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ABSTRACT 

 Lignin is a cheap material available in large quantities, thus the interest in its 

valorization is increasing both in industry and academia. A possible approach towards value 

added applications is using it as a component in plastics. However, blending lignin with 

polymers is not straightforward because of the polarity of lignin molecules resulting in 

strong self-interactions. The structure and properties of lignin depend on the extraction 

technology used for its production. The structure of lignin is complex and its 

characterization difficult. Lignin has been added to various polymers in the last few decades 

and the resulting material was sometimes called blend, while in other cases composite. 

Based on arguments we show that lignin forms blends, and these are classified and discussed 

according to the interactions developing in them, since competitive interactions determine 

the structure and properties of the blends. Usually even strong interactions are not sufficient 

to result in complete miscibility. As a consequence lignin is often modified chemically or 

by plasticization to improve its dispersion in plastics, or a compatibilizer is added to increase 

interfacial adhesion. Lignin can be used also as a reactive component in various resins and 

polymers. 
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1. Introduction 

 Lignin is a major component of all plants. Grass contains it in 17-24 wt%, softwood 

in 18-25 wt% and hardwood in 27-33 wt% [1], thus it represents an enormous renewable 

raw material source. The lignin available on the market is mainly produced by the bioethanol 

and the paper industry in which it is treated as a side-product forming during the extraction 

of the targeted valuable product, cellulose. The capacity of world-wide lignin production is 

estimated to be 50 million tons/year; however, approximately 98 % of this amount is burnt 

immediately to provide heat and power for cellulose production. The isolated and 

commercially available amount of lignin was only 1.1 million tons in 2014 [2]. Global lignin 

market was valued at approximately 775 million US$ in 2014 and is expected to reach 

around 900 million US$ in 2020 corresponding to an average annual growth of 2.5 % 

between 2015 and 2020 [2]. 

 Although the indicated growth rate is not exceptional, the valorization of lignin may 

increase it considerably. The relatively slow growth rate stems from the established 

extraction processes, in which lignin is used as fuel, and from the difficulties of handling 

lignin as discussed also in this article. However, the potentials of lignin are also shown by 

the continuously increasing number of papers published on the characterization, 

modification and possible application of lignin (Fig. 1). The interest in other biopolymers 

like cellulose, starch and poly(lactic acid) (PLA) also grows and in the case of starch and 

cellulose the number of the published papers is much larger. The difference can be explained 

by the more diverse applications of the two natural polymers, and by the difficulty and 

complexity of the valorization of lignin, which involves not only scientific, technological, 

but also economic aspects. Finding ways to improve the handling and properties of lignin 

and the development of technologies to process it would undoubtedly increase the interest 

in this natural polymer further. 

 Since lignin is a side product available in relatively large quantities and its price is 

quite low, the utilization of lignin in any value added application would result in 

considerable economical gain. The plastic industry might be one of the areas in which lignin 

could be used as an additive or raw material for the production of new plastics. This, 

however, requires a deeper knowledge of lignin, which may help overcome its drawbacks 
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and exploit its advantages. In this feature article, we attempt to summarize recent trends and 

achievements in the use of lignin in plastics, with a particular focus on polymer/lignin 

blends. Because of their importance, we discuss other topics as well, like the effect of 

extraction technology on the structure of lignin, its chemical modification, and the use of 

lignin as a reactive component in plastics. Several review papers were published on lignin 

blends in the last three decades [3-9] listing numerous combinations of lignin with polymers. 

As a consequence, we do not follow this approach, but pay more attention to interactions 

because of their importance in the determination of the structure and properties of such 

blends. According to our knowledge, such an approach has not been followed yet. The 

possible applications of lignin blends are also discussed briefly at the end of the paper.  

 

 

Fig. 1. Annual number of publications on () PLA, () lignin, () starch and () 

cellulose. 
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2. Extraction and characterization of lignin 

 Lignin is extracted from lignocellulosic substances. The technology of extraction 

determines the structure of the product, thus its discussion is essential when lignin is used 

as a component of polymer blends.  

 

2.1. Lignin structure 

 Lignin is a natural polyphenol which is formed from monolignols through enzymatic 

dehydrogenative polymerization in plants [10]. The monolignols forming the repeat units of 

lignin are para-coumaryl alcohol (H-type), coniferyl alcohol (G-type) and sinapyl alcohol 

(S-type) which may be connected with each other through various covalent bonds. The 

H/G/S ratio is 0-5/95-100/0 in softwood, 0-8/25-50/46-75 in hardwood and 5-33/33-80/20-

54 in grasses [11]. Lignin possesses a very complex chemical structure that can only be 

described by average empirical formulae or model structures. The C9 formula is the most 

frequently applied average empirical formula which shows the molar ratio of 9 carbon atoms 

to the other elements or functional groups of lignin; the formula represents an average repeat 

unit formed by the constituting monolignols. The C9 formula of spruce (softwood) lignin is 

C9H7.92O2.40(OCH3)0.92, while that of beech (hardwood) lignin is C9H7.49O2.53(OCH3)1.39 

[12]. The differences are caused mostly by the dissimilar ratio of monolignols forming 

softwood and hardwood. 

 Model structures were created for spruce lignin by Freudenberg [10], Adler [13], 

Brunow [14], and Gellerstedt [15], respectively, and for beech lignin by Nimz [16]. We 

present the structural models based on the results of Adler [13] and Gellerstedt [15] in Fig. 

2. Gellerstedt el al. [15,17] revealed that two main types of lignin called type 1 (Fig. 2a) and 

2 (Fig. 2b) form in plants. 48 w/w% of softwood lignin is type 1, while 40 w/w% type 2 

[15,17]. Type 1 lignin is located in a glucomannan-lignin-xylan (w/w=9:9:1) complex which 

is directly bonded to the cellulose fibrils through hydrogen bridges. The different linkages 

connecting the repeat units of type 1 are indicated in the figure. Type 2 lignin is present in 

a xylan-lignin-glucomannan (w/w=2:3:1) complex which is located around the cellulose 

fibrils embedded in type 1 lignin. In type 2 lignin mostly β-O-4’ ether bonds form between 

the repeat units, which makes β-O-4’ ether bond the most frequent linkage not only in 
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softwood, but also in hardwood lignin representing approximately 50 % and 60 % of the 

bonds, respectively [18]. 

 

 

 

Fig. 2. The model structures of spruce lignin based on [13,15]. a) Type 1 lignin, b) Type 2 

lignin.  

a) 

b) 
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2.2. Extraction 

 At the industrial level lignin must be extracted to obtain the cellulose needed for 

paper or bioethanol production. In the paper industry this step is called pulping, which may 

include physical and chemical methods. Today mostly chemical processes are applied, thus 

in most cases chemicals are used to degrade the cross-linked or highly branched structure 

of lignin, while cellulose remains intact. As a result, lignin usually becomes soluble in the 

reaction medium, from which cellulose fibers can be easily separated by filtration. 

Accordingly, the extraction of lignin from plants is impossible without the modification of 

its chemical structure. In the following sections we present the most important procedures 

used for the extraction of lignin from lignocellulosic materials. 

 

2.2.1. Soda process 

 The soda process patented by Watt and Burgess in 1854 [19] was the first chemical 

pulping method. Today it is applied mostly to produce cellulose from agricultural crops with 

relatively small lignin content like wheat straw and bagasse. During the soda process wood 

chips are cooked in alkaline aqueous medium (conditions in Table 1) [18]. Sodium 

hydroxide deprotonates the phenolic hydroxyl groups of lignin in the process, which 

initiates a consecutive reaction resulting in the cleavage of the most frequent bonds among 

the repeat units of lignin, the α-O-4-ether and β-O-4-ether links.  

 

2.2.2. Kraft process 

 At present the Kraft process [20] is the most often used pulping method. The Kraft 

process can be considered as a development or improvement of the soda process. Besides 

sodium hydroxide the cooking liquor contains also sodium sulfide which accelerates the 

degradation of lignin further. In a typical Kraft process wood chips are cooked in alkaline 

aqueous medium (conditions in Table 1) [18]. Similarly to the soda process, most of the α-

O-4-ether and β-O-4-ether bonds of lignin are cleaved by the end of the cooking procedure. 

The weight average molecular weight of softwood (spruce) and hardwood (eucalyptus and 

mixture of other species) Kraft lignins are 19800 and 3700-3900 g/mol, respectively [21]. 

Kraft lignins are soluble in alkaline solutions (pH > 10.5), dioxane, acetone, 
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dimethylformamide, and 2-methoxyethanol. The structural model of softwood Kraft lignin 

is presented in Fig. 3. Most Kraft lignin is burnt during cellulose production and is not 

available on the market. The amount of the commercially available Kraft lignin was 100 

thousand tons in 2014 [2]. 

 

 

Fig. 3. The model structure of softwood Kraft lignin based on the structural model of Adler 

[13] and the reactions taking place during pulping [22]. 

 

2.2.3. Sulfite process 

 Today the sulfite process [21] is the main source of commercially available lignin, 

the amount of which was 1.0 million tons in 2014 [2]. The amount of the sulfite, bisulfite 

and dissolved sulfur dioxide used depends on the pH of the reaction medium, which 

determines the mechanism of lignin degradation. Four main variations exist in this 

technology the acid bisulfite (pH = 1-2), the bisulfite (pH = 3-5), the neutral sulfite (pH = 

5-7) and the alkaline sulfite (pH = 9-13) process [18]. In the industry, the sulfite process is 

carried out mainly under acidic conditions, thus the conditions of acid bisulfate and bisulfate 

process are given in Table 1. In the pH range used, the main reaction is the sulfonation of 

the α-carbon atoms of lignin, which leads to the cleavage of the α-O-4-ether bonds. As only 

a minor part of the most frequent β-O-4-ether bonds react in the process, the molecular 

weight of lignosulfonates is larger than that of the Kraft lignin. The weight average 
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molecular weight of softwood (two species of spruce) and hardwood (two species of 

eucalyptus) lignins are 36000-61000 g/mol and 5700-12000 g/mol, respectively [24]. 

Lignosulfonates are soluble in water, ethylene glycol and dimethyl sulfoxide. The structural 

model of softwood lignosulfonate is presented in Fig. 4. 

 

Fig. 4. The model structure of softwood lignosulfonate based on the structural model of 

Adler [13] and the reactions taking place during pulping [22]. 

 

2.2.4. Organosolv process 

 The organosolv process [25,26] is a widespread technology at the laboratory level, 

which is based on the extraction of lignin by polar organic solvents like methanol, ethanol, 

formic acid and acetic acid. As a consequence, the polarity, structure and properties of 

organosolv lignin depend specifically on the applied solvent. Numerous organosolv 

processes exist today, however, the Alcell® procedure appears the most often in scientific 

papers. This method consists of the extraction of lignin with 40-60 wt% aqueous ethanol 

(conditions in Table 1) [27]. The weight average molecular weight of hardwood (mixture 

of species) organosolv lignin is 4100 g/mol [21]. This lignin is soluble in dilute alkaline 

solutions and in ethanol-water mixtures [28]. 
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2.2.5. Steam explosion 

 Steam explosion was first proposed by Mason [29] for the disintegration of wood to 

produce Masonite board stock. After some modification the technology became a 

widespread pretreatment method for the production of bioethanol. In such a typical steam 

explosion procedure biomass is treated with hot steam followed by an explosive 

decompression step (conditions in Table 1) [30]. The sudden pressure release defibrillates 

the cellulose bundles resulting in cellulose chains easily accessible for cellulase, the enzyme 

applied to convert cellulose to glucose in aqueous medium. During the enzymatic treatment 

lignin remains insoluble thus it can be filtrated out from the solution containing the sugar. 

The weight average molecular weight of softwood (white birch and larch) steam explosion 

lignin is 1100-2300 g/mol [31].  

 

Table 1 

Active agents and conditions of lignin extraction technologies. 

Technology 
Active 

agents 

Conditions 

Reference 
pH Temp. (°C) Time (h) 

Pressure 

(MPa) 

Soda NaOH 13-14 155-175 2-5 VPa 18 

Kraft 
NaOH, 

Na2S 
13-14 155-175 1-3 VPa 18 

Sulfite (acid 

bisulfite) 
H+, HSO3

– 1-2 125-145 3-7 VPa 18 

Sulfite 

(bisulfite) 

(H+), 

HSO3
– 

3-5 150-170 1-3 VPa 18 

Organosolv 

(Alcell®) 

40-60 wt% 

aqueous 

ethanol 

- 180-210 n.d. 2-3.5 27 

Steam 

explosion 
water 7 180-240 

0.02-

0.30 
1-3.5b 30 

a) vapor pressure 

b) then explosive decompression 
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2.3. Characterization 

 The chemical structure of lignin, including the number and type of functional groups, 

determines its reactivity and also its compatibility with polymers. Accordingly, the 

quantitative determination of functional groups is essential to find possibilities for the 

modification and utilization of lignin. Numerous analytical methods have been applied 

successfully for the characterization of lignin and for the quantitative determination of its 

functional groups. Some of these methods are listed in Table 2 together with the relevant 

functional groups and related references. Most of the techniques listed are relatively simple, 

easily available and routinely used including sample preparation, measurement, and 

evaluation of the results. However, because of the complex structure of lignin and its 

dependence on the source as well as on the extraction technology, these methods alone are 

usually not sufficient for the complete characterization of the chemical structure of lignin. 

Accordingly, further analytical methods must be also applied, when the goal is the 

generation of model structures. 

 

Table 2 

Methods for the quantitative determination of the functional groups of lignin.  

Functional 

group 

References for the various methods 

Titrimetry GC 1H 

NMR 

13C 

NMR 

31P 

NMR 

UV-

VIS 

TG-MS 

Aromatic 

hydroxyl 

32-34 35-38 39-43 44-46 45,47,48 49-53 54,55 

Total 

hydroxyl 

56,57 37,42,58 39-43 44-46 45,47,48  54,55 

Methoxyl 59,60 61,62  63,64   54,55 

Carboxyl 33,64 65   47,48   

Carbonyl 34,67-69  70   71,72  

Sulfonate 33,73,74       

 

 El Mansouri and Salvadó [75,76], for example, determined the chemical structure 

and composition of five different technical lignin samples. They carried out elemental 

analysis first to define the molar ratio of carbon, hydrogen, oxygen, nitrogen and sulfur. 
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They created the basic C9 formula for the softwood Kraft lignin and lignosulfonate samples 

studied, which could be further extended by the quantitative determination of methoxyl [62], 

phenolic hydroxyl [52], total hydroxyl [38,43,44], carbonyl [72], carboxyl [33] and 

sulfonate groups [33]. Although the authors [76] claim that the expanded formulae contain 

all the necessary information about the structure of their technical lignins, these do not give 

the molecular weight of the samples, or the ratio of the different repeat units (H/G/S). 

 Molecular weight distribution can be determined by gel permeation chromatography 

(GPC) [75,77-79]. One of the key issues of the technique is reliable calibration. Since 

monodisperse lignin standards are not available, Glasser et al. [21] used commercially 

available monodisperse polystyrene (PS) standards for calibration. The approach is justified 

by the fact that the stiffness of PS chains is similar to that of lignin. El Mansouri and Salvadó 

[75] determined the molecular weight of their softwood Kraft lignin sample using the 

method proposed by Glasser et al. [21]. The number average molecular weight was found 

to be 545.2 g/mol thus an average molecule of this lignin contains 3.093 repeat units.  

 The relative amount of the H/G/S units can be obtained by the cleavage of the lignin 

backbone and the analysis of the fragments obtained. Faix et al. [80,81], for example, used 

pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to determine the repeat 

units of lignin. They pyrolyzed several types of lignin, separated the degraded products by 

GC and detected the fragments by MS. However, degradative methods coupled with 

chromatography supply mostly qualitative information, since the degradation of lignin is 

very complex and a number of side reactions occur. Non-degradative techniques like two-

dimensional (2D) NMR are more accurate and Sette et al. [82] could determine 

quantitatively the number of β-O-4’, β-5’, β-1’, β-β’, 5-5’-0-4’ linkages both in native and 

technical lignins by 13C, 1H-correlated NMR. However, the determination of certain 

linkages requires high resolution and thus can be tedious, time-consuming and expensive; 

2D NMR should be combined with the degradative methods mentioned above to obtain a 

comprehensive picture of covalent linkages in lignin. Only the thorough characterization of 

the actual lignin sample and the creation of a model structure can lead to the successful 

modification and application of lignin as an additive or a constituent of polymer blends. 

 

3. Thermoplastic/lignin blends 
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 Lignin is added to a number of polymers, but even the definition of the resulting 

material is unclear; some term it as blend, some others as composite, thus we first have to 

clarify definitions and then discuss the various classes of materials prepared. Interactions 

play a crucial role in the determination of blend properties, thus they will be discussed in 

detail in this section, while methods used for their modification will be presented 

subsequently. 

 

3.1. Blend or composite? 

 There is a considerable confusion in the literature about the definition of 

polymer/lignin combinations, thus the question must be discussed in some extent. Some 

authors call it composite, while others identify it as blend. Occasionally, some confuse terms 

completely calling the material combination composite, and then discussing miscibility. A 

blend is a mixture of at least two polymers interacting through interdiffusion, while in a 

composite the polymer and the filler interact through adsorption at a definite interface. The 

extent of interdiffusion is determined by the interaction of the components, by their mutual 

miscibility. Weak interaction results in a thin interphase and a heterogeneous blend with 

large dispersed particles, while strong interactions lead to a homogeneous blend with no 

observable particles [83-85]. Accordingly, interactions determine the mutual solubility of 

the phases and the strength of interfacial adhesion in heterogeneous blends. 

 In composites a polymer with mobile chains adsorbs on the solid, well-defined 

surface of a filler. Usually mineral fillers or fibers are dispersed in composites as the second 

component, but polymers, like lignin could also act as a filler. Cross-linked polymers do not 

melt, retain their size and possess the necessary well-defined surface, but the powder of a 

glassy polymer homogenized below its Tg may also meet this condition. The adsorption of 

the matrix polymer on the surface of the filler results in the formation of an interphase; its 

thickness as well as interfacial adhesion depend on the surface energy of the components 

[86]. Accordingly the term "filler" should not be used for blends, while the term 

"miscibility" is not relevant in the case of composites. 

 Although the definitions presented above seem to be straightforward, it is still quite 

difficult to decide if lignin acts as a filler or forms a blend. Lignin is originally a cross-linked 
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or highly branched polymer with high molecular weight, thus the extraction of lignin is 

usually impossible without the cleavage of bonds. Most commercially available lignins are 

produced by vigorous pulping and their molecular weight is relatively small as a 

consequence. These lignins mainly consist of branched chains and most of them are soluble 

in some solvent. Moreover, the Tg of lignin is usually lower than the usual processing 

temperatures of thermoplastics as demonstrated by the data listed in Table 3. Accordingly, 

the homogenization of lignin with thermoplastics results in a blend. This statement is further 

supported by the scanning electron micrographs (SEM) recorded on polymer/lignosulfonate 

blends (Fig. 5). Lignosulfonate was dispersed in low density polyethylene (LDPE) and 

poly(ethylene-co-vinyl alcohol) (EVOH), respectively, and then the lignosulfonate was 

dissolved with water from the cut surfaces of the blends. The average particle size of the 

lignosulfonate particles is much larger in LDPE (Fig. 5a) than in EVOH (Fig. 5b) indicating 

the strong effect of interactions. Accordingly these combination of materials can be clearly 

considered as blends indeed. The statement is further corroborated by the fact that the 

original particle size of lignin was around 80 m which broke up to smaller particles of 

around 30 m in LDPE and 1 m in EVOH during homogenization.  

 

 

 

 

 

 

 

 

 

 

Table 3 

Glass transition temperatures of different lignins determined by differential scanning 

calorimetry. 

Type of lignin Glass transition temperature (°C) Reference 
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Softwood Kraft lignin 

162 87 

141 88 

153 89 

Hardwood Kraft lignin 108 90 

Kraft lignin 165 91 

Alcell® (organosolv) lignin 97 88 

Hardwood organosolv lignin 95 92 

Rice straw soda lignin 155 91 

Wheat straw soda lignin 150 88 

Softwood sodium-lignosulfonate 138 88 

Hardwood sodium-lignosulfonate 127 88 

 

          

a) b) 

Fig. 5. Heterogeneous structure of polymer/lignosulfonate blends. Lignosulfonate content: 

30 vol%. a) LDPE; b) EVOH, vinyl alcohol content: 68 mol%. 

 

3.2. Blends 

 Lignin has been added to a wide variety of polymers from natural to synthetic 
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materials. Several review papers [3-9] give account of these blends listing the polymer or 

group of polymers according to their chemical structure and describe the most important 

findings of the selected papers. In their excellent paper Doherty et al. [7], for example, 

present a long list of polymers including proteins, starch and other biopolymers, polyolefins, 

vinyl polymers, polyesters, etc. Since these reports are available for the reader, we refrain 

from giving a similar account of the published papers, but discuss matrix polymers mainly 

according to their polarity and the interactions that they can develop with lignin instead. The 

self-interactions among lignin molecules are very strong because of the large number of 

polar functional groups in the molecule, thus interactions play a decisive role in the 

determination of the structure and properties of polymer/lignin blends. Moreover, much 

contradiction surrounds the issue of interaction, compatibility and miscibility in the 

literature, which definitely needs clarification. 

 

3.2.1. Poliolefins 

 Polyethylene (PE), polypropylene (PP) and their copolymers are usually quite 

apolar. They can enter only into weak dispersion interactions with other polymers due to the 

lack of any functional groups in the molecules. Considering the strong polarity and 

functionality of lignin, one would expect complete immiscibility with polyolefins, but some 

literature references claim otherwise. Since the phenolic OH groups of lignin are able to 

scavenge free radicals, considerable number of attempts are made to use it as a stabilizer 

and protect the matrix polymer against oxidation. Most of these attempts were successful 

and proved the antioxidant effect of lignin. Pucciariello et al. [93] showed that steam-

explosion lignin protects LDPE, HDPE and linear low density polyethylene against UV 

radiation, while Levon et al. [94] found that the thermal oxidative stability of PE improves 

considerably when it is blended with lignosulfonate. Most other studies [95-100] indicated 

almost invariably that lignin stabilizes polyolefins, unfortunately less attention was paid to 

the effect of lignin type on stabilization efficiency and to the comparison to existing 

stabilizer systems. Although phenolic hydroxyl groups scavenge radicals and improve 

stability indeed, because of their relatively small molar number, less efficiency is expected 

from them than from traditional, small molecular weight stabilizers. 

 Another important issue in stabilization is the homogeneity of polymer/lignin blends. 



17 
 

When lignin is added in small amounts for stabilization, the quality of dispersion is not 

always easy to determine. Good dispersion and compatibility was claimed in several cases 

[97,101], which is difficult to understand in view of the considerable differences in the 

chemical structure of the two types of polymers. Homogenization and compatibility are even 

more important when a larger amount of lignin is added to the polymer to modify 

mechanical properties. A wide variety of effects were observed on different properties as a 

result of blending with lignin. Modulus usually increases, because of the stiffness of lignin 

molecules [101-106], but strength and deformability often decreases [101-107]. The 

conclusions drawn from these results about compatibility are also quite diverse. As 

mentioned above, Kosikova et al. [97] found good compatibility between organosolv and 

prehydrolysis lignin and PP, while Jeong et al. [101] claimed outright complete miscibility 

with several polymers including LDPE and PP. Unfortunately these claims are rarely 

supported by real experimental evidence and reflect mainly the hopes and belief of the 

authors. In spite of such claims we expect only weak interactions and immiscibility of lignin 

with polyolefins, which was proved also by the numerous attempts to modify lignin 

chemically or by adding a coupling agent.  

 

3.2.2. Polymers with aromatic rings 

 Polyolefins can enter only into weak dispersion interactions with lignin, thus 

immiscibility and poor properties are expected in their blends. On the other hand, plastics 

containing aromatic rings can form also stronger,  stacking interactions, thus better 

compatibility, partial miscibility and better properties can be expected upon the blending of 

the two components. Numerous papers have been published on such blends and the 

controversy characterizing the study of polyolefin/lignin blends can be observed also for 

aromatic polymers. The drawing of generally valid conclusions is practically impossible and 

evaluation is complicated by the differences in the polymers, lignin samples and 

modifications used in these experiments. 

 The simplest polymer containing aromatic rings is PS. It can develop  interactions 

with the polyaromatic lignin, but the components cannot form other interactions except 

weak dispersion forces. One would expect limited compatibility and relatively poor 

interactions as a result, and Barzegari et al. [108] found indeed that all mechanical properties 
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including modulus, strength and elongation deteriorated upon the addition of lignin. The 

authors explained the poor properties and rough fracture surface of the blends by poor 

wetting and interaction between the lignin particles and PS. The properties of PS/lignin 

blends prepared by Pucciariello et al. [93] were also quite poor, which was explained by the 

authors with the poor compatibility of the components.  On the other hand, based on changes 

in the Tg of PS, Lispergauer et al. [109] assumed some degree of miscibility between lignin 

and PS, although they modified lignin with maleic anhydride, which might have improved 

interactions. Pouteau et al. [110] added Kraft lignin to a number of polymers including PS 

and found that the compatibility of this latter is much better than that of the rest of the 

polymers and they explained the difference with the partial solubility of the components and 

chemical reaction. The exceptional behavior and especially the reaction are difficult to 

understand and accept without further proof. 

 A wide variety of other polymers containing aromatic rings were blended with lignin 

and the conclusions drawn from the results ranged widely also for them. Canetti et al. [111], 

for example, observed the good dispersion of lignin in poly(ethylene terephthalate) (PET), 

while Kadla and Kubo [90] found the two components immiscible and explained 

immiscibility with the lack of hydrogen bonding compared to poly(ethylene oxide) (PEO). 

Jeong et al. [101], on the other hand, found PET and lignin completely miscible. Their 

results were based on the evaluation of mechanical properties including tensile strength 

shown in Fig. 6. However, some doubts might arise about their conclusion, since they found 

all four polymers studied miscible with their Kraft lignin including LDPE, PP and PS. 

Miscibility was claimed also for a number of other polymers containing aromatic rings, like 

poly(4-vinyl pyridine) [112,113] and polyaniline [114], but most of the polymers including 

PET form not only  electron interactions, but also H-bonds with lignin. 
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Fig. 6. Composition dependence of the tensile strength of polymer/softwood Kraft lignin 

blends. Symbols: () LDPE, () PS, () PP, () PET. Data were taken from the work of 

Jeong et al. [101]. 

 

 Considering all the information offered in the papers published on aromatic 

polymer/lignin blends, we can conclude that interactions are generally stronger in these 

blends than in polyolefin/lignin combinations [115]. However, compatibility and properties 

cover a wide range and depend on the characteristics of the specific polymer and lignin used 

in the experiments. In spite of the claims of several authors, complete miscibility is rarely 

achieved, the blends usually have heterogeneous structure and their properties, especially 

deformability are not exceptionally good. 

 

3.2.3. Other polymers, H-bonds 

 Hydrogen bonds are considerably stronger than the interactions discussed in the 

previous two sections, thus better compatibility and properties are expected in such blends. 

Blends were prepared from lignin and a large number of polymers capable of such 

interactions. The conclusions are similarly contradictory as before. One of the polymers was 
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found to be miscible with lignin is poly(ethylene oxide). Kadla and Kubo [90,116-119] 

carried out extensive experiments on such blends and explained miscibility with the 

formation of H-bonds. They drew this conclusion from FTIR spectra and the composition 

dependence of the Tg of the blends which possessed a single Tg. 

 Miscibility was claimed for other polymers as well. Liu et al. [120,121] found that 

poly(4-vinylpyridine) is miscible with lignin and a similar conclusion was drawn about 

poly(vinylpyrrolidone)/lignin blends by Silva et al. [122], as well as about 

polypolyanlinine/lignin blends by Rodrigues et al. [114]. This latter group studied its blends 

with FTIR spectroscopy and cyclic voltammetry and drew this conclusion from the results. 

Unfortunately, SEM micrographs recorded on their samples indicated the presence of lignin 

particles (Fig. 7). Although these latter are rather small proving that interactions are quite 

strong due to the formation of hydrogen bonds, the heterogeneity of the structure is clear. 

 

 

Fig. 7. Dispersed Kraft lignin particles in polyaniline blends claimed to be miscible. Lignin 

content: 36 wt% [114]. 

 

 The contradiction related to the interpretation of experimental results and the 

conclusions drawn about interactions and miscibility are amply demonstrated by the 

publications on poly(vinyl chloride) (PVC)/lignin blends. Feldman et al. [88,123-127] 

studied these blends quite extensively. They observed two Tg values on DSC traces, one of 

which disappeared after annealing at higher temperature [123]. Although the authors 
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mention the likelihood of homogeneous PVC/lignin blends, they do not claim miscibility 

firmly in this and in their subsequent papers even when they used plasticized PVC for better 

dispersion and to improve impact resistance. In spite of the detailed studies and conclusions 

of Feldman et al. [123-127], El-Raghi et al. [128] came to the conclusion that PVC and 

lignin are miscible due to interactions between the  hydrogen of PVC and the hydroxyl 

groups of lignin. The conclusion is based on the fact that they see only one transition on the 

DSC trace of the blend.  

 The contradiction related to the role of hydrogen bonds in the interaction of lignin 

with polymers is demonstrated quite well by poly(vinyl alcohol) (PVOH)/lignin blends. 

Quite a few studies have been carried out on this combination of materials and most of the 

authors concluded that they form heterogeneous blends [129-132], which is rather 

surprising, since the number of active OH groups is considerable in PVOH. Only further 

studies may resolve the contradiction, which shows that only the combination of several 

measurements and quantitative analysis can offer sufficient proof about the interaction, 

compatibility and miscibility of lignin blends. Even microscopy cannot supply unassailable 

proof because of possible artifacts and sometimes insufficient magnification. The 

development of hydrogen bridges was observed also in biopolymer/lignin blends with the 

same result. PLA seems to be immiscible with lignin [133,134], but based on SEM 

micrographs, Ouyang et al. [135] claimed the formation of a homogeneous, single-phase 

structure in their blends. The compatibility of poly(butylene adipate-co-terephthalate) with 

lignin seems to be much better because the two polymers can form also  electron 

interactions. Polyhydroxybutyrate (PHB) was claimed to form miscible blend up to 40 wt% 

lignin content, but phase separation occurred at large concentrations [136,137]. The 

conclusion was drawn again from DSC traces and SEM micrographs. Considering the less 

polar structure of PHB compared to PLA, the result is quite surprising. 

 

3.3. Miscibility-structure-property correlations 

 The analysis of papers published on polymer/lignin blends shows that a wide variety 

of structures and properties were observed by various research groups and the most 

contradictory statements were made about the compatibility or miscibility of lignin with 
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different polymers. Practically no polymer/lignin blend exists which was not rated miscible 

and immiscible at the same time by one group or another. Miscibility is usually determined 

by microscopy, DSC measurements or FTIR spectroscopy. All three approaches have 

advantages and drawbacks and the results obtained by them must be always treated with 

care. Microscopy seems to be straightforward, but dispersed particles can be very small, 

thus resolution is important, and of course sample preparation and possible artifacts also 

might complicate evaluation. 

 During the evaluation of DSC traces, a frequent mistake is caused by following the 

general rule that complete miscibility results in a single Tg, while partial miscibility in two 

Tg values [138]. According to this approach a polymer/lignin blend must be homogeneous 

at the segmental level when only one Tg is determined in the blend. However, most technical 

lignins consist of short and stiff molecules thus the determination of their Tg, particularly 

when they are blended and diluted with other polymers, is usually very difficult or even 

impossible. The main reason is that the flexibility of these molecules changes only in a small 

extent as they go through glass transition, the related increase in specific heat is small and 

appear only as a slight change on the DSC trace. As a consequence, immiscible 

polymer/lignin blends often exhibit only one Tg which belongs to the thermoplastic forming 

the matrix [115]. 

 An apparent shift in a characteristic band of the FTIR spectrum can also be 

interpreted falsely. First of all such a shift indicates only the existence of interactions and 

definitely does not prove miscibility. Nevertheless, several papers on polymer/lignin blends 

treats the shift of the absorbance peak of a functional group, like hydroxyl or carbonyl, as 

an evidence for the formation of strong component interactions [114,116-119] or even a 

homogeneous system [101,90,139]. Unfortunately, these claims are mostly not verified by 

the proper analysis of the infrared spectra, e.g. by the deconvolution of the absorbance 

peaks. False conclusions drawn in the absence of adequate investigation are demonstrated 

well by the following example. EVOH/lignosulfonate blends were prepared in a wide 

composition range, and then infrared spectra were recorded on them. Since EVOH may 

form hydrogen bridges with a lignosulfonate sample, it is obvious to follow changes in the 

absorbance peak of the hydroxyl groups between 3600 and 3300 cm–1 (Fig. 8). This 

absorbance peak shifts significantly with the increasing amount of lignosulfonate in the 
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blend, the shift might be regarded as a proof for the presence of hydrogen bonds between 

the components or even for the formation of a miscible blend. However, the deconvolution 

of the corresponding peak and mathematical analysis revealed that the infrared spectrum of 

the blends is the superposition of the spectra of the two components. Both components 

contain hydroxyl groups, but in different environments, thus the corresponding absorption 

bands appear at different wavelengths leading to the shift observed in Fig. 8. Immiscibility 

and heterogeneous structure was confirmed by SEM micrographs (Fig. 5). Nevertheless, the 

result presented above does not necessarily mean that hydrogen bridges do not form between 

the components. Since the components interact at the interphase, their concentration in the 

blend is relatively small and difficult to detect by FTIR spectroscopy.  

 

 

Fig. 8. The absorption band of hydroxyl groups in the infrared spectra of a series of 

EVOH/lignosulfonate blends. Vinyl alcohol content of EVOH: 68 mol%. Lignosulfonate 

content increases in 10 vol% steps from bottom to top. 

 

 In spite of the contradictory conclusions drawn by various authors, it is clear that the 

main factor determining miscibility, structure and properties is the interaction of the 
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components. Although interactions are crucial, very few papers discuss the correlations 

among miscibility, structure and properties and even less estimate them quantitatively. 

Simple approaches may offer valuable information about these relationships and help create 

guidelines for further development. 

 A rare exception is the work of Pouteau et al. [110] who added Kraft lignin to a 

number of polymers and studied the relationship between the miscibility of the components 

and the structure of the blends. The authors recorded micrographs on their blends and then 

determined the surface area of the dispersed lignin particles in each photo. Plotting the 

measured areas against the Hildebrand solubility parameter (δ) of the studied polymers 

results in a correlation with a minimum as shown in Fig. 9. The minimum is located very 

close to the solubility parameter of Kraft lignin. To support the assumption presented above 

the Hildebrand solubility parameters of several lignin samples are listed in Table 4. The 

values were taken from a number of papers using lignins from different sources and applying 

dissimilar approaches for the determination of the solubility parameter. The δ value of Kraft 

lignin derived from the results of Pouteau et al. [110] is somewhat smaller than the value 

estimated by Thielemans and Wool [139], but it is in the same range.  

 The analysis of the results published by Kadla and Kubo [116] offers another good 

example, which proves the benefits of the quantitative estimation of interactions and 

structure-property correlations. The authors [116] blended the same Kraft lignin as Pouteau 

et al. [110] with PEO in the whole composition range (from 0 to 100 % lignin content) and 

determined the properties of the blends. The addition of lignin enhanced both the stiffness 

and the strength of the blends. Only one Tg was observed for each blend and a significant 

shift was observed in the position of the absorption of hydroxyl groups in the infrared 

spectra of the blends compared to pure lignin.  Based on these results they claimed that the 

two components are miscible in the entire composition range because of the formation of 

strong hydrogen bonds between them. However, the statement needs further corroboration 

because of the inherent uncertainty of the methods used by the authors.  
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Fig. 9. Estimation of the Hildebrand solubility parameter of organosolv lignin from the area 

of dispersed particles in polymer/lignin blends. Data were taken from the work of Pouteau 

et al. [110]. 

 

Table 4 

Estimation of the Hildebrand solubility parameters of several lignin samples. 

Lignin type  (MPa1/2) Method Reference 

Hardwood 22.7a Hoy's group contribution this work 

Softwood 23.3a Hoy's group contribution this work 

Hardwood Kraft 22.1 image analysis of blends 110 

Hardwood Kraft  24.3 Hoy's group contribution 139 

Softwood Kraft 24.6 Hoy's group contribution 139 

Hardwood Ca lignosulfonate 32.3 solubility testing 140 

Softwood Ca lignosulfonate 33.1 solubility testing 140 

Alcell® (organosolv) 28.0 Fedors' group contribution 28 

Hardwood organosolv 22.7 – 92 

a) Solubility parameters were calculated in this work for the chemical formulas given by 

Nimz [16] and Adler [13], respectively. 
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 The conclusion of the authors [116] can be analyzed with models which relate 

interfacial interactions, structure and the mechanical properties of blends and thus connect 

miscibility and strength directly [141-144]. The composition dependence of tensile strength 

can be expressed in the following form [143] 

  



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where Tred is the reduced tensile strength of the blend, T and Tm are the true tensile 

strength (T =  and  = L/L0, where L is the ultimate and L0 the initial gauge length of the 

specimen) of the blend and the matrix, respectively, n is a parameter taking into account 

strain hardening,  is the volume fraction of the dispersed component and B is related to its 

relative load-bearing capacity, which, among other factors, depends also on interfacial 

adhesion. However, in blends the load bearing capacity of the dispersed phase, i.e. parameter 

B is not affected only by component interactions but also by the inherent properties of the 

components [144] 
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where σTd and σTm are the true tensile strength of the dispersed particles and the matrix, 

respectively, and parameter C is related to the stress carried by the dispersed component. 

This latter was found to be inversely proportional to the Flory-Huggins interaction 

parameter (χ) [144] 

 


k
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where k is a constant. There are several experimental methods to determine the χ value of 

two polymers, e.g. from the composition dependence of the Tg [145,146] or the melting 

temperature [147,148], from solvent uptake measurements [149,150], or from Hildebrand 

solubility parameters  
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where Vr is a reference volume with the value of 100 cm3/mol [151], δ1 and δ2 the solubility 

parameters of the components, R the universal gas constant, and T the absolute temperature. 
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The δ values of the polymers can be estimated using group contributions according to the 

approach of Small [152], Hoy [153], van Krevelen [154] or others [155,156,157]. 

 

 

Fig. 10. Correlation of miscibility and mechanical property in polymer blends; relationship 

between parameter C derived from tensile strength and the Flory-Huggins parameter 

expressing polymer-polymer interaction. Symbols: () reference blends [158-160], () 

PEO/lignin blend [116]. 

 

 For the PEO/lignin blends discussed above [116] the χ value was estimated from the 

composition dependence of Tg, while parameter C was calculated from the strength data of 

Kadla and Kubo [116]. The correlation predicted by Eq. 3 is presented in Fig. 10 for a 

number of polymers with a wide range of miscibility from the completely immiscible 

PVC/PS blend to the completely miscible PS/polypropylene oxide (PPO) pair. The data for 

most polymers were taken from our previous research and publications [158-160]. In spite 

of the simplifications used and some neglected factors, the correlation between the two 

quantities (C and ) is surprisingly good. In Fig. 10 the miscible blend of PS and PPO can 

be seen at the left end of the correlation, while the immiscible blend of PVC and PS at its 
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right end. As it was mentioned earlier, Kadla and Kubo [116] had found PEO/lignin blends 

to be miscible. The point for the pair is located somewhere in the middle of the correlation, 

closer to the PS/PPO blend. As a consequence, we may not confirm the conclusion of Kadla 

and Kubo [116] about the miscibility of their blend, but we may expect strong interaction 

and some mutual solubility of the components at least. Obviously, the quantitative 

estimation of interactions as well as the analysis of experimental results offer valuable 

information about miscibility-structure-property correlations and help the utilization of 

lignin in polymers. 

 

3.4. Modification of interactions 

 The previous sections confirm without any doubt that component interactions 

determine the structure and properties of polymer/lignin blends. As a consequence, the way 

to prepare materials with a well-defined structure and acceptable properties is to control 

lignin-lignin, as well as lignin-polymer interactions that can be achieved by modification. 

Several approaches can be used for the modification of interactions including plasticization, 

the chemical modification of lignin and the use of coupling agents. 

 

3.4.1. Plasticization 

 Plasticization is an easy and economical way to decrease the strong interactions 

acting among lignin molecules which prevent their mixing with other polymers. As a result 

of plasticization the processability and dispersion of lignin in thermoplastic polymers may 

improve considerably together with the toughness and deformability of the resulting blends. 

Plasticizers are small molecular weight substances that replace polymer-polymer 

interactions with those between the polymer and the plasticizer. This process increases the 

mobility of polymer chains resulting in a decrease of both the glass transition and the 

processing temperature of the blend. 

 Various compounds can be used for plasticization, but their efficiency depends very 

much on the structure of the lignin used, i.e. on the extraction technology. Bouajila et al. 

[161] compared a series of plasticizers in Kraft lignin in order to check their efficiency. The 

plasticizing effect was estimated by the decrease of Tg as a function of plasticizer content. 
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The Tg of plasticized lignin is plotted against plasticizer concentration in Fig. 11. Water 

proved to be the best plasticizer in this study, while the plasticizing efficiency of ethylene 

glycol was surprisingly small in Kraft lignin. The results clearly prove that plasticizers can 

decrease the Tg of lignin, and probably improve properties as well. 

 

 

Fig. 11. Glass transition temperature of Kraft lignin as a function of plasticizer content. 

Plasticizers: () water, () ethylene carbonate, () ethylene glycol. Data were taken from 

the work of Bouajila et al. [161]. 

 

 Several papers demonstrate the positive effect of plasticization in polymer/lignin 

blends. Glycerol was found to be an efficient plasticizer in PVOH/lignin blends [162]. Su 

et al. [162] combined PVOH with soda lignin in the presence of glutaraldehyde as cross-

linker and glycerol as plasticizer. According to the authors, the compatibility between 

PVOH and soda lignin was good. As expected, increasing glycerol content resulted in the 

decrease of tensile strength and the increase of elongation-at-break in the studied range of 

plasticizer content. The mechanical properties of neat PVOH were improved significantly 

through the addition of soda lignin, glutaraldehyde and glycerol. PEO is an efficient 
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plasticizer improving properties in the combination of PLA and lignin [163]. Rahman et al. 

[163] improved the compatibility between PLA and PEO by a transesterification catalyst 

under reactive mixing conditions. The deformability of the PLA/PEO binary blend 

increased and its strength decreased with increasing PEO content. When the catalyst was 

applied, the formation of PLA-PEO block copolymers increased deformability further. 

PLA/lignin binary blends had larger stiffness and strength compared to the PLA/PEO binary 

blends, however, their deformability was significantly smaller. A good balance of stiffness 

and strength was achieved in PLA/PEO/lignin ternary blends in which lignin particles 

provided strength, while PEO increased deformability. 

 Feldman et al. [126] investigated the plasticizing efficiency of different substances 

in the blends of lignin and poly(vinyl chloride-co-vinyl acetate). The mechanical properties 

of the blends were influenced strongly by the particle size distribution of lignin; finer 

dispersion resulted in larger strength and deformability. The results also revealed a close 

correlation between the homogeneity of the blend and the Hildebrand solubility parameter 

(δ) of the plasticizer. This correlation is demonstrated by Fig. 12, in which the particle size 

distribution of lignin plasticized by diethylene glycol dibenzoate (δ = 20.7 MPa1/2) and 

dioctyl phthalate (δ = 16.8 MPa1/2) is presented. The δ value of diethylene glycol dibenzoate 

is closer to that of the applied lignin (δ = 28.0 MPa1/2 [28]) than that of dioctyl phthalate, 

thus the size of dispersed lignin particles is smaller and their distribution is narrower in the 

presence of diethylene glycol dibenzoate than with the other plasticizer.  
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Fig. 12. Effect of plasticization on the particle size distribution of lignin in poly(vinyl 

chloride-co-vinyl acetate). Plasticizer: () diethylene glycol dibenzoate, () dioctyl 

phthalate. Plasticizer content is 35 phr in the vinyl chloride-vinyl acetate copolymer. The 

plasticized polymer contains 23 wt% lignin. Data were taken from the work of Feldman et 

al. [126]. 

 

3.4.2. Chemical modification 

 Lignin is often modified chemically to improve its dispersability in a polymer matrix 

or to enhance its miscibility with polymers. Attaching aliphatic, or less polar moieties to the 

lignin molecule decreases the strength of self-interactions, but does not necessarily improve 

miscibility or compatibility with polymers. The final outcome depends on the balance of 

competitive forces among all components. A large number of papers claim that the chemical 

modification of lignin improves significantly the homogeneity and/or the mechanical 

properties of its blends with polyolefins and PLA. Lignin has been esterified with stearoyl 

chloride [164], acetic [101,165,166], phthalic [167] and maleic anhydride [168], alkylated 

with dichloroethane [168], dichloromethane [169] and dodecane bromide [170], arylated 

with chlorobenzene [169], reacted with propylene oxide [103,129,171,172], as well as 
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grafted with ethylene monomers [173]. Nevertheless, it is often difficult or even impossible 

to ascertain the positive effect of these chemical modifications as the authors often do not 

present the results of the blends containing unmodified lignin as reference [103,129,167-

172].  

 A good example is supplied for this approach by Maldhure et al. [168,169] who 

modified lignin in several ways to enhance its compatibility with PP. Lignin was esterified 

with maleic anhydride [168], alkylated with dichloroethane [168], dichloromethane [169] 

and arylated with chlorobenzene [169], respectively. Subsequently they prepared 

PP/modified lignin blends up to 25 wt% lignin content. Unfortunately, the properties of the 

blends containing unmodified lignin were not presented in these papers [168,169], therefore, 

we can only guess the real effect of the various modifications.  

 Chen et al. [170] alkylated lignin with bromododecane and then prepared PP/lignin 

blends. Long aliphatic chains are attached to lignin as a result of the reaction, thus they 

expected a positive effect on the compatibility of PP and lignin. Unfortunately, we cannot 

be certain about the outcome in this case either, since the authors did not present mechanical 

properties and morphology for the blends containing the unmodified lignin. Nevertheless, 

Chen et al. [170] claimed improvement in compatibility.   

 Sailaja and Deepthi [167] esterified lignin with phthalic anhydride and then blended 

the product with LDPE in the presence of a maleic anhydride grafted LDPE (MALDPE) 

compatibilizer. The changes in mechanical properties indicated that the addition of 

MALDPE improved interfacial adhesion between the components, which was corroborated 

also by SEM micrographs recorded on the fracture surfaces of the blends. However, 

deformability decreased monotonously with increasing lignin content, which might hinder 

the application of these blends. 

 Contrary to many of the works published, Gordobil et al. [165] added both acetylated 

and unmodified soda lignin to PLA at different compositions. The acetylation reaction is 

presented in Fig. 13. According to microscopic images recorded on the blends, the particle 

size of the dispersed acetylated lignin was much smaller than that of the unmodified lignin. 

Based on the results, stronger interfacial interactions were claimed for the PLA/acetylated 

lignin blends, but taking into account that very polar hydroxyl groups were replaced by less 

polar ester groups, better dispersion must have resulted from weaker interactions among 
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lignin molecules and not from stronger matrix/lignin interactions.  

 

 

 

Fig. 13. Esterification of lignin by acetic anhydride. 

 

Mechanical properties measured at larger deformations depend considerably on component 

interactions [141-144]. This statement is strongly corroborated by Fig. 14 in which the 

tensile strength of the two series of blends is plotted against the volume fraction of lignin. 

Tensile strength decreases with increasing lignin content in both cases, however, the extent 

of decrease is much smaller for blends containing acetylated lignin [165]. The tensile 

strength of heterogeneous materials depends on the strength of interfacial adhesion which 

is determined by the contact surface of the phases, i.e. particle size and the strength of 

interaction. The first increases with decreasing particle size, while the second probably 

decreases with modification. Debonding stress also increases with decreasing particle size, 

thus the formation of voids becomes more difficult and premature failure less probable. The 

changes observed in the composition dependence of tensile strength in PLA/lignin blends is 

the combined effect of all factors and not only that of the strength of interaction. However, 

the results presented above clearly prove that the chemical modification of lignin can be 

beneficial and improve the properties of its blends.  
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Fig. 14. Tensile strength of PLA/lignin blends plotted as a function of lignin content; () 

unmodified lignin, () acetylated lignin. 

 

 Wei et al. [171] propoxylated lignin based on the method of Glasser et al. [174,175]. 

The as prepared hydroxypropyl lignin was blended with soy protein to develop a potential 

biodegradable plastic with better mechanical performance than the pure soy protein applied. 

The addition of just 2 wt% hydroxypropyl lignin resulted in tensile strength of 16.8 MPa, 

2.3 times that of pure soy protein, with no accompanying decrease in elongation at break as 

a result of strong interaction between the components. Compared with other soy 

protein/lignin blends, the propoxylation of lignin plays a key role in the improvement of 

mechanical properties since this modification increases the steric availability of the 

hydroxyl groups of lignin, thus hydrogen bonding may develop more easily between the 

polymer matrix and lignin. 

 

3.4.3. Compatibilization 

 Lignin, including commercially available lignin samples, is a polar substance which 

is immiscible and often even incompatible with most polymers, but especially with apolar 

ones like PE, PP or PS. Plasticization and chemical modification change the properties of 



35 
 

the lignin phase, but blend properties may be improved also by compatibilization that 

modifies mainly interfacial adhesion [108,167,176-183].  

 Ethylene-vinyl acetate (EVAc) random copolymers were successfully applied as 

compatibilizers in LDPE/lignin blends by Alexy et al. [176]. The addition of 10 wt % EVAc 

increased the tensile strength by about 200 % and the elongation-at-break approximately by 

1300 % compared to corresponding properties of the non-modified samples.  

 PS/lignin blends were studied over a wide range of lignin content (0–80 wt%) in the 

work of Barzegari et al. [108]. Blends were compounded with and without the addition of a 

linear styrene-hydrogenated butylene-styrene block copolymer and all properties 

deteriorated with increasing lignin content in both of them. At 60 wt% lignin content the 

compatilizer improved the dispersion of lignin and enhanced interfacial adhesion leading to 

the increase of strength and deformability compared to the blend not containing the 

compatibilizer, but all mechanical properties including stiffness, strength and deformability 

were inferior to the corresponding properties of neat PS. 

 An effective approach was presented by Oliveira and Glasser [177] for the 

compatibilization of PS and lignin. Star-like lignin-PS copolymers were synthesized by 

grafting isocyanate-capped PS segments onto hydroxypropyl lignin in their work, and then 

these copolymers were added to PS/hydroxypropyl lignin blends. The compatibilizing effect 

of the copolymers was corroborated by the analysis of the fracture surfaces of the blends. 

The results revealed that the applied copolymers reduced the particle size of dispersed lignin 

significantly, which might be an important evidence for improved interfacial adhesion 

[177]. 

 Lignin contains a number of reactive functional groups, which offer the possibility 

for reactive compatibilization as well. In this case, the copolymers acting as compatibilizers 

form in situ during blending. Polymers with reactive groups [167,178,179, 183] or small 

molecular weight chemicals [180-182] can be reacted with lignin to form the compatibilizer. 

Methylene diphenyl diisocyanate [180] and polymeric methylene diphenyl diisocyanate 

[181,182] proved to be efficient coupling agents in polybutylene succinate/lignin blends. 

 Polyethylene and lignin were compatibilized by maleic anhydride grafted 

polyethylene in other works [167,178]. A similar approach was used to improve interfacial 

adhesion in polypropylene/lignosulfonate blends through the addition of maleic anhydride 
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grafted polypropylene (MAPP) to the PP/lignin blend [179]. Two series of polypropylene 

blends were prepared with sodium-lignosulfonate in a wide composition range: one with 

and another without the compatibilizer. Strength decreases monotonous with increasing 

lignin content in the absence of MAPP, while it increases in the presence of the coupling 

agent (Fig. 15). Obviously the compatibilizer increased interfacial adhesion and the load 

bearing capacity of the dispersed lignin particles considerably. The improvement, i.e. the 

extent of compatibilization can be expressed quantitatively with the help of the simple 

model presented earlier (see Eq. 1). If the natural logarithm of reduced tensile strength is 

plotted against the volume fraction of the dispersed phase, a straight line should be obtained, 

the slope of which is equal to parameter B. The tensile strength of the two blend series of 

Fig. 15 was plotted in this way in Fig. 16. Both correlations are linear indeed, furthermore, 

the slope, i.e., parameter B of the compatibilized blends is much larger than that of the blends 

which do not contain the compatibilizer. This result confirms unambiguously the beneficial 

effect of the compatibilizer and the fact that the MAPP coupling agent improves interfacial 

adhesion significantly in PP/lignosulfonate blends. Nevertheless, we must call the attention 

here to the fact that although the strength of the blends increased, their deformability 

decreased at the same time in an extent which would considerably hinder their practical 

application. This calls the attention to the importance of property optimization and also to 

the proper selection of the approach used for the modification of lignin and its blends. 
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Fig. 15. Tensile strength of PP/lignosulfonate blends plotted against their lignin content; 

() no compatibilizer, () MAPP [179]. 

 

 

Fig. 16. Reduced tensile strength of PP/lignosulfonate blends plotted against lignin content 

in the linear form of Eq. 1. Effect of MAPP on interfacial interactions. () no 

compatibilizer, () MAPP [179]. 
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4. Lignin as a reactive component 

 Because of its large number of functional groups, lignin is often used as reactive 

component for the preparation of cross-linked resins and other polymeric materials. 

Although this is an important approach and possibility for the utilization of lignin, the issue 

is out of the scope of our paper, since we focus mostly on blends here. Nevertheless, we 

summarize the main aspects of the reactive use of lignin in polymers, point out major factors 

and list a few examples. The preparation of lignin-based polymers follows two general 

approaches. In the first lignin is modified chemically by phenolation, oxypropylation, 

esterification, etc. in order to enhance the reactivity of lignin. Modification increases cost 

and environmental impact and thus reduces the competitive edge of lignin over conventional 

systems prepared on traditional petroleum basis. In the second approach, the traditional 

components of a resin system are substituted partially by unmodified lignin. Both 

approaches are only partial solutions as they do not eliminate completely the use of 

substances based on crude oil. Polymers in which lignin is used as a reactive component are 

presented very briefly in subsequent paragraphs. 

 

4.1. Phenol-formaldehyde resins 

 Considering the polyphenolic structure of lignin and its similarity to phenolic resins, 

the use of lignin for the preparation of these latter seems to be obvious. The urge to use 

different types of lignin in phenolic-formaldehyde resins is further supported by the need 

for low cost adhesives of reliable supply and durability mainly for engineered wood like 

plywood, chip, fiber and wafer board. The direct substitution of phenol with lignin in a 

phenol-formaldehyde resin resulted in large excess of formaldehyde [184] because of the 

smaller functionality of lignin, which could be overcome by the adjustment of 

stoichiometry. The prepared adhesives containing lignin proved to be suitable for the 

preparation of plywood panels. However, direct substitution often leads to the deterioration 

of properties proportionally to the amount of lignin used [184] often because of impurities 

in lignin [185]. As mentioned above, lignin can be modified chemically to increase its 

functionality or reactivity [185-188].  
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4.2. Epoxy resins 

 Lignin can be applied both as the epoxy component and as the curing agent 

(hardener) in epoxy resins. In the first case, lignin must be modified to create epoxide groups 

on the molecule first, which is mostly done by reacting the hydroxyl groups of lignin with 

epichlorohydrin, and by epoxide (oxirane) ring formation in alkaline medium subsequently. 

Steam exploded bamboo lignin was functionalized in this way [189]; the thermal stability 

of the resin prepared with lignin was worse than that of the petroleum-derived epoxy, but 

passed the dip-solder resistance test (250–280 °C) [189,190]. The flexural strength of lignin-

based epoxy resins was also smaller than that of the petroleum-derived epoxy. Epoxy resins 

can be cross-linked with curing agents containing reactive hydrogen atoms in the form of 

amine, anhydride, carboxyl or hydroxyl groups. Unmodified lignin contains both carboxyl 

and hydroxyl groups so it may be an adequate curing agent without any chemical 

modification. Lignin modified with anhydride groups was used as curing agent for epoxy 

and it increased both the stiffness and the fracture resistance of the resin [191]. 

 

4.3. Polyurethanes 

 Polyurethanes are usually synthesized through the reaction of isocyanate and 

hydroxyl groups. Because of its structure lignin can provide the hydroxyls and replace 

traditional polyols. Papers on polyurethanes which use lignin as one of the components 

mostly describe the preparation of films as well as rigid and flexible foams. Lignin is often 

modified also for this purpose to improve reactivity or solubility in the reaction medium 

[192,193]. When lignin is used for the replacement of traditional polyols, one must take into 

account that its functionality exceeds two. The effect is demonstrated well by Fig. 17 

showing that increasing lignin content results in the increase of both the tensile strength and 

the deformability of polyurethane films [194] due to their increased cross-link density. 

Similar results were obtained by others [195] confirming the importance of the proper 

characterization of lignin and the need for the optimization of stoichiometry and reaction 

conditions in such applications. 

 

4.4. Graft copolymers 
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 A promising way for the chemical modification of lignin is to attach polymer chains 

to it through its reactive, mostly hydroxyl functional groups. Lignin graft copolymers can 

be obtained both by the "grafting from" and the "grafting to" approaches. Usually the first 

approach is preferred since it can produce larger graft density compared to the second route. 

Grafting from is frequently carried out either by ring opening polymerization using the 

hydroxyl groups of lignin as a macroinitiator, or  by forming a lignin macroradical which 

acts as an active center for the radical polymerization of monomers. Many examples have 

been published for the first approach. The most frequently polycaprolactone or polylactide 

is attached to lignin to produce, for example, UV protective films or coatings [196-198] or 

an impact modifier for PLA [199]. Chemical modification is an obvious way to increase the 

value of lignin and to make it suitable for various applications.  

 

5. Application 

 Most commercial applications are related to lignosulfonates, since they are available 

in the largest quantity in the industry [2]. Lignosulfonates are mostly used as a dispersant, 

particularly in the production of concrete admixtures for reducing the amount of necessary 

water, for faster development of strength, and for the improvement of workability [200]. 

This type of lignin is commonly applied also as a binder [201], a component of adhesives 

[202], or a raw material for the production of chemicals including vanillin [203], dimethyl 

sulfide [204] and methyl mercaptane [204]. Lignosulfonates are used in animal feeds as a 

binder to improve pellet durability, abrasion resistance and as lubricant decreasing extruder 

wear [201]. They are widely used in oil well drilling muds mostly as mud thinner, clay 

conditioner, viscosity control agent and fluid loss additive [205]. Concentrated spent sulfite 

liquors are applied directly for dust control in road and mineral ore dedusting [206]. 

Lignosulfonates are also applied as dispersants in water-based paints and inks [207]. 
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Fig. 17. Mechanical properties of polyurethane plotted against the lignin OH/total OH ratio. 

Effect of cross-link density. Symbols: () tensile strength, () elongation-at-break [194]. 

 

 Bioethanol production yields mostly steam explosion lignin, thus more and more 

attention is paid to the utilization of other industrial lignins as well. A German compounding 

company, TECNARO has already utilized lignin in thermoplastics that can be processed 

with extrusion, injection molding, thermoforming etc. Their trade mark, ARBOFORM® 

includes grades in which lignin is combined with natural fibers, natural resins and waxes. 

ARBOFORM® is also referred to as 'Liquid Wood' due to its properties similar to those of 

wood and the fact that it can be melted. These grades have been applied in the construction 

industry, electronics, jewelry, furniture, musical instruments etc. Fig. 18. shows a pair of 

commercially available headphones with earcups made of 'Liquid Wood’.  



42 
 

 

 

 

 

 

 

 

 

 

 

   

 

Fig. 18. AudioQuest® NightHawk headphones with earcups made of ARBOFORM® 

 

Cicala et al. [208] found that the component which makes ARBOFORM® a 

thermoplastic is PLA. This result is strongly corroborated by the DSC thermograms of 

‘Liquid Wood’ [183,208,209] showing the glass transition and the cold crystallization of 

PLA. Therefore, we can conclude that ARBOFORM® is actually a PLA/lignin blend 

reinforced with hemp, flax or other natural fibers. 

The potential use of lignin as a stabilizer has already been discussed in section 3.2.1. 

Due to the presence of phenolic hydroxyl groups in its polyphenol structure, lignin has a 

radical scavenging and stabilizing effect in polymers. The crucial role of the phenolic 

hydroxyl groups in the stabilization was proved by Sadeghifar and Argyropoulos [210] who 

showed that selective methylation of the phenolic hydroxyls decreases antioxidant activity. 

The antioxidant and stabilizing characteristics of lignin have been studied in several 

polymers mainly in PE [93,94,981,210], PP [93,95-100] and PLA [165,166]. Most 

experiments indicated that lignin is usually inferior to commercial additive packages, and it 

also discolors the polymer, thus further work must be done before its industrial application.  

 The polyaromatic structure of lignin makes it a promising precursor for 

carbonization. Carbonized lignin can be applied in catalysis, energy storage and fibers. Li 

et al. [211] fabricated a lignin-derived catalyst for biodiesel production, which had large 
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catalytic activity with excellent cycle performance. 

 The carbonization of lignin leads to products for electrical applications. Wang et al. 

[212] produced fibrous carbon mats from Alcell® lignin/PEO blends by electrospinning, 

carbonization and thermal annealing in the presence of urea. The mats were found to be 

efficient anodes in lithium ion batteries. Hu et al. [213] prepared high energy density 

supercapacitors from activated submicron carbon fibers derived from lignin. The excellent 

performance of the material demonstrates the potential of lignin-based carbons for electrical 

energy storage.  

 Kadla et al. [214] fabricated carbon fibers from the blends of lignin and PEO through 

thermal spinning followed by carbonization. The tensile strength of the fibers was 300–450 

MPa and their modulus 30–60 GPa corresponding to general performance grades. Schreiber 

et al. [215] produced carbon fibers from blends of hardwood organosolv lignin and cellulose 

acetate by electrospinning. The fibers were treated with iodine to facilitate carbonization 

and to help retain fiber morphology. Compared to carbon fibers produced from neat 

polyacrylonitrile (PAN), the fibers derived from biopolymers had a smaller degree of overall 

graphitization, but formed larger in-plane graphitic crystals. Liu et al. [216] prepared 

composite fibers containing lignin, PAN and carbon nanotubes (CNT) by gel-spinning and 

then carbonization at the temperatures of 1000 and 1100 °C, respectively. The fibers made 

from PAN/lignin blends had a strength of 1720 MPa and modulus 230 GPa, properties very 

similar to those of neat PAN fibers (strength 1600 MPa, modulus 223 GPa). The addition 

of CNT resulted in a slight deterioration of properties (strength 1400 MPa, modulus 200 

GPa).  

 Responsive materials change their properties significantly upon an external stimulus 

which can be a change in temperature, pH, light, magnetic or electric field, etc., and the 

property responding can be color, transparency, volume, shape, etc. The response usually 

must be fast for practical, mainly medical applications like controlled drug release [217-

221]. Kim and Kadla [222] grafted N-isopropylacrylamide (NIPAM) onto modified 

hardwood Kraft lignin, which was used as a macroiniciator for atom transfer radical 

polymerization. Depending on the degree of substitution of the macroinitiator, the grafted 

copolymers were either fully or partially soluble in water. Both the soluble and the 

suspended copolymers precipitated from aqueous solutions at 32 °C and above. Feng et al. 
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[223] prepared hydrogels by the graft polymerization of organosolv lignin and NIPAM in 

the presence of N,N’-methylenebisacrylamide as the cross-linker and hydrogen peroxide as 

the initiator to produce temperature-sensitive hydrogels. Gao et al. [224] used softwood 

Kraft lignin for the preparation of pH-responsive hydrogels. Relatively strong hydrogels 

formed under neutral conditions, which collapsed or reformed on the increase or decrease 

of pH. Duval et al. [225] synthesized a pH- and light-responsive polymer from softwood 

Kraft lignin in a two-step procedure by the incorporation of diazobenzene groups onto 

lignin. The Kraft lignin derivatives containing diazobenzene changed their color as a 

function of pH in solution and responded to light by the cis-trans photoisomerization of the 

diazobenzene groups. 

 

6. Conclusions 

 The chemical structure of lignin is complex and depends very much on the extraction 

technology used for its production. Because of the complicated structure, the proper 

characterization of lignin is difficult and requires the use of a number of methods. Besides 

the number of functional groups, the ratio of monomers and molecular weight must be also 

determined for the complete characterization of lignin. The combination of lignin with 

thermoplastics should be treated as blend and not composite. Because of their large number 

of polar functional groups, lignin molecules interact strongly with each other. As a 

consequence, competitive interactions determine the structure and properties of the blends, 

and most polymers are immiscible with lignin, because of weaker interactions forming 

between lignin and the matrix polymer than among lignin molecules. Apparently none of 

the interactions developing in the blends, including hydrogen bridges, is sufficient to result 

in complete miscibility. Nevertheless, strong interactions, like the combination of aromatic 

-electron interaction and hydrogen bonds, lead to very small dispersed particles and 

relatively good properties. However, the deformability of the blends is usually poor which 

might be compensated by the chemical modification of lignin, plasticization, or the use of 

coupling agents. Lignin can act also as a reactive component in the preparation of various 

resins and polymers. 
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