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Abstract: 

Energy-water-environment nexus is very important to attain COP21 goal, maintaining 

environment temperature increase below 2oC, but unfortunately two third share of CO2 emission 

has already been used and the remaining will be exhausted by 2050. A number of technological 

developments in power and desalination sectors improved their efficiencies to save energy and 

carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. 

Research in desalination processes contributing to fuel World population for their improved living 

standard and to reduce specific energy consumption and to protect environment. Recently 

developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in 

thermally driven cycle’s hybridization could potentially lower then energy requirement for water 

purification. This paper presents a state of art review on energy, water and environment 

interconnection and future energy efficient desalination possibilities to save energy and protect 

environment. 

 

Keywords: Desalination review, SWRO, Thermal desalination, Renewable desalination, 

Desalination performance, Sustainable desalination. 

 

1. Introduction 

Water and energy are closely interlinked and interdependent valuable resources that underpin 

economic growth and human prosperity. In every part of daily life cycle such as power generation, 

feedstock crops production and fossil fuel processing, water is ubiquitous source [1, 2]. Similarly, 

energy is vital to power water cycle that include, collection, treatment and distribution to end users. 

The mutual vulnerability of water and energy is amplifying due to rising demand as a consequence 

of exponential gross domestic product (GDP) growth, population bourgeoning and climate change 

[3]. 

The world’s thermoelectric power generation sector strongly depends on the availability of water 

for processes heat rejection [4]. In 2010, world’s total electricity generation capacity was 20 

terawatt hour (TWh), 81% contributed by thermoelectric (fossil fuel and nuclear), 17% by 

hydropower and 2% by renewable energy sources as shown in Figure 1 [5]. In 2035, global 

electricity demand is expected to increase 70% to 34TWh as compared to 2010 consumption [6]. 

The findings show that the scale of water use for energy production is tremendous. In 2010, global 

freshwater withdrawals for energy production were 583 billion cubic meters (bcm), 15% of the 



world’s total water withdrawals and it is expected to climb to 790 bcm in 2035, 35% higher than 

in 2010. Water withdrawals per unit of electricity generated are highest for fossil fuel operated 

steam power plants and nuclear power plants, at 75 000 - 450 000 liters per megawatt-hour 

(l/MWh). Combined-cycle gas turbines (CCGTs) plants are more efficient and generate less waste 

heat per unit of electricity production and therefore require less cooling water. Their water 

withdrawal and consumption are the lowest among thermal power plants, at 570 - 1100 l/MWh 

[7]. 

 

 

 

 

 

Global water demand is projected to increase more than 55% by 2050 mainly due to high GDP 

growth rate that will increase water demand for manufacturing, power generation and domestic 

sector use by 400%, 140% and 130% respectively. This current demand trend will push 40% of 

the World population below water scarcity level by 2050 [6]. Presently, more than 18,000 

desalination plants in 150 countries producing roughly 38 billion m3 per year as shown in Figure 

2 [8-10]. It is projected to increase to 54 billion m3 per year by 2030, 40% more compared to 2016 

[11-13]. Desalination is the most energy-intensive water treatment process that consume 75.2 TWh 

per year, about 0.4% of global electricity [14]. The water cycle need energy during pumping and 

treatment processes [15, 16]. Pumping energy depends on distance, flow rate and friction. The 

desalination process energy depends on quality of the source water, the nature of any 

contamination, and the types of process employed [17, 18].  
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Figure 1: Net electricity generation in different parts of the World and percent share of different 

sources [5]. 

 



 

 

 

 

 

Fossil fuel operated energy intensive desalination processes are the major source of CO2 emission. 

Presently, globally installed desalination capacities are contributing 76 million tons (Mt) of CO2 

per year and it is expected to grow to 218 million tons of CO2 per year by 2040 [19, 20].  In 2019, 

global CO2 emission is estimated to grow to 43.2 giga ton (Gt) per year, 20% higher than 2013 

value of 36.1 Gt per year [21].  Two thirds share of the CO2 emission for COP21 goal, maintaining 

environment temperature increase below 2oC, has already been used and the remaining will be 

exhausted by 2050 [21-25].  

Figure 3 summarized the percentage increase of World water withdrawals & consumption, 

population and CO2 emission from 1900 to 2040. It can be seen that the CO2 emission is over 

1500% and it is expected to grow to 2200% by 2040 [26-32]. Similarly, water withdrawals and 

consumption also increased to over 1000% [33]. Increase in primary energy consumption is also 

plotted (1970 baseline at 100%) and it is expected to grow to 500% by 2040 [33-35]. 

 

 

 

Figure 2: Desalination capacities installed in the World and percent share on the basis of feed 

water type [8-10]. 

 



 

 

 

It can be seen that CO2 emission growth rate is the highest and it is predicted to continue same 

trend. The efficiency improvement of two major sources, water and power, is important to control 

CO2 emission to protect environment.   

2. Water Treatment Processes & Energy Demand 

The groundwater supplies are diminishing due to 2-3% annual increase in extraction rate [36-40].  

More than 1.2 billion people live in physical water scarcity areas, the region having water 

availability less than 1,000 cubic meters per capita per year,  that hamper the economic 

development and human health [41]. Risks to water resources lead to energy and environment 

risks. Conventional energy intensive water treatment processes increases pressure on designer and 

planners to develop an alternative energy efficient methods to fulfil future sustainable water supply 

demand for GDP growth rate. The level of water treatment depends on feed source and end user 

requirement. For drinking, extensive treatment is required to attain World health organization 

(WHO) drinking water standards. Amount of energy required to produce 1 m3 of drinking water 

from various sources is presented in Figure 4 [42-45]. The energy requirement have direct impact 

on environment, the more efficient process mean less carbon emission. Surface water treatment is 

least energy intensive since most of time it is available near to the delivery point. Ground water 

treatment is energy intensive and most of energy is utilized by pumping process depending on 

water table depth.  Brackish water treatment requires significant energy depending on composition 

and concentration of salt.  Seawater treatment is not only highly energy intensive because of feed 

water quality but also impact environment in a number of ways such as (i) energy utilized by 
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Figure 3: Water, population, primary energy and CO2 emission percentage growth rate from 1900 to 

2040. (Water, Population and CO2 emission: 1900 baseline at 100% & Primary energy: 1970 baseline at 100%) 
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desalination processes increase environmental pollution, (ii) concentrated and hot brine can effect 

marine life, (iii) contamination of water aquifers due to pretreatment chemicals and corrosion 

materials and (iv) desalination processes can also cause noise pollution and vibration issues due to 

high pressure pumping [46]. The fresh water shortage can be partially (40% of 40% gap) addressed 

by mentioned measures such as water conservation, wastewater treatment and reuse. Closing the 

remaining gap (60% of 40%) through desalination processes, the only solution, would be 

extremely energy intensive and environment unfriendly [47]. 

 

 

 

 

3. World Desalination: Current Status, Energy Utilization & Environmental Impact 

The commercial desalination technologies can be divided into two main categories: thermally 

driven (MSF, MED and AD) and membrane separation (RO) processes. In addition, there are 

different emerging technologies which are still under research and development (R&D), including 

forward osmosis (FO), membrane distillation (MD), capacitance deionization (CDI), gas hydrates 

(GH), freezing and humidification dehumidification (HDH). Moreover, supporting technologies 

include ultra/nano/ionic filtration (UF/NF/IF) [48-71]. Figure 5 shows World and Gulf 

Cooperation Council (GCC) countries desalination installed capacities and share of different 

technologies. It can be seen that in GCC countries, thermally driven desalination technologies are 

dominating due to operational limitations of RO at high turbidity of seawater. It is also shown that 

59% of desalination technologies based on seawater desalination followed by brackish water 23%, 

river water 7%, waste water 5% and other sources 6% [72, 73]. 

Seawater,  2.6 - 8.5 kWh/m3

Wastewater reuse, 1.0 - 2.5 kWh/m3

Wastewater treatment, 0.62 - 0.87 kWh/m3

Groundwater, 0.48 kWh/m3

Lake or river, 0.37 kWh/m3

Figure 4: Typical amount of energy required for unit water production for different feed 

water quality [42-45]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, hybridization trends of desalination technologies such as MED-AD [74-79] , MSF-MED 

[80-93] and RO-MSF [94-106] is evolving to improve processes performance by overcoming 

conventional methods limitations. Thermally driven processes hybridization improve 

thermodynamic synergy and thermal system with membrane technologies improve fresh water 

recovery. 

The desalination technologies capital expenditure (CAPEX) and operational expenditure (OPEX) 

depends on a number of parameters. Some technologies CAPEX are high due to land, engineering, 

unit purchase, transportation and installation etc. and others are leading in terms of high OPEX 

such as energy, maintenance, spares and labor but the overall water production cost is defined as 

$/m3 [107]. Presently, the widely accepted parameter to evaluate the efficacy of practical 

desalination processes is the performance ratio (PR):- The equivalent heat of evaporation needed 

to produce one cubic meter of potable water to the actual kWhelec or kWhther per cubic meter [108-

110]. 

 

 

Figure 5: Total desalination installed capacities and share of different technologies in the 

World and in GCC countries [72, 73]. 

 



 

MSF Desalination 

MSF technology was dominating from 1980s to 1990s due to robust operation and maximum 

availability during the time of the year.  However, the recent technological developments in MED 

and RO processes took over the MSF installations worldwide, especially in the Gulf region [107]. 

Thermally driven MSF need both electrical and thermal energy and operates at top brine 

temperature (TBT) ranges from 90°C to 110°C [107, 111]. Increasing TBT enhance flashing and 

hence the performance ratio but it is limited by severe scaling and fouling problems at high 

temperature. Theoretically, they can have 4 to 40 number of stages but typically 18 to 25 number 

of stages are common with typical plant size from 50,000 to 70,000 m3/day [107, 111, 112]. The 

typical thermal energy consumption for MSF varies from 191 MJ/m3 to 290 MJ/m3 that is 

equivalent to 15-25 kWhelec/m
3 at 30% power plant efficiency [112, 113]. The electricity 

requirement for pumping energy ranges from 2.5 to 5.0 kWhelec/m
3 therefor, overall equivalent 

electricity consumption is 20 to 30 kwhelec/m
3 [112, 113].  In the Gulf countries, gain output ratio 

(GOR) varies from 8-10 and the typical PR ranges from 3.5-4.5 depending on steam temperature 

[112]. The variation in the water cost estimation presented in the literature can be attributed to 

inconsistent economic analysis methodology and fuel & material cost variation [114]. Water cost 

varies from 0.5$/m3 at subsidized fuel cost of 5$/Barrel and 4$/m3 for independent water and 

power project (IWPP) project with international fuel cost of 100$/Barrel [115]. The MSF brine 

discharge usually 7–15°C hotter and 15–20% more concentrated than the feed water that effect the 

marine environment [116]. Their CO2 emission varies from 20-25kg/m3 as a standalone operation 

to 14-16 kg/m3 as a cogeneration operation with steam power plants [117, 118]. Although, there 

is a perception that MSF has no improvement margin as it is reached its maturity but latest patent 

[119] disclosed that an advanced MSF plant with combination of Nano-fϊltration technology 

allowing TBT to exceed 120°C to achieve highest performance of MSF plant [120].  

MED Desalination 

MED has been used in process industries for a long time but it was failed in desalination industry 

to compete with MSF due to the scaling problem and the larger CAPEX and OPEX in the past 

[108, 114]. Recently, technological development of MED, low temperature operation with TVC, 

solved this problem and as a consequence, MED started to gain ground to compete MSF [108, 

114]. In last decades, 2000-2008, MED trend showed steady but year 2009 showed sharp increase 

in its market in terms of contracted capacities in the Gulf.  Experts believe that MED may reinforce 

its major share in desalination market in the future due to its greater compatibility with solar 

thermal desalination and hybridization with other thermally driven cycles such as adsorption cycle 

(AD) [107, 112].  Similar to MSF, MED plants require both electrical and thermal energy but their 

specific energy requirement is lower than MSF because they operate at lower top brine temperature 

typically below 70°C [121]. The thermal energy requirement for MED operation varies from 

145MJ/m3 to 230MJ/m3 depending on TBT that is equivalent to 12-19 kWhelec/m
3 based on 30% 

power plant efficiency [112, 113]. Operational pumping require 2.0-2.5 kWhelec/m
3 and overall 

equivalent electricity consumption ranges from 15-22 kWhelec/m
3 [112]. Typically, MED operate 

at a GOR of 10-16 but in Gulf region it varies from 8-12 due to sever feed water quality [112].  



MED CAPEX are higher than MSF but OPEX are lower and total production cost reported as 

$0.7/m3 to $0.8/m3 [122, 123]. In terms of CO2 emissions, MED is also ranked lower than 12-

19kg/m3 as a standalone operation to 8-9 kg/m3 as a cogeneration operation with steam power 

plants [117, 118].  Recently, the Saline Water Desalination Research Institute (SWDRI) of SWCC 

and the Water Re-use Promotion Center (WRPC) of Japan together with Sasakura Engineering 

Co. Ltd. have conducted promising research to hybridize nanofiltration (NF) membranes as a pre-

treatment with MED to increase TBT from 65oC up to 125oC. At TBT 125, MED-TVC can have 

24 number of recoveries and GOR can be increased to 20, doubling the water production as 

compared to conventional MED with GOR 9-10 [124-128]. 

SWRO Processes 

RO processes are dominating in brackish water treatment market and they showed increasing trend 

for seawater desalination from 2.0 Mm3/day to 3.5 Mm3/day from 2005 to 2008 and it is expected 

to be strengthen in future due to highly efficient aquaporin and  graphene membrane development 

[129, 130]. In last decades, RO processes improved tremendously due to pressure recovery devices 

and NF integrated pre-treatment processes [131]. RO processes only required electricity for 

desalination and the energy consumption is depend on recovery ratio and total dissolved solids 

(TDS) in the feed since the osmotic pressure is related to total dissolved solids (TDS). For severe 

feed water conditions such as high turbidity, high algae concentration, high temperature and high 

TDS, the RO cost will be higher than thermally driven processes because of extensive pre-

treatment process requirement [132].  At start, in 1970s, SWRO processes were highly energy 

intensive with specific energy consumption of 20 kWhelec/m
3 [133]. Present technological 

development reduced energy consumption to many fold. Today’s SWRO processes required from 

3-8 kWhelec/m
3 (55 to 82 bar pump pressure) for seawater and 1.5-2.5 kWhelec/m

3 for brackish 

water from large to medium size of plants [112, 134-137]. For small size, it can be as high as 15 

kWhelec/m
3 (17 to 27 bar pump pressure) [112]. Kinetic® energy recovery system achieved lowest 

specific energy consumption level of SWRO at 2.00 kWh/m3 with most efficient energy recovery 

devices at many locations, Sal Island-Cape Verde 1000 m3/d SWRO plant is one of the example 

[138]. Since RO specific energy consumption is the lowest among all desalination technologies, it 

cause lowest CO2 emission, 2.79kg/m3 in steam cycle operation and 1.75kg/m3  in combined 

CCGT power plants [117, 118]. This variation in CO2 emission is due to difference in overall 

system efficiency. Since CCGT power plants efficiency is higher so SWRO connected with CCGT 

have less emission contribution. On the other hand, thermal power plants efficiency is lower so 

desalination cycle connected with single thermal power plant have higher contribution in CO2 

emission. RO water production cost varies from 0.45-0.66 US$/m3 for large size plants, 0.48-1.62 

US$/m3 for medium and 0.7-1.72 US$/m3 for small size plant [139]. In RO processes, brine is 

rejected at ambient temperature, no thermal pollution as in thermal technologies.  However, the 

chemicals added for the pretreatment add toxic brine pollution to marine environment and cause 

RO membrane cartridge fouling [140-156]. Currently, spiral wound membranes are introduced to 

provide greater filtration surface area within the same volume. They offer high salts rejection, low-

energy requirement and high-productivity up to 47.5 m3/d [157-159]. Hybrid RO membrane inter-

stage design also called internally staged design is introduced in which different membranes are 



packed in same pressure vessel to get operational and maintenance advantages and 5% to 8% of 

capital costs savings as reported by the manufactures [160-165]. 

3.1- Cogeneration Systems  

The world’s trend in water desalination industry has been moved towards the efficient 

cogeneration concept where both power (electricity) and potable water are produced 

simultaneously. Combined water and energy production has several benefits namely; (i) process 

low grade waste heat can be re-utilized for desalination that reduce specific energy and hence CO2 

emissions, (ii) process cooling water demand can be reduced, (iii) the cost of desalinated water 

and power decreases and (iv) the integrated system is more efficient than the stand-alone operation. 

However, the disadvantages of cogeneration system includes: (i) complex operation and (ii) 

sessional variation in water and power demand difficult to handle. Demand variability can be 

managed, but when the two demands are not aligned, the system runs below maximum efficiency. 

This problem can be solved using MED/MSF-RO hybrid systems [131].  
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Figure 6: Single purpose and cogeneration process impact on overall plant efficiency and 

environment [131]. 

 



Figure 6 shows the overall system efficiency and environmental impact of different configuration 

of power and desalination systems. Single purpose plants are less efficient and hence high 

environmental impact. In multi-purposed plants, working fluid exergy can be utilized more 

efficiently due to cascading arrangement of processes that improve overall system performance 

and reduce environmental impact. It can be seen that combined CCGT power and desalination 

plant can achieve 80% overall efficiency and 25% environmental impact as compared to 57% 

efficiency and 35% environmental impact of single purpose CCGT power plant. This improvement 

in overall efficiency and reduction in environmental impact is due to excellent thermodynamic 

synergy of cascading arrangement of thermally driven systems. Similar improved trend has been 

observed when single purpose steam power plant combined with desalination cycle. This shows, 

higher the overall system efficiency, lower the environmental impact [131].  

 

3.2- Desalination Technologies Comparison 

As it is mentioned earlier, desalination processes CAPEX and OPEX depends on many parameters 

such as; plant capacity, design, material and feed water quality. It is noticed that feed concentration 

doesn’t effect thermally driven processes energy consumption but it influence membrane systems 

energy consumption. It is also reported that thermally driven systems require higher energy 

compared with membrane processes. Table 1 summaries the important parameters of most 

common desalination technologies and a case study of Jubail CCGT and desalination plant is also 

presented in table 2 to highlight the rejected brine impact on marine environment in terms of 

concentration and temperature [48]. 

 

 

Parameters MED MED-TVC MSF SWRO MD 
Hybrid 

*MED+AD 

Typical size and capital cost 
107, 123, 132, 155, 175, 166-194, 203, 204 

Typical plant size 

(x1000m3/day) 
5-15 50 - 100 50-70 Up to 128 24 50 - 100 

Unit capital cost 

($/m3/day) 
2000 1860 1598 1313 1131 2200 

Energy consumption, water cost & technology trend 
107, 122, 123, 132, 139, 155, 175, 166-198, 200-202, 205-208, 212-214 

Operating 

Temperature (oC) 
65 - 70 65 - 70 90 - 110 Ambient 60 - 90 65 - 70 

Thermal Energy  

(MJther/m3) 

 

145 - 230 180 - 290 190-282 NA 360 108 – 144 

Thermal Energy  

(KWhther/m3) 

 

40 - 65 50 - 80 53 - 70 NA 100 30 - 40 

Table 1: Summary of operational and performance parameters of different desalination processes. 

 



Electric Energy  

(kWhelec/m3) 
2.0-2.5 2.0-2.5 2.5-5.0 4.0-6.0 1.5-3.65 3.38 

Performance 

Ratio (PR) 
Up to 10 Up to 16 Up to 10 NA Up to 5 Up to 20 

GOR 9-10 12-14 8-14 NA  20 - 22 

Cost of water 

($/m3) 
0.52-1.01 1.12-1.50 0.56-1.75 0.26-0.54 1.17-2.0 <0.48 

Technology 

growth trend 
High High Moderate High R&D R&D 

Environmental impact and water quality 
42, 107, 113, 116-118, 199, 213 

Environmental 

impact 

Discharge is 

10–15°C 

hotter 

than ambient, 

TDS increase 

of 15–20% 

Discharge is 

10–15°C 

hotter 

than ambient, 

TDS increase 

of 15–20% 

Discharge is 

10–15°C 

hotter 

than ambient, 

TDS increase 

of 15–20% 

Brine 

discharge at 

ambient 

temperature, 

TDS 

increase of 

50–80% 

Discharge 

is 10–15°C 

hotter 

than 

ambient, 

TDS 

increase 

of 15–20% 

Discharge is 

10–15°C 

hotter 

than ambient, 

TDS increase 

of 20–30% 

CO2 emission 

(kg/m3) 
7.0 – 17.6 7.0 – 17.6  15.6 – 25.0 1.7 – 2.8 7.0 – 17.6 5.0 – 10.0 

CO2 abatement 

($/m3) 
0.18 – 0.35 0.18 – 0.35 0.31 – 0.50 - 0.18 – 0.35 0.18 – 0.35 

Recovery rate 

(%) 
15-50% 15-50% 15-50% 30-50% 60-80% 60-80% 

Product water 

(ppm) 
<10 <10 <10 <500 <10 <10 

Others factors 
209-211 

Ton of seawater 

required per ton of 

water production 

5-8 5-8 8-10 2-4 5-8 4-5 

Footprint 

M2/m3/hr 
6.5-7.0 4.5-5.0 4.5-5.0 3.5-5.5  4.5-5.0 

Shut-down for 

maintenance 

 

1/every 2-

year  
1/every 2-year 

1/every 2-

year 
>4/year  

1/every 2-

year 

Availability 96-98% 96-98% 96-98% 92-96%  96-98% 

Plant life 

(years) 
15-25 15-25 25-40 10-15  15-25 

*MEDAD hybrid cycle values are estimated on the basis of 10m3/day pilot installed in KAUST, Saudi Arabia [78] 

 

 

 



 

 

 

It can be seen that conventional desalination processes have severe environmental impact in terms 

of seawater temperature, PH and concentration increase. The reject increase seawater temperature 

increase from 3-4°C and concentration up to 50% at outfall bay. 

The differences in specific energy consumption, as presented in Table 1, can be attributed to many 

factors such as (i) difference in fuel cost, (ii) site specific cogeneration plant efficiency and (ii) 

methods of calculation. The method of calculation has major impact on specific energy 

consumption and PR calculation. The conventional definition of PR have misconception due to 

different grade of energies (thermal and electric) incorporating in calculation directly and treating 

them similar since they have same units as Watt. The PR definition must be based on primary 

energy (pe), not on derived energies, to compare different desalination processes at same level. 

The improved PR definition is proposed as discussed in following sections.  

 

 

 

 

 

Parameters 

Sampling Zones 

Intake bay Open sea Outfall mixing bay Recovery zone (1km) 

Sea surface temperature ( oC ) 

Winter 17.90±0.85 17.80±1.06 27.30±2.47 20.50±4.95 

Spring 24.42±5.10 24.00±4.09 33.08±4.06 25.91±5.59 

Summer 30.25±0.35 30.75±1.06 37.25±0.35 34.38±3.71 

Fall 27.00±1.41 27.00±1.41 34.50±0.75 30.00±2.82 

Conductivity (ms/cm) 

Winter 57.28±4.70 57.58±5.90 67.33±1.23 60.15±6.15 

Spring 58.83±1.33 59.56±3.11 65.55±2.65 61.21±1.62 

Summer 63.85±1.77 63.73±1.66 69.53±2.65 68.58±3.57 

Fall 61.15±1.49 61.60±0.00 67.40±4.53 64.43±1.66 

PH 

Winter 8.36±0.00 8.38±0.02 8.39±0.02 8.39±0.00 

Spring 8.29±0.06 8.31±0.06 8.32±0.05 8.31±0.05 

Summer 8.34±0.06 8.35±0.06 8.34±0.04 8.34±0.06 

Fall 8.60±0.22 8.61±0.21 8.63±0.24 8.67±0.17 

Dissolved Oxygen (mg/L) 

Winter 6.88±0.56 6.98±0.41 6.36±0.61 6.65±0.00 

Spring 6.66±0.52 6.85±0.79 6.18±0.49 6.27±0.54 

Summer 5.24±0.68 5.46±0.27 5.34±0.44 5.17±0.29 

Fall 5.22±1.09 4.89±0.69 4.86±0.45 5.17±0.00 

Table 2: Jubail CCGT and desalination plant brine impact on parameters of marine environment [48]. 

 



 

4. Re-Defining the  Performance Ratio  

Conventionally, the method of PR calculation is based on derived energies such as thermal and 

electricity without distinguishing the grade/quality of energy as presented in Equation 1. Since 

derived energies are involved their generation efficiencies, so considering these derived energies 

directly in PR calculation may gave distorted view of practical PR.  For meaningful comparison 

of different desalination processes, PR must be defined on primary energy basis. The accurate 

conversion of derived energy to the primary energy input at cogeneration plants is the key for 

having an equitable platform for comparing the efficacy of all desalination methods and input fuel 

cost apportionment. The derived energies can be converted to primary energy by considering their 

conversion efficiencies i.e. boiler for steam and power plant for electricity.  

 

𝑃𝑅 =

(

 
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 

𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 

)

 
 
≅  

2326 {
𝑘𝐽
𝑘𝑔
}

3.6 𝑥 [{
𝑘𝑊ℎ𝑒𝑙𝑒𝑐
𝑚3 } + {

𝑘𝑊ℎ𝑡ℎ𝑒𝑟
𝑚3 } + {

𝑘𝑊ℎ𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑚3 }]

 

            (1) 

In view of the imbalanced exergy destruction in cogeneration processes, researchers [215] 

proposed to convert all derived energies to primary energy using appropriate conversion factors to 

calculate universal performance ratio (UPR) as presented in Equation 2. The proposed revised 

UPR gives a fair platform for cross-comparison of all desalination technologies without any 

distortions from the ad-hoc conversion efficiencies. 

 

𝑈𝑃𝑅 ≅   
2326 {

𝑘𝐽
𝑘𝑔
}

3.6 𝑥 [{
𝑘𝑊ℎ𝑒𝑙𝑒𝑐
𝑚3 } 𝐶𝐹1 + {

𝑘𝑊ℎ𝑡ℎ𝑒𝑟
𝑚3 } 𝐶𝐹2 + {

𝑘𝑊ℎ𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑚3 } 𝐶𝐹3]

𝐶𝐹 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
1 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙, 2 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 3 = 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒

 

            (2) 

A cogeneration plant analysis [215] showed that the average exergy consumed by gas turbine cycle 

(GT) amounts to 73.17% of the total fuel exergy at input, whilst product gases containing 

remaining 26.83% of exergy are supplied to heat recovery steam generator (HRSG) to produce 

high temperature and pressure steam at the expense of minor exergy loss due to exhausted of flue 

gas. Steam turbines (HP, MP and LP turbines) consuming about 23.43% of total fuel exergy and 

only the remaining 3.4% of total fuel exergy input is consumed by the MED for potable water 

production. Based on these conversion factors, the derived energies are converted into primary 

energy to calculate UPR as presented in Table 3. Despite the seemingly high values of UPRs, all 

desalination methods available hitherto are operated far remote from the ideal or thermodynamic 



limit (TL) of 0.78 kWhpe /m
3. Presently, these desalting processes are operating from 10-15% of 

TL where the UPR at TL is 828. These lower value of conventional desalination technologies 

shows that these are not sustainable for future water supplies. For future sustainable desalination, 

conventional processes need to improve for higher efficiency or need to investigate alternate 

energy sources such as renewable energy sources. High efficiency desalination processes 

integrated with renewable energy sources can be best choice for future water supplies.  

 

 

Desalination 

technology 

Electrical 

energy 

consumption 

 

Thermal 

energy 

consumption 

 

Conversion 

factor for 

electricity 

 

Conversion 

factor for 

thermal 

energy 

 

Primary 

energy 

UPR 

UPR 

percentage 

of  TL 

(UPR at 

TL=828) 
(kWhelec) (kWhther) 

(57.2%) 

CF1= 

0.572 

(3.4%) 

CF2= 29.4 
(kWhpe) 

SWRO 3.5 NA 

0.572 29.4 

6.11 105.74 12.8% 

MED 2.3 71.7 
4.02+2.43

=6.45 
100.17 12.1% 

MSF 3.0 80.6 
5.24+2.74

=7.98 
80.97 9.8% 

∗ 𝑇𝐿 =  
2326 𝑘𝐽/𝑘𝑔

2.8 𝑘𝐽/𝑘𝑔
= 828, [ 

0.78 𝑘𝑊ℎ

𝑚2
=
2.8 𝑘𝐽

𝑘𝑔
] 

 

 

5. Desalination with Renewable Energy: An Alternate Choice? 

Conventional fossil fuel driven desalination technologies will have large environmental impacts 

by 2050 in terms of volume of brine rejection and environmental emissions. With current trend, 

brine rejection will increase to 240 km3 and emission will be approximately 400 million tons of 

carbon equivalents per year [216-218]. Coupling the desalination technologies with renewable 

energy sources have potential to supply sustainable fresh water for future demand. The three major 

benefits that World will reap by renewable desalination processes are (i) environmental 

sustainability, (ii) future fresh water sustainability and (iii) energy sustainability 216.  Currently, 

131 renewable-powered desalination plants producing only 1% of the world’s desalinated water. 

In renewable energy utilization, solar photovoltaic (PV) is leading with 43% followed by solar 

thermal 27%, wind 20% and hybrid 10% [219, 220].  The only drawback with PV utilization is the 

availability and area required for installation. As a rule of thumb, to operate a small RO plant of 

capacity 1 m3 /day (with a total specific energy consumption of 8 kWh/m3 ), PV installation require 

26.5-28 m2  area based on electricity rating of 110-120 kWh/m2 .year. PV-SWRO have advantages 

of continuous operation if they are integrate with cogeneration plants grid. Since solar energy is 

intermittent, so PV can supply power to cogeneration plants grid at day time and at night SWRO 

will be operated by tapping power from cogeneration plants grid. In 2015, Advanced Water 

Table 3: Summary of derived energies, conversion factors, primary energy and UPR of different 

desalination processes [215]. 

 



Technology (AWT), Saudi Arabia started installation of World largest PV-SWRO plant at Al-

Khafji. This $130m project is expected to be completed by 2017 and it will produce 60,000m3/day. 

Typical costs for renewable energy operated desalination processes ranges from 2.0-32.0$/m- 

depending on size of plant, technology and renewable energy potential. Figure 7 illustrates the 

development stage, typical capacity and cost of different desalination technologies based on 

different renewable energy sources [221, 222]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The examples of commissioned renewable energy operated desalination plants are; (i) wind energy 

operated RO Kwinana desalination Plant in south of Perth in Australia. Total 48 number of turbines 

producing 80MW to operate RO consuming 26MW. This wind operated RO was opened in April 

2007 and was the first of its kind in Australia [223], (ii) low temperature thermal desalination cycle 
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Application 

 
Solar multi-effect humidification 

            1-100m3/d, 2.6-6.5 $/m3,  

               Application/R&D 

 

Solar membrane 

distillation 

0.15-10m3/d,  

10.4-19.5 $/m3, R&D 

Photovoltaic SWRO 

<100m3/d,  

11.7-15.6 $/m3, 

Application 

Photovoltaic EDR 

<100m3/d, 10 $/m3, R&D 

Wind RO 

50-2000m3/d, 2.0-5.2 $/m3, Application 

 

Wind MVC 

<100m3/d, 5.2-7.8 $/m3, 

R&D 

Geothermal MED 

50-1000m3/day, R&D 

Solar organic 

SWRO 

>0.1m3/d,  

Basic research 

Wave RO 

1000-3000m3/d, 

0.7-1.2 $/m3, 

Basic research 

Solar/CSP MED 

>5000m3/d,  

2.0-2.5 $/m3, 

Application 

Figure 7: Renewable energy operated desalination technologies status: Capacity, production 

cost & technology trend. 

 



operating with ocean thermocline energy has been implemented in Hawaii (USA) and Karavatti 

(India) to supply water to remote Islands [224-226], (iii) IBM currently working on membrane 

distillation (MD) operated with CPV heat. Their results shows that high concentration 

photoVoltaic thermal (HCPVT) system can achieve 90°C to operate MD with production capacity 

of 30-40 liter water per square meter of receiver area per day [227]. Similarly, there are many other 

RO plants operated by wind energy as summarized in Table 4 [228]. 

 

 

 

 

 

6. Future Energy and Environment Sustainability Roadmap 

The conventional desalination technologies are not decent solution for sustainable future water 

supplies as they are operating at very low efficiency, 10-15% of their thermodynamic limit. To 

achieve the goal of COP21, desalination processes need to improve their efficiencies up to 25-30% 

of thermodynamic limit. Scientists are developing new materials for RO processes to increase flux 

and improved processes (hybridization) of thermally driven MED/MSF technologies for high 

efficiency. 

 

6.1- RO Processes Future Roadmap:  

Presently, membrane processes consume 3-5kWh/m3 but the drive to achieve future sustainable 

water supply goal demands membranes with high flux, selectivity, fouling resistance and stability 

with minimum cost and manufacturing defects.  The variety of efficient materials have been 

proposed to improve the performance of conventional ceramic and polymeric based membrane 

[229, 230] such as: (i) catalytic nanoparticle coated ceramic membranes, (ii) zeolitic, (iii) 

inorganic–organic hybrid nanocomposite membranes and (iv) bio-inspired membranes that 

includes protein– polymer hybrid biomimetic membranes, isoporous block copolymer membranes 

and aligned nanotube membranes. In terms of performance and commercialization, bio-inspired 

membranes are highest in performance but farthest (5-10 years) from commercial reality. 

However, nanocomposite membranes are commercially available with significant performance 

improvement [231]. These innovative materials will not only help to save energy but also to protect 

environment to achieve sustainable desalination goal.  

Plant location Commissioning 

year 

Capacity 

(m3/day) 

Wing turbine 

capacity (MW) 

De Planier, France 1983 12 4 

Fuerteventura Island 1995 56 225 

Therasia island, Greece 1997 19.2 15 

Crest, UK 2003 12 2.5 

Table 4: Wing energy operated RO plants in the World [228] 

 



Aquaporin membranes were proposed by Agre et al. and they won a Nobel Prize for this discovery 

in 1993 [232]. Aquaporins are the protein channels that control water flux across biological 

membranes and transfer water molecules at rates of 2–8 x109 molecules per second.  RO membrane 

with 75% coverage of aquaporins increase permeability to 2.5x10-11 m Pa-1 s-1, an order of 

magnitude higher than commercial seawater RO membranes [233]. Presently, aquaporin-based 

membranes are not commercially available due to material unavailability and technological 

limitation to produce large protein area but it shows the potential for incorporation of biological 

aquaporins into pressure-driven RO membranes in the future [234]. Further research is needed in 

future to optimize the formation of biological structures in terms of selectivity, robustness, material 

cost, scalability and specific energy consumption of RO processes, less than 2kWh/m2. 
 

6.2- Thermal Processes Future Roadmap:  

Thermally driven processes MSF/MED have lower performance because of their processes 

limitations. In MED processes, top brine temperature (TBT) is limited at 70 oC due to soft scaling 

components such as magnesium (Mg++), calcium (Ca++), and sulfate (SO4
-2) ions in the feed that 

contribute in system degradation at high TBT typically more than 70oC.  As a solution, researchers 

found that these scaling agents can be suppressed by pre-treating the feed through nano filtration 

(NF) or anti-scalant dosing and TBT can be raised to 130oC [126, 235]. The last stage operating 

temperature limitations, 40oC, can be overcome by adsorption cycle hybridization that can operate 

below ambient conditions typically as low as 10oC [75-79, 236]. This tri-hybrid desalination cycle, 

NF+MED+AD, can operate from heat source temperature 130oC to last stage temperature 10oC 

with  more than 20 number of effects and hence the UPR=250, over 20% of TL. The other hybrid 

combinations such as NF+RO+MSF, NF+MSF+MED were also proposed for higher performance 

and maximum thermodynamic synergy [95, 96].  In terms of robustness and commercialization, 

all individual technologies (NF, MED, MSF & AD) are well proven and readily available in the 

market. Today, thermally driven technologies are available on the shelf to achieve COP21 goal for 

sustainable water supplies.    

 

Figure 8 shows the conventional desalination technologies performance from last three decades. It 

also shows that high performance membranes may need 5-10 years to achieve sustainable 

desalination goal but thermally driven desalination technologies are readily available 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RO Processes:  

High performance membrane materials will take 5-10 

year to be available commercially [237] 

100 

1 

k
W

h
_
P

E
 /m

3
 

Sustainable desalination zone 

(25-30% of TL) 

 

1000 

100 

10 

1  

U
n

iv
er

sa
l 

P
er

fo
rm

an
ce

 R
at

io
 (

U
P

R
) 

2015 2025 2035 2005 1995 

Thermodynamic limit = 0.78 kWh
pe 

/m
3 
or UPR=828 

10 

Year 

New innovative desalination 

methods needed to reach the 

sustainable desalination region 

for the future. 

 

10-15% of TL 

 

Thermally driven cycle’s hybridization: 

Readily available individually, need to hybridize to 

achieve UPR> 20% of TL. 

E
n
v
ir

o
n

m
e
n
ta

l 
 i

m
p

ac
t 

High 

Low 

Figure 8: Desalination technologies roadmap for future sustainability. 

 



 

 

Conclusions 

In 2010, 15% of global fresh water was consumed for power generation that was produced by 

desalination processes at an expense of 75.4TWh energy and 76 million ton of carbon emission. 

The current energy intensive desalination processes, with 10-15% efficiency, are not sustainable 

for future water supplies. For future sustainability, innovative membrane materials are proposed 

but they need 5-10 years intensive research to produce commercially. On the other hand, thermally 

driven desalination technologies hybridization can achieve 20-25% of efficiency, close to 

sustainable production zone, in 1-2 year experience. These innovative solutions will help to save 

energy and protect environment. Further research is needed to develop more innovative sustainable 

desalination solutions to achieve COP21 goal.  

Nomenclature 

GDP Gross domestic product 

CCGT combined-cycle gas turbine 

MWh Megawatt hour 

TWh Terawatt hour 

Mt Million ton 

Gt Giga ton 

WHO World health organization 

RO Reverse osmosis 

SWRO Seawater reverse osmosis 

MED Multi effect desalination 

TVC Thermal vapor compressor 

MSF Multi stage flash 

MD Membrane distillation 

FO Forward osmosis 

HDH Humidification dehumidification 

AD adsorption desalination 

UF Ultra filtration 

NF Nano filtration 

IF Ionic filtration 

CAPEX Capital expenditure 

OPEX Operational expenditure 

TBT Top brine temperature 

MJ Mega joule 

IWPP Independent water and power plant 

PR Performance ratio 

GOR Gain output ratio 

SWCC Saline water conversion cooperation 

Mm3 Million cubic meter 

GT Gas turbine 

HP-ST High-pressure steam turbine 

HRSG Heat-recovery steam generator 

LP-ST Low-pressure steam turbine 

MP-ST Medium-pressure steam turbine 



PPM Parts per missions 

PE/Pe Primary energy 

TL Thermodynamic limit 

CF Conversion factor 

PV Photovoltaic 

Subscripts 
Ther   Thermal 

Elec   Electrical 

Pe/PE   Primary 
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