphalia 0.34 0.52 0.07 0.31
average (federal countries) 0.24 0.49 0.03 0.15
Germany 0.26 0.72 0.01 0.4


