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Abstract 

 

Plant cells suffer alterations of their redox state and increase mitochondrial ROS 

generation during salinity. To avoid this, they activate several mitochondrial antioxidant 

and redox systems including the alternative oxidase (AOX), superoxide dismutase 

(SOD) and the ascorbate-glutathione (ASC-GSH) cycle components  in a coordinated 

manner. The redox-sensitive mitochondrial thioredoxin (Trx) system may be 

responsible for this coordination through the redox regulation of target proteins. On top 

of this, metabolic perturbations induced by salinity may lead to alterations of the redox 

state of the Trx system. In order to explore the association between redox and metabolic 

changes occurring in mitochondria under saline conditions, we analyzed the salt-stress 

responses of mitochondrial antioxidant systems and metabolism in wild type (WT) and 

two knock-out (KO) AtTrxo1 lines. The activities of Mn-SOD and components of the 



ASC-GSH cycle were determined in isolated mitochondria, together with an evaluation 

of the AOX redox state, the oxidative stress, and catalase activity. Moreover, the in vivo 

activities of cytochrome (COX) and alternative mitochondrial respiratory pathways and 

primary metabolites profile were determined. Our results show that the lack of Trxo1 

neither resulted in oxidative stress at the mitochondrial level nor in an upregulation of 

the antioxidant enzymes under salinity, although glutathione reductase (GR) maintained 

its high constitutive level as observed in control conditions. Moreover, the AOX was 

found invariably in its reduced monomeric state and displayed a reduction of its in vivo 

activity in all genotypes after the salt treatment, probably due to the mild severity of the 

treatment. Interestingly, trxo1 mutants displayed altered patterns in AOX isoforms and 

in the activities of the ASC-GSH cycle components and the electron partitioning to the 

AOX pathway indicating a reorganization of the different antioxidant systems. 

Furthermore, decreases on glucose and fructose levels in both trxo1 mutants coincided 

with an increased respiration through the COX pathway under control conditions. All 

these changes collaborate to maintain a low oxidative stress and the energy demand in 

both, control and salinity conditions and reflect the acclimation of all the genotypes to 

the applied stress.  

 

Keywords. Alternative oxidase, ascorbate-glutathione cycle, reactive oxygen species 
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1. Introduction 

 

Mitochondria are key organelles involved in ROS generation during plant 

development and also play an essential function under stress situations such as salinity 

where ROS production is increased (Hernández et al., 1993; Gómez et al,. 1999; Sevilla 

et al., 2015a; Huang et al., 2016). Salinity is one of the main environmental constraints 

which limit plant productivity in spite of the induction of defence systems, affecting 

several cellular processes with an associated oxidative and nitrosative stress (Gómez et 

al., 2004; Camejo et al., 2013). Among others, salt stress affects respiration, with the 

impact depending on the sensitivity of the plant species and the duration and severity of 

the imposed stress (Koyro et al., 2006; Jacoby et al., 2011; Martí et al., 2011; Del-Saz et 

al., 2016). Several antioxidant and redox systems participate in the protection of 



mitochondria from the oxidative stress induced by salinity. In seed plants, the 

mitochondrial electron transport chain (mETC) presents a phosphorylating cyanide-

sensitive cytochrome c oxidase (COX) pathway in parallel to a non-phosphorylating 

cyanide insensitive alternative oxidase (AOX) pathway that directly couples the 

oxidation of ubiquinol with the reduction of oxygen to water. A general role of the 

AOX pathway is related to the avoidance of over-reduction of the ubiquinone pool 

which reduces the possibility of ROS production (Del-Saz et al., 2018). Moreover, it 

can allow the continuation of the tricarboxylic acid (TCA) cycle when there is a 

limitation on the NAD(P)H re-oxidation (Del-Saz et al., 2018). Salinity can promote 

both high ROS production and a decrease on the energy demand for growth and 

therefore the AOX has been proposed to play an important role on the response of plant 

metabolism to salt stress (Smith et al., 2009; Martí et al., 2011; Del-Saz et al., 2016). 

Transcript levels of AOX genes are highly responsive to salt stress and plants 

overexpressing AtAOX1a present lower ROS formation and improved growth under 

saline conditions (Smith et al., 2009). At the protein level, the AOX is post-

translationally regulated by two mechanisms that involve a redox regulation yielding 

reduced active dimers which can subsequently be further activated by its interaction 

with different organic acids (Selinski et al., 2018). The candidate proposed to redox 

regulate the AOX is the mitochondrial thioredoxin which has indeed been shown to 

activate the AOX in vitro (Martí et al., 2009; Del-Saz et al., 2018). In fact, the level of 

reduction and the protein amount were suggested to be essential in determining the 

extent of the AOX activity in vivo (Ribas-Carbó et al., 1997; Martí et al., 2011) 

although this is still a matter of debate (Del-Saz et al., 2018). The in vivo AOX and 

COX activities can only be determined by using the oxygen isotope fractionation 

technique and such studies under saline conditions are still scarce (Del-Saz et al., 2018). 

Another key antioxidant enzyme in the mitochondria is superoxide dismutase (SOD) 

which is responsible for eliminating O2
.- to generate H2O2, and which respond to salinity 

depending on the sensitivity of different genotypes (Olmos et al., 1994; Ashraf et al., 

2009; Hafsi et al., 2010). The coordinated action of Mn-SOD and AOX proteins in 

response to stress is also thought to reduce the O2
.- levels thus diminishing the harmful 

effects of oxidative stress (Martí et al., 2011; Sevilla et al., 2015b). In collaboration with 

these systems, the ascorbate-glutathione (ASC-GSH) cycle components are coordinated 

to eliminate the H2O2 generated (Jiménez et al., 1997). The enzymes of this cycle 

display a high plasticity in their gene regulation and are important components in the 



maintenance of an adequate redox state of the antioxidants ASC and GSH under stress 

conditions (Lázaro et al., 2013; Ortiz-Espín et al., 2017a; Hossain et al., 2018). 

Furthermore, the reduced/oxidized balance of these two antioxidants is crucial for the 

cell stress signaling responses (Foyer and Noctor, 2011) due to their influence on stress-

responsive gene expression (Munné-Bosch et al., 2013).  

In addition to the above-mentioned antioxidant systems, thiorredoxins (Trx) 

peroxiredoxins (Prx), sulfiredoxins (Srx) and glutaredoxins (Grx) are redox-sensitive 

proteins present in mitochondria which may be involved in the regulation of the plants 

response to salinity (Rouhier et al., 2006; Barranco-Medina et al., 2007; Guo et al., 

2010; Iglesias-Baena et al., 2011; Martí et al., 2011; Sevilla et al., 2015a). The 

mitochondrial Trx isoforms belong to the h or o classes (Laloi et al., 2001; Gelhaye et 

al., 2004; Martí et al., 2009). The Trxo1 protein has been described in Arabidopsis 

mitochondria while in pea nucleus and mitochondria, where it may regulate the redox 

state of different target proteins (Martí et al., 2009; Calderón et al., 2017), including 

mitochondrial AOX and peroxiredoxin PrxIIF, exerting a signaling function during salt 

stress (Barranco-Medina et al., 2008, 2009; Martí et al., 2009). Interestingly, post-

translational modifications play a key role in regulation of these proteins under stress 

conditions including salinity (Horling et al., 2003; Finkemeier et al., 2005; Martí et al., 

2011). Pea PrxIIF was found as S-nitrosylated under long-term saline conditions 

(Camejo et al., 2013) and this modification has been described to provoke a 

conformational change and functional switch in the protein from peroxidase to 

transnitrosylase, which could probably function as a protective mechanism under 

conditions inducing oxidative and nitrosative stress (Camejo et al., 2013, 2015). 

Recently, it has been reported that recombinant mitochondrial AtTrxo showed capacity 

to bind an Fe-S cluster, although the physiological relevance of this observation remains 

unclear (Zannini et al., 2018).  

 In order to gain more insight into the physiological function of Trxo1, we have 

analysed the salt-stress responses of mitochondrial antioxidant systems and metabolism 

in wild type (WT) and two Knock out (KO) AtTrxo1 (named trxo1) lines. Recently, an 

increase in antioxidant enzymes SOD, GR or catalase has been reported at the leaf level 

in Arabidopsis KO trxo1 mutants under salinity, probably to compensate the lack of 

Trxo1 in mitochondria (Calderón et al., 2018) and a contribution of the mitochondrial 

Trx system under drought stress in Arabidopsis has been reported (da Fonseca-Pereira 



et al., 2018).  However, the impact of the lack of Trxo1 in the antioxidant system in 

isolated mitochondria is unknown. In this respect, the activities of Mn-SOD and 

components of the ASC-GSH cycle were determined in the organelles together with an 

evaluation of the AOX redox state and the oxidative stress possibly imposed by the 

saline condition. The study of the AOX pathway in vivo in the Trxo1 mutants under 

salinity is two-fold relevant. Firstly, different roles of the AOX pathway have been 

proposed in the tolerance of plants to salinity stress (Smith et al., 2009; Martí et al., 

2011; Del-Saz et al., 2016; Hossain and Dietz, 2016) but its complex interplay with 

other antioxidant systems, including Trxo1, remains poorly explored. Secondly, Trxo1 

has been proposed as the physiological candidate activating the AOX in pea, poplar and 

Arabidopsis plants (Martí et al., 2009; Yoshida et al., 2013), particularly under saline 

conditions (Martí et al., 2011). In this paper, the in vivo activities of COX and AOX 

mitochondrial respiratory pathways and primary metabolites profile have been 

determined in order to explore the links between redox and metabolic changes caused 

by the absence of AtTrxo1 under saline conditions.  

 

2. Materials and methods 

 

2.1. Plant material and growth conditions 

 

Seeds of Arabidopsis thaliana L. wild-type (ecotype Columbia) and two T-DNA 

insertion (At2g35010) KO-AtTrxo1 lines in this ecotype (SALK_143294C, line 590 

(named KO1) and SALK_042792 line 374 (named KO2) were obtained from the 

European Arabidopsis Stock Centre (NASC; http://arabidopsis.info/; Nottingham 

University, UK). The homozygous plants were selected as described in Ortiz-Espín et 

al. (2017b) where the lack of AtTrxo1 expression was shown in KO1 while a residual 

expression was observed in KO2 plants.  

Plants (around 120 seeds per plate) were grown as described by Wallström et al. 

(2014) with some modifications. Seeds were sterilized and sown on plates prepared with 

2.5 g/L of MS medium, 18 g/L sucrose (pH 5.7) supplied with 8 g/L plant agar. Sown 

seeds were stratified at 4ºC for 3 days and then plates were maintained under controlled 

conditions of light (80 µmol/m2/s photosynthetic active radiation), photopheriod (16 h 



light/8 h dark), relative humidity (60%) and temperature (22/18ºC light/dark) for 21 

days. For the salt treatment, 100 mM NaCl was added to the plant growth medium.  

   

2.2. Growth analysis 

 

Growth of WT and KO lines in the absence and presence of 100 mM NaCl was 

evaluated by measuring fresh weight, rosette diameter, number of leaves and root length 

in 21-old plants.  

 

2.3. Isolation of mitochondria 

Mitochondria were isolated by differential and density Percoll gradient 

centrifugation using 10-15 g of rosette leaves of the Arabidopsis plants as described by 

Keech et al. (2005) with the following modifications: a grinding medium: 0.25 M 

sucrose, 1.5 mM EDTA, 4 mM cysteine, 15 mM MOPs-KOH (3.14 g/L), pH 7.4, 0.4 % 

BSA, 0.6 % PVP-40; a washing buffer: 0.3 M sucrose, 1 mM EGTA, 0.2 mM PMSF, 10 

mM MOPs-KOH pH 7.2 and a 27/45% Percoll gradient in a buffer containing: 0.3 M 

sucrose, 10 mM MOPs-KOH, pH 7.2.  For APX extraction, 20 mM ascorbic acid was 

included in the grinding buffer and 2 mM in the other buffers, and EDTA/EGTA were 

omitted. For SOD activity and AOX protein content, an enriched-mitochondrial extract 

(pellet from 18000g resuspended in washing buffer) was used, and in case of AOX, all 

buffers contained 50 mM NEM.  

 

2.4. Western blotting 

 

Total seedling extracts were prepared from 0.5 g of frozen tissue ground to a 

powder with liquid nitrogen using 2 ml SDS-PAGE Laemli (1970) sample buffer 

without reductant. On the other hand, enriched-mitochondrial extracts were obtained as 

described in the previous section, treated with triton 0-.1% X-100 and incubated 30 min 

at 4ºC. All samples were centrifuged at 14,000g for 10 min and supernatant were boiled 

for 5 min and proteins were separated by SDS-PAGE according to the method of 

Laemmli (1970). Subsequently proteins were electrotransferred to nitrocellulose filters 



using a blot-transfer buffer (48 mM Tris, 134 mM Gly, 0.03% SDS, 20% [v/v] 

methanol). 60 µg of proteins from total extracts and 25 µg of mitochondrial-enriched 

extracts were used in each lane. Monoclonal mouse AOX antibody (1:50) (Elthon et al., 

1989) and goat anti-mouse antibody IgG-HRP: sc-2031 (Santa Cruz Biotechnology 

Inc.) were used as primary and secondary antibodies, respectively. AOX protein was 

detected using ECL Plus Western blotting detection system (GE Healthcare, 

Hertfordshire U.K.). To quantify the bands we applied Quantity One software-based 

analysis (BioRad).  

 

2.5. Lipid peroxidation and carbonyl proteins    

 

The extent of lipid peroxidation was estimated by determining the concentration of 

substances reacting with thiobarbituric acid as described in Ortiz-Espín et al. (2015). 

Samples were incubated with a mixture reaction containing 15 % (w/v) trichloroacetic 

acid, 0.37 % (w/v) thiobarbituric acid, 0.01 % (w/v) butylhydroxytoluene and 0.25 M 

HCl at 95 oC for 15 min and then were centrifuged at 2,000 g for 5 min. Supernatants 

were collected and the absorbance change at 535 nm was measured. 

Carbonyl protein content was measured using 2,4-dinitrophenylhydrazine (DNPH) 

as described by Ortiz-Espín et al. (2015). The total soluble protein content was 

quantified using the Bradford method (Bradford, 1976). 

 

2.6. Enzyme assays 

 

Mitochondrial extracts were used for enzymatic determinations, being previously 

treated with 50 mM phosphate buffer pH 7.8 containing 0.1% (v/v) Triton X-100 during 

5 min at 4ºC.  

The yield of purified mitochondria was estimated from the cytochrome c oxidase 

(CCO) activity while the integrity of the outer mitochondrial from the succinate:cyt c 

xidoreductase activity, as described by Jiménez et al. (1997). Marker enzymes as lactate 

dehydrogenase (LDH), NADP-glyceraldehyde 3-P dehydrogenase (G3PDH) and 

catalase (CAT) were used to check the cytoplasm, chloroplast and peroxisomal 



contamination respectively, and they were assayed following Jiménez et al. (1997) to 

assess the purity of the mitochondria.  

SOD isozymes were separated by PAGE on 12% gels according to Hernández et al. 

(1994). Ascorbate peroxidase (APX; EC 1.11.1.11) using its inhibitor pCMS (0.5 mM), 

monodehydroascorbate reductase (MDHAR; EC 1.1.5.4), dehydroascorbate reductase 

(DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) activities were assayed 

according to Jiménez et al. (1997). 

 

2.7. Respiration and oxygen-isotope fractionation measurements 

 

For respiratory measurements, 21-day old plants were placed for 30 min in the dark 

to avoid light-enhanced leaf dark respiration. Plantlets were carefully harvested from 

petri dishes and immediately placed in a 3 mL stainless-steel closed cuvette maintained 

at a constant temperature of 25ºC. Air samples of 250 µL were sequentially withdrawn 

from the cuvette and fed into the mass spectrometer (Delta XPlus, Thermo LCC, 

Bremen, Germany). Changes in the 18O/16O ratios and oxygen concentration were 

measured to calculate the oxygen-isotope fractionation as described in Del-Saz et al. 

(2017). The end point fractionation values of both COP (∆c=30.4) and AOP (∆a=19.8) 

were taken from Florez-Sarasa et al. (2012). These are needed for the calculation of the 

electron partitioning to the alternative pathway (τa) and the individual activities of the 

COP (vcyt) and AOP (valt) as described in Del-Saz et al. (2017). Values presented are the 

mean ± SE of eight biological replicates. 

 

2.8. Metabolite profiling 

 

Aerial parts of plantlets were sampled after growing for 21 days in plates 

containing or not 100 mM NaCl, immediately frozen in liquid nitrogen, and stored at -

80°C until further analysis. Samples were then grinded in liquid nitrogen and metabolite 

extractions were performed as described previously (Lisec et al., 2006) using 



approximately 50 mg of frozen-powdered tissue. Metabolites were identified in 

comparison with database entries of authentic standards (Kopka et al., 2005; Schauer et 

al., 2005). Chromatograms and mass spectra were evaluated by using Chroma TOF 1.0 

(Leco, http://www.leco.com/) and TAGFINDER 4.0 software (Luedemann et al., 2008). 

The relative content of metabolites was calculated by normalization of signal intensity 

to that of ribitol, which was added as an internal standard. Thereafter, data were 

normalized to the mean value of Col-0 plants under control (no added salt) conditions 

(i.e. the value of all metabolites for Col-0 under control conditions was set to 1). Values 

presented are means ± SE of six replicates each corresponding to a pool of about 3-6 

plantlets depending on plant treatment.  

 

2.9. Statistical analysis 

 

The experiments were conducted in a completely randomized design. Each 

experiment was repeated at least three times with three replicates per treatment for each 

genotype and at least four plants per replica. Data were subjected to two different 

statistical analysis: one for differences among genotypes in each condition (capital 

letters for control and lower-case letters for saline conditions) with an analysis of the 

variance (ANOVA, one factor) using the Tukey’s test (P<0.05), and another test for the 

salt effect in each genotype (asterisk when significant differences under salinity 

compared with control condition) using Student´s t-test (P<0.05). IBM SPSS Statistics 

20 programm (Statistical Package for Social Sciences, 2011) and JMP®, Version 12.1.0 

(SAS Institute Inc., Cary, NC, USA, 1989–2007) were used for the data analysis. 

 

3. Results  

 

3.1. Growth parameters  

 

After 21 days of growth in the absence or presence of 100 mM NaCl, none of the 

mutant plants revealed any appreciable phenotype when compared to WT plants in 

control or saline conditions (Fig. S1), and a visible reduction of the growth was 

observed under salinity in all the lines. However, analysis of growth parameters 



revealed some differences in between WT and mutant plants. Under control conditions, 

fresh weight of rosette leaves and root length (Fig. 1A and 1D) were significantly 

decreased in KO2 as compared to WT plants while rosette diameter was shorter in the 

KO1 mutant (Fig. 1B) and KO2 presented higher number of leaves per rosette (Fig. 1C). 

These and other differences between both mutants presented in this paper could be due 

in part to the residual AtTrxo1 gene expression showed by KO2 plants (Ortiz-Espín et 

al., 2017b). Salinity provoked a significant decrease in all growth parameters in all the 

genotypes and differences among them were found for the rosette diameter that was 

shorter in both mutants, and the number of leaves that was higher in the KO2 plants.   

 

3.2. Isolation of mitochondria 

 

The yield of purified mitochondria from plants grown under control and saline 

conditions was around 10% measuring cytochrome c oxidase activity in the leaf 

homogenate and in the isolated organelles (Table 1 and 2). Mitochondrial fractions 

presented low contamination rates as indicated by the activity of markers enzymes 

cytoplasmic lactate dehydrogenase (0.7-0.6% in control and saline conditions, 

respectively), chloroplastic NADP-gliceraldehyde 3-P dehydrogenase (0.01-0.3%) and 

peroxisomal catalase (1.5-3%). Integrity of isolated mitochondria was found to be 

around 90%-85% for the organelles isolated from plants grown under control and saline 

conditions, respectively. 

 

3.3. Mitochondrial oxidative stress status in trxo1 mutants under saline conditions 

 

The analysis of parameters indicative of oxidative stress in isolated mitochondria 

revealed that the lipid peroxidation (Fig. 2A) was significantly higher in KO2 mutant 

than in WT plants only under control conditions and salinity did not modify this 

parameter in any genotype. On the other hand, similar levels of carbonyl (CO) protein 

groups were found among genotypes in both conditions and salinity only decreased 

them in the KO2 mutant (Fig. 2B). A similar pattern was found for the H2O2 foliar 

content in the plants, but in this case, KO1 plants showed a significant decrease under 

salinity (Fig 2C).  

 

3.4. Mitochondrial antioxidant enzymes in trxo1 mutants under saline conditions 



 

Mn-SOD activity was measured after native PAGE in purified mitochondrial 

fractions (Fig. 3A) from leaves. No significant changes were found among genotypes in 

control or saline conditions, and only a decrease in the KO2 line with salinity was 

observed. Catalase activity was measured in foliar extracts with no differences among 

genotypes in both conditions and the activities were similar between control and saline 

conditions (Fig. 3B). Measurement of the ASC-GSH cycle enzymes revealed that 

PCMS-inhibited APX activity was significantly lower in KO2 line that in WT in both 

control and saline conditions (around 45%) (Fig. 4A). Salinity did not cause a 

significant change of this activity in any of the lines. The oxidized forms of ASC are 

regenerated by two enzymes of the ASC-GSH cycle, MDHAR and DHAR. In isolated 

mitochondria, MDHAR activity was similar in all genotypes under control conditions 

(Fig. 4B) and was found higher in WT than in KO lines under salinity. Only in WT, 

salinity provoked an increase in this activity. DHAR activity was similar in all 

genotypes in both growth conditions with no significant changes provoked by salinity 

(Fig. 4C). GR activity, the last component of the ASC-GSH cycle involved in the 

regeneration of GSH from GSSG was higher in KO plants than in WT under control 

conditions while salinity induced this activity significantly only in the WT genotype 

(Fig. 4D).  

 

3.5. Respiration and electron partitioning between AOX and COX pathways in trxo1 

mutants under saline conditions 

 

Respiratory rates and oxygen isotope fractionation were determined in plants grown 

under control and saline conditions. Total oxygen uptake (Vt) was not significantly 

different among lines exposed to either control or saline conditions (Fig. 5A). By 

contrast, salinity significantly increased Vt (by 23%) only in WT plants. In salt treated 

plants, a was decreased by 64%, 37% and 30% in WT, KO1 and KO2 plants 

respectively, relative to control plants, and it remained significantly higher in KO2 line 

relative to WT plants. Similarly, valt was significantly decreased in WT, KO1 and KO2 

under salinity by 57%, 37% and 30% respectively, relative to control plants. On the 

other hand, vcyt was only increased in WT plants (by 74%), relative to control conditions 

Noticeably, the electron partitioning to the alternative pathway (a) was significantly 

lower in KO1 (35%) and KO2 (27%) lines than in WT plants under control conditions 



(Fig. 5B). This was mainly due to a significantly higher activity of the cytochrome 

pathway (vcyt) displayed by KO1 (36%) and KO2 (29%) (Fig. 5C).  

 

3.6. Immunodetection and redox state of AOX in trxo1 mutants under saline conditions 

 

Enriched mitochondrial fractions were obtained with the addition of NEM to the 

different preparations, in order to block the Cys residues of the AOX protein. NEM 

treatment prevents the formation of the disulfide bond between Cys from the AOX 

monomers and thus, the oxidation of the protein during the mitochondrial enrichment 

procedure may be avoided. Under these conditions, the relation between the dimeric 

(oxidized, aprox. 70 kDa) and the monomeric (reduced, aprox 35 kDa) form can be 

interpreted as the redox state of the AOX protein. No visible band corresponding to the 

dimeric/oxidized form (aprox 70 kDa) was detected (data not shown) while two major 

bands corresponding to monomeric forms were detected at about 35 and 39 kDa 

probably corresponding to different isoforms of the AOX reduced form (Fig. 6). The 

signal intensities of both 35 and 39 kDa bands (Fig. 6A and 6B, respectively) were 

similar among genotypes in each of the conditions analyzed. This denotes that trxo1 

mutants do not present significant changes in the AOX protein amount per mitochondria 

as compared to WT plants. By contrast, the intensity of the 35kDa band was increased 

under salinity while the one of the 39kD decreased by an approximately similar level in 

all genotypes. 

In order to analyze changes in AOX protein at the leaf level, total leaf extracts were 

used to immunodetect AOX (Fig. 7). As observed in the mitochondrial enriched 

fractions, two bands of aprox 35 and 39 kDa were detected. In this case, KO2 leaves 

displayed a lower amount of the 35 kDa band under control conditions as compared to 

the other genotypes. The intensities of the 39 kDa bands were similar in all genotypes in 

both control and saline conditions. These results suggest that KO2 plants may be limited 

in their AOX capacity for respiration at the leaf level under control conditions. Finally, 

the signal intensity of the 35 kDa band increased only in the KO2 after salinity 

treatment while no changes were detected in the other genotypes.   

 



3.7. Metabolite profiles of trxo1 mutants under saline conditions 

 

In order to obtain a more detailed characterization of the metabolic changes linked 

to the responses of respiration and antioxidant system in the mutants, GC-TOF-MS 

metabolite profiling analysis was performed in the mutants and WT plants under control 

and saline conditions.  A total of 46 metabolites were annotated after GC-TOF-MS 

analyses (Supplemental Table S1) and their relative levels were normalized to the mean 

levels of WT plants under control conditions. Salt treatment significantly (P<0.05) 

decreased the levels of 10 metabolites in WT plants including organic acids such as 

dehydroascorbate (6.0-fold), fumarate (5.9-fold), malate (3.8-fold), phosphoric acid 

(2.3-fold) and succinate (1.8-fold); sugars such as glucose (9.4-fold) and fructose (8.3-

fold); and amino acids such as glycine (4.0-fold), threonine (1.7-fold) and aspartate 

(1.3-fold) (Fig. 8 and Supplemental Table S2). By contrast, six metabolites were 

significantly (P<0.05)  higher in salt-treated WT plants including trehalose (7.0-fold), 

raffinose (2.7-fold), proline (2.6-fold), serine (2.0-fold), histidine (1.7-fold) and glycerol 

(1.34-fold) (Fig. 8 and Supplemental Table S2). With the exception of trehalose under 

salinity, all the metabolic differences between mutants and WT were observed under the 

control condition; with both mutant lines consistently displayed lower levels of glucose, 

fructose, myo-inositol and β-alanine while serine and sucrose levels were significantly 

lower only in the KO2 mutant. 

 

4. Discussion 

 

4.1. Growth and oxidative stress responses of the trxo1 mutants  

 

Salinity stress provokes complex changes in the physiology and metabolism of 

plants trying to cope with the associated stresses such as ionic, osmotic, oxidative or 

nitrosative stress. Changes are dependent on many factors including the stress intensity 

and duration, tissue and development stage, but also the inherent capacity of the plants 

to sense, cope with or induce defense mechanisms ameliorating deleterious effects 

(Bartels and Sunkar, 2005; Lázaro et al., 2013). Antioxidant and Trx/Prx systems have 

been described to play a role in the response to salinity, and specifically Trxo1 was 



suggested to protect mitochondria from oxidative stress most probably through the 

regulation of target proteins involved in several processes in the organelle (Martí et al., 

2009, 2011; Sevilla et al., 2015a). In the present study, we subjected WT and trxo1 

mutant plants to a long-term salinity treatment by growing them on agar containing 100 

mM NaCl. This salinity treatment significantly reduced the fresh weight of all 

genotypes as previously observed in the same mutants plants grown in soil and exposed 

to a short-term (7 days) salinity treatment of 100 mM NaCl (Calderón et al., 2018). 

Differently from Calderón et al. (2018), the KO2 mutant displayed a reduction in both 

fresh weight accumulation and root length under control conditions and a higher 

number of leaves; however, these differences could be due to the different growth 

conditions applied. When grown in soil, salinity induced a lower water loss and higher 

stomatal closure, H2O2 and lipid peroxidation levels in these KO mutants. These effects 

were accompanied by higher activity of some components of the antioxidant system 

such as catalase and SOD at the leaf level, probably as a way to compensate the lack of 

Trxo1 (Calderón et al., 2018). In the present study, the leaf contents of H2O2 were not 

increased under salinity in any of the genotypes suggesting the oxidative stress of these 

plants is milder. Again the different growing conditions and also the duration of the 

stress applied very likely have influenced on the differences observed with previously 

obtained results (Calderón et al., 2018).  

In order to better understand the responses to salinity at the mitochondrial level, 

oxidative stress parameters were determined in isolated mitochondria of the trxo1 

mutants. The lack of Trxo1 did not result in an important oxidative organelle damage 

although KO2 mutants presented a different behavior, with higher lipid peroxidation, 

evidencing its higher sensitivity. Salinity on the other hand did not provoke significant 

changes on the mitochondrial oxidative stress parameters probably due to the response 

of an efficient mitochondrial antioxidant system. 

 

4.2. Mitochondrial antioxidant systems responded differently in trxo1 mutants  

 

The mitochondrial respiratory chain is a source of ROS and the presence of a ROS 

scavenging system in the organelle allows it to cope with the oxidative stress induced 



mainly under stress situations. For this reason, components of the ASC-GSH cycle 

collaborate with Mn-SOD and the Trx/Prx system present in this cellular compartment. 

Previously reported changes of the antioxidant and redox systems denote that stress 

tolerance likely requires the induction of specific isoforms in the different cell 

compartments or a constitutively higher content of antioxidants, depending on the 

species, variety or strength and duration of stress (Lázaro et al., 2013; Hossain and 

Dietz, 2016).  

 An increase in mitochondrial Mn-SOD activity and RNA expression have reported 

in a salt tolerant but not in sensitive pea cultivars, being these inductions dependent on 

the salt concentration (Gómez et al 1999; Hernández et al., 2000), and sometimes the 

existence of post-transcriptional regulation has been suggested to explain a maintained 

Mn-SOD protein during the stress in those tolerant pea cultivars showing a high Mn-

SOD activity (Camejo et al., 2013). Likewise the overexpression of Mn-SOD increased 

tolerance to salinity in different plants such as Arabidopsis, tomato and poplar (Wang et 

al., 2004, 2007, 2010). More recently we have found an increase in all the SOD 

isoenzymes in soil-grown Arabidopsis plants under salinity which was more 

pronounced in trxo1 mutants than in WT plants and coincided with increased H2O2 

content in leaves (Calderón et al., 2018). The fact that neither mitochondrial Mn-SOD 

nor CAT activities were responding to the lack of Trxo1 or salinity in the present study 

(Figure 3) points to compensating events occurring in the KO mutants in both control 

and saline conditions when grown on plates, which finally allowed them to keep the 

H2O2 levels constant (Figure 2). When the oxidative stress indicators were analysed in 

mitochondria, neither protein oxidation nor lipid peroxidation increased under salt 

treatment, sustaining that plants are not subjected to a severe oxidative stress under 

these saline conditions. On the other hand, no changes in Mn-SOD and CAT activities 

were previously reported in Arabidopsis and pea plants under salinity or other 

environmental stresses (Kliebenstein et al., 1998; Martí et al., 2011; Wang et al., 2004), 

in which a mild oxidative stress was induced. That pattern seems to be very similar to 

that observed in our study either in trxo1 mutants as in WT plants. 

In this scenario, we have also examined the mitochondrial ASC-GSH cycle 

enzymes as another important antioxidant system regulating the endogenous levels of 

H2O2 very effectively (Jiménez et al., 1997; Chew et al., 2003). In a previous study 

using the same Arabidopsis genotypes, we described that total leaf APX activity 



increased under salinity in both WT and KO trxo1 mutants (Calderón et al., 2018). 

Studies at the leaf level have reported controversial results with regard to APX activity 

(Wang et al., 2013). Our aim in the present study was to focus on the effects of the trxo1 

mutation on the ASC-GSH cycle at the mitochondrial level in which the information is 

quite reduced. The presence of APX in mitochondria was previously reported in both 

pea leaves and potato tubers (Jiménez et al., 1997; De Leonardis et al., 2000). In 

Arabidopsis, APX is dually targeted to mitochondrial and stroma compartments (Chew 

et al., 2003). In our study, the lower mitochondrial APX activity regulating H2O2 in the 

KO2 mutant could have an impact in the observed oxidation of lipids in these plants, 

without eliminating the possibility of contribution of other antioxidants as PrxIIF also 

controlling peroxide levels. On the other hand, the activity of the mitochondrial APX 

was not significantly changed in WT plants under salinity, while the activities of 

mitochondrial MDHAR and GR were increased (Figure 4). This pattern of change in 

MDHAR and GR activities is similar to that reported in mitochondria from salt-tolerant 

tomato cultivars and relatively salt-tolerant pea plants, although in pea, APX activity 

also increased under mild and severe salt stress (Gómez et al., 1999; Mittova et al., 

2003; Lázaro et al., 2013). 

In the trxo1 mutants, none of the activities of the mitochondrial components of the 

ASC-GSH cycle enzymes were induced by the salinity treatment (Figure 4). Notably, 

the mitochondrial activity of GR was higher in both mutants than in the WT plants 

under control conditions and it was not diminished upon salinity. This observation, 

together with the maintained levels of DHAR activity could have influenced the 

glutathione and ascorbate recycling and the level of H2O2. As mentioned above, 

specifically under salinity, increases in the GR activity have been positively correlated 

to salinity tolerance (Lázaro et al., 2013). Furthermore, the overexpression of GR has 

been described to increase tolerance of tobacco and poplar plants to salinity finding a 

higher content of ASC in the leaves (Aono et al., 1993; Foyer et al., 1995). In this way, 

the lack of Trxo1 could be compensated by higher GR activity under control conditions 

in the mutants, and the maintenance of that constitutive level in salinity contributed to 

an efficient response of these plants to the stress condition. An inverse relationship 

between Trx and GSH has also been described in over-expressing PsTrxo1 tobacco BY-

2 cells, in yeast trx1-trx2 double mutant and in an Arabidopsis GSH-deficient 



meristemless mutant, as a mechanism to adjust GSH levels (Ortiz-Espín et al., 2015; 

Schnaubelt et al., 2015; Calderón et al., 2017). 

 

4.3. The alternative oxidase (AOX) pathway is differentially regulated in trxo1 mutants 

 

An induction of the in vivo AOX activity under salinity has only been observed 

after a short-term and severe stress (Del-Saz et al., 2016) while long-term either 

decreases in the case of very severe stress (Del-Saz et al., 2016), or  maintains the in 

vivo AOX activity (Martí et al., 2011). In the present study, a long-term salinity stress 

was applied in plants grown in agar plates that, as previously discussed, only caused a 

mild oxidative stress. Under this condition, the AOX displayed a reduction of its in vivo 

activity in all genotypes, suggesting that it was probably not required because of a 

stress-adaptation of the plants. Nevertheless, the higher electron partitioning to the AOX 

pathway under salinity observed in both mutants (Figure 5B) denotes a relatively higher 

response of the AOX that can act preventing the generation of the radical superoxide at 

the UQ level (Purvis, 1997; Cvetkovska and Vanlerberghe, 2012), with a possible 

influence in the response of the enzymatic system controlling H2O2 levels in these 

plants.  

The lack of the proposed activator of the AOX, the Trxo1, was expected to cause a 

decrease in the reduction level of the AOX and thus limit its activation under saline 

condition. In order to further investigate this, we determined the redox state of the AOX 

protein in enriched mitochondrial fractions (Figure 6). Unlike in leaf extracts, the AOX 

protein in mitochondria isolated from Arabidopsis, pea and tobacco has been reported 

predominantly in its dimeric-oxidized form (Rhoads et al., 1998; Martí et al., 2009; 

Vanlerberghe, 2013), very likely due to its oxidation during the isolation procedure 

(Umbach and Siedow, 1997; Nietzel et al., 2017). The use of a chemical crosslinker 

such as NEM during the mitochondrial isolation or enrichment procedure should have 

avoided the formation of the dimeric forms thus approximating the in vivo redox state 

situation. By using this technique, no apparent changes on the AOX redox state were 

detected in the trxo1 mutants as compared to WT plants. Moreover, the AOX was 

invariably found in its reduced monomeric state not only under salinity but also under 



control conditions. These results do not allow us to establish a lack of direct redox 

regulation of AOX by the Trxo1 in vivo, because of the presence of other systems 

involving other thioredoxins or thiol reductases as glutaredoxins (Meng et al., 2010; 

Moseler et al., 2015; Ströher et al., 2016), which could perform a maintenance function, 

avoiding any oxidation or reversing it efficiently, rather than an AOX regulation 

function. This possibility has been suggested recently to explain the function of 

mitochondrial Trx on AOX (Nietzel et al., 2017). In this case, the constitutive GR 

activity in the mutants, at higher and/or similar levels to those of the WT genotype, 

could facilitate the necessary GSH for the reduction of GRXs, something that deserves 

further investigations. Nevertheless, our results are in the line of several previous 

studies suggesting that the AOX protein is mainly found in its reduced state and 

therefore it´s in vivo activity is probably mainly regulated by the mechanism involving 

organic acids interaction and by its substrate availability (Del-Saz et al., 2018).  

The presence of different bands in our western blot analysis is similar to that 

described by several authors in different species including Arabidopsis (Umbach et al., 

2005; Djajanegara et al., 2002). Simons et al. (1999) described the existence of different 

protein bands possibly as a result of the multigene family of AOX in Arabidopsis 

(Saisho et al., 1997) as it was observed in soybean (Whelan et al., 1996). Also 

Wanniarachchi et al. (2018), has recently described two monomeric forms that may 

reflect two different genes or as described in soybean, different initiation of translation 

of an AOX gene. These authors described the tissue- and developmental stage-

dependent control of the different AOX genes expression, also responding to different 

environmental signals and generating several AOX protein bands on immunoblots 

(Tanudji et al., 1999). Regardless of the redox state, the KO2 mutant displayed a 

different pattern on the total AOX protein amount detected in whole leaf extracts that is 

similar to its pattern of in vivo partitioning to the AOX. This suggests that the in vivo 

AOX activity in this mutant may be operating at its full capacity and thus depends on 

the protein amounts, i.e. is limiting under control conditions and then increased under 

salinity, as compared to WT plants (Figures 5 and 7). The reason for this altered pattern 

on the expression of the AOX and its possible full activation remains elusive. However, 

an indirect effect of the lack of Trxo1 on the in vivo activity of the AOX may be related 

to metabolic regulation. In this respect, the Trxo1 has been shown to regulate the carbon 

flux into the TCA cycle (Daloso et al., 2015) which can affect the level of organic acids 



and mitochondrial NADH production which both in turn affect the AOX activity 

(Selinski et al., 2017; Del-Saz et al., 2018). Organic acids such as oxaloacetate and 2-

oxoglutarate can stimulate differently AOX1a, AOX1c and AOX1d isoforms while 

pyruvate is able to activate all of them (Selinski et al., 2018). The fact that our trxo1 

mutants did not present changes in pyruvate (Figure 8) but showed altered expression of 

different isoforms may point to a possible differential regulation by other organic acids. 

The presence and induction of different AOX isoforms in our trxo1 mutants may be due 

to differential regulation of gene expression. It has been shown that AOX1a is the 

predominant form in Arabidopsis being highly inducible by many treatments, while 

AOX1c is widely expressed but its expression did not change with oxidative stress-

induced treatments (Thirkettle-Watts et al., 2003; Clifton et al., 2005; Elhafez et al., 

2006). Also the different behavior of the isoforms could be due, as mentioned by 

Selinski et al. (2018), to differences between homodimers and heterodimers of AOX, 

something that would merit a deeper in vitro and in vivo investigation. 

 

4.4. Respiratory carbon and energy metabolism in the trxo1 mutants  

 

Mitochondrial Trxo1 has been shown to deactivate mitochondrial succinate 

dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase, thus 

regulating carbon flow through the TCA cycle (Daloso et al., 2015). In fact, some TCA 

cycle intermediates accumulate in trxo1 mutant plants grown in soil under a short 

photoperiod (Daloso et al., 2015). We did not detect significant changes in organic acids 

levels but we clearly observed pronounced changes on the levels of sugars in the trxo1 

mutants under both control and saline conditions, thus also indicating a reorganization 

in central carbon pathways. A dramatic decrease on glucose and fructose levels was 

observed in both trxo1 mutants as compared to WT plants. This could indicate a higher 

use of these sugars in the glycolytic pathway that would cause an increased respiration, 

probably driven by an increased carbon flow through the TCA cycle as previously 

suggested (Daloso et al., 2015). In agreement, higher in vivo respiratory activity through 

the COX pathway was observed in the mutants (Figure 5). This increase in ATP-

coupled respiration can also indicate an increase on the leaf energy demand on the 

mutants under control conditions.   



Recently, new hypotheses have postulated that sucrose is a key regulator of 

stomatal movement (Lima et al., 2018). During stomatal opening sucrose can serve as 

an energy source in the guard cells through its oxidation by glycolytic and TCA cycle 

metabolism (Medeiros et al., 2018). Curiously, leaves of trxo1 mutants display higher 

number of stomata than WT (Calderón et al., 2018) thus potentially requiring a higher 

respiratory flux at the leaf level. Therefore the lower levels of sucrose, glucose and 

fructose observed here in the trxo1 mutants can be explained as a result of their higher 

oxidation by the glycolysis and TCA cycle activity coupled to ATP production by COX 

activity. This high respiratory cost could be the cause for a more negative carbon 

balance in the trox1 mutants thus explaining its reduced growth as compared to WT 

plants under control conditions. Under saline conditions, the levels of sugars decreased 

probably because of a reduced photosynthetic activity typically observed under this 

condition (Martí et al., 2011) and thus cancelling the observed metabolic phenotype of 

trxo1 mutant plants. Nevertheless, the opposite pattern of the levels of trehalose 

observed in WT and mutant plants probably reflects changes on sugar sensing, 

metabolism and stomatal regulation (Lunn et al., 2014) as a consequence of the 

disturbed sugar metabolism in the trxo1 mutants. Future experiments will be required to 

unravel the precise mechanisms that involve the complex interplay between respiration, 

sugar metabolism and stomatal aperture.  

 

5. Conclusions 

 

In summary, our results showed that trxo1 mutants displayed an acclimation to mild 

salt stress similar to WT plants. This was favored by a coordinated response involving 

changes of several antioxidant systems, sugars metabolism and energy efficiency of 

respiration through the regulation of target proteins involved in these processes, in this 

way diminishing oxidative stress. However, future experiments under different salinity 

conditions are needed to determine whether this response can be considered as a typical 

mechanism to compensate for a lack of Trxo1.  
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Fig. S1.  Representative 21-day-old Arabidopsis WT and two KO AtTrxo1 mutant lines 

(KO1 and KO2) growing in the absence (control) or presence of 100 mM NaCl. 

 



Table S1. Parameters used for peak annotation in GC-MS analysis 

 

Table S2. Relative metabolite levels in Col-0 WT and two KO AtTrxo1 mutant lines 

grown in the absence (C) and presence of 100 mM NaCl (S).  Data are presented as 

mean ± SE for six biological replicates normalized to the mean level of the WT plants 

under control conditions. Bold numbers denote significant differences (P < 0.05) to the 

control conditions in each genotype, and asterisks indicate significant differences (P < 

0.05) to the WT in each condition. 

 

References 

 

Aono, M., Kubo, A., Saji, H., Tanaka, K., Kondo, N., 1993. Enhanced tolerance to 
photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic 
glutathione reductase activity. Plant Cell Physiol. 34, 129-135. 

Ashraf, M., 2009. Biotechnological approach of improving plant salt tolerance using 
antioxidants as markers. Biotechnol. Adv. 27, 84-93. 

Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lázaro, J.J., Dietz, 
K.J., 2008. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and 
formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. 
J. Exp. Bot. 59, 3259-3269. 

Barranco-Medina, S., Krell, T., Finkemeier, I., Sevilla, F., Lázaro, J.J., Dietz, K.J., 
2007. Biochemical and molecular characterization of the mitochondrial 
peroxiredoxin PsPrxIIF from Pisum sativum. Plant Physiol. Biochem. 45, 729-739. 

Barranco-Medina, S., Lázaro, J.J., Dietz, K.J., 2009. The oligomeric conformation of 
peroxiredoxins links redox state to function. FEBS Lett. 583, 1809-1816. 

Bartels, D. and Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant 
Sci. 24, 23-58.  

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 
72, 248-254. 

Calderón, A., Ortiz-Espín, A., Iglesias-Fernández, R., Carbonero, P., Pallardó, F.V., 
Sevilla, F., Jiménez, A., 2017. Thioredoxin (Trxo1) interacts with proliferating cell 
nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell 
culture. Redox Biol. 11, 688-700. 

Calderón, A., Sevilla, F., Jiménez, A., 2018. Redox protein thioredoxins: function under 
salinity, drought and extreme temperature conditions”. In: Gupta, D.K. et al., 



Antioxidants and Antioxidant Enzymes in Higher Plants, D.K. Gupta et al.  
(Springer), pp 132-162.  

Camejo, D., Ortiz-Espín, A., Lázaro, J.J., Romero-Puertas, M.C., Lázaro-Payo, A., 
Sevilla, F., Jiménez, A., 2015. Functional and structural changes in plant 
mitochondrial PrxIIF caused by NO. J. Proteom. 119, 112-125. 

Camejo, D., Romero-Puertas, M.D.C., Rodríguez-Serrano, M., Sandalio, L.M., Lázaro, 
J.J., Jiménez, A., Sevilla, F., 2013. Salinity-induced changes in S-nitrosylation of pea 
mitochondrial proteins. J. Proteom. 79, 87-99. 

Chew, O., Whelan, J., Millar, A.H., 2003. Molecular definition of the ascorbate–
glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant 
defences in plants. J. Biol. Chem. 278, 46869-46877. 

Cvetkovska, M., Vanlerberghe, G.C., 2012. Alternative oxidase impacts the plant 
response to biotic stress by influencing the mitochondrial generation of reactive 
oxygen species, Plant Cell Environ. 36(3), 721-732. 

da Fonseca-Pereira, P., Daloso, D.M., Gago, J., de Oliveira Silva, F.M., Condori-
Apfata, J.A., Florez-Sarasa, I., Tohge, T., Reichheld, J.P., Nunes-Nesi, A., Fernie, 
A.R., Araújo, W.L., 2018. The mitochondrial thioredoxin system contributes to the 
metabolic responses under drought episodes in Arabidopsis. Plant Cell Physiol. 60, 
213-229. 

Djajanegara, I., Finnegan, P.M., Mathieu, C., McCabe, T., Whelan, J., Day, D.A., 2002. 
Regulation of alternative oxidase gene expression in soybean. Plant Mol. Biol. 50: 
735-742. 

Daloso, D.M., Müller, K., Obata, T., Florian, A., Tohge, T, Bottcher A., et al., 2015. 
Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. 
Proc. Natl. Acad. Sci. USA 12 (11), E1392-1400. 

De Leonardis, S., Dipierro, N., Dipierro, S., 2000. Purification and characterization of 
an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol. Biochem. 
38(10), 773-779. 

Del-Saz, N.F., Florez-Sarasa, I., Clemente-Moreno, M.J. Mhadhbi, H., Flexas, J., 
Fernie, A.R., Ribas-Carbó, M., 2016. Salinity tolerance is related to cyanide-resistant 
alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell 
Environ. 39(11), 2361-2369. 

Del Saz, N.F., Ribas-Carbó, M., 2018. Ecophysiology of plant respiration. Ann. Plant 
Rev. 50, 269-292. 

Del-Saz, N.F., Ribas-Carbó M., Martorell G., Fernie A.R. Florez-Sarasa I., 2017. 
Measurements of electron partitioning between cytochrome and alternative oxidase 
pathways in plant tissues”. In: Gupta, K.J. (Ed.), Plant Respiration and Internal 
Oxygen. Methods in Molecular Biology, (Humana Press, New York, NY), vol. 1670.  

Elthon, T.E., Nickels, R.L., McIntosh, L., 1989. Monoclonal antibodies to the 
alternative oxidase of higher plant mitochondria. Plant Physiol. 89, 1311-1317. 



Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L.J., Dietz, 
K.J., 2005. The mitochondrial type II peroxiredoxin F is essential for redox 
homeostasis and root growth of Arabidopsis thaliana under stress. J. Biol. Chem. 
280, 12168-12180. 

Florez-Sarasa, I., Araújo, W.L., Wallström, S.V., Rasmusson, A.G., Fernie, A.R., 
Ribas-Carbó, M., 2012. Light-responsive metabolite and transcript levels are 
maintained following a dark-adaptation period in leaves of Arabidopsis thaliana. 
New Phytol. 195, 136-148. 

Foyer, C.H., Noctor, G., 2011. Ascorbate and glutathione: the heart of the redox hub. 
Plant Physiol. 155, 2-18. 

Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.J., Pruvost, C., et al., 
1995. Overexpression of glutathione reductase but not glutathione synthetase leads to 
increases in antioxidant capacity and resistance to photoinhibition in poplar trees. 
Plant Physiol. 109, 1047-1057. 

Gelhaye, E., Rouhier, N., Gerard, J., Jolivet, Y., Gualberto, J., Navrot, N., et al., 2004. 
A specific form of thioredoxin h occurs in plant mitochondria and regulates the 
alternative oxidase. Proc. Natl. Acad. Sci. USA 101, 14545-14550. 

Gómez, J.M., Hernández, J.A., Jiménez, A., del Río, L.A., Sevilla, F., 1999. Differential 
response of antioxidative enzymes of chloroplasts and mitochondria to long-term 
NaCl stress of pea plants. Free Rad. Res. 31, S11-S18. 

Gómez, J.M., Jiménez, A., Olmos, E., Sevilla, F., 2004. Location and effects of long-
term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of 
pea (Pisum sativum cv. Puget) chloroplasts. J. Exp. Bot. 55, 119-130. 

Guo, Y.S., Huang, C.J., Xie, Y., Song, F.M., Zhou X.P., 2010. A tomato glutaredoxin 
gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 
232, 1499-1509.  

Hafsi, C., Romero-Puertas, M.C., Gupta, D.K., del Río, L.A., Sandalio, L.M.,  Abdelly, 
C., 2010. Moderate salinity enhances the antioxidative response in the halophyte 
Hordeum maritimum L. under potassium deficiency. Environ. Exp. Bot. 69, 129-136. 

Hernández, J.A., Campillo, A., Jiménez, A., Alarcón, J.J., Sevilla, F., 1999. Response of 
antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol. 
141, 241-251. 

Hernández, J.A., Corpas, F.J., Gómez, M., del Río, L.A., Sevilla, F., 1993. Salt induced 
oxidative stress mediated by activated oxygen species in pea leaf mitochondria. 
Physiol. Plant. 89, 103-110. 

Hernández, J.A., Jiménez, A., Mullineaux, P., Sevilla, F., 2000. Tolerance of pea 
(Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant 
defenses. Plant Cell Environ. 23, 853-862. 

Horling, F., Lamkemeyer, P., Konig, J., Finkemeier, I., Kandlbinder, A., Baier, M., 
Dietz, K.J., 2003. Divergent light-, ascorbate-, and oxidative stress-dependent 
regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant 
Physiol. 131, 317-325. 



Hossain, M.S., Dietz, K.J., 2016. Tuning of redox regulatory mechanisms, reactive 
oxygen species and redox homeostasis under salinity stress. Frontiers Plant Sci. 7: 
548, doi: 10.3389/fpls.2016.00548. 

Hossain, M.A., Munné-Bosch, S., Burritt, D.J., Diaz-Vivancos, P., Fujita, M., Lorence, 
A., 2018. In: Hossain, M.A. et al., (Eds.), Ascorbic Acid in Plant Growth, 
Development and Stress Tolerance. ISBN 978-3-319-74057-7, Springer.  

Huang, S., Van Aken, O., Schwarzländer, M., Belt, K., Millar, A.H., 2016. The roles of 
mitochondrial reactive oxygen species in cellular signaling and stress response in 
plants. Plant Physiol. 171(3), 1551-1559. 

Iglesias-Baena, I., Barranco-Medina, S., Sevilla, F., Lázaro, J.J., 2011. The dual 
targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial 
peroxiredoxin. Plant Physiol. 155, 944-955. 

Jacoby, R.P., Taylor, N.L., Millar, A.H., 2011. The role of mitochondrial respiration in 
salinity tolerance. Trends Plant Sci. 16(11), 614-623. 

Jiménez, A., Hernández, J.A., del Río, L.A., Sevilla, F., 1997. Evidence for the presence 
of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. 
Plant Physiol. 114, 275-284. 

Keech, O., Dizengremel, P. Gardeström, P., 2005. Preparation of leaf mitochondria 
from Arabidopsis thaliana. Physiol. Plant. 124, 403-409. 

Kliebenstein, D.J., Monde, R.A., Last, R.L., 1998. Superoxide dismutase in 
Arabidopsis: an eclectic enzyme family with disparate regulation and protein 
localization. Plant Physiol. 118, 637-650. 

Kopka, J, Schauer, N., Krueger, S., Birkemeyer, C., Usadel,  B., Bergmüller, E., et al., 
2005. GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics 21(8), 
1635-1638. 

Koyro, H.W., Geissler, N., Hussin, S., Huchzermeyer, B., 2006. Mechanisms of cash 
crop halophytes to maintain yields and reclaim saline soils in arid areas. In: Khan, 
M.A., Weber, D.J. (Eds.), Ecophysiology of High Salinity Tolerant Plants. Tasks for 
Vegetation Science, (Springer, Dordrecht), vol 40, pp 345-366. 

Laemmli, U.K., 1970. Cleavage of structural proteins during assembly of the head of 
bacteriophage T4. Nature 227, 680-685. 

Laloi, C., Rayapuram, N., Chartier, Y., Grienenberger, J.M., Bonnard, G., Meyer,Y., 
2001. Identification and characterization of a mitochondrial thioredoxin system in 
plants. Proc. Natl. Acad. Sci. U.S.A. 98, 14144-14149. 

Lázaro, J.J., Jiménez, A., Camejo, D., Iglesias-Baena, I., Martí, M.C., Lázaro-Payo, A., 
Barranco-Medina, S., Sevilla, F., 2013. Dissecting the integrative antioxidant and 
redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front Plant 
Sci 4, 460, doi:  10.3389/fpls.2013.00460. 

Lima VF, Medeiros DB, Dos Anjos L, Daloso DM., 2018. Toward multifaceted roles of 
sucrose in the regulation of stomatal movement.  Plant Signaling & Behavior 
13(8):1-8 



Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., Fernie, A.R., 2006. Gas 
chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 
1(1), 387-396. 

Luedemann, A., Strassburg, K., Erban, A., Kopka, J,. 2008. TagFinder for the 
quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based 
metabolite profiling experiments. Bioinformatics 24, 732-737. 

Lunn, J.E., Delorge, I., Figueroa, C.M., Van Dijck, P., Stitt, M., 2014. Trehalose 
metabolism in plants. Plant J. 79(4), 5445-5467. 

Martí, M., Florez-Sarasa, I., Camejo, D., Ribas-Carbó, M., Lázaro, J., Sevilla, F., 
Jiménez, A., 2011. Response of mitochondrial thioredoxin PsTrxo1, antioxidant 
enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J. Exp. Bot. 62, 
3863-3874. 

Martí, M.C., Olmos, E., Calvete, J.J., Díaz, I., Barranco-Medina, S., Whelan, J., et al., 
2009. Mitochondrial and nuclear localization of a novel pea thioredoxin: 
identification of its mitochondrial target proteins. Plant Physiol. 150, 646-657. 

Medeiros DB, Perez Souza L, Antunes WC, Araújo WL, Daloso DM, Fernie AR., 2018. 
Sucrose breakdown within guard cells provides substrates for glycolysis and 
glutamine biosynthesis during light induced stomatal opening. Plant J. 94: 583–594. 

Meng, L., Wong, J.H., Feldman, L.J., Lemaux, P.G., Buchanan, B.B., 2010. A 
membrane-associated thioredoxin required for plant growth moves from cell to cell, 
suggestive of a role in intercellular communication. Proc. Natl. Acad. Sci. USA 
107(8), 3900-3905. 

Mittova, V., Tal, M., Volokita, M., Guy, M., 2003. Up-regulation of the leaf 
mitochondrial and peroxisomal antioxidative systems in response to salt-induced 
oxidative stress in the wild salt-tolerant tomato species. Plant Cell Environ. 26, 845-
856. 

Moseler, A., Aller, I., Wagner, S., Nietzel, T., Przybyla-Toscano, J., Mühlenhoff, U., et 
al., 2015. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur 
protein maturation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 112, 13735-
13740. 

Munné-Bosch, S., Queval, G., Foyer, C.H., 2013. The impact of global change factors 
on redox signaling underpinning stress tolerance. Plant Physiol. 161, 5-19. 

Nietzel, T., Mostertz, J., Hochgräfe, F., Schwarzländer, M., 2017. Redox regulation of 
mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion 33, 
72-83. 

Olmos, E., Hernández, J.A., Sevilla, F., Hellín, E., 1994. Induction of several 
antioxidant enzymes in the selection of a salt-tolerant cell-line of Pisum sativum. J. 
Plant Physiol. 144, 594-598. 

Ortiz-Espín, A., Iglesias-Fernández, R., Calderón, A., Carbonero, P., Sevilla, F., 
Jiménez, A., 2017b. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 
and AtAZF2 and affects seed germination under saline conditions. J. Exp. Bot. 68, 
1025-1038. 



Ortiz-Espín, A., Locato, V., Camejo, D., Schiermeyer, A., De Gara, L., Sevilla, F., 
Jiménez, A., 2015. Over-expression of Trxo1 increases the viability of tobacco BY-2 
cells under H2O2 treatment. Ann. Bot. 116, 571-582. 

Ortiz-Espín, A., Sevilla, F., Jiménez, A., 2017a. “The role of ascorbate in plant growth 
and development”. In: Ascorbic Acid in Plant Growth, Development and Stress 
Tolerance, ed. M.A. Hossain et al., (Springer, Cham, Switzerland), 25-45.  

Purvis, A.C., 1997. Role of the alternative oxidase in limiting superoxide production in 
plant mitochondria. Physiol. Plant. 100, 165-170. 

Rhoads, D.M., Umbach, A.L., Sweet, C.R., Lennon, A.M., Rauch, G.S., Siedow, J.N., 
1998. Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. 
The identification of the cysteine residue involved in α-keto acid stimulation and 
intersubunit disulfide bond formation. J. Biol. Chem. 273, 30750-30756. 

Ribas-Carbó, M., Lennon, A.M., Robinson, S.A., Giles, L., Berry, J., Siedow, J.N., 
1997. The regulation of the electron partitioning between the cytochrome and 
alternative pathways in soybean cotyledon and root mitochondria. Plant Physiol. 113, 
903-911. 

Rouhier, N., Couturier, J., Jacquot, J.P., 2006. Genome-wide analysis of plant 
glutaredoxin systems J. Exp. Bot. 57(8), 1685-1696. 

Saisho, D., Nambara, E., Naito, S., Tsutsumi, N., Hirai, A., Nakazone, M., 1997.  
Characterization of the gene family for alternative oxidase from Arabidopsis 
thaliana. Plant Mol. Biol. 35, 585-596. 

Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T. et al., 
2005. GC-MS libraries for the rapid identification of metabolites in complex 
biological samples. FEBS Lett. 579(6), 1332-1337. 

Schnaubelt, D., Queval, G., Dong, Y., Diaz-Vivancos, P., Makgopa, M.E., Howell, G., 
et al., 2015. Low glutathione regulates gene expression and the redox potentials of 
the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 38, 266-279. 

Selinski, J., Scheibe, R., Day, D.A., Whelan, J., 2017. Alternative oxidase is positive for 
plant performance. Trends Plant Sci. 23(7), 588-597. 

Selinski J, Hartmann A, Deckers-Hebestreit G, Day DA, Whelan J, Scheibe R., 2018. 
Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle 
intermediates. Plant Physiol. 76(2), 1423-1432.  

Sevilla, F., Camejo, D., Ortiz-Espín, A., Calderón, A., Lázaro, J.J., and Jiménez, A. 
2015b. Thioredoxin/Peroxiredoxin/Sulfiredoxin system: current overview on its 
redox function in plants and regulation by ROS and RNS. J. Exp. Bot. 66, 2945-
2955. 

Sevilla, F., Jiménez, A., Lázaro, J.J., 2015a. In: Gupta, D.K. et al., (Eds.). What do the 
plant mitochondrial antioxidant and redox systems have to say in salinity, drought 
and extreme temperature abiotic stress situations?,  Reactive Oxygen Species and 
Oxidative Damage in Plants Under Stress, (Springer Int. Publ. Switzerland), pp 23-
55, doi: 10.1007/879-3-319-20421-5-2. 



Simons, B.H., Millenaar, F.F., Mulder, L., Van Loon, L.C., Lambers, H,. 1999. 
Enhanced expression and activation of the alternative oxidase during infection of 
Arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol. 120, 529-538. 

Smith, C.A., Melino, V.J., Sweetman, C., Soole, K.L., 2009. Manipulation of alternative 
oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol. Plant. 137, 
459-472. 

Ströher, E., Grassl, J., Carrie, C., Fenske, R., Whelan, J., Millar, A.H., 2016. 
Glutaredoxin S15 is involved in Fe-S cluster transfer in mitochondria influencing 
lipoic acid-dependent enzymes, plant growth, and arsenic tolerance in Arabidopsis. 
Plant Physiol. 170, 1284-1299. 

Tanudji, M., Djajanegara, I.N., Daley, D.O., McCabe, T.C. Finnegan, P.M., Day, A., 
Whelan, J., 1999. The multiple alternative oxidase proteins of soybean. Australian J. 
Plant Physiol. 26, 337-344.   

Umbach, A.L., Fiorani, F., Siedow, J.N., 2005. Characterization of transformed 
Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive 
oxygen species in tissue. Plant Physiol. 139, 1806-1820. 

Umbach, A.L., Siedow, J.N., 1997. Changes in the redox sulfhydryl/disulfide 
implications state of the alternative oxidase regulatory system during mitochondrial 
isolation: for inferences of activity in vivo. Plant Sci. 123, 19-28. 

Vanlerberghe, G.C., 2013. Alternative oxidase: a mitochondrial respiratory pathway to 
maintain metabolic and signaling homeostasis during abiotic and biotic stress in 
plants. Int. J. Mol. Sci. 14, 6805–6847.  

Wallström, S.V., Florez-Sarasa, I., Araujo, W.L., Escobar, M.A., Geisler, D.A., 
Aidemark, M., et al., (2014). Suppression of NDA-type alternative mitochondrial 
NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, 
but not high light stimulation of mitochondrial electron transport. Plant Cell Physiol. 
55(5), 881-896. 

Wanniarachchi, V.R., Dametto, L., Sweetman, C., Shavrukov, Y., Day, D.A., Jenkins, 
C.L.D., Soole, K.L., 2018. Alternative respiratory pathway component genes (AOX 
and ND) in rice and Barley and their response to stress. Int. J. Mol. Sci. 19, 915-937. 

Wang, Y., Qu, G.Z., Li, H.Y., Wu, Y.J., Wang, C., Liu, G.F., et al., 2010. Enhanced salt 
tolerance of transgenic poplar plants expressing a manganese superoxide dismutase 
from Tamarix androssowii. Mol. Biol. Rep. 37, 1119-1124. 

Wang, M., Wang, Y., Sun, J., Ding, M., Deng, S., Hou, P., Ma, X., Zhang, Y., et al., 
2013. Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-
stressed Arabidopsis. Plant Physiol. Biochem. 71, 37-48. 

Wang, Y., Ying, Y., Chen, J., Wang, X. (2004). Transgenic Arabidopsis overexpressing 
Mn-SOD enhanced salt-tolerance. Plant Sci. 67, 671-677. Whelan, J., Millar, A.H., 
Day, D.A., 1996. The alternative oxidase is encoded in a multigene family in 
soybean. Planta 198: 197-201. 



Yoshida, K., Noguchi, K., Motohashi, K., Hisabori, T., 2013. Systematic  exploration of 
thioredoxin target proteins in plant mitochondria. Plant Cell Physiol. 54, 875-892. 

Zannini, .F,  Roret,  T.,  Przybyla-Toscano, J.,  Dhalleine, T., Rouhier, N.,  Couturier, J., 
2018. Mitochondrial Arabidopsis thaliana TRXo isoforms bind an Iron–Sulfur 
cluster and reduce NFU proteins in vitro. Antioxidants7, 142, 
doi:10.3390/antiox7100142. 

 

Tables 

Table 1. Distribution of marker enzymes in different subcellular fractions from the 
aerial part of 21-old Arabidopsis wild type (WT) plants grown in control 
conditions. 

 

 

Table 2. Distribution of marker enzymes in different subcellular fractions from the 
aerial part of 21-old Arabidopsis wild type (WT) plants grown in saline (100 mM 
NaCl) conditions.  

 Distribution of total enzyme activity 
(%)

 CCO LDH G3PDH CAT 
Crude extract 100 100 100 100 
12,000g pellet 24 14.3 1.1 48 
Isolated mitochondria 9.5 0.6 0.3 3 

 

 

Figure legends 

Fig. 1.  Growth parameters (A) plant fresh weight, (B) rosette diameter, (C) number of 
leaves and (D) root length of Col-0 WT and two KO Attrxo1 mutant lines grown in the 
absence (control) and presence of 100 mM NaCl. Data are the mean ± SE of at least 
four different experiments. The different letters indicate significant differences (P 
<0.05) among genotypes in each condition according to the Tukey’s test, and asterisks 
indicate significant differences of each genotype under salinity compared with control 
condition using the student t-test (P <0.05). 

 Distribution of total enzyme activity 
(%)

 CCO LDH G3PDH CAT 
Crude extract 100 100 100 100 
12,000g pellet 16 11 0.3 29 
Isolated mitochondria 10.5 0.7 0.01 1.5 



Fig. 2. Oxidative parameters. (A) Mitochondrial malondialdehyde (MDA), (B) 
mitochondrial carbonyl  (CO) proteins and (C) foliar hydrogen peroxide per fresh 
weight (FW) contents of Col-0 WT and two KO Attrxo1 mutant lines grown in the 
absence (control) and presence of 100 mM NaCl. Data are the mean ± SE of at least 
three different experiments. The different letters indicate significant differences (P 
<0.05) among genotypes in each condition according to the Tukey’s test, and asterisks 
indicate significant differences of each genotype under salinity compared with control 
condition using the student t-test (P <0.05). 

Fig. 3. SOD and catalase activities. (A) Mn-SOD activity after PAGE in mitochondrial-
enriched fractions and (B) foliar catalase activity in Col-0 WT and two KO Attrxo1 
mutant lines grown in the absence (control) and presence of 100 mM NaCl. Data are the 
mean ± SE of at least three different experiments. The different letters indicate 
significant differences (P <0.05) among genotypes in each condition according to the 
Tukey’s test, and asterisks indicate significant differences of each genotype under 
salinity compared with control condition using the student t-test (P <0.05). 

Fig. 4. Ascorbate-glutathione cycle enzymatic activities. (A) Ascorbate peroxidase 
APX, (B) monodehydroascorbate reductase MDHAR, (C) dehydroascorbate reductase 
DHAR and (D) glutathione reductase GR in Col-0 WT and two KO Attrxo1 mutant 
lines grown in the absence (control) and presence of 100 mM NaCl. Data are the mean 
± SE of at least three different experiments. The different letters indicate significant 
differences (P <0.05) among genotypes in each condition according to the Tukey’s test, 
and asterisks indicate significant differences of each genotype under salinity compared 
with control condition using the student t-test (P <0.05). 

Figure 5. In vivo mitochondrial electron transport chain activities. (A) Total respiration 
(Vt), (B) electron partitioning to the alternative pathway (ta), (C) cytochrome pathway 
activity (vcyt) and (D) alternative pathway activity (valt) in plantlets of Col-0 (WT) and 
two KO Attrxo1 mutant lines grown in the absence (control) and presence of 100 mM 
NaCl. Values are means ± SE of 8 biological replicates. The different letters indicate 
significant differences (P <0.05) among genotypes in each condition according to the 
Tukey’s test, and asterisks indicate significant differences of each genotype under 
salinity compared with control condition using the student t-test (P <0.05). 

Fig. 6. Immunoblotting of  AOX protein in enriched-mitochondrial fractions of Col-0 
WT and two KO Attrxo1 mutant lines grown in the absence (control) and presence of 
100 mM NaCl. Mitochondrial proteins were separated by SDS–PAGE, immunoblotted 
with monoclonal AOX antibody and visualized using the ECL Plus Western blotting 
detection system, as described in Materials and Methods. Quantification of the two 
bands around 35 (A) and 39 kDa (B) was performed using the Quantity One software-
based analysis (BioRad). Data are the mean ± SE of at least three different experiments. 
The different letters indicate significant differences (P <0.05) among genotypes in each 
condition according to the Tukey’s test, and asterisks indicate significant differences of 



each genotype under salinity compared with control condition using the student t-test (P 
<0.05).   

Fig. 7. Immunoblotting of AOX protein in total seedling extracts of Col-0 WT and two 
KO Attrxo1 mutant lines grown in the absence (control ) and presence of 100 mM NaCl. 
Proteins were separated by SDS–PAGE, immunoblotted with monoclonal AOX 
antibody and visualized using the ECL Plus Western blotting detection system, as 
described in Materials and Methods. Quantification of the two bands around 35 (A) and 
39 kDa (B) was performed using the Quantity One software-based analysis (BioRad). 
Data are the mean ± SE of at least three different experiments. The different letters 
indicate significant differences (P <0.05) among genotypes in each condition according 
to the Tukey’s test, and asterisks indicate significant differences of each genotype under 
salinity compared with control condition using the student t-test (P <0.05). 

Figure 8. Heat map showing the relative levels of the metabolites in Col-0 WT and two 
KO Attrxo1 mutant lines grown in the absence (C) and presence of 100 mM NaCl (S). 
Metabolites were clustered per class into amino acids, organic acids, sugars and sugar 
alcohols, and other metabolites. Relative metabolite levels in leaves of all lines under 
both control and salinity conditions were normalized to the mean level of the WT plants 
under control conditions and fold-change values were log2 transformed (i.e. the level of 
all metabolites of WT plants under control is 0). In this heat map, red and blue colors 
represent log2 fold-increased and -decreased metabolites, respectively. Values are 
means ± SE of six replicates and asterisks denote significant differences (P < 0.05) to 
the WT plants in each condition. The statistical differences between control and salinity 
treatments in each genotype are presented in Supplemental Table S2. 

 

 

 


