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Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green 

light in tomato (Solanum lycopersicum L.) seedlings under drought conditions 

Zhonghua Bian, Xiaoyan Zhang, Yu Wang, Chungui Lu* 

School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst 

Campus, Nottingham, UK, NG25 0QF 

 

 

Highlights: 

 Adding green light enhanced the drought tolerance of tomato by inducing an early decrease in 

stomatal aperture. 

 Green light supplementation improved mesophyll conductance, which maintained higher 

photosynthetic capability under drought stress. 

 A clear induction of the expression of the drought stress-associated gene SlAREB1 occurred 

under green light exposure, and green light induced the downregulation of the SlHA1, 2 and 4 

genes, which are related to stomatal opening. 

ABSTRACT 

The regulation of stomatal aperture is one of the most important strategies for plants to tolerate drought. 

Green light has been shown to reverse some effects of red light and/or blue light on plant growth and 

development and can enhance plant defense against biotic and/or abiotic stress by triggering the 

expression of specific genes. However, the effects of green light on plant drought tolerance are still 

unknown. To elucidate the effects of green light on plant drought tolerance, tomato (Solanum 

lycopersicum L.) seedlings were treated with short-term drought stress and were concomitantly exposed 

to red and blue light-emitting diodes (LEDs) supplemented with or without green light in an 

environment-controlled growth chamber. The results show that adding green light induced significant 

decreases in stomatal conductance (gs), which increased the intrinsic and instantaneous water-use 

efficiency, concomitantly enhanced mesophyll conductance (gm) and maintained relatively high 

photosynthetic capability under short-term drought stress. Moreover, green light supplementation 

alleviated stomatal opening and not only involved the downregulation of the SlHA1, 2 and 4 during 
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stomatal opening but also resulted from a SlAREB1-activated signaling pathway, which led to drought 

tolerance. 

Keywords: Green light, Stomatal aperture, Water use efficiency, Drought, Tomato 

1. Introduction 

Drought is a critical threat to plant growth and severely deceases agricultural production (Somerville 

and Briscoe 2001). For instance, drought causes 7.0%-8.1% of cereal yield losses worldwide every year 

(Lesk et al., 2016). With frequent and unpredictable drought, food security is likely to become further 

aggravated in the future (Somerville and Briscoe 2001). Although traditional and marker-assisted 

breeding have been widely used to enhance crop drought tolerance, the complexity of drought tolerance 

mechanisms at the physiological and genetic levels has limited the utilization of genetic engineering 

approaches (Mittler and Blumwald 2010). Therefore, this limitation has emphasized the urgent need to 

develop adaptive agricultural strategies to guarantee future food security. 

Greenhouse cultivation, also known as controlled environmental agriculture or protected agriculture, is 

the most popular way to produce horticultural crops with high production (Sabir and Singh 2013). 

Worldwide, approximately 115 countries commercially produce vegetables in glasshouses, and the total 

estimated greenhouse vegetable production area was 473,466 hectares in 2016 (Hickman 2016; Sabir 

and Singh 2013). Greenhouse cultivation has been an important part of agriculture in terms of food 

security. Although greenhouses can create a suitable environment for plant growth and development, 

crops in greenhouses are sometimes inevitably affected by fluctuations in the internal environment 

(Gruda 2005). In nature, plants usually face short-term water shortages or slowly developing water 

deficits. Adjustments to stomatal aperture or early stomatal closure is one of the most important 

strategies for plants to tolerate drought stress (Fischer and Turner 1978). Under short-term drought stress, 

plants can increase their water-use efficiency (WUE) by reducing stomatal aperture and, hence, their 

transpiration rate, thereby minimizing the potential loss of yield under water deficit (Martin-StPaul et 

al., 2017). However, in some crop species, a relatively low yield is usually correlated with a decrease in 

photosynthesis as a consequence of stomatal closure caused by severe or long-term drought stress 

(Mafakheri et al., 2010; Serraj and Sinclair 2002). Moreover, drought-induced stomatal closure can 

restrict nutritional substance anabolism and accumulation in fruits, which can impair the formation of 

desirable flavors (Sánchez-Rodríguez et al., 2010). Therefore, improving plant WUE and stabilizing 

photosynthesis via stomatal regulation are important for increasing plant drought tolerance and 
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minimizing drought-induced yield losses. 

In plants, plasma membrane H+-ATPases belong to the superfamily of P-type ATPases, and their activity 

plays a vital role in stomatal opening (Hashimoto-Sugimoto et al., 2013; Kinoshita and Shimazaki 1999; 

Merlot et al., 2007; Zhao et al., 2000). Plasma membrane H+-ATPases are encoded by multiple genes 

(hereafter referred to as member of the HA family). In tomato, there are at least 8 (SlHA1-8) genes in 

tomato plants encoding different plasma membrane H+-ATPase isoforms (Liu et al., 2016). The 

transcripts of SlHA1, 2 and 4 are widely present in all tissues, while those of SlHA3, 5, 6 and 7 are 

almostalways expressed only in the flowers (Ewing and Bennett 1994; Ferrol et al., 2002; Liu et al., 

2016). Previous studies have shown differences in the regulation of HA members in response to various 

abiotic stresses (e.g., nutritional deficiency and salt stress) (Sibole et al., 2005; Zeng et al., 2012). 

Moreover, activating plasma membrane H+-ATPases can prevent abscisic acid (ABA)-mediated 

stomatal closure (Merlot et al., 2007). Under drought stress, ABA-responsive element-binding proteins 

(AREBs), specifically the ABA-dependent transcription factor in plants encoded by AREB1-2, play an 

important role in regulating gene expression in response to some stresses (Uno et al., 2000). In addition, 

overexpression of SlAREB1-2 can increase tomato plant drought tolerance (Hichri et al., 2016; Orellana 

et al., 2010). 

Light is not only the driving force but also the important transduction signal that regulates plant growth 

and development by triggering gene expression (Kami et al., 2010). Compared with those of light 

intensity and light duration, the effects of light spectra on plant growth and development are more 

complex. It is well known that red and blue light compose the most efficient light spectra for 

photosynthesis. However, other light spectra, such as that composing UV light and green light, have 

been proven to profoundly affect plant growth (Folta and Maruhnich 2007; Zhang et al., 2011). For 

instance, green light can enhance plant defenses to resist biotic and/or abiotic stress by triggering the 

expression of specific genes (Nagendran and Lee 2015; Zhang and Folta 2012). In our previous studies, 

we demonstrated that green light supplementation showed positive effects on maintaining 

photosynthetic capability by upregulating photosynthesis-related gene expression (Bian et al., 2018a; 

Bian et al., 2018b). Other studies have reported that blue light can stimulate stomatal opening by 

activating plasma membrane H+-ATPases (Kinoshita and Shimazaki 1999; Yamauchi et al., 2016), while 

green light reverses blue light-induced stomatal opening (Frechilla et al., 2000). However, the 

mechanism by which green light regulates stomatal behavior under short-term drought stress is still 
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unclear. We hypothesize that green light may affect drought tolerance via the control of stomatal aperture 

resulting from the expression of SlAREB1-2 and SlHA1, 2 and 4. 

Therefore, the aims of this study were to investigate whether green light had a positive effect on tomato 

drought tolerance during short-term drought stress and to verify whether this effect concerning stomatal 

regulation is related to the expression of SlHA1, 2 and 4 and SlAREB1-2. From the results of this study, 

we hope to characterize the potential function of green light on plant drought tolerance. 

2. Materials and methods 

2.1. Plant growth conditions 

Tomato (Solanum lycopersicum L. cv. Ailsa Craig; wild type) seeds were sown in rock wool cubes (3 × 

3 × 4 cm3) and germinated under white LED light (Heliospectra RX30, Sweden) in an environmentally 

controlled growth chamber. The light intensity, day/night temperature, air humidity, CO2 level and 

photoperiod were 150 mol m−2 s−1, 25/20 °C, 65%, 400 mol mol−1 and 16 h, respectively. Half-

strength Hoagland solution was added from the bottom to supply nutrition for seedlings every other day. 

2.2. Drought treatment and light conditions 

At the end of the dark period, at 28 days after germination, healthy and similarly sized plants with five 

true leaves were transplanted into rock wool media (7.5 × 7.5 × 6.5 cm3). Before the plants were 

transplanted, the rock wool media were watered with half-strength Hoagland solution until they reached 

full water-holding capacity. The plants were randomly grown under two watering regimes: (1) well 

watered (905% water-holding capacity) and (2) drought stressed (nonwatered until the plants showed 

severe drought stress symptoms–obvious turgor loss and wilting). During the study, the irrigation 

strategy was performed according to the methods of Wang et al. (2013), and the light treatment was 

delivered by red (peak at 660 nm), blue (peak at 450 nm) and green (peak at 530 nm) LED light. Three 

different combinations of light treatments together with drought or well-watered conditions were used 

in this study. In the first treatment, plants were exposed to 100 mol m−2 s−1 red light and 100 mol m−2 

s−1 blue light and were grown under drought conditions (RB-drought). The second treatment consisted 

of RB-drought supplemented with 50 mol m−2 s−1 green light (RBG-drought). The light spectral 

composition of the third drought treatment included 100 mol m−2 s−1 red light, 50 mol m−2 s−1 blue 

light and 50 mol m−2 s−1 green light (RbG-drought). Well-watered plants exposed to 100 mol m−2 s−1 

red light and 100 mol m−2 s−1 blue light were used as controls (RB-water). The detailed information of 

these treatments is summarized in Table S1. 
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2.3. Leaf area and dry weight measurements 

After 9 days of drought treatment, eight plants were randomly selected from each treatment for 

measuring plant height, leaf area and shoot dry weight (DW). The leaf area was measured using an LI-

3000C leaf area meter (LI-COR, Lincoln, NE, USA). The petioles, stems and leaves were separated 

from the shoots of these plants and dried in an oven at 80 °C for 72 h before DW determination. The 

leaf mass per area (LMA) was calculated according to the method of Feng et al. (2008).  

2.4. Gas exchange measurements 

The net photosynthetic rate (Anet) and chlorophyll fluorescence of the third fully expanded leaves from 

the top were simultaneously measured before (day 0) and after (days 2, 4, 6 and 9) treatment using a 

portable photosynthesis system (LI-6800F, LI-COR, Inc., Lincoln, NE). The rapid response of Anet to 

irradiance corresponded to the following light intensities: 0, 30, 50, 100, 200, 500, 800 and 1200 mol 

m−2 s−1) (LI-6800F, LI-COR, Inc., Lincoln, NE); the A-Ci curve was conducted according to the method 

of Trouwborst et al. (2011). The temperature, CO2 level, and air flow in the leaf chamber were set at 

25 °C, 400 mol mol−1 and 500 mol s−1, respectively. The actinic light in the leaf chamber was supplied 

by a red/blue light source (10% blue, 90% red). A nonrectangular hyperbola according to the methods 

of Thorney (1976) was used to fit the rapid light response curve data by the nonlinear fitting procedure 

NLIN in SigmaPlot software (version 12.3, Systat Software Inc., San Jose, CA, USA) to calculate dark 

respiration (Rd) and the maximum gross photosynthetic rate (Amax): 

Anet  
α ∙ PPF + Amax − √(α ∙ PPF + Amax)2 − 4𝜃 ∙ PPF ∙ Amax

2 ∙ 𝜃
− Rd 

where α is the light-limited quantum efficiency and θ is the scaling constant for the curve. 

The fluorescence data calculated from the rapid light response curve at growth light levels (200 or 250 

mol m−2 s−1) were used to calculate the following parameters (Baker 2008; Baker et al., 2007): 

photosystem II (PSII) quantum efficiency (ΦPSII) and the electron transport rate (ETR). The 

photosynthetic data obtained at the growth light levels were considered the photosynthetic 

characteristics. The maximum quantum efficiency in the dark (Fv/Fm) was monitored at the start of each 

rapid light response curve after the leaves were dark adapted in the leaf chamber for 30 min. A modified 

version of the Farquhar, von Caemmerer and Berry (FvCB) model (Farquhar et al., 1980) was used to 

fit the A-Ci data to estimate the potential rate of electron transport under saturating light (Jmax), the 

maximum velocity of Rubisco for carboxylation (Vcmax) and mesophyll conductance (gm), as described 
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by Sharkey (2016) and Trouwborst et al. (2011). The intrinsic water-use efficiency (Anet/gs) was 

calculated as the ratio of Anet to stomatal conductance (gs), while the instantaneous water-use efficiency 

(Anet/E) was determined as the ratio of Anet to the transpiration rate (E) (Medrano et al., 2015). The total 

diffusion conductance (gt) was calculated as gt = gsgm/(gt + gm) (Centritto et al., 2009). 

2.5. Stomatal aperture determination 

The method of Zeng et al. (2008) was used to determine the length and width of the stomata. Fully 

expanded leaves at a similar position (one leaf per plant, six plants per treatment) were sampled and 

immediately treated with transparent nail polish to obtain slides of the leaf epidermal fingerprints. The 

slides were analyzed by optical microscopy (D71, Olympus Inc., Tokyo, Japan) combined with Motic 

Images Plus 2.0 software. Ten images taken of different parts of each leaf were analyzed. The stomatal 

aperture was subsequently calculated as the ratio of stomatal width to length. 

2.6. Relative water content determination 

The relative water content (RWC) of plant leaves before (day 0) and after (days 2, 4, 6 and 9) treatment 

was separately measured (Pan et al., 2012). Three plants were randomly selected from each treatment. 

Whole tomato leaves were detached and weighed to obtain their fresh weight (FW). These leaves were 

soaked in distilled water at room temperature for 24 h. The leaves were then weighed to obtain their 

turgid weight (TW) and subsequently dried in an oven at 80 °C for 48 h to a constant weight (dry weight, 

DW). The RWC was then calculated via the following formula: 

RWC (%) = (FW - DW) / (TW - DW) × 100 

2.7. Water loss determination 

The method of Leung et al. (1997) was used to determine the water loss of the leaves of tomato plants 

under drought stress and different light treatments. Tomato leaves were detached and placed under 160 

mol m−2 s−1 fluorescent white light. The temperature and relative humidity were maintained at 25 °C 

and 45%, respectively. The leaves were weighed every 30 min, and the total time was 270 min. The 

water loss was expressed as the percentage of initial FW, and each determination involved three 

replications. 

2.8. Lipid peroxidation determination 

Lipid peroxidation was expressed as equivalents of malondialdehyde (MDA). The MDA concentration 

was spectrophotometrically determined using a thiobarbituric acid (TBA) test according to the methods 
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of Velikova et al. (2000). The absorbance monitored at 532 and 600 nm was used to calculate the MDA 

concentration against the blank prepared by replacing the sample with extraction medium. The 

concentration of MDA-TAB complex was then calculated from the extinction coefficient 155 mM−1 

cm−1. 

2.9. Total RNA extraction and real-time qRT-PCR 

To elucidate the effects of green light on drought tolerance and stomatal aperture-related gene expression, 

the second youngest and fully expanded leaves were sampled at different time points (days 0, 2, 4, 6 and 

9) from each treatment. Total RNA was extracted using an RNeasy Plant Mini RNA isolation kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. To avoid any contamination of genomic 

DNA, the extracted total RNA was treated with 50 L of RNase-free DNase I (Sigma-Aldrich, Poole, 

UK) at 37 °C for 15 min before the reverse-transcription reaction in accordance with the manufacturer’s 

instructions. The concentration and purity (260/280 ratio) were determined via a Nanodrop 2000 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) before and after DNase I treatment. 

Prior to cDNA synthesis, the integrity and quality of the total RNA were visually checked by 1% agarose 

gels stained with ethidium bromide. RNA (1000 ng) was used for cDNA synthesis in a 20 L reaction 

using a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Epsom, UK). qPCR was 

used to quantify the relative transcription levels using a CFX Connect™ Real-Time PCR Detection 

System (Bio-Rad, Hercules, CA, USA). The qPCR was carried out in a volume of 20 L containing 2 

L of cDNA sample (100 ng), 10 L of SsoFast™ EvaGreen® Supermix (Bio-Rad) and gene-specific 

primer mix at 0.2 M. The primers for the HA and AREB1-2 genes described by Liu et al. (2016) and 

Orellana et al. (2010), respectively, were used to assay the relative transcripts of each target gene by 

normalizing the transcription levels to those of the tomato constitutive Actin gene (Chen et al., 2014). 

The thermocycling conditions of the real-time qPCR were as follows: 95°C for 30 s; 40 cycles of 95°C 

for 5 s and 60°C for 5 s; and then a melting curve (65−95 °C). The qRT-PCR experiment was performed 

in triplicate via three separate RNA extracts from nine plants. 

2.10. Statistical analyses 

All the data were subjected to one-way ANOVA using SAS software (version 8.1, SAS Institute, Cary, 

NC), and significant differences between the means were assessed by Duncan’s multiple range test at P 

< 0.05. The light response and CO2 response curve fitting were performed using SigmaPlot software 

(version 12.3, Systat Software Inc., San Jose, CA, USA). 
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3. Results 

3.1. Green light promotes tomato plant growth under short-term drought stress 

The growth of tomato plants under short-term drought stress is summarized in Table 1. Short-term 

drought significantly reduced plant growth, and the drought-induced decrease in plant growth was also 

affected by light spectral composition. Compared with the well-watered control (RB-water), RB-drought 

led to significant decreases in plant DW, plant height and leaf area. However, green light 

supplementation alleviated the drought-induced decrease in plant growth, as shown by the higher values 

of DW, leaf area, LMA and plant height under RBG-drought and RbG-drought than under RB-drought. 

The shoot DW under RbG-drought was higher than that under RBG-drought, but no significant 

differences between RBG-drought and RbG-drought were observed in the other above mentioned 

parameters. 

3.2. Green light alleviates drought stress by maintaining a high photosynthetic rate 

Short-term drought led to a decrease in photosynthetic capability beginning on day 4, but green light 

supplementation mitigated the decline in photosynthetic capability (Fig. S1 and Fig. S2). Compared with 

the well-watered control (RB-water), RB-drought led to markedly decreasing trends in the Anet and gs. 

Adding green light slowed the decreasing tendency of Anet caused by drought stress but led to a severe 

decrease in gs, as shown by the higher Anet and concomitantly lower gs under RBG-drought and RbG-

drought between day 6 and day 9 (Fig. 1A and B). The gm under RB-drought was lower than that under 

RB-water between day 4 and day 9. Moreover, the gm for RBG-drought and RbG-drought showed an 

increasing trend, and the levels were higher than those for RB-water between day 0 and day 4. From 

day 6, the gm under RBG-drought and RbG-drought also decreased, but the values were higher than 

those under RB-drought between day 6 and day 9 (Fig. 1C). Relative to the values in the RB-water 

treatment, drought led to an increase in stomatal limit value (Ls), and the highest value was observed 

under RBG-drought between day 6 and day 9; however, there was no significant difference between 

RbG-drought and RB-drought (Fig. 1D). After pooling together the data collected from the different 

light treatments, the Anet was hyperbolically correlated with gm (Fig. 2A), while positive linear 

relationships were detected between Anet and both gs and gt (Fig. 2B and C). 

After a period of 6 days of drought treatment, the Fv/Fm of plant leaves significantly decreased. In the 

drought treatments, the lowest Fv/Fm was detected under RB-drought, followed by RbG-drought and 
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RBG-drought (Table 2). On day 6, the ΦPSII and ETR under RB-drought calculated at the growth light 

intensity were lower than those under RB-water; however, these parameters under RBG-drought and 

RbG-drought were comparable to those under RB-water (Table 2). Drought for 6 days led to lower 

examined fitting parameters than those of plants under well-watered conditions. However, adding green 

light mitigated this negative effect caused by drought, as shown by the higher Amax, Rd, Vmax and Jmax 

under both RBG-drought and RbG-drought than under RB-drought. It is worth noting that these fitting 

parameters (except Rd) under RbG-drought were significantly higher than those under RBG-drought 

(Table 2). 

3.3. Green light increases plant water-use efficiency under short-term drought 

Compared with well-watered conditions, drought led to a significant decrease in the relative water 

content of tomato leaves, but green light supplementation alleviated the drought-induced decrease in 

relative water content, as shown by the higher relative water content under both RBG-drought and RbG-

drought than under RB-drought from day 4 to day 9 (Fig. 3A). The water loss under drought stress was 

lower than that under well-watered conditions. Under drought stress, the water loss was the highest 

under RB-drought, followed by RBG-drought, and then RbG-drought (Fig. 3B). The intrinsic and 

instantaneous WUE of tomato leaves under drought stress showed increasing trends after day 4. 

Moreover, the intrinsic and instantaneous WUE under RBG-drought and RbG-drought were 

significantly higher than those under RB-drought from day 4 to day 9. However, no significant 

differences in these parameters were detected (except intrinsic WUE on day 6) between RBG-drought 

and RbG-drought (Fig. 3C and D). 

3.4. Green light induced early stomatal closure and mitigated lipid peroxidation caused by drought 

The stomatal aperture of leaves under RBG-drought and RbG-drought decreased beginning on day 2, 

and the values were significantly lower than those under RB-drought. Compared with that under RB-

water, the stomatal aperture under RB-drought was also reduced, but a significant difference in stomatal 

aperture between RB-water and RB-drought was detected only on day 9 (Fig. 4). The degree of lipid 

peroxidation of the drought-treated leaves is presented as the MDA content. Drought led to substantial 

increases in MDA content between day 4 and day 9, but green light could alleviate the lipid peroxidation 

caused by drought, as shown by the relatively low MDA content under RBG-drought and RbG-drought. 

Notably, the MDA content under RbB-drought was lower than that under RBG-drought during the 
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period between day 4 and day 9 (Fig. 5). 

3.5. Relative expression of SlAREB1-2 and SlHA1, 2 and 4 under short-term drought 

The expression of genes involved in the plasma membrane H+-ATPase and AREB1-2 was investigated 

(Fig. 6). During 9 days of drought conditions, the transcript levels of SlHA1, 2 and 4 in the leaves under 

the different light treatments showed similar expression patterns but were relatively lower than those of 

the well-watered controls (Fig. 6A-C). Compared with the RB-drought conditions, the addition of green 

light led to much lower expression levels for all studied SlHAs, and the onset of this downregulation 

occurred earlier than that under RB-drought, as shown by the transcript levels under RBG-drought and 

RbG-drought (Fig. 6A-C). The expression of SlAREB1 was upregulated under RBG-drought and RbG-

drought after 4 days of drought, while the gene expression level under RB-drought remained steady and 

was comparable to that under RB-water before day 6. The enhanced expression of SlAREB1 under RB-

drought was detected only on day 9, with SlAREB1 upregulated by 1.7-fold on day 9 (Fig. 6D). With 

respect to the expression of SlAREB2, no significant difference was detected between the drought-

stressed and well-watered plants during the study (Fig. S3). 

3.6. Correlations between both water-use efficiency and stomatal aperture and the relative expression 

of SlAREB1 and SlHA1, 2 and 4 

After pooling together the gene expression and WUE data, we found that the instantaneous and intrinsic 

WUE were negatively correlated with the transcripts of SlHA1 and SlHA4 (Fig. 7A and C). However, 

the instantaneous and intrinsic WUE were both positively correlated with the expression of SlAREB1 

(Fig. 7D). Under the different light spectra and drought conditions, the stomatal aperture was positively 

correlated with the expression of SlHA1 and SlHA4 (Fig. 8A and C). However, there was no clear 

relationship between WUE and the expression of SlHA2 (Fig. 7B) or between stomatal aperture and the 

expression of SlHA2 (Fig. 8B). 

4. Discussion 

This work extends our previous works on the effects of green light on nitrate reduction (Bian et al., 2016; 

Bian et al., 2018a) as well as crop growth and quality (Bian et al., 2018b). Here, we have demonstrated 

the positive effects of green light on enhancing the drought tolerance of tomato plants during controlled 

environmental cultivation. 

For plants, one of the most important physiological responses to drought stress is photosynthesis 

inhibition, which in turn leads to the yield loss (Perez-Martin et al., 2014). In this study, adding green 
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light mitigated the negative effects of drought on plant growth (Table 1). This finding implies that green 

light can be applied to maintain relatively high photosynthetic capabilities under drought stress (Fig. 1A 

and Fig. S1). Under severe stress, the significant decline in both the ETR and Fv/Fm, two important 

fluorescence parameters, reflects the occurrence of photoinhibition or the downregulation of 

photosynthesis (Cechin et al., 2006). The ability to maintain photosynthetic machinery function under 

drought stress is considered to be of major importance in drought tolerance (Zlatev and Lidon 2012). In 

the present study, plants under green light supplementation that maintained their ETR and Fv/Fm values 

were significantly less affected by drought stress than the other plants, indicating that green light 

enhanced plant drought tolerance in terms of photosynthetic activity. These results confirm our previous 

findings that green light has a positive effect on maintaining relatively high photosynthetic capability 

under abiotic stress (Bian et al., 2018b). Under most drought stress conditions, the decrease in 

photosynthesis is mainly caused by both stomatal closure and reduced gm, which limits CO2 diffusion 

from the atmosphere to the site of carboxylation (Flexas et al., 2008). In the present study, the hyperbolic 

relationship between the Anet and gm (Fig. 2A) confirms the important role of the internal diffusion of 

CO2 in promoting plant photosynthesis (Pallozzi et al., 2013; Terashima et al., 2011). Previous studies 

have shown that gm is regulated by light spectra and that the decrease in photosynthesis after blue light 

exposure is attributed to blue light-induced significant decreases in gm (Wang and Folta 2013). However, 

green light can reverse the effects of red and blue light on plant growth and development (Folta and 

Maruhnich 2007; Wang and Folta 2013). In this study, the positive effects of green light on the Anet under 

drought stress could be partly explained by the relatively high gm after the addition of green light (Fig. 

1C), which accelerates CO2 from the intercellular spaces to the active site of Rubisco inside the 

chloroplasts to promote photosynthesis under drought stress (Pallozzi et al., 2013; Terashima et al., 

2011).  

Plant drought tolerance is defined as the ability to overcome low tissue water potential under water 

deficit (Chaves et al., 2003). In nature, plants have developed several different drought resistance 

strategies, such as drought avoidance and drought tolerance, to resist dehydration stress (Hsieh et al., 

2010). The reduction in water loss through stomata is one of the most important drought resistance 

strategies to improve water-use efficiency and drought tolerance (Hsieh et al., 2010; Kim et al., 2012). 

In this study, the relatively high RWC after green light supplementation (Fig. 3A) can be explained by 

the reduced water loss in plant leaves (Fig. 3B) as a consequence of the green light-induced early 
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stomatal aperture reduction (Fig. 4). Together with the relative high intrinsic and instantaneous WUE 

under RBG-drought and RbG-drought (Fig. 3C and D), these results suggest that green light has a 

positive effect on enhancing plant drought resistance by increasing WUE via stomatal regulation. This 

view is also supported by the study of Sun et al. (2014), who found that light-induced stomatal responses 

are a necessary step toward improving the drought tolerance of crops. 

It is well known that stomatal aperture is regulated by light spectra (Inoue and Kinoshita 2017; Wang et 

al., 2014). Blue light is one of the most important environment signal that regulates stomatal opening in 

plant leaves in the natural environment (Inoue et al., 2008; Mott et al., 2008). Exposure to equal doses 

of blue light and green light results in an approximately 50% reversal of blue light-induced stomatal 

opening (Talbott et al., 2002). However, the blue light-induced stomatal opening requires red light as a 

background, because of its synergistic effect on the blue light response in guard cells (Inoue et al., 2008; 

Shinmazaki et al., 2007). Previous studies have shown that red light also plays an important role in 

inducing the aperture of stomata via red/far red light absorbing phytochromes (Chen et al., 2012; Mao 

et al., 2005; Wang et al., 2010) and the red light-induced stomatal opening is red light intensity-

dependent (Kinoshita et al., 2001; Shinmazaki et al., 2007). In addition, the red light-induced stomatal 

opening is not only just an indirect response but also results from a phyactiviated signaling pathway 

independently of photosynthesis (Chen et al., 2012; Talbott et al., 2003). To minimize the effects of red 

light on stomatal opening, two different green light supplemental strategies were used without changing 

the red light dose in these light treatments: (1) maintaining equal fluence rates of blue light and green 

light without changing the total light intensity (RbG-drought) and (2) adding green light without 

changing the ratio and intensities of the red light and blue light (RBG-drought). Similarly green light 

supplementation strategies have been reported in the study of green light inducing shade avoidance 

symptoms in plants (Zhang et al., 2011). Compared with RB-drought, the higher drought tolerance, 

water using efficiency and lower stomatal aperture under RbG-drought could demonstrate the positive 

effects of green light supplementation and the ratio of blue to green on enhancing tomato drought 

tolerance without changing the condition of red light intensity (100 mol m−2 s−1) and total light intensity 

(200 mol m−2 s−1). The enhanced drought tolerance and other related parameters of plant under RBG-

drought could further verify the effect of green light on regulating plant drought tolerance without 

changing red and blue light condition (red and blue light intensity: 200 mol m−2 s−1) by comparing with 

RB-drought. In this study, adding green light to red light and blue light led to significant decreases in 
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stomatal aperture under short-term drought stress, and this phenomenon was dependent on the blue-to-

green ratio, as shown by the difference in stomatal aperture between RBG-drought and RbG-drought 

(Fig. 4). Similar results of green light-reversed stomatal opening were also reported in various plant 

species by Talbott et al. (2002).  

In plants, distinct mechanisms involves in the regulation of stomatal aperture in response to red and blue 

light (Shinmazaki et al., 2007). Blue light acts as a signal to induce stomatal opening via phot1 and 

phot2 (Kinoshita et al., 2001). The blue light-induced stomatal opening does not require high blue light 

intensity, when blue light is added to the background of red light. For instance, at the background of red 

light, only 5 mol m−2 s−1 blue light can induce fully opening of stomata in wild-type of Arabidopsis 

(Kinoshita et al., 2001). The weak blue light (around 5 mol m−2 s−1 or less) superimposed on the red 

light induces stomatal aperture has been show in a number of C3 and C4 plants, such as wheat and 

sugarcane (Kinoshita et al., 2001; Shinmazaki et al., 2007). Although green light supplementation led 

to blue light fluent decrease (from 100 mol m−2 s−1 to 50 mol m−2 s−1) in RbG-drought, the rest of blue 

light fluent was still efficient to induce stomatal opening in the background of red light (Zeiger et al., 

1982). Therefore, green light supplementation played the dominant role causing the most drastic changes 

in stomatal aperture under RbG-drought. 

In plants, the PM H+-ATPase belongs to a family of P-type ATPases that encode HA genes, and the 

expression of HAs plays a dominant role in mediating blue light-induced stomatal opening (Inoue and 

Kinoshita 2017). The downregulation of HA gene expression leads to decreased stomatal aperture or a 

closed-stoma phenotype (Osakabe et al., 2016; Yamauchi et al., 2016). In the present study, the green 

light-induced downregulation of SlHA1, 2 and 4 (Fig. 6) at the early drought stage and the significant 

negative correlations between stomatal aperture and the expression of SlHA1 and 4 (Fig. 8) indicate that, 

under short-term drought stress, green light can mediate stomatal opening to enhance plant drought 

tolerance by regulating the expression of members of the HA gene family. 

A previous study showed that the expression of AREB1 increases multiple stress tolerance responses in 

transgenic Arabidopsis (Fujita et al., 2005) and that overexpression of SlAREB1 enhances the drought 

tolerance of tomato (Hsieh et al., 2010). Therefore, the relatively high drought tolerance after green light 

supplementation, as assessed by physiological parameters such as the relatively high relative water 

content (RWC) (Fig. 3) and chlorophyll fluorescence (Table 2) and the relatively low lipoperoxidation 

(Fig. 4), could be a consequence of the green light-induced upregulation of SlAREB1 expression. Adding 
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green light significantly upregulated SLAREB1 gene expression but had little effect on the transcription 

of SlAREB2 under short-term drought stress (Fig. S2). These results confirmed that SlAREB1 plays a 

dominant role in the response to green light-regulated drought tolerance. 

In this study, green light supplementation induced an increase in gm, in addition to stomatal regulation. 

Green light may be involved in the regulation of gm by regulating aquaporins (AQPs) and carbonic 

anhydrase (CA) to enhance plant drought tolerance (Perez-Martin et al., 2014). Therefore, given the 

importance of green light on plant growth and development, future investigation via transcriptomics and 

metabolomics not only will facilitate our understanding of the molecular mechanism of the green light 

signal transduction pathway in plants but also will provide important information for developing 

adaptive agricultural strategies to increase the yield of crops. 

5. Conclusion 

The evidence in this paper supports the views that (1) adding green light results in positive effects on 

enhancing tomato plant drought tolerance and (2) adding green light leads to an early decrease in 

stomatal aperture to enhance water-use efficiency by downregulating SlHA1, 2 and 4 expression and by 

inducing SlAREB1 expression to enhance tomato drought tolerance. Moreover, green light 

supplementation facilitated gm to mitigate the negative effects of drought stress on the photosynthetic 

capability. In the future, transcriptomic data will contribute to our knowledge of the molecular 

mechanism by which light spectra regulate photosynthetic capability and water-use efficiency. 
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Tables 

Table 1. Effects of light quality on tomato shoot dry weight (DW), leaf area and leaf mass per area (LMA) 

under drought conditions.  

 

 

 

 

 

 

DW (g)  

Leaf area (cm2) LMA (g m−2) 
Plant height 

(cm) Stems petioles leaves Shoots  

RB-water 
1.180.13 

a 
0.250.03 a 

0.450.08 

a 

1.880.21 

a 
 395.3831.57 a 21.591.06 c 

29.04±1.82 

a 

RB-drought 
0.520.06 

c 
0.140.02 c 

0.310.04 

b 

0.870.10 

d 
 200.3120.40 c 

22.460.45 

bc 

21.24±0.56 

c 

RbG-

drought 

0.740.05 

c 
0.190.04 b 

0.470.05 

a 

1.390.12 

b 
 

241.7518.08 b 23.210.87 

ab 

24.33±1.62 

b 

RBG-

control 

0.580.06 

c 

0.150.03 

bc 

0.400.07 

a 

1.130.09 

c 
 

221.8434.39 

bc 
23.840.39 a 

25.45±1.92 

b 

R, red LED light; B, blue LED light; G and g, green LED light. The shoot DW is the sum of the DW of the stems, petioles 

and leaves. The data are means ± SEs (n = 8). The different letters in the same column indicate significant differences 

among treatments at P < 0.05. 
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Table 2. Effects of green light on the photosynthetic parameters of tomato leaves after 6 days of drought 

stress. 

 

 

 

 

 RB-water RB-drought RBG-drought RbG-drought 

Measured parameters 

Fv/Fm 0.81±0.002 a 0.76±0.01 d 0.78±0.009 c 0.80±0.005 b 

ΦPSII  0.67±0.02 a 0.60±0.003 b 0.67±0.02 a 0.65±0.01 a 

ETR 56.16±1.45 a 51.40±1.26 b 56.00±1.87 a  54.76±0.92 a 

Fitting parameters  

Amax 18.29±1.63 a 12.81±0.99 c 11.74±1.98 c 15.48±0.59 b 

Rd 1.43±0.16 a 0.95±0.11 b 1.02±0.18 b 1.05±0.12 b 

Vmax 43.80±0.62 a 37.46±0.98 c 39.44±0.74 b 44.18±0.80 a 

Jmax 38.04±0.26 a 36.29±0.54 d 37.75±0.47 b  38.79±0.29 a 

The ΦPSII and ETR were calculated at the growth light intensity (200 or 250 mol m−2 s−1) of each 

light treatment. The data are means ± SEs (n = 4). The different letters in a row indicate significant 

differences among the treatments at P < 0.05.  
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Figures 

 

 

Fig. 1. Effects of green light on gas exchange parameters and mesophyll conductance of fully 

expanded tomato leaves under short-term drought stress. (A) Net photosynthetic rate (Anet), (B) 

stomatal conductance (gs), (C) mesophyll conductance (gm) and (D) stomatal limitation (Ls) at the 

growth light intensity. The error bars indicate the SEs (n = 4). The different letters at the same time 

point indicate significant differences among the treatments at P < 0.05. 
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Fig. 2. Influence of diffusion conductance on the net photosynthetic rate (Anet) in response to 

exposure to different light spectra under drought conditions. (A) The relationship between 

mesophyll conductance (gm) and Anet. (B) The relationship between stomatal conductance (gs) and Anet. 

(C) Correlation analysis between total diffusion conductance (gt) and the Anet. The error bars through 

the data points represent ± SEs (n = 4). 
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Fig. 3. Effects of green light on water status and water use-efficiency (WUE) of tomato seedlings 

under short-term drought stress. (A) The relative water content, (B) water loss, (C) intrinsic water 

use efficiency (WUE) and (D) instantaneous WUE under short-term drought conditions. (E) The 
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phenotypes of plants after 6 and 9 days of drought. The error bars indicate the SEs (n = 4). The different 

letters at the same time point indicate significant differences among the treatments at P < 0.05. 

 

 

 

Fig. 4. The malondialdehyde (MDA) contents in tomato leaves exposed to different light spectra 

under short-term drought stress. The error bars indicate the SEs (n = 4). The different letters at the 

same time point indicate significant differences among the treatments at P < 0.05. 

 

Fig. 5. Effects of green light on stomatal aperture under short-term drought stress. The error bars 

indicate the SEs (n = 10-15). The different letters at the same time point indicate significant differences 

among the treatments at P < 0.05. 
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Fig. 6. Influence of green light on expression profiling of stomatal opening and drought tolerance 

related genes in tomato leaves under short-term of drought stress. (A-C) The expression profiling 

of stomatal opening-related genes: SlHA1, SlHA2 and SlHA4. (D) The expression profiling of drought 

tolerance related gene－SlAREB1. Total RNA was isolated from samples collected at different time 

points and converted to cDNA before being subjected to real-time qRT-PCR. The error bars indicate the 

SEs (n = 3). 
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Fig. 7. Influence of the expression of stomatal opening and drought tolerance related genes on 

water-use efficiency (WUE) under short-term drought stress. (A-C) Correlation analysis revealing 

the links between WUE and the relative expression of SlHA1, 2 and 4. (D) Correlation analysis between 

WUE and the expression of SlAREB1. The error bars indicate the SEs (n = 3). 
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Fig. 8. Influence of the expression of stomatal aperture and drought tolerance related genes on 

stomatal aperture under short-term drought stress. (A-C) The relationship between stomatal 

aperture and the relative expression of SlHA1, 2 and 4. (D) The relationship between stomatal aperture 

and the relative expression of SlAREB1. The error bars indicate the SEs (n = 3). 

 


