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Through applying both a probabilistic approach and a combination of probabilistic and the
Avrami ‘extended volume’ approaches we have derived a theory of overall crystallization
kinetics of polymers reinforced with nanofibers. The theory describes the crystallization
kinetics in the presence of straight or curved nanofibers, with different nucleation ability
and orientation, and allows to account for their variable length. The analytic results are sup-
ported by computer simulations of spherulitic structures. The derivedmathematical formu-
las are in exponential forms suggesting the use of the Avrami logarithmic coordinates for
detailed analysis of experimental data. Experimental data on crystallization of several
nanocomposites, including polypropylene reinforcedwith poly(tetrafluoroethylene) nanofi-
bers and polyamide 12with carbon nanotubes, are in a good agreement with the theoretical
predictions.
1. Introduction

There are many well known advantages of reinforcing polymers with fibers. The use of nanofibers as fillers permits to
achieve those goals at very low loading levels, usually a few percent. Polymer nanocomposites comprise also materials
where the reinforcement can be polymeric. In self-reinforced polymer materials, also referred to as single-phase or homo-
composites, the same polymer is forming both the reinforcing and matrix phases.

Fibers can strongly affect not only the properties but also crystallization of composites because of the presence of internal
interfaces. Fibers frequently exhibit nucleation activity. Acting as a nucleating agent they shorten the crystallization time
and increase the temperature at which the polymer crystallizes during processing, thus reducing cycle time and increasing
productivity. Fibrous fillers induce crystallization of the polymer matrix thorough nucleation on their surfaces. It appears
that they can either nucleate very strongly causing the growth of transcrystalline layers around them [e.g. 1] or the nucle-
ation activity can be limited though still accelerating crystallization [e.g. 2]. In several studies it was shown that agglomer-
ates of fibrous nanofillers can efficiently nucleate crystallization while along a single nanofiber the crystallization is activated
on several points only [3]. Polymer matrices that were studied include polypropylene [e.g. 4], polylactide [5], polycaprolac-
tones [6,7], poly(ethylene terephthalate) [8], poly(butylene terephthalate) [9], syndiotactic polystyrene [10], and other.
Among fibrous fillers were carbon nanotubes, both single and multi-wall [3,11–13], polymeric nanofibers [14,15], rodlike
silicon nitride [4], and carbon nanofibers [16,17].
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In most of the above cited reports the Avrami approach for the analysis of the kinetics of crystallization was applied with-
out full justification. The original Avrami concept [18–20] was designed for random nucleation sites and radial growth of
crystalline aggregates, whereas the nucleation sites on fiber surfaces are spatially correlated. In addition, in several above
mentioned papers the isothermal Avrami treatment was erroneously applied to nonisothermal crystallization or to crystal-
lization degree rather than to conversion degree. This indicates clearly that a coherent theory of crystallization kinetics of
fibrous nanocomposites is lacking and is seriously needed. In this work we describe an effort to develop such theory basing
on known approaches to crystallization kinetics of simpler systems.
2. Basis of the theory

The description of the overall crystallization kinetics in polymers was recently reviewed and assessed in [21,22]. There
are two main approaches: one based on the Avrami [18–20] concept of the so called ‘extended volume’ and second applying
probability theory first used by Evans [23]. The ‘extended volume’ at time t is a sum of volumes of all domains neglecting the
truncation upon impingement. The extended volume includes also the ‘phantom’ domains expanding from nucleation
‘attempts’ in already crystallized regions. At time t the ‘extended volume’ fraction increment, dEðtÞ, occurring in the uncon-
verted fraction, 1� aðtÞ, expressed as dEðtÞ½1� aðtÞ�, is equal to the increment of real converted volume fraction, daðtÞ. After
simple transformation and integration the conversion degree, a, is expressed by the well-known Avrami equation:
aðtÞ ¼ 1� exp½�EðtÞ� ð1Þ

In a uniform temperature field E can be easily calculated as DVð0; tÞ and R t

0 FðsÞVðs; tÞds, for instantaneous nucleation with
the density D and spontaneous nucleation with the time dependent rate F (a number of nuclei per a volume unit and time
unit), respectively, and where Vðs; tÞ denotes the volume at time t of the domain nucleated at s. Needless to say that in the
case of isothermal conditions when the domain growth rate is constant, and for instantaneous nucleation or spontaneous
nucleation with a constant rate, E in the form of Ktn is obtained.

The derivations based on probability theory utilize the formula describing the probability that a number of nucleation
events will occur in a finite volume. In the derivations based on the probabilistic approach the key point is to calculate
the probability that an arbitrarily chosen point, denoted here as A, at a given time t, will remain outside growing domains,
P0ðtÞ, that enables to calculate a as:
aðtÞ ¼ 1� P0ðtÞ ð2Þ
where P0 is equal to expð�EÞ, where E is an expected value of the Poisson probability distribution. P0ðtÞ is in fact the prob-
ability that no nucleation event will occur in an appropriate time intervals in corresponding finite volumes around A. Evans
[23] calculated E for the constant growth rate of domains, and for instantaneous and spontaneous nucleation with a constant
rate, obtaining E in the form of Ktn. Further development of the theory was focused on time dependent nucleation rate [24],
nonisothermal crystallization [25], and utilizing the concept of nucleation as a set of events occurring randomly not only in
space but also in time [26]. The latter allowed to calculate a, in a relatively simple way, for complex crystallization condi-
tions, such as crystallization in a temperature gradient [27]. Recently, kinetic model of development of lamellar thickness
distribution and average lamellar thickness during melt crystallization was proposed based on the Avrami-Evans approach
[28].

The limits of applicability of the both approaches were recently discussed in [21,22]. It must be noted that for crystalliza-
tion in an infinite volume in a uniform temperature field the same equations are obtained regardless whether the ‘extended
volume’ approach or the probabilistic approach was used. However, if the conditions vary locally, and thus the nucleation
rate or the growth rate varies, different expressions can be obtained [21] and calculations of the extended volume as a
sum of volumes of all domains leads to a wrong result. These discrepancies vanish if the ‘extended volume’ is defined as
the average number of extended domains that have grown through the point Aðx; y; zÞ. Eðt;AÞ calculated for Aðx; y; zÞ becomes
a function of spatial coordinates [20] as the expected value obtained through the probabilistic approach.

In the description of overall crystallization kinetics in a finite volume one has to consider that the area beyond boundaries
of a polymer portion is not accessible for crystallization and that additional nucleation can occur on the boundaries [21,22].
Similar problems are encountered in the modelling of overall crystallization kinetics in fiber reinforced composites; the vol-
ume inhabited by fibers is not accessible for crystallization and spherulites can nucleate not only in the polymer bulk but
also on the fibers surfaces; the intense nucleation on the fiber surface results in transcrystallinity [29]. The main difference
is that fibers are dispersed within a polymer matrix in a more or less random way.

Only few attempts to model crystallization in fiber reinforced composites were undertaken so far. Computer modelling of
isothermal crystallization in such systems concerned non-overlapping long fibers of equal diameters aligned parallel in one
direction [30–33] dispersed randomly or arranged in a hexagonal array.

To predict the conversion of melt into spherulites during isothermal crystallization of fiber reinforced composites, the
concept of ‘extended volume’ was used [34], but also the probabilistic approach was applied to bulk crystallization in com-
posites reinforced with long fibers [33]. It was also assumed that the length of fibers exceeded significantly the spherulite
size, therefore the effect of fiber ends could be neglected.



The presence of fibers that did not nucleate crystallization decreased the overall crystallization rate in comparison to that
of pure polymer, whereas the nucleation on fibers accelerated the crystallization [33]. Moreover, the slopes of the Avrami
plots differed from those predicted by the Avrami-Evans theory for neat polymers, or even deviated from straight lines.
The influence of fibers on overall crystallization rate increased with increasing fiber content and also with decreasing fiber
diameter [33].

Similarly to fibers, reinforcing nanofibers are able or unable to nucleate matrix crystallization. Even weakly nucleating
nanofibers can have strong effect on crystallization. The amplification of nucleating ability is connected with dramatic
increase of the surface to volume ratio. It is well known that nanoparticles can also hinder the crystal growth rate [29]. How-
ever, if the nanofibers are themselves nucleation sites, their influence on the overall crystallization kinetics is dominated by
their ability to nucleate.

This work focuses on modelling of overall crystallization kinetics in nanofiber reinforced composites based on the prob-
abilistic and extended volume approaches. Nano-sized transversal sizes and small volume fraction of nanofibers allow to
neglect their volume but the length of nanofibers is often too small to disregard the effect of nanofiber ends, as in the case
of long fibers. In the following we first consider straight nanofibers of equal length with different nucleating ability. How-
ever, nanofibers in nanocomposites may have different length, curvature and orientation. Therefore the effect of length dis-
tribution and orientation is also elucidated. Moreover, curved nanofibers are also considered. The results of analytical models
are verified by computer simulation and compared with experimental data.

3. Straight nanofibers

In order to simplify the problem, we first consider a nanocomposite with nanofibers of equal length, 2L, and all oriented in
the same direction, and use the probabilistic approach to derive the expression for a. The additional assumptions are:

(1) Crystallization occurs in 3D and in an infinite volume, which means that sizes of polycrystalline aggregates are at least
several times smaller than sizes of the polymer portion.

(2) Crystallization of a polymer is spherulitic and isotropic, that is the nucleation rate, F and the spherulite growth rate G,
are independent of spatial coordinates. At time t the ‘extended’ radius of a spherulite nucleated at s is expressed by the
equation:
qðs; tÞ ¼
Z t

s
GðsÞds ð3Þ
(3) Thickness of nanofibers is negligibly small compared with spherulites sizes. Df denotes the number of nanofibers cen-
ters in a volume unit of the nanocomposite, and will be referred to as nanofiber content.

(4) Nucleation on nanofibers is instantaneous: all nuclei appear at the same time at the very beginning of crystallization.
Ds denotes the nucleation density on nanofibers - the number of nuclei per a nanofiber length unit.

3.1. Probabilistic approach

The key problem in the probabilistic approach to the overall crystallization kinetics is to calculate the probability, P0ðtÞ,
that an arbitrarily chosen point will remain in the uncrystallized fraction of a material at time t, elapsed from the beginning
of crystallization, that is from the moment of nucleation of the first spherulite. In the case of instantaneous nucleation, the
point A will remain outside of growing spherulites at time t, if none of them is nucleated within a sphere with the point A at
the center, and having the radius RðtÞ ¼ qð0; tÞ. P0ðtÞ is a product of the probability that no spherulite will be nucleated in a
polymer bulk, denoted here as PbðtÞ, and the probability that no spherulite will be nucleated on nanofibers, denoted as Pf ðtÞ:
P0ðtÞ ¼ PbðtÞPf ðtÞ ð4Þ

According to the Avrami-Evans theory PbðtÞ equals:
PbðtÞ ¼ exp½�EbðtÞ� ð5Þ

with Eb in the form:
EbðtÞ ¼ ð4p=3ÞDRðtÞ3 ð6aÞ

EbðtÞ ¼ ð4p=3Þ
Z t

0
FðsÞqðs; tÞ3ds ð6bÞ
for the instantaneous and spontaneous nucleation, respectively. In the case of the instantaneous nucleation on nanofibers,
Pf ðtÞ is the probability that no nucleation event will occur on the nanofibers within a sphere around A, having the radius
RðtÞ. Pf ðtÞ is a sum of the probability Pfa that no nanofiber will cross the sphere around A and the probability Pfb, that although
any number of nanofibers cross the sphere, nothing will be nucleated on nanofiber sections embedded in the sphere. If all
nanofibers are aligned in one direction, to fulfill the first condition nanofiber centers should be outside the zone of volume
ð4p=3ÞR3 þ 2pLR2 (Fig. 1), composed of a cylinder and two hemispheres.



Fig. 1. Sphere of radius R (solid line), and the zone composed of a cylinder and two hemispheres (dashed line) around the point A, for different ratios
between R and L.
According to the Poisson distribution, Pfa is expressed as:
PfaðtÞ ¼ expf�Df ½ð4p=3ÞR3 þ 2pLR2�g ð7Þ

Calculation of Pfb is more complex and requires summation of the probabilities Pfbk; k ¼ 1; . . . ;1, that k nanofibers will cross
the sphere but no spherulite will be nucleated on their sections inside the sphere. Probability, that k nanofibers aligned in z-
direction with centers located in the range of cylindrical coordinates between ðri; ziÞ and ðri þ dri; zi þ dziÞ, i ¼ 1; . . . ; k, will
cross the sphere and nothing will be nucleated on their sections crossing the sphere, reads:
pkðt; ri; ziÞ ¼ expf�Df ½ð4p=3ÞR3 þ 2pLR2�g
Yk
i¼1

Df2pripðri; ziÞdridzi ð8Þ
where pðri; ziÞ ¼ exp½�DsLcðri; ziÞ� denotes the probability that no nucleation event will occur on the nanofiber section Lcðri; ziÞ
confined in the sphere, dependent on a position of the nanofiber relative to the point A. To calculate PfbkðtÞ it is necessary to

integrate the products ripðri; ziÞ in Eq. (8) over ri and zi within the zone of volume ð4p=3ÞR3 þ 2pLR2, and to divide the result
by k! to eliminate multiple counting of the same events. Owing to the symmetry it is sufficient to limit to positive values of z
and to multiply the result by 2. Finally:
PfbkðtÞ ¼ expf�Df ½ð4p=3ÞR3 þ 2pLR2�g½Df CðR;Ds; LÞ�kð1=k!Þ ð9aÞ

where
CðR;Ds; LÞ ¼ 4p
Z L

0

Z R

0
rpðr; zÞdrdzþ

Z LþR

L

Z U

0
rpðr; zÞdrdz

� �
ð9bÞ

U ¼ ½R2 � ðz� LÞ2�1=2 ð9cÞ

Hence:
PfbðtÞ ¼
X1
k¼1

PfbkðtÞ ð10Þ

PfbðtÞ ¼ expf�Df ½ð4p=3ÞR3 þ 2pLR2�gfexp½DfCðR;Ds; LÞ� � 1g ð11Þ

and finally:
Pf ðtÞ ¼ exp½�Ef ðtÞ� ð12aÞ

with
Ef ðtÞ ¼ Df ½ð4p=3ÞR3 þ 2pLR2� � DfCðR;Ds; LÞ ð12bÞ

CðR;Ds; LÞ expressed by Eq. (9b) can be calculated either numerically or analytically. Depending on the position of the nano-

fiber center ðr; zÞ and R, entire fiber length 2L or a nanofiber section, either 2ðR2 � r2Þ1=2 or L� zþ ðR2 � r2Þ1=2 is embedded in



the sphere. This depends on the positions of nanofiber ends: ðr; zþ LÞ and ðr; z� LÞ relative to the sphere surface. R increases
with time, hence three cases should be considered: R 6 L, L 6 R 6 2L and R P 2L, as shown in Fig. 1a–c. For the sake of brev-
ity further derivations are presented in Appendix A. CðR;Ds; LÞ is in the form:

For R 6 L:
CðR;Ds; LÞ ¼ ð2p=DsÞfR2 þ ½1� expð�2DsRÞ�½L=ð2DsÞ � 1=D2
s � þ expð�2DsRÞðR2 � RLþ 2R=DsÞg ð13aÞ
For L 6 R 6 2L and R P 2L
CðR;Ds; LÞ ¼ ð2p=3Þð2R3 � 3R2Lþ L3Þ expð�2DsLÞ þ ðp=D2
s Þf½1� expð�2DsLÞ�ð2DsR

2 � 2=Ds þ LÞ þ 2LðLDs þ 2Þ
� expð�2DsLÞg ð13bÞ
Eqs. (12) and (13) were derived for all the nanofibers aligned in the same direction. Let us assume, however, that there are
m populations of nanofibers differently oriented, and the respective contents are denoted as Dfi; i ¼ 1; . . . ;m, wherePm

i¼1Dfi ¼ Df . For each nanofiber population a separate zone around A should be considered, with z-axis parallel to the ori-
entation direction, and the probability Pfi that no nucleation event will occur on the nanofibers of the respective population
in the sphere around A, is expressed as:
Pfi ¼ expf�Dfi½ð4p=3ÞR3 þ 2pLR2� þ DfiCðR;Ds; LÞg ð14Þ

The probability Pf that no nucleation event will occur on any nanofiber in the sphere around A is a product of all Pfi and it

is again expressed by Eq. (12), which is then valid regardless of nanofiber orientation.
Similar reasoning applies for m populations of nanofibers with different nucleation abilities, reflected in different

Dsi; i ¼ 1; . . . ;m, and contents Dfi; i ¼ 1; . . . ;m, where again
Pm

i¼1Dfi ¼ Df . In this case multiplication of the respective prob-
abilities leads to the expression:
Pf ¼ exp �Df ½ð4p=3ÞR3 þ 2pLR2� þ
Xm
i¼1

DfiCðR;Dsi; LÞ
( )

ð15Þ
Finally, one can consider a nanofiber half-length distribution (by number), Df ðLÞdL, for which multiplication of the respec-
tive probabilities yields:
Pf ðtÞ ¼ exp �
Z 1

0
Df ðLÞ½ð4p=3ÞR3 þ 2pLR2�dLþ

Z 1

0
Df ðLÞCðR;Ds; LÞdL

� �
ð16Þ
It appears that according to Eq. (4) a is expressed as:
aðtÞ ¼ 1� PbðtÞPf ðtÞ ð17aÞ

and
anðtÞ ¼ 1� PbðtÞ ð17bÞ

where an is the conversion degree in neat polymer, in the absence of nanofibers. Thus:
aðtÞ ¼ 1� ½1� anðtÞ�Pf tð Þ ð18Þ

It also appears that CðR;Ds; LÞ ! ð4p=3ÞR3 þ 2pLR2 for Ds ! 0. For a very dense nucleation, Ds ! 1, leading to transcrys-

tallinity, CðR;Ds; LÞ ! 0, hence:
Ef ðtÞ ¼ Df ½ð4p=3ÞR3 þ 2pLR2� ð19Þ

For instantaneous nucleation in polymer bulk with density D, P0ðtÞ is given by:
P0ðtÞ ¼ exp½�ð4p=3ÞðDR3 þ Df R
3Þ � 2DfpLR2 þ DfCðR;Ds; LÞ� ð20Þ
If instantaneous bulk nucleation is delayed by Dt in respect to the nucleation on nanofibers, the term DR3 should be

replaced by DqðDt; tÞ3 with q given by Eq. (3).
The equations derived above are valid for both isothermal and nonisothermal processes.
It can be noticed that for isothermal crystallization (G = const) Eq. (20) yields:
lnf� ln½1� aðtÞ�g ¼ ln½ð4p=3ÞðGtÞ3ðDþ Df Þ þ 2pDf LðGtÞ2 � Df CðGt;Ds; LÞ� ð21Þ

It is then clear that the Avrami analysis can yield a straight line when in the logarithm argument the second component
dominates over the other two, that is when Ds is very large decreasing CðGt;Ds; LÞ, nanofibers are long and the effect of nucle-
ation at their ends is relatively small, and also bulk nucleation is weak. In that case the Avrami exponent value will be close
to two. In the case of small 2Df L or Ds the bulk nucleation will dominate, leading to the exponent value close to three. The

case of spontaneous bulk nucleation with constant rate is even more complex, since EbðtÞ will be in the form of Kt4. Still, for
large values of 2Df L and Ds the Avrami exponent close to two can be predicted.



3.2. Extended volume approach

In the derivation of Pf it is necessary to calculate CðR;Ds; LÞ. It can be envisaged that the derivation will be much more
complex, for instance, for curved nanofibers. However, it appears that the exponent in Eq. (20) is equal to the extended vol-
ume of spherulites on nucleating nanofibers, providing that the sum of extended volume of spherulites is replaced by an
envelope covering all spherulites nucleated on the nanofiber (neglecting truncation due to impingement of spherulites
nucleated in bulk and on other nanofibers), as shown in Fig. 2.

The envelope will be referred to as ‘nanofiber extended volume’ for short. Points at the distance R from a nanofiber, which
is a maximum spherulite radius of a spherulite at time t, are located on a surface of a cylinder of radius R and length 2L, with
the nanofiber in axis, and on surfaces of two hemispheres of radius R, with the fiber ends in centers, as shown in Fig. 3. Thus
the maximum extended volume for a strongly nucleating nanofiber is equal to a volume of the cylinder and the two hemi-
spheres, which leads to Eq. (19). For Ds ! 1 the extended volume for a single nanofiber reaches its maximum value, whereas
it is smaller for finite Ds. Since nucleation on nanofibers occurs randomly, nanofibers extended volumes differ and should be
added. However, we can replace that sum by a product of Df and an average ‘extended volume’ calculated using probability
theory. To this aim a part of the maximum extended volume unoccupied at time t by spherulites has to be calculated and
subtracted.

For each point Bðr; zÞ located within the maximum extended volume, where r and z are cylindrical coordinates (Fig. 3) the
probability, q1ðr; zÞ or q2ðr; zÞ, that it remains at time t outside spherulites nucleated on the nanofiber is calculated, and inte-
gration is performed over the volume; only half of the cylinder and one hemisphere can be taken into account because of the
symmetry. To simplify integration, different systems of coordinates are used for the cylinder and the hemisphere. The inte-
grals, multiplied by 2, are subtracted from the maximum extended volume:
Fig
Ef ðtÞ ¼ Df ð4p=3ÞR3 þ 2pLR2 � 4p
Z L

0

Z R

0
rq1ðr; zÞdrdz� 4p

Z R

0

Z Rz

0
rq2ðr; zÞdrdz

� �
ð22aÞ
with
Rz ¼ ðR2 � z2Þ1=2 ð22bÞ
Fig. 2. ‘Nanofiber extended volume’ marked by thick solid line.

. 3. Maximum extended volume for a straight nanofiber for different ratios between R and L, and examples of positions of point B within it.



q1ðr; zÞ and q2ðr; zÞ are equal to exp½�DsLsðr; zÞ�, where Ls is the section of considered nanofiber embedded in a sphere around

the point B with the radius R, as shown in Fig. 3a–c. Depending on a position of B and on R, Ls is equal to 2L, 2ðR2 � r2Þ1=2,
ðR2 � r2Þ1=2 þ z or ðR2 � r2Þ1=2 � z. The detailed forms of the integrals on the right side of Eq. (22a), denoted as S1 and S2,
respectively, are shown in Appendix B. As it was expected:
S1ðR;Ds; LÞ þ S2ðR;Ds; LÞ ¼ CðR;Ds; LÞ ð23Þ

Taking into account spherulites nucleated in the polymer bulk leads to a as expressed by an equation equivalent to Eq.

(17a):
aðtÞ ¼ 1� exp½�EbðtÞ � Ef ðtÞ� ð24Þ

It is worth noting that no assumption about the nanofibers orientation is required to derive Eq. (24).
The exponent in Eq. (24) is a sum of extended volumes. A length distribution of nanofibers and/or different ability of

nanofibers to nucleate matrix crystallization can be accounted for by summation or integration of respective extended vol-
umes, which will lead to the same expressions as those derived in the previous section.

It is of interest that using this approach one can easily calculate the extended volume for nucleation on infinite length
straight nanofibers:
Ef ðtÞ ¼ Dfl pR2 � 2p
Z R

0
r exp½�2DsðR2 � r2Þ1=2�dr

� �
ð25aÞ
Ef ðtÞ ¼ DflfpR2 � ðp=2D2
s Þ½1� ð1þ 2DsRÞ expð�2DsRÞ�g ð25bÞ
which permits to obtain the expression for a identical with that derived in [15], where Dfl is the length of nanofibers per
volume unit of a nanocomposite.
4. Curved nanofibers

As a model, a nanofiber in the form of half-circle with radius Rs is considered (Fig. 4). Rs ¼ 2L=p for a nanofiber of length
2L. The extended volume for such nanofibers can be calculated using the concept of extended volume as for straight
nanofibers. Points at a distance R from the nanofiber are located on a surface of a half-toroid, along the nanofiber, with a
radius R, and on two hemispheres with the nanofiber ends in the centers, also with radii R. Thus, the maximum extended
volume for the nanofiber is equal to a volume of half-toroid plus two hemispheres, as shown in Fig. 4, excluding the
overlapping parts. For each point B in this volume, the probability that it remains at time t unoccupied by spherulites
nucleated on the nanofiber is calculated, p1ðx; y; cÞ and p2ðx; y; zÞ, and integration is performed over the half-toroid and
hemispheres. To simplify integration, different systems of coordinates are used for the toroid and the hemisphere, as shown
in Fig. 4a. The integrals are then subtracted from the maximum extended volume, that is a volume of the half-toroid plus two
hemispheres.

For R 6 Rs:
EfcðtÞ ¼ Df ½p2RsR
2 þ ð4p=3ÞR3 � 4

Z p=2

0

Z R

�R
ðRs þ xÞ

Z Rx

0
p1ðx; y; cÞdydxdc� 4

Z R

0

Z Rz

�Rz

Z Rg

0
p2ðx; x; zÞdydxdz� ð26aÞ
For R P Rs:
EfcðtÞ ¼ Df ðp2=2ÞRsR
2 þ ðp=3Þ ðR2 � R2

s Þ
1=2ðR2

s þ 2R2Þ þ 3R2Rs arcsinðRs=RÞ þ 2R3 þ 3RsR
2 � R3

s

h in

�4
Z p=2

0

Z R

�Rs

ðRs þ xÞ
Z Rx

0
p1ðx; y; cÞdydxdc� 4

Z Rf

0

Z Rz

�Rs

Z Rg

0
p2ðx; y; zÞdydxdz� 4
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where
Rx ¼ ðR2 � x2Þ1=2; Rz ¼ ðR2 � z2Þ1=2; Rg ¼ ðR2 � z2 � x2Þ1=2 and Rf ¼ ðR2 � R2
s Þ

1=2 ð26cÞ

The first integral in Eq. (26a) is over the upper part of the zone resulted from a revolution over 0 6 c 6 p=2 of the circle of

a radius R, and with the center at a distance Rs from the revolution axis, whereas the second integral is over the upper half of
one hemisphere. Such integration ranges are sufficient because of symmetry and only multiplication by a factor of four is
required. For R > Rs in Eq. (26b), to eliminate overlapping, only a part of the revolving circle is considered (�Rs 6 x 6 R)
and also only that part of the hemisphere, which does not overlap with the second one, as shown in Fig. 4c. The probabilities
p1ðx; y; cÞ and p2ðx; y; zÞ are equal to expð�DsLcÞ, where Lc denotes the length of arc embedded in a sphere of radius R with a



Fig. 4. Maximum extended volume for a half-circle nanofiber with systems of coordinates for integration over half-toroid and hemisphere (a), positions of
point Bp on plane y = 0, and schemes for calculation the length of arcs included in the circle of radius Rp (b), and scheme of the toroid for R > Rs (c).
center at point B at ðx; y; cÞ or ðx; y; zÞ, respectively, which can be equal to 2L ¼ pRs or to its part, depending on the considered
point position and on R, as illustrated in Fig. 4c. For the sake of brevity the more detailed expressions for p1ðx; y; cÞ and
p2ðx; y:zÞ are listed in Appendix C. a is expressed in the following way:
aðtÞ ¼ 1� exp½�EbðtÞ � EfcðtÞ� ð27Þ

Similarly to the case of straight nanofibers, no assumption concerning the nanofiber orientation was required to derive

Eq. (27), and different ability to nucleate polymer crystallization by nanofibers of varying length can be accounted for as
for straight nanofibers by expressing EfcðtÞ as an appropriate sum or integral. It is worth noting that the above derived
equations, similarly to the case of straight nanofibers, contain R, which is equal to Gt for isothermal crystallization, whereas
to the integral of G over time for nonisothermal crystallization (Eq. (3)), and therefore these equations can be applied to both
processes.

For Ds ! 1 the integrals in Eqs. (26a) and (26b) vanish and Efc attains its maximum value. It appears that the first com-

ponent in Eq. (26a) is equal to 2pDf LR
2, hence for Ds ! 1 Eq. (26a) is equivalent to Eq. (19). Moreover, numerical calcula-

tions showed that for R > Rs maximum Efc calculated according to Eq. (26b) was smaller than Ef expressed by Eq. (19) by less
than five percent. It can be envisaged that the Avrami analysis of isothermal crystallization can yield a constant exponent
close to two for Ds ! 1 when the integrals vanish, and for large Df and Rs (or 2L), similarly to the nucleation on straight
nanofibers.
5. Conversion degree components

Based on Eqs. (17a) and (24), one can express the conversion rate, da/dt, in the form:
daðtÞ
dt

¼ exp½�EbðtÞ � Ef ðtÞ� dEbðtÞ
dt

þ exp½�EbðtÞ � Ef ðtÞ� dEf ðtÞ
dt

ð28Þ
with Eb and Ef given by Eqs. (6a), (6b) and (12b). It can be demonstrated, similarly to the case of crystallization in a confined
volume [35,36], where nucleation can occur inside a polymer and on the limiting surfaces, that the first and the second com-
ponent of Eq. (28) describe the contributions from spherulites nucleated in polymer bulk and on nanofibers, respectively.

Integration over time leads to the components of a originating from spherulites nucleated in polymer bulk, ab, and on
nanofibers, af :



abðtÞ ¼
Z t

0
exp½�EbðsÞ � Ef ðsÞ� dEbðsÞ

ds
ds ð29aÞ

af ðtÞ ¼
Z t

0
exp½�EbðsÞ � Ef ðsÞ� dEf ðsÞ

ds
ds ð29bÞ
Setting the upper limit of integration as 1 allows to calculate final volume fractions of respective populations of spher-
ulites. For instantaneous bulk nucleation Eb is given by Eq. (6a) and
dEbðtÞ
dt

¼ 4pDGðtÞR2 ð30aÞ
whereas for nucleation on straight nanofibers, with Ds ?1, Ef is given by Eq. (19), and
dEf ðtÞ
dt

¼ 4pDfGðtÞðR2 þ LRÞ ð30bÞ
In the case of Ds ! 1, one can calculate components originating from nucleation on nanofiber length and at its ends as
integrals over time of exp½�EbðtÞ � Ef ðtÞ� multiplied by 4pDGðtÞR2 and 4pDfGðtÞLR, respectively.

6. Computer simulation

To verify the analytical expressions, especially Eqs. (12), (13), (22), (24), (26), and (27), computer simulation was per-
formed using protocols developed previously [21,33]. The space coordinates of nanofibers centers, as well as those of nucle-
ation sites of spherulites nucleated in bulk and on nanofibers were generated by a pseudorandom number generator. To
avoid situation that each nanofiber will nucleate the same number of spherulites, all the centers were generated on a line
of length equal to the total length of all nanofibers, and then they were assigned to respective nanofibers, in proper distances
from nanofibers ends. The nanocomposites with nanofibers aligned in one direction and in three orthogonal directions were
simulated for comparison, as well as nanofibers in the form of half-circles. The sizes of simulated samples, in the form of
cubes, were adjusted to have at least 1000 spherulites. In order to determine the conversion degree, 104 sampling pseudo-
random points were generated, at distances from sample walls. The time of occlusion of each point by spherulites radially
growing at a constant rate was determined. For visualization of the resulting structures, boundary points between neighbor-
ing spherulites were calculated in selected planes of the cubes. Arbitrary length unit (a.l.u.), arbitrary volume unit (a.v.u.) and
arbitrary time unit (a.t.u.) were used. In all cases the constant spherulite growth rate was G ¼ 1 a.l.u/a.t.u.

7. Model predictions and computer simulation results

Figs. 5 and 6 show conversion degree curves and the Avrami plots, respectively, for nanocomposites with straight nano-
fibers 10 a.l.u. long, whereas crystallization half-time, th, and the Avrami exponent, n, values are listed in Table 1.

Fig. 5 evidences a very good agreement between the results of computer simulation and predictions based on the analyt-
ical equations - the symbols fit to the lines. Practically the same results were obtained for nanofibers aligned in the same
direction and for nanofibers aligned in three orthogonal directions, proving that orientation of nanofibers had no effect
on overall crystallization kinetics, as predicted theoretically.

Fig. 5 shows that regardless of the presence or absence of bulk nucleation, crystallization accelerated with increasing
nucleation density on fibers, Ds, and the nanofiber content, Df . However, when high values of Ds were reached, its further
increase had no visible effect; the curves for Ds ¼ 5 a.l.u.�1 superimposed on the curves obtained for Ds ! 1, that is for Ef

attaining its maximum value. Moreover, crystallization was faster for Ds ¼ 0:1 a.l.u.�1 and Df ¼ 0:005 a.v.u.�1 than for
Ds ¼ 0:5 a.l.u.�1 and Df ¼ 0:001 a.v.u.�1, despite the same number of nucleation sites, showing that the increase of Df had
a stronger effect on crystallization kinetics than the increase of Ds. This is because the spherulites nucleated on the same
nanofiber are in close vicinity, which enhances truncation upon impingement. For the same reason crystallization for bulk
nucleation with D ¼ 0:001 a.v.u.�1 in neat polymer is faster than in the case of nucleation occurring only on nanofibers, in the
absence of bulk nucleation, despite the same number of nucleation sites, 2LDfDs ¼ 0:001 a.v.u.�1. In general, the presence of
bulk nucleation accelerated crystallization compared to that in its absence but the effect diminished with increasing Df and
Ds. It is worth noting that consideration of crystallization in the absence of bulk nucleation is justified because strongly
nucleating nanofibers can exhibit activity at small undercoolings, where nucleation in neat polymer is negligibly weak.

Fig. 6 shows the Avrami plots for the data presented in Fig. 5. For small Ds the Avrami plots resemble straight lines with
the slopes, that is the exponent values, close to three. Increasing Ds resulted in a slight departure from linearity and a
decrease of the Avrami exponent, calculated for y-coordinate range of 2.97–1.10 (corresponding to 0.05 < a < 0.95), to
2.2–2.4. In the case of 10 a.l.u. long nanofibers the smallest exponent value was obtained for Ds ! 1 (that is for transcrys-
tallinity) and the larger Df . In the absence of bulk nucleation, for Ds ! 1 and Df ¼ 0:001 a.v.u.�1 the slope of plot increased
from 2.05 for a < 0:05 to 2.28 for 0:05 < a < 0:95. For Df ¼ 0:005 a.v.u.�1 the respective values were 2.03 and 2.18. It must be
noted, however, that data for small a (and also small 1� a) are usually excluded from analysis because of too large exper-
imental error [21,37]. Nevertheless, the increase of slope was caused by the component of Ef proportional to R3 (Eq. (19)) due



Fig. 5. Conversion degree vs. time for nanocomposites with different straight nanofiber contents, Df , and nucleation densities, Ds , on nanofibers 10 a.l.u.
long, in the absence or presence of instantaneous bulk nucleation with density D. Values of Ds per a.l.u., Df and D per a.v.u. indicated in the figure. Lines
represent analytical results, whereas filled and empty symbols denote results of computer simulation for nanofibers aligned in the same direction and in
three orthogonal directions, respectively.
to growth of spherulites nucleated at the nanofiber ends. In general, a change of Df should cause only a shift of the Avrami
plot parallel to y-axis. However, due to the shift, different portions of the Avrami plots can fall in the considered data range,
which can result in changes of the calculated exponent. This is illustrated on the example of the dash-dotted plot for
Df ¼ 0:15 a.v.u.�1 shown in Fig. 6, for which the exponent for 0:05 < a < 0:95 was 2.04. Fig. 6 and Table 1 demonstrate that
the presence of bulk nucleation can increase the Avrami exponent, but the effect diminishes with the increase of Ds and Df , as
it was predicted by Eqs. (20) and (21).

Fig. 7 compares the conversion degree curves for crystallization nucleated on nanofibers with length of 10 and 20 a.l.u.; th
and the Avrami exponent values are listed in Table 1. To maintain the same 2LDf value, Df values for the latter were
decreased twofold, from 0.001 to 0.0005 a.v.u.�1 and from 0.005 to 0.0025 a.v.u.�1. For the same 2LDf values the crystalliza-
tion nucleated on the longer nanofibers was slower, and the difference increased with increasing Ds. The difference in a
enlarged with time and was better visible after th. Thus, the increase of Df shortening the crystallization diminished the effect
of nanofiber length, as illustrated in Fig. 7. The reason of slower crystallization was again an increased probability of nucle-
ation of neighboring spherulites on the same nanofiber, in close vicinity, leading to enhanced truncation. For the same rea-
son, the Avrami exponent decreased slightly, as it is detailed in Table 1, and the departure from linearity diminished, as
shown in Fig. 8. In the case of transcrystallinity (Ds ! 1) and Df ¼ 0:0005 a.v.u.�1 the exponent values were 2.03 and
2.20 for a < 0:05 and 0:05 < a < 0:95, respectively, whereas the respective numbers for Df ¼ 0:0025 a.v.u.�1 were 2.02
and 2.11. The decrease of the Avrami exponent compared to that calculated for transcrystallization nucleated on shorter
fibers reflects the decreased effect of nanofiber ends, described by the term ð4p=3ÞDf R

3 in Eq. (21).
Fig. 9 shows time dependencies of conversion degree for crystallization nucleated on half-circle nanofibers, whereas th

and the Avrami exponent values are listed in Table 1. Symbols denoting results of computer simulation fit very well to



Fig. 6. The Avrami plots for nanocomposites with different straight nanofiber contents, Df , and nucleation densities, Ds , on nanofibers 10 a.l.u. long, in the
absence or presence of instantaneous bulk nucleation with density D. Values of Ds per a.l.u., Df and D per a.v.u. indicated in the figure. The dotted horizontal
lines indicate the range of the Avrami y-coordinate for conversion degree ranging from 0.05 to 0.95.
the lines drawn based on the expressions (26) and (27), confirming the correctness of the analytical model. It appears that
the differences between the conversion degree for crystallization nucleated on the curved and straight nanofibers of the
same length are insignificant, as it was already envisaged based on similarity of Ef and Efc for Ds ! 1. Moreover, the Avrami
exponent values are practically the same as for crystallization nucleated on straight nanofibers provided that L, Ds and Df

parameters are identical.
Fig. 10 illustrates the spherulitic structures in nanocomposites with nucleating nanofibers in the absence

(Fig. 10a, b, e, and f) and the presence (Fig. 10c and d) of bulk nucleation. The simulation was performed in 3D and the images
are sections through the 3D cubes. All the interspherulitic boundaries are planar and seen as straight line sections because of
instantaneous nucleation at the same time [38,39]. Dense nucleation on straight nanofibers (Fig. 10b, d, and e) led to forma-
tion of stacks of thin spherulites truncated by two boundaries parallel to each other and normal to nanofibers, which were
formed due to impingement with neighbors nucleated on the same nanofibers. The nanocomposite shown in Fig. 10b is com-
posed of such stacks and also of larger spherulites seen as polygons, which were nucleated on sites closest to nanofibers
ends, with only one boundary normal to the nanofiber, formed with a neighboring spherulite nucleated on the same
nanofiber. Those spherulites occupied 55% of sample volume. It supports the observation that the increase of Ds beyond a
certain value has no effect on overall crystallization kinetics, due to strong truncation by the neighbors, and that the effect
of nanofiber ends is of importance. In the case of weak nucleation on nanofibers (Fig. 10a) the stacks of sphelutites are
absent, although neghboring spherulites nucleated on the same nanofibers with boundaries normal to the nanofibers are still
visible.

The influence of bulk nucleation on the structure is illustrated in Fig. 10c and d. Fig. 10d clearly shows the presence of two
populations of spherulites: nucleated on nanofibers and nucleated in bulk. The latter, of polygonal shape, with the



Table 1
Crystallization half-time, th, and Avrami exponent, n, values for various nanofiber contents, Df , nucleation densities on nanofibers, Ds , in the absence or presence
of instantaneous bulk nucleation with density D. For calculation of the Avrami exponent conversion degree ranging from 0.05 to 0.95 was considered.

D (a.v.u.�1) Df (a.v.u.�1) 2L (a.l.u.) Ds (a.l.u.�1) th (a.t.u.) n Df (a.v.u.�1) 2L (a.l.u.) Ds (a.l.u.�1) th (a.t.u.) n

0.001 0.0 0 0.0 5.50 3.0 – – – – –

Straight nanofibers
0.001 0.001 10 0.1 4.53 2.9 0.005 10 0.1 3.18 2.9

0.5 4.16 2.9 0.5 2.26 2.6
1.0 3.75 2.7 1.0 2.04 2.5
5.0 3.57 2.6 5.0 1.88 2.2
1 3.40 2.4 1 1.85 2.2

0.0 0.001 10 0.1 6.03 2.9 0.005 10 0.1 3.43 2.9
0.5 4.37 2.6 0.5 2.32 2.6
1.0 4.08 2.4 1.0 2.09 2.4
5.0 3.86 2.3 5.0 1.91 2.2
1 3.82 2.3 1 1.88 2.2

0.0 0.0005 20 0.1 6.17 2.8 0.0025 20 0.1 3.46 2.8
0.5 4.59 2.4 0.5 2.36 2.5
1.0 4.35 2.3 1.0 2.14 2.3
5.0 4.19 2.2 5.0 2.00 2.1
1 4.16 2.2 1 1.98 2.1

Curved nanofibers
0.0 0.001 10 0.1 6.14 3.0 0.005 10 0.1 3.51 2.9

0.5 4.41 2.6 0.5 2.34 2.6
1.0 4.11 2.4 1.0 2.10 2.4
5.0 3.88 2.3 5.0 1.91 2.2
1 3.83 2.3 1 1.88 2.2

Fig. 7. Comparison of conversion degree vs. time for nanocomposites with different straight nanofiber contents, Df , and nucleation densities, Ds , on
nanofibers 10 and 20 a.l.u. long, in the absence of bulk nucleation (D ¼ 0). Values of Ds per a.l.u. and Df per a.v.u. indicated in the figure.
boundaries inclined at different angles to the nanofibers, separate the spherulitic stacks nucleated on the nanofibers. In the
case of weak nucleation on nanofibers, the two populations of spherulites are less distinct, as shown in Fig. 10c; the presence
of additional spherulites nucleated in bulk is mainly reflected in a decrease of spherulite sizes. Volume fractions of spheru-
lites nucleated in bulk were 56 and 31% (57 and 31% according to Eq. (29a)) for samples shown in Fig. 10c and d, respectively.
Interestingly, in the latter the volume fraction of spherulites nucleated closest to nanofiber ends was 36%.

Fig. 10e illustrates the spherulitic structure nucleated on the nanofibers aligned in three orthogonal directions. Positions
of the nanofibers normal to the figure plane are marked by dots. Although the overall crystallization kinetics does not depend
on the orientation of nanofibers, the spherulitic patterns shown in Fig. 10b and e differ markedly. In the latter, stacks of
spherulites nucleated on the nanofibers oriented in vertical and horizontal directions are seen, and also spherulites nucle-
ated on the nanofibers perpendicular to the figure plane, visible as polygons, similarly to spherulites nucleated at the sites
closest to nanofiber ends.



Fig. 8. The Avrami plots for nanocomposites with different straight nanofiber contents, Df , and nucleation densities, Ds , on nanofibers 20 a.l.u. long, in the
absence of bulk nucleation (D ¼ 0). Values of Ds per a.l.u. and Df per a.v.u. indicated in the figure.

Fig. 9. Conversion degree vs. time for nanocomposites with different half-circle nanofiber contents, Df , and nucleation densities, Ds , on nanofibers 10 a.l.u.
long, in the absence of bulk nucleation (D ¼ 0). Values of Ds per a.l.u. and Df per a.v.u. indicated in the figure.
Fig. 10f illustrates the structure composed of spherulites nucleated on half-circle nanofibers. Both the analytical model
and computer simulation demonstrated that the influence of the nanofiber shape on the overall crystallization kinetics
was insignificant. However, the structure shown in Fig. 10f differs markedly from those presented in Fig. 10b and e. The
stacks of spherulites nucleated on the same nanofibers are visible, limited by boundaries converging at common lines, pass-
ing through centers of half-circles, seen on the cross-section as points.

Although the model cases of nanocomposites with well oriented straight or half-circle nanofibers are idealized, similarly
to the case with nanofibers oriented in three directions, those examples demonstrate that crystallization with similar, or
even the same overall crystallization kinetics, can lead to very different spherulitic patterns.
8. Crystallization kinetics of polypropylene reinforced with poly(tetrafluoroethylene) nanofibers

It was shown recently that poly(tetrafluoroethylene), PTFE, nanofibers can be generated in situ by shearing of crystalline
PTFE inclusions during compounding with another molten polymer and hence a nanocomposite can be obtained [40,41].
Here, polypropylene, PP, (Malen-P B200, Basell Orlen Polyolefins) with MFI of 0.6 g/10 min and zero shear viscosity of
4.19 � 104 Pa s at 170 �C, was melted in a Brabender internal mixer (W50E, Brabender GmbH, Duisburg, Germany). Then PTFE



Fig. 10. Cross-sections, 50 a.l.u. � 50 a.l.u., of simulated 3D nanocomposites with nanofiber content Df of 0.001 a.v.u.�1: (a) – straight nanofibers aligned in
vertical direction, D ¼ 0, Ds ¼ 0:1 a.l.u.�1, (b) – straight nanofibers aligned in vertical direction, D ¼ 0, Ds ¼ 1 a.l.u.�1, (c) – straight nanofibers aligned in
vertical direction, D ¼ 0:001 a.v.u.�1, Ds ¼ 0:1 a.l.u.�1, (d) – straight nanofibers aligned in vertical direction, D ¼ 0:001 a.v.u.�1, Ds ¼ 1 a.l.u.�1, (e) – straight
nanofibers aligned in three orthogonal direction, horizontal, vertical and normal to the figure plane, D ¼ 0, Ds ¼ 1 a.l.u.�1, (f) – half-circle nanofibers parallel
to the figure plane with diameters aligned in vertical direction, D ¼ 0, Ds ¼ 1 a.l.u.�1.
powder (Teflon PTFE 7C, Tm of 346 �C, average grain size of 25 lm, by DuPont) was added to the molten PP in the amount of
5 wt.%. The PTFE powder was compounded with PP at 200 �C and 120 rpm for 15 min. Maximum shear rate during com-
pounding was 1150/s. Neat PP was processed at the similar conditions in order to obtain a material with the same
thermo-mechanical history as the nanocomposite with PTFE. Scanning electron microscopy, SEM, of cryo-fractured bars
of PP/PTFE nanocomposite indicated that PTFE powder grains were transformed to long nanofibers being 30–150 nm thick
(see Fig. 11).



Fig. 11. SEM image of cryo-fractured surface of PP/PTFE nanocomposite prepared in Brabender internal mixer operating at 200 �C and 120 rpm for 15 min.
Fig. 12 presents the Avrami plots for neat PP and PP/PTFE nanocomposite. Conversion degree, aðtÞ, was calculated on the
basis of differential scanning calorimetry, DSC (TA Q20, Thermal Analysis), thermograms recorded during isothermal crys-
tallization. PP and PP/PTFE nanocomposite were annealed at 220 �C for 3 min and cooled at 10 �C/min to crystallization tem-
perature of 128 �C and 145 �C, respectively two different temperatures were chosen because the nanocomposite crystallized
around 128 �C too fast to reach isothermal conditions, while at 145 �C crystallization of neat PP was too long.

In the case of neat PP crystallized isothermally at 128 �C, the Avrami analysis of data for a in the range from 0.05 to 0.95
yields the exponent value of 2.90 (�3) indicating spherulitic crystallization originating from instantaneous nuclei. This is
consistent with straight interspherulitic boundaries found in neat PP film.

Fig. 13 presents SEM (Jeol JSM-6000LA, Tokyo, Japan) microphotograph of free surface of 350 lm thick film of PP/PTFE
nanocomposite crystallized isothermally on a hot stage at 145 �C. The crystalline aggregates grew on PTFE nanofibers and
assumed elongated shapes, reflecting underlying nanofibers. The presence of PTFE nanofibers induced the change of shape
of growing polycrystalline aggregates from spherulitic to worm-like. In contrast to neat PP, the Avrami exponent value of
2.02 (�2) for PP/PTFE nanocomposite crystallized isothermally at 145 �C indicated dense instantaneous nucleation on
surfaces of PTFE nanofibers and rather low bulk nucleation density of PP as compared to the number of nuclei on PTFE
nanofibers.

It can be concluded that PTFE nanofibers accelerated the crystallization of PP with simultaneous elevation of its crystal-
lization temperature, changed the shape and the size of growing aggregates making them as long as PTFE nanofibers. The
presence of PTFE nanofibers in PP matrix affected the kinetics of isothermal crystallization. The comparison with the predic-
tion of the above outlined theory of crystallization kinetics led to the conclusion that the nucleation of PP crystals on PTFE
nanofibers was very dense resembling transcrystallinity and Eq. (21), with CðR;Ds; LÞ ! 0 for very long and densely nucle-
ating nanofibers, applies.
Fig. 12. The Avrami plots for isothermal crystallization of neat PP and PP/PTFE at 128 �C and 145 �C, respectively. Symbols - experimental data, lines – linear
regression; a from the range of 0.05–0.95. Time in min.



Fig. 13. SEM image of PP/PTFE nanocomposite film crystallized isothermally at 145 �C with free surface.

Fig. 14. TEM microphotographs of PA12 with (a) 0.67 wt.%, (b) 2 wt.%, (c) 4 wt.% of MWCNTs.

Fig. 15. The Avrami plots for neat PA12, and its nanocomposites with 0.67, 1.33 and 4 wt.% of MWCNTs isothermally crystallized in a DSC at 172 �C;
symbols - experimental data, lines – linear regression; a(t) from the range of 0.05–0.95. Time in min.



9. Crystallization kinetics of polyamide 12 reinforced with carbon nanotubes

The matrix, polyamide 12, PA12, used was Rilsan� AMNO PA12 injection grade from Arkema, France. Its Newtonian
viscosity is relatively low (150 Pa s at 220 �C). The temperatures of melting peak, Tm of 178 �C, and crystallization peak,
Tc of 158 �C, were measured by DSC. The multiwall carbon nanotubes, MWCNT, were provided by Arkema, in the form of
a CM1-20 Graphistrength� masterbatch containing 20 wt.% of MWCNTs dispersed in PA12. As produced, the MWCNTs had
between 5 and 15 walls, outer diameters in the range of 10–15 nm and a maximum aspect ratio of 1000:1. Composite
pellets with 0.67, 1.33, 2 and 4 wt.% of MWCNTs were first prepared by mixing the masterbatch with neat PA12 in a
Brabender Plasti-Corder twin-screw extruder. The three heating zones were set at 190, 210 and 220 �C from the hopper
to the nozzle. The screw rotation velocity was 50 rpm. The extrudate was stretched and cut in line with a Brabender
Pelletizer CAN-plus. The MWCNTs contents were checked by thermogravimetric analysis (TGA) under air flow, from 20
to 600 �C.

Isothermal crystallization of PA12 and PA12 nanocomposites was conducted in a DSC apparatus (TA Q20, Thermal Anal-
ysis). Samples of total mass of 6–8 mg were placed in aluminum pans, heated to 220 �C and cooled to 172 �C at a constant
rate of 10 �C/min under nitrogen flow. The dispersion of MWCNT was analyzed with a transmission electron microscope
(TEM), Tesla BS 500 (Tesla, Czech Republic), operating at the accelerating voltage of 90 kV. Samples for TEM examination,
in the form of ultra-thin sections 60 nm thick, were prepared by cryo-ultramicrotoming (PowerTome PC, Boeckeler, USA)
equipped with a 35o diamond knife (Diatome, Switzerland).

The dispersion of MWCNTs is illustrated in Fig. 14 showing the TEM micrographs for PA12/MWCNT systems with 0.67, 2
and 4 wt.% of MWCNT.

The degree of dispersion of MWCNTs was good, especially in the case of system with low content of the nanofiller
(0.67 wt.%). In the case of higher content of MWCNT some nanotubes are interconnected, which promotes the formation
of carbon nanotubes network.

The conversion degree, aðtÞ, was calculated on the basis of DSC thermograms recorded during isothermal crystallization.
In the case of neat PA12, isothermally crystallized at 172 �C, the Avrami analysis of data for aðtÞ in the range from 0.05 to

0.95 yields the exponent value of 3.49 indicating spherulitic growth with slightly prolonged nucleation events (not fully
instantaneous) (Fig. 15). However, for all the nanocomposites with MWCNTs the values of exponent were close to two, which
indicates the growth of the polymer transcrystalline zones on carbon nanotubes nucleated instantaneously. Therefore, the
presence of MWCNTs in PA12 matrix affects the kinetics of isothermal crystallization changing the slope of the Avrami plot.
Similarly to PP/PTFE nanocomposites the prediction of the outlined theory of crystallization kinetics led to the conclusion
that the nucleation of PA12 crystals on MWCNTs was very dense resembling transcrystallinity and the kinetics of crystalliza-
tion as described by Eq. (21) with CðR;Ds; LÞ ! 0 for very dense nucleation on nanotube surfaces and very long nanotubes
(aspect ratio 1000).
10. Conclusions

The model was developed describing the overall crystallization kinetics in nanofiber reinforced polymer nanocomposites.
The two approaches were applied to nanocomposites with straight nucleating nanofibers: the first one taking advantage of
the probability theory and the second one combining the extended volume approach and the probability theory. The second
approach was used also to describe the overall crystallization kinetics in nanocomposites with curved nanofibers, in the form
of half-circles. The results of analytical models were in good agreement with computer simulation. The derived mathemat-
ical formulas are in exponential forms suggesting the use of the Avrami logarithmic coordinates for detailed analysis of
experimental data. The presence of nucleating nanofibers accelerated the crystallization depending, however, on their con-
tent, length, and nucleation ability. The increased probability of nucleation in close vicinity, on the same nanofiber, enhanced
truncation and slowed down the crystallization. Due to that, crystallization nucleated on nanofibers was slower than nucle-
ated in bulk on the same number of sites, also an increase of nanofiber length decelerated crystallization. Interestingly, the
orientation of the nanofibers had no influence on overall crystallization kinetics, also the shape of nanofibers was found to
have an insignificant effect despite the strong influence on the spherulitic patterns. The Avrami exponent decreased with
increasing nanofiber content, their nucleation ability and length. The values close to two were calculated for nanocomposites
with strongly nucleated nanofibers.

The elaborated approach can be used also for nanofibers with length distribution. Moreover, it is applicable not only to
isothermal but also to nonisothermal conditions.

The prediction agreed well with the experimental results of examination of crystallization in polymer nanocomposites.
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Appendix A

For R 6 L (Fig. 1a):
CðR;Ds; LÞ ¼ 4p
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where U is given by Eq. (9c).
For L 6 R 6 2L (Fig. 1b):
CðR;Ds; LÞ ¼ ð2p=3Þð2R3 � 3R2Lþ L3Þ expð�2DsLÞ þ 4p
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where
W ¼ ½R2 � ðLþ zÞ2�1=2 ðA2cÞ

For R P 2L (Fig. 1c):
CðR;Ds; LÞ ¼ ð2p=3Þð2R3 � 3R2Lþ L3Þ expð�2DsLÞ þ 4p
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Z R�L

0

Z U

W
exp �Ds½L� zþ ðR2 � r2Þ1=2�

n o
rdrdz

�

þ
Z L

0

Z R

U
exp½�2DsðR2 � r2Þ1=2�rdrdzþ

Z LþR

R�L

Z U

0
expf�Ds½L� zþ ðR2 � r2Þ1=2�g

�
rdrdz ðA3bÞ
The first components in Eqs. (A2a), (A2b), (A3a) and (A3b) originate from integration over the spherical cup: 0 6 z 6 R� L
and 0 6 r 6 W . If the fiber center is located within this cup, the entire fiber length 2L is embedded in the sphere. Moreover
the same expression for CðR;Ds; LÞ is obtained for L 6 R 6 2L and for R P 2L. To verify correctness of integration numerical
integration was performed. The values of CðR;Ds; LÞ calculated based on Eqs. (A1)–(A3) and expressed by Eqs. (13a) and (13b)
for various values of R, L and Ds agreed with those obtained by numerical integration.

Appendix B

For R 6 L (Fig. 3a) S1 and S2 can be written in the form:
S1ðR;Ds;LÞ¼4p
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S2ðR;Ds; LÞ ¼ 4p
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where Rz is given by Eq. (22b).
For L 6 R 6 2L (Fig. 3b):
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where
H1 ¼ ½R2 � ð2L� zÞ2�1=2 ðA5bÞ

S2ðR;Ds; LÞ is given by Eq. (A4b).

For R P 2L (Fig. 3c):
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Appendix C

For a nanofiber in the shape of half-circle, the easiest way to calculate the length of nanofiber arc embedded in a sphere of
radius R around a certain point B, seems to be determining an angle corresponding to the arc included in a circular section of
the sphere in the nanofiber plane that is y ¼ 0, with the center at the point Bp, which is a projection of the point B on this

plane. For the point B located at the coordinate y the radius of this circle, Rp, is equal to ðR2 � y2Þ1=2 (Fig. 4b). Knowing the
distances from the center of the circle to the point O where the axis of the toroid crosses the plane y ¼ 0, and to the fiber
end, the latter required in the case of the points within the hemisphere, one can calculate the respective angles taking advan-
tage of the law of cosines. For the points within the hemisphere (Fig. 4b):
p2ðx; y; zÞ ¼ expð�DsRsuÞ ðA7aÞ

where for ðR2 � y2Þ1=2 6 Rs þ d : ðA7bÞ

u ¼ u1 �u2 for u1 þu2 6 p ðA7cÞ

u ¼ 2u1 � p for u1 þu2 P p ðA7dÞ

u1 ¼ arccos½ðx2 þ y2 þ z2 þ 2R2
s þ 2xRs � R2Þ=ð2RsdÞ� ðA7eÞ

u2 ¼ arccos½ðRs þ xÞ=d� ðA7fÞ

d ¼ ½ðxþ RsÞ2 þ z2�1=2 ðA7gÞ

If the condition (A7b) is not fulfilled u1 cannot be calculated because the circle with the radius Rp confines the circle with

the radius Rs, hence the entire nanofiber. Therefore,
u ¼ p for ðR2 � y2Þ1=2 > Rs þ d ðA7hÞ

For the points in the half-toroid, at c up to p/2 (Fig. 4b):
p1ðx; y; cÞ ¼ expð�DsRsuÞ ðA8aÞ



where for ðR2 � y2Þ1=2 6 2Rs þ x : ðA8bÞ

u ¼ 2u3 for u3 6 c ðA8cÞ

u ¼ u3 þ c for p� c P u3 P c ðA8dÞ

u ¼ p for u3 P p� c ðA8eÞ

u3 ¼ arccosfðx2 þ y2 þ 2R2
s þ 2xRs � R2Þ=½2RsðRs þ xÞ�g ðA8fÞ
If the condition (A8b) is not fulfilled, u3 cannot be determined since the circle of the radius Rp confines the circle of the
radius Rs. Hence:
u ¼ p for ðR2 � y2Þ1=2 > 2Rs þ x ðA8gÞ
References

[1] L. Li, C.Y. Li, Ch. Ni, L. Rong, B. Hsiao, Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon
nanotube contents, Polymer 48 (2007) 3452–3460.

[2] J.Y. Kim, H.S. Park, S.H. Kim, Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-
isothermal crystallization, Polymer 47 (2006) 1379–1389.

[3] M. Razavi-Nouri, M. Ghorbanzadeh-Ahangari, A. Fereidoon, M. Jahanshahi, Effect of carbon nanotubes content on crystallization kinetics and
morphology of polypropylene, Polym. Test. 28 (2009) 46–52.

[4] W. Hao, W. Yang, H. Cai, Y. Huang, Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites, Polym. Test. 29 (2010)
527–533.

[5] G.Z. Papageorgiou, D.S. Achilias, S. Nanaki, T. Beslikas, D. Bikiaris, PLA nanocomposites: Effect of filler type on non-isothermal crystallization,
Thermochim. Acta 511 (2010) 129–139.

[6] C.A. Mitchell, R. Krishnamoorti, Non-isothermal crystallization of in situ polymerized poly(e-caprolactone) functionalized-SWNT nanocomposites,
Polymer 46 (2005) 8796–8804.

[7] E.C. Chen, T.M. Wu, Isothermal crystallization kinetics and thermal behavior of poly(e-caprolactone)/multi-walled carbon nanotube composites,
Polym. Deg. Stab. 92 (2007) 1009–1015.

[8] X. Yuan, C. Li, G. Guan, X. Liu, Y. Mao, D. Zhang, Synthesis and characterization of poly(ethylene terephthalate)/attapulgite nanocomposites, J. Appl.
Polym. Sci. 103 (2007) 1279–1286.

[9] X. Chen, J. Xu, H. Lu, Y. Yang, Isothermal crystallization kinetics of poly(butylene terephthalate)/attapulgite nanocomposites, J. Polym. Sci., Part B:
Polym. Phys. 44 (2006) 2112–2121.

[10] G. Sun, G. Chen, Z. Liu, M. Chen, Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube
composites, Carbon 48 (2010) 1434–1440.

[11] R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites, Curr. Opin. Solid State Mater. Sci. 8 (2004) 31–37.
[12] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon

44 (2006) 1624–1652.
[13] K. Chrissafis, K.M. Paraskevopoulos, A. Jannakoudakis, T. Beslikas, D. Bikiaris, Oxidized multiwalled carbon nanotubes as effective reinforcement and

thermal stability agents of poly(lactic acid) ligaments, J. Appl. Polym. Sci. 118 (2010) 2712–2721.
[14] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites,

Compos. Sci. Technol. 63 (2003) 2223–2253.
[15] K. Bernland, P. Smith, Nucleating polymer crystallization with poly(tetrafluoroethylene) nanofibrils, J. Appl. Polym. Sci. 114 (2009) 281–287.
[16] E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, P. Pötschke, Carbon nanofibers for composite applications, Carbon 42 (2004) 1153–

1158.
[17] K. Lozano, E.V. Barrera, Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses, J. Appl. Polym. Sci. 79 (2001)

125–133.
[18] M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys. 7 (1939) 1103–1112.
[19] M. Avrami, Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8 (1940) 212–224.
[20] M. Avrami, Kinetics of phase change. III. Granulation, phase change and microstructure, J. Chem. Phys. 9 (1941) 177–184.
[21] E. Piorkowska, A. Galeski, J.M. Haudin, Critical assessment of overall crystallization theories and predictions, Prog. Polym. Sci. 31 (2006) 549–575.
[22] E. Piorkowska, A. Galeski, Overall crystallization kinetics, in: E. Piorkowska, G.C. Rutledge (Eds.), Handbook of Polymer Crystallization, Wiley, Hoboken,

NJ, 2013, pp. 215–235.
[23] U.R. Evans, The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals, Trans. Faraday Soc.

41 (1945) 365–375.
[24] N. Billon, J.M. Escleine, J.M. Haudin, Isothermal crystallization kinetics in a limited volume. A geometrical approach based on Evans’ theory, Colloid

Polym. Sci. 267 (1989) 668–680.
[25] T. Ozawa, Kinetics of non-isothermal crystallization, Polymer 12 (1971) 150–158.
[26] E. Piorkowska, A. Galeski, Growth sites in space and time, J. Phys. Chem. 89 (1985) 4700–4703.
[27] E. Piorkowska, Modeling of polymer crystallization in a temperature gradient, J. Appl. Polym. Sci. 86 (2002) 1351–1362.
[28] L. Jarecki, B. Misztal-Faraj, Kinetic model of polymer crystallization with the lamellar thickness distribution, Eur. Polym. J. 73 (2015) 175–190.
[29] E. Piorkowska, Crystallization in polymer composites and nanocomposites, in: E. Piorkowska, G.C. Rutledge (Eds.), Handbook of Polymer

Crystallization, Wiley, Hoboken, NJ, 2013, pp. 379–397.
[30] N.A. Mehl, L. Rebenfeld, Computer simulation of crystallization kinetics and morphology in fiber-reinforced thermoplastic composites. I. Two-

dimensional case, J. Polym. Sci., Part B: Polym. Phys. 31 (1993) 1677–1686.
[31] N.A. Mehl, L. Rebenfeld, Computer simulation of crystallization kinetics and morphology in fiber-reinforced thermoplastic composites. II. Three-

dimensional case, J. Polym. Sci., Part B: Polym. Phys. 31 (1993) 1687–1693.
[32] T.H. Krause, G. Kalinka, C. Auer, G. Hinrichsen, Computer simulation of crystallization kinetics in fiber-reinforced composites, J. Appl. Polym. Sci. 51

(1994) 399–406.
[33] E. Piorkowska, Modeling of crystallization kinetics in fiber reinforced composites, Macromol. Symp. 169 (2001) 143–148.
[34] A. Benard, S.G. Advani, An analytical model for spherulitic growth in fiber-reinforced polymers, J. Appl. Polym. Sci. 70 (1998) 1677–1687.

http://refhub.elsevier.com/S0014-3057(16)30422-0/h0005
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0005
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0010
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0010
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0015
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0015
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0020
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0020
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0025
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0025
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0030
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0030
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0035
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0035
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0040
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0040
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0045
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0045
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0050
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0050
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0055
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0060
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0060
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0065
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0065
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0070
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0070
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0075
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0080
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0080
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0085
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0085
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0090
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0095
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0100
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0105
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0110
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0110
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0110
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0110
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0110
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0115
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0115
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0120
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0120
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0125
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0130
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0135
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0140
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0145
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0145
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0145
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0145
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0145
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0150
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0150
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0155
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0155
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0160
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0160
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0165
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0170


[35] E. Piorkowska, Nonisothermal crystallization of polymers in samples of finite dimensions – 1. Background of the mathematical description of
spherulitic pattern formation, Colloid Polym. Sci. 275 (1997) 1035–1045.

[36] E. Piorkowska, Nonisothermal crystallization of polymers in samples of finite dimensions – 2. Description of spherulitic pattern formation, Colloid
Polym. Sci. 275 (1997) 1046–1059.

[37] A.T. Lorenzo, M.L. Arnal, J. Albuerne, A.J. Muller, DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to
fit the data: Guidelines to avoid common problems, Polym. Test. 26 (2007) 222–231.

[38] T. Pakula, A. Galeski, E. Piorkowska, M. Kryszewski, Method of determining the kinetics of spherulite primary nucleation from the truncation of
spherulites, Polym. Bull. 1 (1979) 275–279.

[39] A. Galeski, E. Piorkowska, Method of determining the kinetics of spherulite primary nucleation from the spherulite shapes in bulk samples, Polym. Bull.
2 (1980) 1–6.

[40] K. Jurczuk, A. Galeski, E. Piorkowska, All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding, Polymer 54
(2013) 4617–4628.

[41] K. Jurczuk, A. Galeski, E. Piorkowska, Strain hardening of molten thermoplastic polymers reinforced with poly(tetrafluoroethylene) nanofibers, J. Rheol.
58 (2014) 589–605.

http://refhub.elsevier.com/S0014-3057(16)30422-0/h0175
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0175
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0180
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0180
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0185
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0185
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0190
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0190
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0195
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0195
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0200
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0200
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0205
http://refhub.elsevier.com/S0014-3057(16)30422-0/h0205

	Crystallization kinetics of polymer fibrous nanocomposites
	1 Introduction
	2 Basis of the theory
	3 Straight nanofibers
	3.1 Probabilistic approach
	3.2 Extended volume approach

	4 Curved nanofibers
	5 Conversion degree components
	6 Computer simulation
	7 Model predictions and computer simulation results
	8 Crystallization kinetics of polypropylene reinforced with poly(tetrafluoroethylene) nanofibers
	9 Crystallization kinetics of polyamide 12 reinforced with carbon nanotubes
	10 Conclusions
	Acknowledgement
	Appendix A
	Appendix B
	Appendix C
	References




