Comptes Rendus
From transistor to nanotube
[Du transistor aux nanotubes]
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 41-52.

Nous présentons ici les principales étapes de l'évolution des transistors, depuis l'invention prodigieuse d'un tel dispositif et l'introduction du circuit intégré. Nous rappellerons alors les principales étapes du développement de la loi de Moore jusqu'à la naissance de la nanotechnologie, au début du XXIe siècle. Deux aspects sont présentés dans cet article : le premier, appelé « More Moore », consiste en continuant la réduction des dimensions des transistors à parvenir jusqu'aux limites physiques, le deuxième aspect, appelé « beyond CMOS » explore de nouveaux concepts tels que la spintronique, la « moletronique », la « nanotronique » et autre type d'électronique moléculaire.

We present here the main steps in the evolution of the transistor, since the tremendous invention of such a device and the introduction of the integrated circuit. We will then recall the main steps of Moore's law development. Nanotechnology began at the very beginning of the 21st century. Two aspects are presented in this article: the first, called ‘More Moore’, consists in continuing the laws of scale up to the physical limits; the second aspect, called ‘beyond CMOS’ explores new concepts such as spintronics, moletronics, nanotronics and other types of molecular electronics.

Publié le :
DOI : 10.1016/j.crhy.2007.12.002
Keywords: Transistor, Nanoelectronics, Road map, Molecular electronics
Mot clés : Transistor, Nanoélectronique, Feuille de route, Électronique moléculaire
Jean-Claude Boudenot 1, 2

1 Thales Research & Technology, 91767 Palaiseau cedex, France
2 EDITE, Paris, France
@article{CRPHYS_2008__9_1_41_0,
     author = {Jean-Claude Boudenot},
     title = {From transistor to nanotube},
     journal = {Comptes Rendus. Physique},
     pages = {41--52},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.12.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Claude Boudenot
TI  - From transistor to nanotube
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 41
EP  - 52
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.12.002
LA  - en
ID  - CRPHYS_2008__9_1_41_0
ER  - 
%0 Journal Article
%A Jean-Claude Boudenot
%T From transistor to nanotube
%J Comptes Rendus. Physique
%D 2008
%P 41-52
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.12.002
%G en
%F CRPHYS_2008__9_1_41_0
Jean-Claude Boudenot. From transistor to nanotube. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 41-52. doi : 10.1016/j.crhy.2007.12.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.12.002/

[1] W. Shockley, The Path of Junction Transistor, IEEE Transaction on Electron Devices, November 1984 (first ed. 1976)

[2] F. Nebeker, The Electric Century, IEEE Spectrum, June 2000

[3] R.L. Caen Note historique, Conception des circuits intégrés MOS, Eyrolles, 1986

[4] G. Moore Cramming more components onto integrated circuits, Electronics, Volume 38 ( April 1965 ) no. 8, p. 19

[5] E.P. Gusev; V. Narayanan; M.M. Frank IBM J. Res. & Dev., 50 (2006) no. 4/5, pp. 387-410

[6] H.S. Yang et al., IEDM Tech. Digest, 2004, pp. 1075–1078

[7] J.T. Park; J.P. Colinge IEEE Trans. Electron Devices, 49 (2002) no. 12, pp. 2222-2229

[8] K. Nehari; N. Cavassilas; J.L. Autran; M. Bescond; D. Munteanu; M. Lannoo Solid-State Electronics, 50 (2006) no. 4, pp. 716-721

[9] D. Munteanu; J.L. Autran Solid-State Electronics, 47 (2003), pp. 1219-1225

[10] J. Faist; F. Capasso; D.L. Sivco; C. Sirtori; A.L. Hutchinson; A.Y. Cho Science, 264 (1994), p. 553

[11] S.S. Dhillon; C. Sirtori; J. Alton; S. Barbieri; A. de Rossi; H.E. Beere; D.A. Ritchie Nature Photonics, 1 (2007), pp. 411-415

[12] E. Rosencher; N. Vodjdani; J. Nagle; P. Bois; E. Costard; S. Delaitre Appl. Phys. Lett., 55 (1989), p. 1853

[13] E. Costard; P. Bois; A. De Rossi; A. Nedelcu; O. Cocle; F.-H. Gauthier; F. Audier C. R. Physique, 4 ( December 2003 ) no. 10, pp. 1089-1102 (14)

[14] A. Nedelcu; E. Costard; P. Bois; X. Marcadet Infrared Physics & Technology, 50 ( April 2007 ) no. 2–3, pp. 227-233

[15] M.N. Baibich; J.M. Broto; A. Fert; F. Nguyen Van Dau; F. Petroff; P. Etienne; G. Creuzet; A. Friederich; J. Chazelas Phys. Rev. Lett., 61 (1988), p. 2472

[16] P. Grünberg et al. Phys. Rev. B, 39 (1989), p. 4828

[17] S. Iijima Nature, 354 (1991), p. 56

[18] P. Avouris Accounts Chem. Res., 35 (2002), p. 1026

[19] J. Knoch; R. Martel; V. Derycke; S.J. Wind; P. Avouris IEEE Transactions on Nanotechnology, 1 ( December 2002 ) no. 4, pp. 184-189

[20] H. Dai Accounts Chem. Res., 35 (2002), p. 1035

[21] A. Javey et al. Nature Materials, 1 (2002), p. 241

[22] H. Dai; A. Javey; E. Pop; D. Mann; W. Kim; Y. Lu Electrical transport properties and field effect transistors of carbon nanotubes, Nano: Brief Reports and Reviews, Volume 1 (2006) no. 1, pp. 1-13

[23] J. Li Appl. Phys. Lett., 82 (2003), p. 2491

[24] J. Kong; N.R. Franklin; C. Zhou; M.G. Chapline; S. Peng; K. Cho; H. Dai Nanotube molecular wires as chemical sensors, Science, Volume 287 (2000), pp. 622-625

[25] P. Bondavalli, P. Legagneux, D. Pribat, Gas fingerprinting using carbon nanotubes transistors arrays, in: Nanotech07, Santa Clara, 21–24 May 2007

[26] P. Qi; O. Vermesh; M. Grecu; A. Javey; Q. Wang; H. Dai; S. Peng; K.J. Cho Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett., Volume 3 (2003) no. 3, pp. 347-351

[27] R.J. Chen; H.C. Choi; S. Bangsaruntip; E. Yenilmez; X. Tang; Q. Wang; Y.-L. Chang; H. Dai An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices, J. Am. Chem. Soc., Volume 126 (2004) no. 5, p. 1568

[28] K. Teo; E. Minoux; L. Hudanski; F. Peauger; J.-P. Schnell; L. Gangloff; P. Legagneux; D. Dieumegard; G. Amaratunga; W.I. Milne Microwave devices: Carbon nanotube as cold cathodes, Nature, Volume 437 (2005), p. 968

[29] E. Minoux; O. Groening; K.B.K. Teo; S.H. Dalal; L. Gangloff; J.-P. Schnell; L. Hudanski; I.Y.Y. Bu; P. Vincent; P. Legagneux; G. Amaratunga Achieving high current carbon nanotube emitter, Nano Lett., Volume 5 (2005), p. 2135

[30] J. Zhang; G. Yang; Y. Cheng; B. Gao; Q. Qiu; Y.Z. Lee; J.P. Lu; O. Zhoua Stationary scanning x-ray source based on carbon nanotube field emitters, Appl. Phys. Lett., Volume 86 (2005), p. 184104

[31] C.P. Collier et al. Science, 289 (2000), p. 1172

[32] M.H. Devoret; D. Esteve; C. Urbina Nature, 360 (1992), p. 547

[33] L. Zhuang; L. Guo; S. Chou Appl. Phys. Lett., 72 (1998), p. 1205

[34] C.P. Poole; F.J. Owens Introduction to Nanotechnology, Wiley, 2003

[35] M. Wautelet et al. Les Nanotechnologies, Dunod, 2006

[36] D. Luzeaux; Th. Puig A la conquête du nanomonde, nanotechnogies et microsystèmes, Editions du Félin, 2007

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review

Paolo Bondavalli

C. R. Phys (2010)


Micro- and nanotechnologies: dullish electrons and smart molecules

Jacques Simon

C. R. Chim (2005)


Multiscale simulation of carbon nanotube devices

C. Adessi; R. Avriller; X. Blase; ...

C. R. Phys (2009)