
HAL Id: hal-00462116
https://hal.science/hal-00462116

Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified model for adhesive interfaces with damage,
viscosity and friction

Gianpietro del Piero, Michel Raous

To cite this version:
Gianpietro del Piero, Michel Raous. A unified model for adhesive interfaces with damage, viscosity
and friction. European Journal of Mechanics - A/Solids, 2010, 29 (4), pp.496-507. �hal-00462116�

https://hal.science/hal-00462116
https://hal.archives-ouvertes.fr


 1 

 
 
 

A unified model for adhesive interfaces  
with damage, viscosity, and friction  

 
Gianpietro Del Piero 

Dipartimento di Ingegneria, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy 
dlpgpt@unife.it 

 

Michel Raous 
Laboratoire de Mécanique et d’Acoustique, CNRS, 31 Chemin Joseph Aiguier 13402, Marseille cedex 20, France 

raous@lma.cnrs-mrs.fr 
(Corresponding Author. Phone: 0033 491 16 40 53, Fax: 0033 491 16 44 81) 

 
Abstract 
A general framework for models describing adhesive contact between rigid bodies is proposed. The intensity of adhesion is 
supposed to decrease under the action of prescribed tangential and normal relative displacements. The reduction is attributed 
to progressive damage, and comes with energy dissipation. Additional dissipation due to viscosity and friction is also taken 
into account. The response of the interface is described by a single state variable. It is determined by general laws expressing 
a mechanical version of the first two laws of thermodynamics, combined with a set of phenomenological assumptions.   

Key words: Adhesive contact, cohesive interface. 

1 – Introduction   

During the last few decades, several models for cohesive interfaces have been developed. Many papers deal with 
cohesive zone models in fracture mechanics (Dugdale, 1960; Barenblatt, 1962; Needleman, 1987, 1990, 1992; 
Tvergaard, 1990; Tvergaard and Hutchinson, 1992, 1996; Xu and Needleman, 1994; Costanzo and Walton, 
1997; Needleman and Rosakis, 1999; Monerie, 2000; Péralès, 2005; Brinckmann and Siegmund, 2008). Other 
models are devoted to specific modes of interface decohesion in composite materials, such as delamination 
(Allix et al, 1995), peeling (Nguyen and Levy, 2009), or fiber debonding (Michel and Suquet, 1994; Raous et al, 
1999; Monerie, 2000; Raous and Monerie, 2002). In Geophysics, the two main classes of interface models for 
studying fault nucleation, “rate and state” and “slip weakening” laws (Campillo and Ionescu, 1997; Rice and 
Ruina, 1983; Uenishi and Rice, 2003), can also be considered among the cohesive zone models. Finally, there is 
a number of models dealing in a more general way with adhesive interfaces (Frémond, 1987, 1988; Raous, 
1999; Raous et al, 1999; Chaboche et al, 2001; Raous and Monerie, 2002; Talon and Curnier, 2003; Freddi and 
Frémond, 2006). This list is by no means exhaustive; other references can be found in the papers cited above.  

In most theories, the loss of cohesion is described by a damage variable, called intensity of adhesion by 
Frémond (1987, 1988). This variable is defined on the interface, considered as a material boundary with a null 
thickness. Initially, adhesion was studied only under monotonic loading conditions, so that the problem of the 
reversibility of the material response was not taken into consideration. Only after the 1990’s, with the study of 
cyclic behavior, it became standard to consider damage as irreversible. An exception to this generally accepted 
trend is the model of adhesion with healing recently proposed by Raous et al (2006), in which adhesion is 
supposed to recover, partially or totally, when contact is restored after total separation. 

In the contributions cited above, different assumptions have been made regarding the main characteristics of 
the interface behavior: 

-  for normal relative displacements, the non-interpenetration condition has been enforced either by unilateral 
conditions, or by compliance or penalization devices,  

-  for tangential relative displacements, either frictional or frictionless contact has been considered; in frictional 
models, the transition between the initial regime of full adhesion and the final purely frictional regime has 
been assumed to be either progressive or brutal, 

-  some models consider rate dependent effects such as viscosity, while other ones are rate independent,   

- the coupling between normal and tangential effects is often underestimated. This is mainly because in most 
applications one of them is dominating.   
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The aim of the present paper is to provide a relatively general theoretical framework for adhesive contact. In our 
model the loss of adhesion is identified with irreversible damage, and the intensity of damage is assumed to 
depend on the coupled effect of normal and tangential deformation. Moreover, we assume unilateral conditions 
for normal displacements and Coulomb friction for tangential displacements. We also assume that the intensity 
of friction grows progressively with damage, and that the dissipation includes a part due to viscosity. 

The proposed framework is based on the definition of a small number of fundamental objects: 

• general laws, typically, energy conservation and dissipation principle, that is, mechanical versions of the 
first two laws of thermodynamics, 

• a set of state variables, that is, an array of independent variables which fully determine the response to all 
possible deformation  processes, 

• a set of elastic potentials and dissipation potentials, which are functions of state in terms of which the 
general laws take specific forms, 

• a set of constitutive assumptions.  

The choice of the state variables, of the potentials, and of the constitutive equations is clearly influenced by the 
phenomenological features of the interface. It is at this level that specific microstructural schemes or failure 
mechanisms enter the play. We proceed to our construction systematically throughout Section 2. In Subsection 
2.1 we start from the simplest case of a purely normal deformation with adhesion, in which adhesion is assumed 
to decrease progressively with increasing damage. Then we gradually enrich the initial scheme by introducing 
viscous dissipation in Subsection 2.2, and tangential deformation in Subsection 2.3. Finally, in Subsection 2.5 
we discuss the case of coupled normal and tangential deformation in the presence of damage, viscosity, and 
friction.  

The model is based on a single state variable which, together with the normal and tangential relative 
displacements at the interface, defines all elastic and dissipation potentials. The state variable measures the 
current intensity of damage, and is strictly related to the intensity of adhesion introduced by Frémond (1987, 
1988). The choice of a single state variable reflects the idea that the intensity of damage is determined by the 
coupled effects of normal and tangential loading. 

In the case of purely normal deformation, the basic experimental information that we assume to be known is 
the loading curve. This is the force-displacement relation in a monotonic deformation process starting from the 
virgin state. In the case of coupled normal and tangential deformation we show that, interestingly enough, the 
constitutive parameters are not determined by two separate loading curves, one for the normal and one for the 
tangential deformation, but by a single curve corresponding to an appropriate diagonal experiment.  

Usually the power equation, which comes from time differentiation of the equation of energy conservation, 
is sufficient to determine the evolution of the state variable. However, there are situations in which the power 
equation is identically satisfied. Typically this is the case when dissipation due to damage is present, and viscous 
dissipation is neglected. In such situations, the evolution of the state variable is determined by the subsequent 
derivatives of the power equation. In the presence of physical constraints expressed by inequalities, for example, 
non-interpenetration, different responses at loading and unloading are obtained.  

The efficiency of the theoretical scheme is tested on a specific process involving both normal and tangential 
deformations. This is done in Subsection 2.4 in the case of dissipation due to damage, and in Subsection 2.5 for 
dissipation due to damage, viscosity and friction. The response of the interface is determined qualitatively, 
without recourse to a numerical code, and the results are quite realistic. In the final Section 3 we show that, by 
an appropriate choice of the potentials and of the constitutive equations, the RCCM model developed in (Raous 
et al, 1999; Raous and Monerie, 2002), fits the proposed general scheme.  

The RCCM model has been applied to more general situations, such as 2D and 3D deformable bodies 
instead of 2D rigid bodies (Raous et al, 1999; Raous and Monerie, 2002). Similar generalizations can be made 
for the model presented here. We do not discuss this possibility, since our effort is rather directed to the 
construction of a systematic model starting from a minimal number of general assumptions. 

2.  Construction of a general model for adhesive interfaces  

Consider two rigid bodies separated by a plane material interface of negligible thickness. We take u and v to be 
the normal and tangential components, respectively, of the relative displacement of the surfaces of the two 
bodies. We also take σ and τ  to be the normal and tangential components of the force transmitted across the 
interface. The restriction 

            u ≥  0                                                                              (1) 
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is imposed to prevent interpenetration. We assume that a state of the interface is defined by the triplet (u, v, α), 
where α is a state variable measuring the current level of damage. Our purpose is to determine the evolution       
t �α(t) of α in a deformation process t �(u(t), v(t)) starting from a given initial state α(0) = α0. The response 
curves  (σ, u) and (τ, v) then follow from the assumed constitutive equations. 

We construct our model by steps, beginning from the case of purely normal loading, in which the tangential 
displacement and the tangential force are absent. We initially consider the simplest case in which the only 
source of dissipation is the damage due to the decrease in the adhesion intensity, and only later we will take into 
account the additional sources of dissipation provided by viscosity and friction. 

2.1. Adhesion with purely normal damage  

Consider an interface in which the damage is purely normal. In this case it is sufficient to prescribe a normal 
displacement u, determining a force σ  normal to the contact surface. A deformation process then reduces to the 
function t � u(t). We are interested in the following type of response: 

(i) there is a function f which determines the force σ(t)  = f(u(t)) at first loading, that is, in a monotonic non-
decreasing process  t � u(t) from the virgin state (u(0) ,α(0)) = (0, 0).   

(ii) at unloading, σ  decreases linearly down to the origin,  

(iii) during the subsequent reloading process the unloading line is crossed backwards, and when the loading 
curve σ = f (u) is reached again, the reloading process continues along that curve,  

(iv) there is a critical value ur of u such that, after this value has been reached, the force takes permanently the 
value σ = 0, 

(v) when u = 0, a compressive force σ  of arbitrary intensity can be transmitted across the surface.    

We assume that the function f is defined for all u ≥ 0, positive in the open interval (0, ur) and null outside, and 
that it has the general shape shown in Fig. 1a. The laws assumed in the papers mentioned in the Introduction all 
have this general shape. Its restriction to (0, ur) is assumed to be star-shaped with respect to the origin. That is, 
every line from the origin has at most one intersection with this curve. Consequently, the function 

g(u) := 
u
uf )(                                                                           (2) 

is strictly decreasing for u < ur and is identically zero for u ≥ ur. The function g measures the current stiffness of 
the interface, while the critical value ur corresponds to complete rupture of the interfacial bonds.  
 

  
 
 
 
 
 
 
 
 
 
 
       

Figure 1. Adhesion with damage under normal loading. Response to a deformation process of loading-
unloading starting from the origin, represented in the force-displacement plane (a), and in the state space (b).  

There are only two types of pairs (σ, u) which are admissible for this type of response, in the sense that they 
can be reached in a deformation process t � u(t) starting from the origin: 

−  those with 0 ≤ u < ur and 0 ≤ σ  ≤ f(u),  

−  those with u ≥ ur and σ = 0.  

Though the behavior of the interface, as defined by items (i)-(v) above, is fully described in terms of the 
variables σ  and u, in view of subsequent developments we find it convenient to introduce a state variable α, 
defined over the admissible pairs (σ, u) in the following way:  

(a)                                                                     (b) 
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Notice the indeterminacy of α for u = 0, while, by the assumed monotonicity of g, the equation g(α) = σ / u 
defines α  unambiguously for all u in (0, ur). Conversely, every pair (σ, α) with  

 σ  <  f(α)   if  α < ur ,       σ = 0    if  α ≥  ur , 

defines one and only one pair (σ, u). 
According to the definition given for α, the loading curve is made of points (σ, u) with u = α and σ = f(α). 

For points (σ, u) not on the loading curve, α is the abscissa of the intersection of the loading curve with the line 
joining the point (σ, u) with the origin. The inequality 

α  ≥  u                                                                                    (4) 
holds at all points (σ, u) with u in (0, ur). 

A pair (u, α) is a state of the interface. A state is admissible if the corresponding pair (σ, u) is admissible. 
The set of all admissible states 

Σ  =  { (u, α)   |   ur ≥ α  ≥  u  ≥ 0 }   ∪   { (u, α)   |  α = ur ,  u ≥ ur }  ,                               (5) 

is the state space.  
In Fig.1a, the response to first loading up to α followed by unloading up to u is shown by a dotted line in the 

(σ, u) plane. From the figure it is clear that, before complete rupture is achieved, α represents the largest 
displacement reached in a deformation process up to the current instant. The state space is represented in Fig.1b, 
where the dotted line shows the trajectory in the state space corresponding to the trajectory in the force-
displacement plane (σ, u). The dotted line follows the α = u line during the loading regime, and a horizontal line 
during the subsequent unloading regime.  

In what follows the response described above in items (i)-(v) is described mathematically by specifying the 
evolution law t �α(t) for the state variable. To do this we use the elastic potential (6), the dissipation potential 
(8), the general laws (10), (11), and the constitutive equation (19) below. This approach may look formal and of 
little use. In fact, its importance relies on fixing a systematic procedure, to be applied later to far more general 
situations.  

We start from the observation that, in the response described above, the area denoted by Ψ in Fig. 1a 
represents recoverable work, since this area vanishes when unloading proceeds up to the origin. Moreover, the 
area denoted by ∆ represents an irreversibly lost work, since no point in this area is accessible from the point 
(u(t), α(t)). Accordingly, for any state (u,α) we take the area Ψ to define the elastic strain energy 

 Ψ(u,α) = 2
1 g(α) u2 ,                                                                 (6) 

and we take the area ∆ to define the dissipated work 

 ∆(α)  =  �
α

0

)( dssf  − 2
1 g(α) α 2  .                                                         (7) 

This is the work spent in a loading-unloading cyclic process from u = 0 to u = α and back. It can be deduced 
from the dissipation potential 

Φd(α, )α�   =  − 2
1  g'(α)α 2 α� .                                                           (8) 

Indeed, the dissipation power associated with Φd 

Dd(α, )α�   = α� α�∂
∂ ),(d αα �Φ  =  − 2

1 g'(α) α 2 α� ,                                           (9) 

coincides with the time derivative )(∆ α� of ∆(α). We note that this coincidence is a characteristics of rate 
independent materials. Indeed, the response defined above is insensitive to time rescaling. Note also that the 
derivative of Φd with respect to α�  is the generalized force associated with the generalized velocity α� , see e.g. 
(Halphen and Nguyen 1975). 

In any process  t � u(t), the work performed in a time interval (t1, t2) is equal to the sum of the changes in the 
energy and the dissipation over the same interval: 

)()()()(),( 121221 ttttttW ∆−∆+Ψ−Ψ= .                                                  (10) 

This equation expresses the conservation of energy, in the absence of applied loads and when inertia effects are 
negligible. This equation and the dissipation inequality  

Dd(α, )α�  ≥  0 ,                                                                       (11) 
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which is the purely mechanical version of the Clausius-Duhem inequality, see e.g. (Truesdell & Noll 1965, Sect. 
79), are the mechanical counterparts of the first two laws of thermodynamics. The inequality is satisfied if and 
only if 

α�  ≥  0 .                                                                           (12) 

Indeed, if α > 0, the inequalityα� ≥ 0 follows from the negativeness of g'(α). If α = 0, the same inequality 
follows from the fact that α  cannot decrease, because it cannot take negative values. 

By time differentiation of (10) we obtain the power equation  

)()()( tttP ∆+Ψ= �� ,                                                                   (13) 

which is therefore a necessary condition for energy conservation. In the present model, the external power is  

P(t) = σ(t) )(tu�  ,                                                                 (14) 
the time derivative of  Ψ is  

Ψ� (u,α)  =  2
1 g'(α) u2 α� + g(α) u u� ,                                (15) 

and the time derivative of  ∆  is given by (9). With Ψ, ∆, P as in (6), (7), (14), the power equation becomes  

αααασ �� ))(('))(( 22
2
1 uguug −+− = 0 .                                                   (16)    

Due to the restrictions on the sign of each factor, the term ααα �))((' 22 ug −  is non-positive. Then, one has  

uug �))(( ασ − ≥ 0                                                                      (17) 

for any u� . In particular, if u > 0, the sign of u�  is free, and one has 

 σ  =  g(α) u  ≥  0         if   u > 0 .                                                          (18) 

In this way, the relation (3) between σ, α, and u when 0 < u < ur has been re-obtained. At u = 0, one is free of 
choosing any constitutive relation compatible with inequality (17). In view of the requirement (v) about the 
unilateral contact, we introduce the decomposition σ  = σ +− σ −, with 

                                                      σ + =  max {σ , 0 } ,      σ  − =  max {−σ, 0 } , 

and for σ + we take the constitutive equation 
ug )(ασ =+ .                                                                        (19) 

For σ − we observe that, when σ < 0 and u = 0, inequality (17) reduces to u�−−σ ≥ 0. Because u� ≥ 0 by (1) and         
σ − ≥ 0 by its very definition, it must be u�−σ = 0. In this way, the Signorini unilateral contact law   

0,0,0 =≥≥ −− uu σσ ,                                                            (20) 

is obtained. In particular, this law tells us that σ  −= 0 for all u > 0. When u = 0 and u� > 0, it follows from (17) 
that σ ≥ 0, and therefore σ  −= 0. This leads to the unilateral contact law for the velocities 

0,0,0 =≥≥ −− uu �� σσ       if  u = 0 .                                              (21) 

The two laws together tell us that σ  − is non-zero only if  u = u� = 0.  
From equation (19) we have that 0)( =− ug ασ when σ ≥ 0, and from (21) we have that u� = 0 when σ < 0. 

Hence, the equality uug �))(( ασ − = 0 holds in all cases. The power equation (16) then reduces to  

g′(α) )( 22 u−α α�  =  0 .                                                             (22) 

To determine the evolution law for α, we partition the state space into the four subsets listed below, and we 
determine separately the evolution of α in each subset.  

(i)  In the subset {0 ≤ u < α  < ur}, both g′(α) and (α2 −u2) are different from zero. Therefore, equation (22) 
gives α� = 0. The interface evolves according to the linear elastic law σ = g(α) u, with constant stiffness 
g(α).   

(ii)  In the subset {0 < u = α  < ur}, equation (22) is satisfied identically. A necessary condition for energy 
conservation is then that the second time derivative of equation (10), that is, the first time derivative of 
(16), be zero: 

 ( uug �))(( ασ − )· αα �)('(2
1 g+ )· )( 22 u−α + αααα ��� ))((' uug −  =  0 ,                     (23) 

and since ug )(ασ = and g′(α) < 0 at both the current and  the following instants, this equation reduces to 
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  0)( =− αα ��� u .                                                                    (24) 

For u� ≤ 0, condition α� ≥ 0 implies α� = 0. If u� > 0, from the observation that α = u at the current instant 
and α ≥ u at all instants implies α� ≥ u� , we deduce that α� = u� .  

(iii)  At the point {0 = u = α } equations (22) and (24) are satisfied identically, and the vanishing of the next 
time derivative of the energy is required . By differentiating equation (23) at α = u = 0, one obtains 

0)( 22 =− αα ��� u  ,                                                                 (25) 

and because α = u = 0  implies α� ≥ u� , it follows that α� = u� .   

(iv)  Finally, in the subset {α  = ur} α� is zero, because α  cannot decrease because of the dissipation inequality 
α� ≥ 0, and cannot increase because it cannot take values greater than  ur. 

The above conclusions can be collected in the formula 

α�  =  
�
�
� ><=

,otherwise0
,0 andif uuuu r �� α                                                     (26) 

which specifies the evolution of α in all possible cases. This is an evolution law of the same type as the Drucker-
Prager law in plasticity. We have shown that this evolution law is determined by the assumptions u ≥ 0 and        
u ≤ α ≤ ur, the general laws (10), (11), the choices (6) for the elastic potential and (8) for the dissipation 
potential, and the constitutive assumption (19). 

2.2. Adhesion with purely normal damage and viscosity  

In the presence of viscous dissipation, the points of the (σ, u) plane located above the loading curve become 
admissible. Then the restriction u ≤ α is removed, and the state space becomes  

Σ  =  { (u, α)   |   u  ≥ 0 ,    0 ≤ α ≤ ur  } .                                                  (27) 

A consequence of this enlargement of the state space is that the state variable α is no longer identified with the 
largest displacement u reached before the current instant.  

For the strain energy we keep the expression (6), and for the dissipation potential due to damage we keep the 
expression (8). To it, we add the potential of the viscous dissipation  

Φv(α, )α�   =  4
1 h(α) 2α� ,                                                                 (28) 

with h(α) > 0. With this potential is associated the dissipation power  

Dv(α, )α�  =  α�∂
∂

vΦ (α, )α� α�  = 2
1 h(α) 2α� .                                                 (29) 

The total dissipation power is then 
D  =  Dd + Dv ,                                                                          (30) 

with Dd as in (9). Notice that both contributions are governed by the same state variable.  
The dissipation inequality Dd ≥ 0 still yields α� ≥ 0, and the power equation (16) now has an extra term due 

to viscous dissipation:  
αααασ �� ))(('))(( 22

2
1 uguug −+− − 2

1 h(α) 2α�   =  0 .                                     (31) 

We keep the constitutive equation (19), which leads to the unilateral contact conditions (20). Then the power 
equation reduces to  

0)())((' 222 =−− ααααα �� hug .                                                   (32) 

Let us exclude the trivial solution of α� identically zero, which corresponds to a non-dissipative response. Then 
we determine separately the evolution of α in the three following subsets of the state space: 

 (i)   In the subset {α ≤ u, 0 ≤ α  < ur}, the differential equation 

 )(
)(
)(' 22 u

h
g −= αα

αα�                                                                  (33) 

holds. Indeed, the condition α� ≥ 0 is satisfied because g′(α) / h(α) < 0 and α 2 ≤  u2. Moreover, there is 
dissipation,α� > 0, only if α 2 <  u2.  
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(ii)   In the subset {u < α, 0 ≤ α  < ur}, one has h(α) 2α� = ααα �))((' 22 ug − ≤ 0, with h(α) > 0. Then it must 
beα� = 0.  

(iii)  In the subset {α = ur} one hasα� = 0, because α  cannot decrease by the dissipation inequality α� ≥ 0, and 
cannot increase because it cannot take values greater than  ur. 

In conclusion, the evolution law is  

           α�  =  
��

�
�

� <≤<−−

.otherwise0

,0,if)(
)(
)(' 22

ruuu
h
g αααα

α
                                               (34) 

This law has been obtained with the same assumptions made in the non-viscous case, except that the assumption 
u ≤ α has been removed, a viscous dissipation potential has been added, and the trivial case of α� identically 
zero has been excluded. 

The dotted line in Fig.2a is the response curve for the cyclic process shown in Fig. 2c, starting from the 
initial state (u(0),α(0)) = (0,α 0). In any response curve, the slope g(α) of the line joining the origin to the point   
(σ, u) cannot increase in time. Indeed, its time derivative g′(α)α� is non-positive. Therefore, just like in the non-
viscous case, the points located above the line σ = g(α) u are not accessible from the point (σ, u).  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2. Adhesion with damage and viscosity. Response curve in the (σ , u) plane, (a), and 
 in the state space, (b), for the cyclic process shown in (c), under the initial condition α(0) = α0 . 

 
Consider a point (σ, u) located above the loading curve σ = f(u). For any such point, u is greater than α. Then 

for any response curve crossing this point, by differentiation of (18) one gets   

 ugu
h

ug
ugugug ����� )()(

)(
)('

)()(')( 22
2

ααα
ααααασ ≤−−=+=  .                              (35) 

This inequality shows that the slope u�� /σ of the curve is never greater than the current elastic modulus g(α) at 
loading ( u� > 0), and is always greater than the same modulus at unloading ( u� ≤ 0). Consequently, every 
response curve located above the curve σ = f(u) is star-shaped with respect to the origin. If, as in the case shown 
in the figure, there are several such curves, their union is star-shaped with respect to the origin as well.  

The figure also shows the dissipation associated with the given process: the dissipation due to damage is 
given by the area ∆d, and the dissipation due to viscosity is given by the area ∆v. While ∆d is a function of the 
current state as in the non-viscous case, ∆v depends on the velocity u� .  

The state space Σ is the disjoint union of the two regions   

Σe = {(u,α)∈Σ  |  u < α, 0 ≤ α ≤ ur} ,       Σd = {(u,α)∈Σ  | α ≤ u,  0 ≤ α ≤ ur} .                            (36)   

As in the non-viscous case, Σe is the region of the non-dissipative processes, α� = 0. The dissipative processes,  
(α� > 0), which in the non-viscous case were confined to the line u =α , now spread over the whole region Σd. 
The dotted curves in Fig. 2b are the counterparts of the response curves in Fig. 2a. By the evolution law (34),  in 
the region Σd the slope dα /du = α� / u�  increases with the distance (u2 −α2) from the region Σe, and is inversely 
proportional to the loading rate. In the limit case u� → +∞ the slope is zero; this means that there is no 
dissipation in infinitely fast processes. In the other limit case u� → 0 the slope is +∞. The corresponding slopes 
in the (σ, u) plane can be deduced from equation (35). They are: u�� /σ = g(α) when u� → +∞, and u�� /σ = −∞ 
when u� → 0. The latter case describes the stress relaxation which occurs at fixed deformation. 

      (a)                                             (c)                                                    (b) 
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2.3.  Adhesion with normal and tangential damage   

In the presence of tangential forces τ  and of tangential displacements v we keep a single state variable α, and we 
define a state of the interface to be the triplet (u, v, α). For u we keep the non-interpenetration condition u ≥ 0, 
and for α we keep the restrictions 0 ≤ α ≤ αr, where αr is the critical value which determines the complete 
rupture of the interface.  

The normal response σ  = fN(u) and the tangential response τ = fT(ν) of the interface are described by two 
constitutive functions, fN and fT . We assume that  fN  is defined over the non-negative u, and that it is positive in    
(0,αr) and null outside. The function  fT is defined over the whole real line and is odd, fT(−ν) = − fT(ν), positive in 
(0,αr), and null outside (−αr,αr). We also assume that the restrictions of  fN and fT  to (0,αr) are star-shaped with 
respect to the origin, so that the functions  

gN(α) := α
α )(Nf  ,          gT(α) := α

α )(Tf  ,                                                  (37) 

are strictly decreasing when 0 ≤ α < αr.  
The strain energy is taken to be the sum of a normal and a tangential part 

Ψ(u, v, α) = 2
1 gN(α) u2 + 2

1 gT(α)ν 2 ,                                                       (38) 

and the same holds for the dissipation potential 

Φd(α, )α�   =  − 2
1 (g'N(α) + g′T(α)) α 2α� .                                                    (39) 

The latter corresponds to the dissipated work 

 ∆(α)  =  � +
α

0

))()(( dssfsf TN  − 2
1 (gN(α) + gT(α))α 2  .                                           (40) 

and to the dissipation power  
Dd(α)    =  )(α∆�   =  − 2

1 (g′N(α) + g′T(α)) α 2α� .                                       (41) 

Note that since both gN and gT are strictly decreasing, the dissipation inequality Dd(α) ≥ 0 still reduces toα� ≥ 0 
when α > 0. The power equation now becomes 

   u�σ + ντ �   =  gN(α) uu � + gT(α) vv � + 2
1  gN'(α) (u2−α2)α� + 2

1  gT'(α) (v2−α2)α� .                    (42) 

We take the constitutive laws 
ugN )(ασ =+ ,    τ  =  gT(α) v ,                                                            (43) 

keeping the possibility of a negative normal force σ − when u = u� = 0, see equations (20), (21). With these laws, 
equation (42) reduces to 

(gN'(α) (u2−α2) + gT'(α) (v2−α2))α�  =  0 ,                                                   (44) 
and after setting 

ρ(α)  :=  
)(')('

)('
αα

α
TN

N

gg
g

+  ,     ϕ(u, v, α)  :=  ρ(α) u2 + (1 −ρ(α)) v2  − α2  ,                     (45) 

the power equation takes the form 
ϕ(u, v, α) α�  =  0 .                                                                   (46) 

The state space is now  
Σ  =  { (u, v, α)    |    u ≥ 0 ,   0 ≤ α  ≤ αr ,   ϕ(u, v, α)  ≤ 0 } .                                      (47) 

This is a three-dimensional region, whose intersections with the planes α = const are half-ellipses. At the interior 
points of Σ the strict inequality ϕ(u,v,α) < 0 holds, and equation (46) yieldsα� = 0. Therefore, there is no 
dissipation at the interior of Σ.  

On the portion of the boundary at which ϕ(u,v,α) = 0, equation (46) is satisfied identically. To determine 
α� we follow the same procedure as in the purely normal case. From the vanishing of the second derivative of 
the energy, we obtain 

( ϕu(u, v, α) u� + ϕv(u, v, α) v� + ϕα(u, v, α)α� )α�  =  0 ,                                     (48) 

where the subscripts denote partial derivatives. We make the supplementary assumption  

ϕα(u, v, α)  <  0              ∀α > 0 ,                                                         (49) 

under which the term between parentheses in (48) is strictly negative when ϕu(u, v, α) u� +ϕv(u, v, α) v� ≤ 0. In this 
case the equality is satisfied only if α� = 0. If ϕu(u,v,α) u� +ϕv(u,v,α) v�  is positive, α� is determined by equating to 
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zero the term between parentheses. Therefore, at the portion of the boundary at which ϕ(u,v,α) = 0 we have the 
evolution law   

=α�
�
�

�
�

� >+
+

−

otherwise.0

,0),,(),,(if
),,(

),,(),,(
vvuuvu

vu
vvuuvu

vu
vu

��
��

αϕαϕ
αϕ

αϕαϕ
α                        (50) 

This law has the following geometrical interpretation: the vector (ϕu,ϕv,ϕα) is the exterior normal to the 
boundary, and its projection )0,,( vuN ϕϕ= on the plane α = const is the exterior normal to the intersection 
between the same plane and Σ. The assumption ϕα < 0 implies that the elliptic sections of Σ expand with 
increasing α, in such a way that the section at any α0 is strictly contained in the section at α for all α > α0. In the 
language of plasticity, we are assuming an isotropic hardening law.   

Let ),( vuU ��� = be a given increment of U = (u,v). According to the law (50), if U� points inwards Σ, 
UvuN �⋅),,( α ≤ 0, the evolution occurs at constant α, that is, without dissipation. If U� points outwards, 
UvuN �⋅),,( α > 0, the response is dissipative, with 

=α� −
),,(

),,(
αϕ

α
α vu

UvuN �⋅
 .                                                             (51) 

Equation (48) tells us that in the dissipative case the vector ),,( α��� vu is orthogonal to the gradient of ϕ, and, 
therefore, tangent to the boundary. Thus, the dissipative response takes place on the boundary of Σ. 

For α = 0, from (45)2 and (47) it follows that u = v = 0, so that the cross-sectional ellipse reduces to a point. 
But at this point the gradient of ϕ is zero, and equation (48) is satisfied identically. Then it becomes necessary to 
consider the third derivative of the energy equation (10), that is, the derivative of (48). It involves the second 
gradient of ϕ , which at u = v = α = 0 is 

ϕuu  = 2 ρ(0) ,      ϕvv  =  2 (1 − ρ(0)) ,     ϕαa  =  −2 ,   ϕuv = ϕuα = ϕvα = 0 .                       (52) 

The corresponding evolution law is 
=2α�  ρ(0) 2u�  + (1−ρ(0)) 2v� .                                                       (53) 

For α = αr, we have 0=α�  as in the purely normal case. Therefore, the overall evolution law for the state 
variable α is 

=α�  

�
�
�

�

�
�
�

�

�

=−+

>⋅=<<⋅−

otherwise.0

,0 if  (0)) (1  (0) 

,0),,(  ,0),,(,0 if
),,(

),,(

22 αρρ

ααϕαααϕ
α

α

vu

UvuNvu
vu

UvuN
r

��

�
�

                     (54) 

Let us briefly discuss the physical meaning of the constitutive functions fN and fT, and how to determine them 

experimentally. In the purely normal case, the equation of the loading curve was σ = f(u), and f was determined 
by a monotonic loading test. In the present case of coupled normal and tangential actions, one may consider a 
purely normal loading process with increasing u and null v, as well as a purely tangential loading process with 
increasing v and null u. Each process determines an evolution curve on the boundary region ϕ(u,v,α) = 0 of the 
state space Σ. For the first process, equation (45)2 yields 

0  =  ϕ(u, 0, α)  =  ρ(α) u2 − α2 ,                                                         (55) 

which means that  u = αρ −1/2(α) instead of u = α as in the purely normal case. Therefore, the response curve       
σ = gN(α)u does not coincide with the constitutive curve σ = gN(u) u = fN(u). Similarly, the curve τ = gT(α)v does 
not coincide with the constitutive curve τ = gT(v) v = fT(v). However, taking an increasing “diagonal” loading 
with  u = v, equation (45)2 reduces to the equality 

0  =  ϕ(u, u, α)  =  u2 − α2 ,                                                         (56) 

from which it follows that u = v = α, and therefore σ = gN(u) u = fN(u) and τ = gT(v) v = fT(v). Therefore, the 
constitutive functions fN and fT are determined by this special loading process. This means that, as anticipated in 
the Introduction, in the presence of both normal and tangential deformation the constitutive functions are not 
determined by two separate loading experiments, one for the normal and one for the tangential deformation, but 
by a single diagonal experiment. 
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2.4. An example of evolution under complex loading  

Consider an interface subject to normal and tangential damage, in the initial state u = v = α = 0.  As an example, 
we determine the response of the interface to the process t � (u(t), v(t)) made of the following five steps:  

                     

,tofrom,0to0from}5{
,0to0from,0tofrom}4{
,0tofrom,tofrom}3{
,0to0from,}2{

,0,0to0from}1{

454)(5)(

4)(43)(

32)(232)(

2)(12)(

1)(1)(

vvvvuu
vvuuu
vvvuuuu
vvuuu

vvuu

tt

tt

tt

tt

tt

<=
<=
=>
>==

==>

                                            (57) 

each of which performed at constant speed. For the sake of simplicity we assume that αr = +∞, and we consider 
the special case of gT and gN  proportional, gT(α) =λ gN(α), in which ρ(α) takes the constant value ρ = (1+λ)−1. In 
this case, the region Σ is a cone with vertex at the origin. The cone is shown in Fig. 3a, where the process (57) is 
represented by the dotted line on the plane (u,v). For constant ρ, the gradient of ϕ  reduces to 

ϕu  =  2ρ u2,      ϕv  =  2 (1−ρ) v2,     ϕα = − 2α ,                                               (58) 

and the evolution law (50) for the boundary points takes the simplified form 

αα �  = uu �ρ + (1−ρ) vv �     if uu �ρ + (1−ρ) vv � > 0 ,        0=α�  otherwise.                        (59) 

If uu t �)(ρ + (1−ρ) vv t �)( > 0 over the time interval (t0, t), by time integration we get 

α(t) = (α2
(t0) + ρ (u2

(t)
 − u2

(t0)) + (1−ρ) (v2
(t)

 − v2
(t0)))

1/2.                                          (60) 

The first step of the given process starts at the vertex of the cone with initial velocities 0>u�  and 0=v� . From 
equation (53) it follows that )0(α� = ρ 1/2

)0(u� , and a loading regime starts. At the subsequent instants, from (60) 
one has α(t) = ρ 1/2 u(t), and at the end of the step one gets 

α1  =  ρ 1/2 u1 .                                                                         (61) 

In the second step, since 0=u�  and vv � > 0, a new loading regime takes place. Again from (60) it turns out that, 
at the end of the step,  

α2  = (ρ u2
2

  + (1−ρ) v2
2) 1/2

  .                                                              (62) 

The third step has 0>u�  and vv � < 0. The assumption that the speed is constant throughout the step determines 
the proportionality relations  

23

2

2)(

2)(

uu
v

uu
vv

u
v

t

t

−
−=−

−
=

�

�  .                                                           (63) 

 
 
 
 
 
 
 

 
 

 
        
 
 
 
 
 
 
 
 
 

Figure 3. Evolution of α during the process (53) (a), and (b) the three possible  
patterns of evolution for the third step (in (a), the scale of α has been amplified).  
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Then in equation (48) the term  

ϕu u� + ϕv v�  = uu t �)(ρ + (1−ρ) vv t �)(                                                         (64) 
has the same sign as the difference 

ρ u(t) (u3 − u2) − (1−ρ) v(t) v2 .                                                          (65)  

Therefore, it is the sign of this term which determines whether there is loading or unloading. In particular, at the 
initial instant of the third step there is loading if  

ρ u2 (u3 − u2) − (1−ρ) v2
2 ≥ 0 ,                                                            (66)  

and because the difference (65) increases with t, it remains positive during the whole step. This is the case 
represented by the line PH in Fig. 3b. On the contrary, if  

ρ u3
2 ≤ α2

2  = ρ u2
2 + (1−ρ) v2

2 ,                                                      (67) 

then ϕ(u3,0,α2) = ρ u3
2 −α2

2 < 0, that is, the segment joining the points (u2,0,α2), (u3,0,α2) belongs is interior to 
the state space Σ. In this case, the unloading regime represented by the line PL in the figure takes place. In the 
intermediate case 

ρ u2 (u3 − u2) <   (1−ρ) v2
2  <  ρ (u3

2 − u2
2) ,                                             (68) 

there is initial unloading, followed by a loading regime. The transition from unloading to loading occurs when 
the line PK intersects the ellipse. We consider the case (66) of loading over the whole step. At the end of the 
step, one has 

α3  =  ρ1/2 u3  .                                                                    (69) 

In the fourth step, one has 0<u�  and vv � > 0. Since the initial value of v is zero, the term involving u� is initially 
dominant. Therefore, an unloading regime takes place. If |v4| < α3 (1−ρ)−1/2, this regime is maintained over the 
step, and the final value of α is α4 = α3.  

 In the fifth and last step, one has 0=u�  and vv � > 0. Since the step starts at the interior of Σ, unloading will 
occur until the point (0,v(t)) reaches the boundary of Σ. This occurs when ν  = vΣ = −α4 (1−ρ)−1/2. If | v5 | > | vΣ |, a 
loading regime follows, at the end of which one has     

α5  =  − (1−ρ) v5 .                                                                 (70) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Normal and tangential response curves in the case of  an interface subjected to the process (53)  
(the gray areas are the energies dissipated in the first three steps). 

We now determine the response curves (σ, u) and (τ, v). In the first step, since it was established that              
α(t) = ρ1/2u(t), it follows from the constitutive equations (43) that 

σ  =  u gN(ρ 1/2u) ,         τ  =  0 .                                                 (71)  

The first equation provides the expression for the loading curve for u when v = 0. This curve can be drawn up as 
shown in Fig. 4a. For a given u1 and for α1=ρ 1/2u1, the intersection P1 between the constitutive curve σ = fN(u) 
and the vertical from α1 determines the slope gN(α1), and the intersection H1 between  the line OP1 with the 
vertical from u1 determines a point on the loading curve. The entire loading curve can be drawn up by repeating 
this procedure for a sufficiently large number of values of u. 
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In the first step, the loading curve (71)1 is followed up to the point H1, while in the (τ, v) plane there is no 
evolution because τ(t) = v(t) = 0. In the second step, the response curve τ = gT(α)v starts at the origin with the 
slope gT(α1), and ends at the intersection K2 between the vertical from v2 and the line from the origin with slope 
gT(α2), with α2 given by (57). In addition, since u is constant, the response curve σ = gN(α) u is the vertical 
segment starting from H1 and ending at the intersection H2 with the line from the origin with slope gN(α2). 

In the third step, assuming that inequality (66) holds, there is a loading regime, in which the response curve 
for τ  starts at K2 and ends at the origin, while the response curve for σ  starts at H2 and ends at the intersection 
H3 between the vertical from u3 and the line from the origin with slope gT(α3), where α3 = ρ1/2 u3 is given by 
equation (69).  

In the fourth step, there is an unloading regime. The two response curves lie on straight lines from the origin. 
More precisely, the curve σ  goes through the segment H3O, and the curve τ  starts from the origin with the 
slope gT(α3), which is the slope of the tangent to the curve at the end of the previous step. In the last step, the 
point (σ, u) stays fixed at the origin, and the point (τ, v) goes through the same line as before up to v = vΣ, and 
then continues along the loading curve τ = v gT((1−ρ)1/2v) up to the point K5. 

In Fig. 4 it can be seen that the state variable α is given by the abscissas of the intersections of the curves 
σ = fN(u) and τ = fT(u) with the lines connecting the origin to the points (σ , u) and (τ , v), respectively. The areas 
below the response curves give the work performed. The dissipated energy is given by the gray areas: ∆N1 in the 
first step, ∆N2 + ∆T2 in the second, ∆N3 + ∆T3 in the third, and ∆T5 in the fifth step. 

2.5. Adhesion with damage, viscosity, and friction 

We now generalize the model with normal and tangential loading by introducing viscosity and friction. A state 
of the interface is still defined by the triplet (u, v, α). Viscosity is accounted for by adding the viscous 
dissipation power Dv given by (29). For friction, we add the frictional dissipation power  

Df (α, σ −, )v�  = µ(α) σ − || v�  ,                                                               (72) 

where σ − is the contact pressure exerted on the interface, and µ is a function which measures the intensity of 
friction. We assume that µ is an increasing function, with µ(0) = 0 and µ(αr) = µ∞. Accordingly, friction 
gradually comes into the play when the adhesion decreases, and is fully operating only after the adhesion 
disappears. We recall that, because of conditions (16) and (18), the pressure σ − may take arbitrary positive 
values if  u = u� = 0, and is zero otherwise. In the present model, when u = u� = 0 the pressure σ − is assumed to 
be a known applied load. Keeping the expression (38) for the strain energy and (41) for the dissipation power 
due to damage, the power equation becomes   

u�σ + ντ �  =  gN(α) uu � + gT(α) vv � + 2
1 gN'(α) (u2−α2)α� + 2

1 gT'(α) (v2−α2)α� + 2
1 h(α) 2α� + µ(α)σ − || v� .        (73) 

For σ  we keep the constitutive law σ + = gN(α) u, while τ  is assumed to be the sum of two contributions, one 
due to damage and one due to friction:  

   τ  =  τd  + τf  ,       τd   =  gT(α)v ,      τf  = µ(α) σ − sgn v� .                                       (74) 

With the constitutive assumptions just made, equation (73) reduces to 

(gN'(α)(u2−α2) + gT'(α)(v2−α2))α� + h(α) 2α� =  0 .                                            (75) 

In addition, taking ρ  as in (45) and setting 

κ(α)  :=  − 
)(')('

)(
αα

α
TN gg

h
+  ,                                                   (76) 

equation (73) further reduces to 
 (ρ(α) u2 + (1−ρ(α)) v2 − α2)α� − κ(α) 2α� =  0 .                                             (77) 

It follows that α� = 0 if the term between parentheses is non-positive, and that 

)(
1
ακα =� (ρ(α) u2 + (1−ρ(α)) v2 − α2) 

                                                    (78) 

if the same term is positive. The state space  

Σ  =  { (u, v, α)   |    u ≥ 0 ,  0 ≤ α ≤ αr }                                                   (79) 
is the disjoint union of the regions  
 



 13 

Σe = { (u, v, α)∈Σ   |   ρ(α) u2 + (1−ρ(α)) v2  ≤  α2,   α ≤ αr } , 
 Σd = { (u, v, α)∈Σ   |   ρ(α) u2 + (1−ρ(α)) v2   >  α2,  α ≤ αr } ,                                   (80)  

Σ r  = { (u, v, α)∈Σ   |   α =αr } .    

In the first region we haveα� = 0, while α� is positive and given by (78) in the second. Therefore, Σe is the region 
in which the non-dissipative processes occur, and Σd is the region where the dissipative processes occur. In the 
region Σr we have gN(α) = gT(α) = 0 and, therefore, σ = τ = 0. This is the region of total rupture, at which α� = 0.  

Moreover, when the conditions u = u� = 0 for unilateral contact are satisfied, the evolution of α is governed 
by equation (78) with u = 0, and the response τ  is determined by equations (74), with σ − a given function of 
time. Thus, the evolution law for α� is fully determined.   

As an example, let us determine the evolution of α  in the process (57) and from the initial state (0, 0, 0), in 
the presence of viscosity and friction. The functions ρ, κ and µ are assumed to be constants, and αr is taken to be 
equal to +∞. As shown in Subsection 2.4, ρ = const implies that gN and gT are proportional. Moreover, by (76), κ 
= const implies that the viscosity h is proportional to g′N + g′T.  

Since the response is now rate-dependent, the initial time t0 = 0 and the final instants t1 ... t5 of all loading 
steps must be specified. If at each step the displacement rates ii vu �� , are constant, one has 

u(t)  =  ui−1 + (t − ti−1) iu� ,   v(t)  =  vi−1 + (t − ti−1) iv� ,        ∀t ∈( ti−1, ti) ,                        (81) 

and the evolution law (72) gives 

κ )(tα� +α2
(t)  = 2

1
2

1 )1( −− −+ ii vu ρρ + 2( iiii vvuu �� 11 )1( −− −+ ρρ )(t − ti−1) + ( 22 )1( ii vu �� ρρ −+ )(t − ti−1)2 .      (82) 

By integrating this differential equation under the initial condition 

α(ti−1)   =   αi−1 ,                                                                           (83) 

the evolution of α during the ith time interval can be determined. For example, in the first step one has t0 = u0 = v0 

= α0 = 0 and 1v� = 0. Then equation (82) reduces to the Riccati equation 

κ )(tα� + α2
(t)  =  2

iu�ρ t2 ,                                                                    (84) 

subject to the initial condition α(0) = 0. The solution of this problem determines the initial condition α1 for the 
next step. One may keep proceeding in this way as long as the trajectory t � (u(t), v(t), α(t)) lies inside the 
region Σd. This is the case in our example during the first three steps. In the fourth step, the direction of the 
process t � (u(t), v(t)) is such that the trajectory enters Σe at a time tΣ. The process then continues with constant 
α up to the state (0, v4, α4), with α4 = α(tΣ).  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Evolution of α during the process (57), in the presence  
of viscosity and friction (the scale of α has been amplified). 
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If αΣ
2

 < ρ u5
2, there exists a time tΞ during the fifth step, at which the trajectory leaves the region Σe. At the 

instants t > tΞ, the values of α can be obtained by solving the differential problem 

κ )(tα� + α2
(t)  =  (1−ρ) (vΞ + (t − tΞ) 4v� )2 ,         α(tΞ) = α4  .                                   (85) 

The trajectory t � (u(t), v(t), α(t)) is shown in Fig. 5. 
Let us now determine the response curves (σ, u), (τd, v) and (τf, v). In the first step of the process (57), the 

response curve (σ, u) starts from the origin and ends at the point H1 shown in Fig. 6.  
The curve from O to H1 is obtained by evaluating α(t) as the solution of equation (84) and substituting it into 

the constitutive law σ(t) = gN(α(t)) u(t). The trajectory goes beyond the elastic region Σe, and the curve is located 
above the equilibrium curve σ = u gN(ρ1/2u), at a distance proportional to the loading rate. In the figure, the final 
value α1 is given by the intersection between the line OH1 and the constitutive curve σ = fN(u). Throughout this 
step, the tangential displacement v and the tangential force τ  stay equal to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Curves of the normal and tangential responses for the process (57), in the presence of viscosity and friction. 
 
In the second step, the evolution of τd follows the curve τd(t) = gT(α(t)) v(t), where α(t) is the solution of 

problem (82), (83). The final value α2 is given by the intersection between the line OK2 and the loading curve    
τd = fT((1−ρ)1/2 v). The normal displacement u remains constant, and σ  relaxes from H1 to the point H2 belonging 
to the half-line starting at the origin and crossing the curve σ = fN(u) at the point with abscissa α2.  

In the third step we have the response curves H2H3 and K2K3, with K3 coinciding with the origin because     
v3 = 0. In  the fourth step, at first there is a dissipative regime, which ends at the point (uΣ,vΣ), and is followed by 
an elastic regime. The response curves are the segments H3H4 and K3K4. Their slopes are determined by the 
value α4 of α given by the solution to the problem at the point (uΣ,vΣ). In particular, H4 coincides with the origin. 

Lastly, in the fifth step we have u = u� = 0. There is no visco-elastic response, but the effects of unilateral 
contact are present. Therefore, there is a non-null τf. We assume that the force σ −, which is an applied load, is 
constant in time. In the diagram (σ, u), the visco-elastic response being zero, we only need to put the force −σ − 
on the vertical axis. In the diagram (τf, v), we have the tangential force  

   τ f   = −µ(α) σ −                                                                         (86) 
given by the constitutive law (74)3. 

3. The RCCM model.  

As a further example, we now discuss the RCCM model developed in (Raous et al 1999), (Raous and Monerie 
2002), and we show that it is indeed a particular case of the general frame presented in this paper. In the RCCM 
model, the adhesion is characterized by a state variable β , representing the intensity of adhesion (Frémond 
1987). The same state variable also controls viscosity and Coulomb friction. 
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We show that the RCCM model can be deduced from the general model by making an appropriate choice of 
the strain energy, of the dissipation potentials, and of the constitutive functions fN and fT. Let us first consider the 
basic model, without viscosity and friction. In it, a state of the interface is described by the triplet (u, v, β). For 
the strain energy we take 

Ψ(u, v, β) = 2
1 (CN u2 + CTν 2) β 2 .                                                           (87) 

This is a special case of equation (38), with  

gN(α)  =  CN β 2 ,     gT(α)  =  CT β 2 .                                                        (88) 

Here CN and CT are given positive constants, representing the initial stiffnesses of the interface when the 
adhesion is complete. Taking β to be a function of α, by differentiation we get 

g′N(α)  =  2 CN β (α) β ′(α)  ,     g′T(α)  = 2 CT β (α) β ′(α)  .                                      (89) 

The function ρ(α) introduced in (45) then takes the constant value 

ρ   =  
TN

N

CC
C
+  .                                                                        (90) 

For adhesive damage, in the RCCM model the dissipation potential  

Φd( β� )  = − βω �                                                                         (91) 

is taken, with ω a positive constant. This corresponds to Dupré’s adhesive energy, in which an energy threshold 
for decohesion is introduced (Georges, 2000). From comparison with equation (40), we obtain  

 2
1 (g′N(α) + g′T(α)) α2α�  = βω �  =  ω β ′(α) α� ,                                               (92) 

and taking into account relations (89), the following relationship between the state variables α and β  follows 

β   =  2)( α
ω

TN CC +
  =:  

2

*
α
ω  .                                                          (93) 

The dissipation power due to damage is 

Dd( β� )  =  
β�∂
∂ )(d β�Φ β� =  − βω � ,                                                       (94) 

and the dissipation inequality (11) gives β� ≤ 0.  
From (88) and (93) one can deduce the following dependence of gN and gT upon α 

gN(α)  =  CN 
4

2*
α
ω  ,         gT(α)  =  CT 

4

2*
α
ω

 ,                                             (95) 

and the following forms of the constitutive functions fN and fT : 

fN (u) =  CN 3

2*
u

ω
 ,        fT (v)  =  CT 3

2*
v

ω
 .                                           (96) 

In the absence of viscosity and friction the state space is  

Σ  =  { (u, v, β)    |    u ≥ 0,    0 ≤ β ≤ 1,    ψ(u, v, β)  ≤ 0 } ,                                (97) 
where 

ψ(u, v, β)  =  CN u2 + CT v2  − β
ω  ,                                                     (98) 

and the response of the interface is governed by the evolution law 

=β�
��

�
�
� >+=+−

otherwise.0

,0  and0),,( if)(2
2

vvCuuCvuvvCuuC TNTN ���� βψω
β

                           (99) 

In the RCCM model, β varies between 0 and 1. Therefore, α  varies from ω*1/2 to +∞. Thus, there is no complete 
rupture of the interface, since the critical value α = ur is taken to be infinite. Τhe restriction α ≥ ω*1/2 does not 
affect the substance of the model. Indeed, it simply corresponds to restricting the range of the possible initial 
values of α. A consequence of this assumption is that the response to all processes t � u(t) developing inside the 
half-ellipse CN u

2 + CT v
2 ≤ ω is linear elastic. The creation of such an elastic range is very convenient from the 

mechanical point of view. The modified normal and tangential constitutive curves are shown in Fig. 7. 
Now consider the complete RCCM model, with viscosity and friction. The dissipation potential for the 

viscous dissipation is supposed to be  
Φv( β� )  =  2

2
1 β�b ,                                                        (100) 
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Figure 7. RCCM model. Modifications of the constitutive curves due to the assumption β ≤ 1. 

where b is a positive constant, and the corresponding dissipation power is  

Dv(β)  =  )(v β
β

β �
�

� Φ
∂
∂  = 2β�b  .                                                   (101) 

By comparison with the potential (28), we obtain 

2
4
1 )( αα �h  =  2

2
1 β�b  =  2

1 bβ ′(α)
2

2α�  =  2b 
6

2*
α

ω 2α�                                     (102) 

so that  

h(α)  =   8b 
6

2*
α

ω  .                                                        (103) 

Again in the RCCM model, the dissipation potential due to friction is  

Φf (u,β, β��,v )  = − (1−β) µ (σ − CN uβ 2) | v� |  ln (| β� |) ,                                     (104) 

and to it corresponds the dissipation power 

Df (u, β, v� )  = ),,,(f ββ
β

β ��
�

� vuΦ
∂
∂  =  − (1−β) µ (σ − CN uβ 2) | v� |  .                           (105) 

Here µ is a positive constant and (1−β) µ is the current value of the friction coefficient. The factor (1−β) has the 
purpose of gradually increasing the intensity of friction when the adhesion decreases. Indeed, in this way there is 
no friction when adhesion is total, β =1, and the friction coefficient takes the largest value µ  when there is no 
more adhesion, β = 0.  

From equations (93) and (95) it follows that CN uβ 2 = gN u. Then from the constitutive law σ + = gN u it 
follows  σ − CN uβ 2 = σ −σ + = −σ −, and the expression for Df reduces to 

Df (β, σ −, v� )  =  (1− β) µ σ − || v�  .                                                        (106) 

A comparison with the general expression (72) of the frictional dissipation power shows that µ(α) is equal to 
(1−β) µ . Therefore, by (93), in the RCCM model the function µ(α) has the form   

µ(α)  =  (1 − ω*α −2) µ  .                                                               (107) 

The evolution law for the state variable requires that there is no dissipation if  ψ(u, v, β) < 0 and that there is  
dissipation if ψ(u, v, β)  > 0. In the dissipative case, from (93), (98), and from the relation (78) of the general 
model it follows that 

     �
�
�

�
	
	



�
−+

+= 222
)(

1 αακα
TN

TN

CC
vCuC

�  =  
))((
/22

TN

TN

CC
vCuC

+
−+

ακ
βω ,                                   (108) 

and, from (76) and (93), 

,
*

2)('
3

αα
ωααββ ��� −==    κ(α)  =   α)(

2
TN CC

b
+  .                                      (109) 

Then the evolution law is 

σ = fN(u) 

σ 

 (ω /CN)1/2
                                                 u 

(ω /CT)1/2                                   v 

τ 

τ = fT(v) 

µσ 

−µσ 
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β�  = 
��

�
�
� >−+−

.otherwise0

,0),,(if)22( βψβ
ωβ vuvCuC

b TN                                           (110) 

This law, which here has been deduced from the general model, is precisely the law assumed in (Raous et al 
1999). Thus, we may conclude that the RCCM model is indeed a special case of the general scheme.  

It should be noted that in (Raous et al 1999) and (Raous et Monerie 2002), as well as in (Frémond 1987), the 
strain energy was written in the form 

Ψ(u, v, β)  =  2
1 (CN

 β 2u2 + CT
 β 2v2 )  +  ω (1− β ) ,                                          (111) 

while in the new formulation the second term is the dissipation due to damage. The new formulation is more 
natural, because condition β� ≤ 0 is obtained directly from (12) and (93), whereas in (Raous et al 1999) the same 
condition was imposed by introducing a supplementary term in the dissipation potential. Moreover, the energetic 
term associated with adhesive damage is now conveniently included in the dissipation potential Φ and not in the 
free energy Ψ, as it was in the original formulation of the RCCM model. 

To conclude, in Fig. 8 we give the graph of the evolution of β in the process (57). This is simply the graph in 
Fig. 5 modified according to the change of variable (93). It is worth noting that, to be consistent with the 
restriction β ≤ 1 present in the RCCM model, one is obliged to start from an initial value of α  which is greater 
or equal to ω*1/2. In the present example the initial value α0 = ω*1/2, corresponding to β = 1, is taken. Moreover, 
the normal displacement u1 is taken to be equal to (ω /CN)1/2,  so that the first step ends at the point (u1, v1, β1) = 
((ω /CN)1/2,  0, 1) located on the boundary of Σe and shown in Fig.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. RCCM model. Evolution of β during the process (57) in the presence of viscosity and friction. 

4. Conclusions  

A relatively simple and quite general form for models describing the response of an adhesive interface has been 
constructed. It is mainly based on given functions f and g which can be obtained through experiments related to 
normal and tangential loadings applied on the interface. The adhesive dissipation is directly connected to these 
functions. Viscosity and friction effects have been added through convenient choices for viscous and frictional 
dissipation potentials. 

The general frame developed here provides a highly flexible tool for describing a wide range of 
experimentally observed interface behavior. Besides damage, viscosity and friction, other effects can be taken 
into account by introducing appropriate potentials and more sophisticated responses can be obtained by 
introducing supplementary state variables. Generalization to 3D models and to deformable bodies can be made 
in the same way as for the RCCM model in (Raous, 1999; Raous et al, 1999; Raous and Monerie, 2002). 
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