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Abstract

This work proposes to exploit blockchain technology to define Access Control systems that
guarantee the auditability of access control policies evaluation. The key idea of our proposal
is to codify attribute-based Access Control policies as smart contracts and deploy them on
a blockchain, hence transforming the policy evaluation process into a completely distributed
smart contract execution. Not only the policies, but also the attributes required for their
evaluation are managed by smart contracts deployed on the blockchain. The auditability
property derives from the immutability and transparency properties of blockchain technol-
ogy. This paper not only presents the proposed Access Control system in general, but also
its application to the innovative reference scenario where the resources to be protected are
themselves smart contracts. To prove the feasibility of our approach, we present a reference
implementation exploiting XACML policies and Solidity written smart contracts deployed
on the Ethereum blockchain. Finally, we evaluate the system performances through a set of
experimental results, and we discuss the advantages and drawbacks of our proposal.
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1. Introduction

In the last years, the most part of existing digital resources (e.g., servers, data bases,
services or even smart objects, from smart watches to last generation cars) has been con-
nected to the Internet. This is due to the ever increasing coverage of Internet connectivity.
It is obvious that, if on the one hand this connectivity enables the provision of new and
better features, on the other hand, it introduces new security risks of unauthorized accesses
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to such resources. In order to prevent privacy violations and erroneous or malicious uses,
such resources need to be protected by proper security mechanisms, such as Access Control
systems. These systems control the access attempts in order to grant the access only to
those subjects actually holding the corresponding rights in the specific access context.

A solution for resource owners is to deploy and run their own Access Control systems on
their premises. In this case, resource owners have the responsibility to choose and deploy
proper Access Control systems for their resources. However, this solution causes resource
owners a burden due to the configuration, deployment and management of the system.
Furthermore, resource owners should bear a relevant cost, both in terms of hardware (the
servers/VMs which host the Access Control system), software (the Access Control system
product could require to pay a periodical fee), and man power (the time spent by the ad-
ministrators for the Access Control system management). Hence, an alternative solution is
to outsource the Access Control functionality to external systems provided (e.g., as services)
by trusted third parties. For example, in the last years, some Access Control systems im-
plemented as Cloud services following the Software as a Service (SaaS) paradigm have been
proposed, such as OpenPMF SCaaS [1], ACaaS [2] and others. These services often use an
open-platform API, in a way such that their users are not bounded to use a specific imple-
mentation, but they can exploit them to have a uniform management of policy enforcement
for all the resources they own. Similarly, Amazon offers to the users of Amazon Web Services
(AWS)1 an Access Control Service called Identity and Access Management (IAM)2. IAM
allows Amazon users to manage the access to their AWS services and resources by creating
and managing their users and groups and by defining proper permissions to allow or deny
the access to their resources.

In this work, we propose an alternative solution for resource owners to outsource the
Access Control functionality. In fact, this work presents the design, implementation and
validation of a general attribute based Access Control system built on top of blockchain
technology. The proposed system follows the reference architecture defined by the XACML
standard [3], and its innovative feature is that most of the architecture components are im-
plemented as smart contracts which are deployed, stored and executed on a (smart contract
based) blockchain. The key idea behind our approach is to codify Access Control policies
as executable smart contracts and to manage them through the blockchain, hence obtaining
decentralised self evaluating policies.

In this paper, we provide an in depth analysis of the application of our proposal to a
specific innovative scenario, i.e., access regulation to smart contracts. Having the resource
to be protected (i.e., a smart contract) and the system to protect it both deployed on the
same blockchain would ease many of the issues that may arise by employing our proposal
in other application scenarios, as further discussed in rest of this paper. Our approach
presents some relevant advantages with respect to outsourcing the Access Control process
to third parties. For instance, both resource owners and subjects issuing access requests can
easily detect unduly authorizations or denials of access, thanks to publicly auditable proofs

1https://aws.amazon.com/
2https://aws.amazon.com/iam/
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of misbehaviour. Indeed, a third party Access Control service could maliciously force the
system to return deny, thus forbidding the access to a subject although the policy would
have granted it. Viceversa, it could return permit even when the policy is not satisfied,
thus granting the access to a subject not holding the corresponding right. In both previous
cases, neither the resource owners nor the subjects could check a posteriori the correctness
of the result of the access decision process, because the access context details that have
been taken into account might be no longer available. Instead, in our blockchain scenario,
both resource owners and subjects are enabled to verify how the policy has been evaluated
for each access request that has been performed thanks to the properties of transparency
and auditability inherited from blockchain technology. In fact, users can always browse the
blockchain and control the access requests that have been performed to a given resource, the
values of the attributes at that time, and the resulting access decisions returned as response
to their access requests.

The idea of exploiting blockchain technology for Access Control has been preliminary
presented in [4, 5], where we extended the Bitcoin protocol to represent, store, and retrieve
the policies stating users’ rights on resources, as well as to allow the transfer of such rights
among users, while the policy evaluation process was executed by a traditional Access Con-
trol system. In [6], instead, we enhanced the approach proposed in [4] by exploiting smart
contract capabilities to move the main functionality of an Access Control system, the pol-
icy evaluation process, on the blockchain as well. We validated our proposal presenting a
preliminary implementation based on the XACML standard and the Ethereum protocol [7],
due to its native support for smart contracts.

This paper refines and extends the approach proposed in [6] in several directions:

• The approach has been generalized, in order to define a general blockchain based
architecture. The description of how the components of the Access Control system are
implemented exploiting the blockchain technology has been considerably expanded;

• A new application scenario, where the resources to be protected are smart contracts
as well, has been introduced as reference example. We describe in details how the
proposed approach is applied in such a scenario, providing a reference implementation;

• The experiment section has been considerably expanded, mainly to better measure
time performances. To this aim, a large set of completely new experiments is pre-
sented. To strengthen the results, the experiments have been performed not only on
an Academic testnet, but also on a more realistic environment, a real world official
Ethereum testnet, called Ropsten [8], de facto doubling our experimental environment.

This work is structured as follows. We first provide the reader the needed background
in both blockchain technology and smart contracts, as well as Access Control systems,
focusing particularly on the XACML standard in Section 2. We then present in Section 3 an
application scenario that we use as reference example for validating our proposal. Section 4
presents the main concepts of the general idea behind our proposal to implement an Access
Control system based on blockchain technology. In Section 5, we then explain in detail how
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the proposed Access Control system can be adopted in the reference example introduced
in Section 3, presenting also a working reference implementation. We provide a number of
considerations about our proposal in Section 6, while we present a large set of experimental
results in Section 7. Finally, Section 8 presents our conclusions and future work.

2. Background and Related Work

2.1. Access Control systems

An Access Control system (ACS) is in charge to protect the resources of an application
scenario by checking the access requests performed by the subjects of that scenario in a
given access context. In other words, the ACS decides whether these subjects have the
rights to perform the accesses they request in the current access context or those accesses
must be denied. These rights are expressed by means of Access Control policies, which
consist of a set of conditions that are evaluated against the current access context to make
the access decision each time an access request is received [9]. In some scenarios, the right
of performing the access is not static, and hence it is continuously verified for the whole
duration of the access itself, in order to interrupt it in case this right expires because of
a change of the access context [10]. Several models have been presented in the scientific
literature to find a different way of defining access rights, e.g., Mandatory Access Control
(MAC), Discretionary Access Control (DAC), Role Based Access Control [11], and many
others. Among them, the Attribute-based Access Control (ABAC) model [12] represents the
access context through a set of attributes describing the relevant features of the subjects,
resources and environment, and uses Access Control policies consisting of a set of conditions
over the values of these attributes. Examples of attributes of the subject S could be, for
instance: the ID of S, the ID of the company S works for, the role of S in this company,
the name of the projects assigned to S, the number of resources S is currently using, and so
on. Example of attributes paired with a piece of data D could be: the project D belongs to,
the privacy level assigned to such data (e.g., public, internal or confidential), the ID of the
producer of D, and so on. A very simple example of ABAC policy could be the following: a
subject S is allowed to access the document D if D belongs to one of the projects assigned to
S. This policy simply compares the value of the attribute representing the projects assigned
to the subject with the value of the attribute representing the project of the document.

Several languages are currently available for writing ABAC policies, being the eXtensible
Access Control Markup Language (XACML) described in the next section one of the most
popular.

2.2. XACML Standard

This section gives a very brief description of the eXtensible Access Control Markup
Language (XACML) standard defined by the OASIS consortium [3] for expressing ABAC
policies, and of the related reference architecture.

XACML is a standard defining an XML based language to express ABAC policies, re-
quests, and responses. Requests are used to express the attribute values that have to be
provided by the subject to represent the access context, in the same format as policies. For
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example, the subject could provide his subject-id, the resource-id of the resource he
wants to access, and the action-id of the action he wants to perform on that resource.
Responses, instead, contain the decision relevant to a previous request expressed in a fixed
format. A response can be Permit, Deny, Indeterminate (in case of errors or missing
values) or Not Applicable (the request does not regard any of the policies). The access
decision process is based on policies and policy sets. A policy set is a collection of policies or
other policy sets. Each policy, instead, contains a target and a set of rules. The target is a
set of simplified conditions concerning the Subject, Resource and Action that must be met
for the policy to apply to the request. Each rule expresses an internal target, which concerns
this rule only, and a condition that represents a boolean function over an arbitrary complex
combination of functions over a set of attributes. At request time, the target and the rules
are evaluated exploiting the current attribute values to return a decision. Since policy sets
may contain multiple policies each returning an access decision and policies themselves may
contain multiple rules each returning possibly different results, all these decisions need to
be combined properly to obtain the final result. This is achieved through combining algo-
rithms, either at policy set level (i.e. policy combining algorithms) or at policy level (i.e.
rule combining algorithms). Each algorithm defines the way to properly merge the different
individual evaluation results to produce a unique authorization decision. For example, one
such algorithm is the Permit Overrides Algorithm. It states that the final result is Permit

if at least one component (either a rule or a policy) returned Permit. Few combining algo-
rithms are available as standards in XACML (see for example Appendix C of [3]), but more
can be custom defined as needed.

XACML does not only provide a standard to express policies and requests/responses, it
also gives a standard for the evaluation architecture. The architecture scheme is shown in
Figure 1, and includes the following components.

• Policy Enforcement Point (PEP)

The Policy Enforcement Point is the component paired with the resource to be pro-
tected which is able to intercept and suspend the access requests, in order to perform
the policy evaluation. In particular, the PEP collects the access requests and a set of
available attributes, it triggers the decision process, and it enforces the related result
by actually allowing or denying the execution of the access.

• Policy Administration Point (PAP)

The Policy Administration Point is the component in charge of managing Access Con-
trol policies. Its main functionality is to act as Policy Repository for storing policies,
in order to retrieve them when necessary for evaluating access requests. Another rel-
evant functionality of the PAP concerns policy authoring, thus helping its users (i.e.,
policy makers) in creating and modifying policies. The PAP may also support more
complex functions concerning policy production and management.

• Attribute Managers (AMs)
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Figure 1: XACML reference architecture.

Attribute Managers are the components that actually manage the attributes of sub-
jects, resources, and environment, allowing the Access Control system to retrieve and
update their values. Each application scenario has its specific AMs, depending on the
attributes which are relevant for that scenario. AMs could be part of the authoriza-
tion service itself, they could be run in other machines in the same domain, in other
administrative domains, or even by third parties. Existing services can be exploited
as AMs.

• Policy Information Points (PIPs)

The set of attributes required for the policy evaluation are, in the most general case,
managed by a set of distinct Attribute Managers, each having its own protocol to
be used for collecting the current attribute values. Policy Information Points act as
plugins of the Access Control system, providing the interfaces for interacting with
each Attribute Manager, thus allowing to retrieve the latest values of attributes and
to update them.

• Policy Decision Point (PDP)

The Policy Decision Point is the evaluation engine that takes a policy, an access request,
and the current attribute values as input, evaluates the policy and returns the related
access decision (i.e., Permit, Deny, Indeterminate or Not Applicable).

• Context Handler (CH)

The Context Handler is the component which acts as orchestrator of the decision pro-
cess, interacting with the other (previously described) components of the architecture
to manage the workflow of the decision process.
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2.3. Blockchain Technology and Ethereum

Blockchain technology allows to build an immutable, distributed, always available, secure
and publicly accessible repository of data (ledgers). It relies on a distributed consensus pro-
tocol to manage this repository (e.g., to decide what valid new data to add) in a distributed
manner [13]. The different types of blockchains basically differ for the trust level associated
to write and read operations. By write operation we mean the ability to update the ledger,
i.e., write a new content on it, while by read operation we mean the ability to read the
existing contents. Blockchains are called public (resp. private) whether any trustless (resp.
only trusted) entities can read. They are called permissionless (resp. permissioned) whether
any trustless (resp. only trusted) entities can write [14]. For an example of a permissioned
blockchain see [15].

Historically, blockchain technology was first introduced to support cryptocurrencies [16].
In such a scenario the blockchain is used as a public ledger to store transactions transferring
value between entities. The first blockchain was used by the Bitcoin cryptocurrency protocol
[17], but since then several interesting new proposals have been presented [18]. In this
paper we use one of such proposals, i.e., Ethereum [19]. In this section we try to give a
basic understanding of the protocol to the reader through a very high level explanation,
omitting most of the implementation details not relevant to this paper. For a more detailed
explanation see [7].

Ethereum starts from a simple assumption, coupling a Bitcoin style cryptocurrency (see
[4]) with Turing complete applications. The protocol can still be seen as a cryptocurrency
due to the ether currency on which it is based. The way in which value expressed in
Ether is managed is in principle not too different from how Bitcoin manages value. The
system is based on pseudonymous entities (masked by addresses [20]) that exchange value
through special data structures, called transactions, that are broadcast to the underlying
communication network. Those transactions are eventually validated and will then apply
their effect by updating the global state (recording the passage of value to the new owners).
Since the reference scenario is a trustless decentralized system, a distributed consensus
algorithm is needed to reach an agreement on which new transaction to deem valid. Same
as Bitcoin, the distributed consensus algorithm currently used is based on PoW (Proof-of-
Work) and it is called Ethash [21], even if there are proposals to move to different consensus
algorithm schemes. The pending transactions (i.e., transactions waiting validation) are
grouped together by validator nodes, called miners, into data structures called blocks. One
of the miners will eventually win the PoW consensus race and its block will be securely
added to the globally accepted chain of blocks (this block and the transactions contained in
it are said to have been mined). This chain of blocks is what determines the global state,
and each new block addition is an update to such state.

The novel contribution of the Ethereum protocol is to use the blockchain not only to
store value transfers, but also code. Alongside traditional value exchange transactions, the
users can also create transactions carrying executable Turing complete code. Those pieces
of code deployed on the blockchain are called smart contracts. A transaction carrying the
payload of the contract is first broadcast to the network. Its result is the deployment of
the payload as code linked by its public address. Any new transactions can then refer
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to this address to trigger the execution of the functions inside the contract, carrying the
function parameters inside the transaction payload and showing the eventual return value
to the outside. Basically, a smart contract contains some storage space for its data and
some callable functions. Smart contracts can themselves act like regular users creating
new contracts and sending payments or function calls between themselves. Validating (i.e.,
adding it to a block) a transaction containing code (either calling a contract function or
deploying a new contract) means to execute such code, updating the global state accordingly.
This means that the global state can be seen as a virtual machine running all the code on
the blockchain (called Ethereum Virtual Machine or EVM). At the same time all the miners
adding a transaction with code to a block actually execute that code, so the code execution
is replicated between all the miners. The smart contracts are written in a low level bytecode
language interpreted by the EVM. High level languages whose programs can be compiled
in EVM bytecode (producing a .bin file containing the binary of the compiled contract and
an .abi file containing the contract interface specification) have also been developed to ease
human smart contract coding. The most widespread of such languages is a JavaScript style
language called Solidity [22].

It is important to remark that every transaction has to pay a fee proportional to its
complexity to repay the miners of their effort of maintaining the EVM. To every single
operation of the EVM is assigned (by the protocol) a price proportional to its burden to
the users (i.e., the number of computational steps needed for its execution and its storage
weight), this is called gas and the total gas of a transaction is the summation of all the gas
of every single instruction it contains. This is the gas that is consumed by the transaction
upon validation. The entity (either a user or a contract) creating the transaction needs
to decide two parameters, the gas limit and gas price. The gas limit is the maximum
amount of gas the transaction is allowed to consume, if it is exceeded all gas is spent but the
execution effects on the state are eliminated. This is useful to avoid too long or even infinite
computations that would stall the EVM. Furthermore each block has associated a block gas
limit to guarantee a limit to the amount of computation executed by all the transactions in
that single block. The gas price is instead set by the user as the amount of ether the user is
willing to pay for each unit of gas. Miners are free to choose what transaction to mine and
so they can refuse the ones with a gas price too low.

2.4. Related Work

To the best of our knowledge, only a few proposal of blockchain related Access Control
systems have been presented. In [23] the authors combine blockchain and off-chain storage
to build a personal data management platform focused on privacy. However the control
is limited to read operations on users stored data, the work does not address the general
problem of Access Control systems. Similarly [24] proposes a method to store secret data (i.e.
encrypted) on a blockchain, managed by a set of trustees, that are in charge of controlling
the access to such data. The blockchain is used as a tamper proof log of access requests and
to guarantee operations atomicity. As such the proposal concerns the problem of Access
Control in a data sharing platform, in this paper, instead, we propose to bridge general
traditional Access Control systems with blockchain technology. The same holds for [25]
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where the blockchain is simply used as Access Control tool for IoT data stored elsewhere.
[26] proposes a Role Based Access Control system which uses smart contracts and blockchain
technology as infrastructures to represent the trust and endorsement relationship essential
to realize a challenge-response authentication protocol that verifies users ownership of roles.

All the remaining works combining blockchain technology and Access Control we know
of are applied to one of three very specific fields, either IoT, health care or cloud storage.

In the IoT field, both topics of Access Control [27] and blockchain integration [28] have
been separately studied. The first proposal to put them both together has been [29]. This
proposal uses access tokens exchangeable through transactions among users. Scripts inside
the tokens are used to prove that only the right users can redeem them (i.e. only them hold
the corresponding rights). This allows for access right exchanges (through tokens), similarly
to the proposal in [4]. The main limitation of such proposal relies on the limited expressive
capabilities of scripts. More recent proposals have been [30, 31, 32], that are all based, on
some extent, on smart contracts. Main limitation of all these proposals is their particular
scope as they concern only a very specific field of application instead of the general case.
[33] proposes an authorization and delegation model for the IoT-Cloud based on blockchain
technology.

In the field of cloud storage, [34] provides an access control over the data stored in the
cloud without the provider participation. [35] proposes a data storage and sharing scheme
for decentralized storage systems combining a decentralized storage system, the Ethereum
blockchain and the ABE technology.

Regarding health care, the main contributions are focused on protecting the access to
patients electronic medical records. One such practical proposal is [36], based on smart
contracts implemented on Ethereum. Interestingly it also introduces access to aggregated
and anonymized data (usable for example for research) as mining reward to foster partici-
pation in the expensive mining process. On the same topic a blockchain based lightweight
and robust Access Control framework addressing the security and privacy issues in Big Data
is introduced in [37]. Another proposal to manage the access to personal medical records
through blockchain is presented in [38].

3. Reference Example

This section presents a novel application scenario for the blockchain based Access Control
system proposed in this work that will be used through the paper in order to ease the reader
understanding of the proposed system.

In our reference scenario the resources that we want to protect through the proposed
Access Control system are smart contracts deployed and executed on the same blockchain.
For the sake of clarity, we will call these smart contracts smart resources. We do remark
that no assumptions on the smart resources is made, i.e., they can be contracts of
any kind whose execution, for reasons that are immaterial here, needs to be protected
through an Access Control system. The proposed Access Control system is independent
from the specific operations implemented by the smart resource (even if, of course, the
policy defined for a specific smart resource expresses the access rights on its operations).
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Moreover, we remark that in this paper we use the term smart resources to stress the
fact that the entities to be controlled as resources are actually smart contracts. We point
out that a smart resource should not be mistaken for a smart device, i.e., a connected
device capable of autonomous operations.

An example of Access Control policy for this scenario could control the access to opera-
tions offered by a contract managing payments and financial record keeping of a company.
For example, possible conditions over attributes of the subjects, resource or environment
could be that only recognized accountants could update the company balance sheet, em-
ployees can only request a salary payout after they have completed certain tasks assigned
to them, and company managers can ask for bonuses only if certain external objectives are
met (such as the company stock price raising above a certain threshold).

In this scenario, the adoption of the proposed blockchain based Access Control system
has the following advantages:

• relieving the smart resource creator from designing and developing the specific
code to manage access control. It is worth noting that our approach also relieves
the smart contract creator from rewriting the access control logic embedded in his
smart resource code each time the corresponding access control policy changes.
Moreover, our system is also able to automatically embed the access control logic
within the smart resource with no effort from and independently of the smart
contract creator;

• clearly separating the logic for access control from the smart resource one. This
simplify for both the smart resource owner and the access requesting subjects to
prove that the Access Control policy actually enforced is really the one declared by
the smart resource owner. As pointed out in the previous bullet this also simplifies
updates in case of policy changes. Since both the smart resource and Access
Control logic and decisions are both stored on the blockchain, so access requesting
subjects can inspect the transactions recorded on the blockchain to verify the reason
that lead to any access decision, protecting them form unduly denial of access.

4. Blockchain-based Access Control system

To help the reader, we provide in Table 1 a recap of terms and acronyms defined in the
literature or newly introduced, that will be used in the paper.

The basic idea underlying our approach is to exploit a blockchain to store Access Control
policies and manage attributes, as well as to execute the access decision process, i.e., to
evaluate the relevant policies exploiting the required attributes every time an Access Control
request is issued by an user who wants to access a resource. We represent an Access Control
policy through a smart contract, called smart policy, which is created by the resource
owner and stored on the blockchain by a proper transaction. Since the blockchain is an
append only ledger, once uploaded, a smart policy will be stored on the blockchain
forever. However, it can be logically replaced by simply uploading on the blockchain a new
one, or even disabled by a proper transaction. The execution of the access decision process
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TERM MEANING

PEP Policy Enforcement Point, see Section 2.2.
PDP Policy Decision Point, see Section 2.2.
PIP Policy Information Point, see Section 2.2.
PAP Policy Administration Point, see Section 2.2.
PTP Policy Translation Point, module of the PAP in charge of translating an XACML

policy into an executable smart policy.
AM Attribute Manager, see Section 2.2.
CHE Module of the Context Handler, see Section 2.2, in charge of starting the evaluation

process to evaluate an access request.
CHD Module of the Context Handler, see Section 2.2, in charge of deploying a new smart

policy into the underlying blockchain.
CHB Module of the Context Handler, see Section 2.2, in charge of coordinating the

smart policy execution.
SPT smart policies Table, used to remember the pairing between smart policy

addresses and resource IDs.
PCTrans Policy Creation Transaction, transaction to deploy a new smart policy.
PUTrans Policy Update Transaction, transaction to update an existing smart policy.
PETrans Policy Evaluation Transaction, transaction to trigger a smart policy

evaluation.
smart policy Access Control policy expressed into an executable format as smart contract.
smart AM Attribute Manager implemented through a smart contract.

smart resource Smart Contract which needs an Access Control mechanism.
MatchE <Match>..</Match> element of an XACML policy, used as finest granularity to

estimate policy complexity.
evaluate Main function of a smart policy contract, used to obtain the policy evaluation

result.
RIP module in charge of inlining the PEP code into the smart resource.

Table 1: Main acronyms and terms used in this paper.

leverages the blockchain as well. In fact, each time a subject issues an access request, it is
issued a proper message on the blockchain to trigger the execution of the smart policy.
This message causes the evaluation of the smart policy and the production of the related
access decision (e.g., Permit or Deny). The evaluation of such policy is completely executed
on the blockchain, as we will explain in Section 4.2.3. For the sake of simplicity, we say that
“the smart policy evaluation is executed on the blockchain” meaning that the smart
policy execution is replicated among the miners elaborating the new block to be added to
the blockchain.

In the rest of this section, we describe in details how we represent Access Control policies,
how we create and store them on the blockchain, how we revoke or update them, and how we
evaluate them by retrieving the required attributes to produce an access decision. Since the
proposed system is based on the XACML standard, we also describe how, in the proposed
system, the architectural components in charge of the previous tasks, according to the
XACML reference architecture, are defined on top of blockchain technology. The resulting
architecture is shown in Figure 2.

The proposed system can be easily adopted in the reference application scenario presented
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Figure 2: Architecture of the blockchain Based Access Control system.

in Section 3, as detailed in Section 5. Obviously, the kind of resource to be protected
influences the structure of the PEP in charge of interacting with it, and of other components
of the system as well. For instance, if the resource to be protected is a smart contract, as
in our reference example, the PEP will be part of such smart contract. Nevertheless, some
components of the architecture do not depend on the application scenario, and they are
placed either in the off-chain frontend or in the blockchain environment in Figure 2. The
scenario dependent components are instead depicted inside the “scenario dependent” box,
as they can be placed either on or off chain (possibly split between both) according to
the specific features of the application scenario. Do note that the off chain frontend can be
deployed either on the resource to be protected, or on a trusted third party for that resource.

Moreover, we do note that the architecture of our blockchain based Access Control
system is, in general, independent from the specific underlying blockchain technology chosen,
provided that such blockchain supports smart contracts. However, although the usage of our
system does not require technical knowledge of the underlying blockchain technology, the
user may be required to provide some further blockchain-related information. For instance, in
our implementation based on the Ethereum blockchain, gas needs to be paid (see Section 2.3).
This means that users, to use the proposed system, do need to own a wallet and to provide
(not private) information about it, as well as being required to perform additional operations
(e.g., signing blockchain transactions).

4.1. Smart AMs

In our proposed system, the attributes representing the features of subjects, resources
and environment are stored on the blockchain as well, and they are managed by a set of smart
contracts. In this way, we exploit the blockchain advantages also for attribute management.
In fact, the values of attributes are not alterable, since they are stored on the blockchain, and
they are auditable, since their updates can be executed only through blockchain transactions,
which are recorded on the blockchain as well. Following the XACML naming, the contracts
which store the set of attributes can be seen as the Attribute Managers, hence, we will call
them smart AMs. In our proposal we assume the existence of an ecosystem of smart AMs
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deployed, maintained and advertised by third parties. For example, the smart contract of
an institution could offer public information about its employees (e.g., their roles). These
smart AMs could also require some way of payment (either in or off chain) for the use of
their services, so a market of smart AMs could naturally emerge. A smart AM is invoked
by a smart policy to retrieve the current values of the attributes it manages. The parts
of the smart policy who invoke the smart AMs could be seen as the Policy Information
Points (PIPs), i.e., the components of the XACML reference architecture devoted to the
management of the attributes required for the evaluation of the policy.

4.2. Smart Policy

The solution we propose in this work is focused on ABAC policies, although we think that
it could be easily extended to cover other Access Control models. An ABAC policy consists
of a set of rules expressing conditions over the attributes representing the access context
(see Section 2.2), that are combined exploiting proper combining algorithms and that must
be satisfied accordingly in order to grant the requested access. For policy writing, we adopt
XACML because it is a very expressive language allowing to write complex ABAC policies.
Moreover, since it is a well known standard, some tools for policy editing and management
are available both from academic and business organizations. In our approach, an XACML
policy is properly translated into a smart contract, called smart policy, in order to store
and execute it on the blockchain. The smart policy can be seen as an executable version
of the XACML policy, in other words, following the XACML naming, we could say that
the smart policy embeds a Policy Decision Point (PDP) customized for the execution of
a specific XACML policy and the Policy Information Points (PIPs) required to collect the
values of the attributes of that policy.

4.2.1. Smart Policy creation

The smart policy creation process consists of three steps: i) XACML policy writing;
ii) policy translation from XACML to smart contract; and iii) deployment of such contract
on the blockchain. The policy writing is executed by the resource owner using existing
XACML authoring tools. The second operation regards policy management and so it is
tasked to the PAP. The smart policy deployment, instead, requires an interaction with
the blockchain, and so this functionality is delegated to the CH. In particular, in Figure 2, we
denoted as Deployment CH (CHD) the subcomponent of the CH devoted to the smart pol-
icy deployment, achieved through a transaction called Policy Creation Transaction
(PCTrans).

The lifecycle of a smart policy starts when the resource owner writes a new XACML
policy to define the access rights on his resource(s) and submits it to the PAP. The Policy
Translation Point (PTP) is a module of the PAP which translates the logic expressed by the
XACML policy in to the smart policy. The smart policy is not a simple rewriting of
the XACML policy, but it also contains all the logic (i.e., the executable code) implementing
the policy evaluation as well. For instance, each XACML statement referring to an attribute
is translated inserting into the smart contract a function call to retrieve the current attribute
value from the corresponding smart AM each time the smart policy is invoked. This is
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possible because, in our approach, the Attribute Managers are represented as smart contracts
stored on the blockchain as well (as shown in Section 4.1). The set of predicates over the
attribute values included in a rule are translated in executable code as well, and the smart
policy includes the logic for combining the results provided by the rules into a single
decision (Permit or Deny). Summarizing, codifying a policy as a smart policy allows us
to write blockchain executable policies from XACML ones. Such smart policies perform
the tasks that in traditional Access Control systems are delegated to the PDP and PIPs, as
well as part of the tasks of CH, i.e., the workflow orchestration, represented in Figure 2 by
CHB.

Once translated, the smart policy is deployed on the blockchain by the CHD, which
issues the PCTrans. The expenses related to the smart policy deployment are paid
by the policy creator because the policy creator is the entity that benefits from having an
Access Control on the resource.

4.2.2. Smart Policy revocation and update

Resource owners can decide at any moment to revoke their smart policies. This is
achieved in our system by inserting a self destruct function in the smart policies. The
contract enforces the constraint that only the resource owner (i.e., the creator of the contract)
is allowed to call this function, by issuing a Policy Update Transaction (PUTrans).
Since resource owners are the ones issuing the revoke operation, they also pay the price of
revoking their policies. Do note that in most blockchain technologies available today, the
blockchain is immutable and so the smart contract is not actually removed from the chain,
but it is only disabled, thus allowing auditability. In fact, in such cases the smart policy
is marked as not callable and so future calls to that contract will fail as expected, but, at
the same time, the actual contract remains publicly visible in the chain.

Updating a smart policy means changing the related smart contract. Again, block-
chains do not usually allow to change the code of a smart contract. So, updating a smart
contract, such as a smart policy, simply means deploying the new smart contract and use
its new address instead of the previous one everywhere needed.

4.2.3. Smart Policy evaluation

The smart policy evaluation is executed every time a subject tries to access the pro-
tected resource causing the PEP to invoke the Blockchain based Access Control system. To
trigger the smart policy execution, the PEP creates the access request and sends it to
the Evaluation CH (CHE) which, in turn, invokes the smart policy.

In some scenarios, the CHE is external to the blockchain (and the PEP as well). Con-
sequently, the CHE creates a transaction, called Policy Evaluation Transaction
(PETrans), and submits it to the blockchain. In other scenarios, such as the smart
resource one that will be detailed in Section 5, the PEP and the CHE are both on the
blockchain (i.e., they are embedded in a smart contract as well). In this case, the CHE

sends a message (usually a smart contract function call) to the smart policy exploiting
the blockchain communication mechanism. Despite being formally different from a transac-
tion (that can only be created by external accounts), this message has the same tasks and
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effect, so the subsequent evaluation process is exactly the same in both scenarios.
The evaluation transaction (or message) triggers the execution of the main method of

the smart policy, which coordinates the execution of the policy evaluation process (in the
XACML reference architecture this is a task of the CH). In particular, the updated value
of all the attributes required for the evaluation of the policy are collected. This phases are
executed by the functions of the smart policy which implement the PIPs. Such functions
issue a number of messages triggering the execution of the smart AMs corresponding to the
required attributes. The function corresponding to the PDP tailored for the specific policy
is then executed with the retrieved attribute values. This produces the decision that will be
returned as result of the policy evaluation. Do note that attribute values are retrieved in a
lazy way, i.e., they are retrieved only if and when needed for the function evaluation. We
choose the lazy solution to minimize the number of external calls executed by the smart
policy. In fact, in general, each attribute is retrieved via a call to a different contract (the
corresponding smart AM) and this is an expensive operation (in terms of fees consumed)
that is completely useless if the value is not actually used. Lazy attribute values retrieval
allows for a cheaper and faster policy evaluation.

The expenses of the evaluation process are paid by the subject making the access request
(since the subject will be the entity benefiting from the granted access). This prevents
subjects from spamming requests to the system, since they are limited by the value they
own. It also means that the subject needs to manage a wallet holding value on the underlying
blockchain and it is required to interact with the Access Control system (e.g. for signing
transactions) to validate the payment of the required expenses.

4.3. Proof of Concept Implementation

In order to validate and evaluate the proposed approach, we have developed a proof of
concept implementation of the blockchain based Access Control system presented in this
work for the reference example depicted in Section 3. We present this implementation in
Section 5, while in this section we describe the common tools and environments independent
of the chosen application scenario.

4.3.1. Deployment and execution environment

To implement our system we have chosen the Ethereum blockchain protocol (as of De-
cember 2018), because it is strongly focused on smart contracts and because it is nowadays a
widely used smart contract ready blockchain protocol proposal. We then chose Solidity (see
Section 2.3) as programming language to write the smart contracts and the Java language
to write the off-chain side of our framework.

To allow our Java client to interact with geth we use the web3j [39] Java library. web3j
is a lightweight library that supports all of the JSON-RPC API offered by geth. It also
allows automatic creation of Java smart contract function wrappers from Solidity ABI files
(see Section 2.3).

To deploy and test our system, we first used the International Educational blockchain
academic testnet (part of the Open Blockchain initiative [40]). This is a Ethereum based
private testnet with nodes currently run by North American and European universities, and
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it allowed us to have an environment at the same time controlled and somewhat realistic.
Due to the small size of the community currently using this testnet it provided us with a
perfect simulation tool to deploy our system (e.g., we could artificially influence parameters,
such as block congestion, as required), but it lacked the randomness and practical issues
of a real and widely used network, running several different contracts all the time. This is
why we also used the Ethereum official testnet Ropsten [41] for our experiments, to obtain
results on a global and more realistic testnet. In fact, Ropsten is the official PoW (Proof
of Work) Ethereum testnet, revived in March 2017 after a DoS attack [8]. Since it uses
PoW, like nowadays Ethereum (despite the proposals to move past it), it better models the
real network compared to the other two official testnets, Rinkeby [42] and Kovan [43], that
both use PoA (Proof of Authority) to be protected against attacks like the aforementioned
one. To access both testnet blockchains we used geth [44], one of the most used Ethereum
clients. We did not use the Ethereum main chain because of the cost constraints, and mainly
to avoid to burden the immutable Ethereum main chain with our test data intended to be
temporary.

4.3.2. Smart Policy Translation

The component tasked with smart policy translation is the PTP. The PTP is written
in java and its task is to translate an XACML policy written by the resource owner to a
Solidity smart contract.

The main function of the smart policy is called evaluate and represents the executable
version of the XACML policy. In the following of this section, we show how the XACML
policy is translated in Solidity to produce the body of the evaluate function. However,
the smart policy also contains some utility functions which are the same for all policies
(e.g., a self destruct function that is invoked to revoke the smart policy as explained in
Section 4.2.2).

An XACML policy consists of a policy Target and a set of rules, each including their
Targets and Conditions [3]. We focus our description on the translation of the Targets
and rules of the policy, being the translation of the Conditions very similar. A Target
is a combination of <Match>..</Match> elements, each of these elements will be called
MatchE in the rest of this work.

Each MatchE is translated as a check instruction which is embedded within the
evaluate function. The Solidity function to be used to implement the check instruction
is derived from the XACML MatchId field and the data type from the XACML DataType

field of <AttributeValue> and <AttributeDesignator>. Checks, to be performed, needs
the current value of attributes at access request time. Hence, the smart policy must be
also able to retrieve these values in order to compute the decision result. In our proposal, we
integrate the PIPs functionalities in the smart policy through smart contract messages
to smart AMs (see Section 4.1). Any resource owner who creates a new policy needs to
specify in such policy the AMs to be interrogated to retrieve the required attribute values.
To this aim, for each MatchE the resource owner chooses the smart AM to be called by
specifying in the <AttributeDesignator> tag the smart AM function name through the
AttributeId field and the smart AM address through the Issuer field. Each MatchE
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returns a boolean result and these are properly composed with conjunctions or disjunctions
as defined by the policy through the tags <AllOf> and <AnyOf> respectively. In Figure 3
it is shown an example of how the components of a XACML policy get translated into the
corresponding smart policy contract.

We do remark that this process is in theory applicable to any type of MatchE, to
translate any possible XACML policy into a smart policy. In practice this might be not
feasible due to technical limitations of the smart contract programming language adopted
or of the underlying blockchain adopted to run them. For example, the Solidity language
adopted by our proof of concept implementation has known limitations in dealing with
dynamic arrays (e.g. returning string arrays between function calls, see [45]). Our proof of
concept implementation aims at proving the theoretical feasibility of our approach without
tackling such generalization issues. As such our parser has been designed to translate a
number of simple operands and data types (e.g. we did not consider operands over collections
of values), which allow to express a number of common ABAC policies. More complex
operations among more sophisticated data types may result in more complex checks and,
in turn, more expensive smart contracts. In general, as long as the underlying blockchain
supports it, any XACML operation and data type can be expressed by designing or using
the appropriate libraries, hence preserving the proposal generality. Smart contracts might
invoke library functions (if necessary, defined by library smart contracts) same as regular
programs. Ad hoc libraries can be written and built for different data types and operations
in case of real world adoption of our system. A complete development of such software is
beyond the scope of this paper. Moreover, a discussion on how the features of the specific
underlying blockchain could constraint, instead, the maximum number of MatchEs that
could be included in the policy is given in Section 6.

Finally, the evaluate function needs to return the result of the decision process. One
solution would be to simply save the result as data in the state of the contract, but, instead,
we opted for firing an event containing the request id (i.e., the id of the transaction encoding
the access request) paired with the corresponding result. Events are data saved on the
EVM log instead of the contract storage space, exploiting them to return the result of the
evaluation function is a cheaper way of storing the decision for every request, at the expense
of making such decisions invisible and so unusable to the contracts. In our current system
this limitation is not a problem, but this approach could of course be changed if needed.

We make now an important remark about the parser. Since XACML derives from XML,
the parser is implemented as a classical XML parser. As such it has linear computational
complexity. Nevertheless it is too resource intensive to be executed on the Ethereum block-
chain. The parser execution would cause an out of gas exception (i.e., the error arising when
the execution exceeds the block gas limit) for any but the most trivial policy. Moreover,
this holds assuming that the smart contract to execute the parser could itself be deployed
without incurring in an out of gas exception. Even if we could deploy and execute the parser
as a smart contract, passing it an XACML policy as argument for its execution, would be
prohibitively expensive. XACML is a very verbose language while message size is a scarce
and priced resource on the blockchain. In conclusion, implementing and executing the parser
through a smart contract on the blockchain would not yield any real advantage while re-
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Figure 3: Simplified XACML to Solidity parser example.

maining indubitably cumbersome for the whole blockchain community and expensive for the
single user. We will show later (see Section 5.3) that the user can check the parser result
(i.e., the smart policy code) before deployment, so any error or fraudulent behaviour by
the parser can be detected and thwarted. Moreover, once deployed, any other user given
the smart policy code can check whether it represents a certain XACML policy simply
by running the parser themselves and checking if the obtained result matches. This way any
user can verify if a resource owner is protecting their resource with the policy they claim,
by checking the corresponding smart policy code (and it is in the interest of the resource
owner to advertise the needed information, if challenged, to prove their have no fraudulent
intentions).

5. Controlling the Access to Smart Contracts

This section describes the customization of the proposed blockchain based Access Control
system (presented in Section 4) to be adopted in the reference application scenario defined
in Section 3. In such scenario the resources to be protected are smart contracts deployed on
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Figure 4: Architecture of the blockchain based Access Control Service customized for the smart resource
reference scenario. PEPBASE and PAPBASE represent the logic operations of traditional PEP and PAP
performed by the smart resource.

a blockchain, called smart resources, and the owners are the authors of such contracts.
The subjects, instead, are blockchain users who invoke a smart resource to benefit of
the provided functionality. The actions that a subject can perform on a smart resource
are represented by calls to the functions provided by its smart contract.

In order to protect their smart resources, the owners want some critical functions of
them to be executed only by subjects holding the corresponding rights. Hence, to define such
rights, the smart resources owner defines a XACML policy set where each of the policies
defines the rights to access one of the functions of the smart resources. In particular,
each of these XACML policies specifies rules and conditions only applicable to a specific
function of a specific smart resource because the target section of each of these policies
includes a predicate which is satisfied when the value of the attribute resource id is equal
to the address of the smart resource, and the action id attribute is equal to the name
of the function the policy refers to. Do note that this does not prevent the resource owner
from defining more than one policy applicable to the same action id attribute value, as well
as a policy with more than one rule applicable to the same action id attribute value, since
it would be a valid XACML policy set. As usual, the XACML policy and rule combining
algorithms will solve possible conflicts among these policies and rules. Moreover, the system
still accepts any valid XACML policy, so policies and their rules are not required to specify
restrictions over the value of the attribute action id. If no restriction are defined over a
particular action id value, i.e., over a specific function of the smart resource, then the
policy/rule will control the access to all the functions of the smart resource.

We have developed a proof of concept implementation of the proposed system based on
our execution environment (see Section 4.3.1) , i.e., developed on the Ethereum blockchain
with smart contracts written in Solidity and off-chain side written in Java bridged over the
blockchain by a geth node accessed through web3j. The resulting architecture is depicted in
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Figure 4, and the following of this section describes the proof of concept implementation of
each of the components, highlighting whether the component is deployed on the blockchain
or on the off-chain frontend.

5.1. PEP

Our blockchain based Access Control system is designed to be easily integrated in already
existing scenarios by integrating the PEP in the access interface of the protected resource.

In the reference example scenario, the code implementing the PEP tasks is embedded in
the code of the smart resource itself. In particular, each of the functions of the smart
resource that needs to be protected must invoke, as first operation, the proposed Access
Control system to perform the evaluation of the Access Control policy, i.e., it must issue
a policy evaluation message to trigger the execution of the smart policy related to that
smart resource (see Section 5.2). Consequently, the address of the smart policy must
be directly embedded in the PEP that invokes the evaluation of such policy, thus playing
part of the PAP role (i.e., policy retrieval). In other words, we can say that also part of the
PAP runs on the blockchain. The decision returned by the smart policy will determine
whether the actual code of the smart resource function will be executed or not.

5.2. PAP

In the XACML reference architecture, the PAP is the component in charge of policy
management and retrieval (see Section 2.2). In the proposed blockchain based Access Control
system, its main tasks are to transform the XACML policies written by resource owners into
smart policies, and to manage the mapping between the resources and the related smart
policies to allow their invocation on the blockchain.

In the smart resource scenario, the PAP tasks concerning the smart policy creation
are performed by a module external to the blockchain (i.e., it runs within the blockchain
Access Control system Frontend) called PAPO (i.e., off-chain PAP). This component is also
in charge of inlining into the smart resource the PEP code, which actually consists
in the creation of the message triggering the execution of the evaluate function of the
smart policy, through a proper additional module called Resource Inlining Point (RIP).
To this aim, the PAPO requires in input both the smart resource contract code and
the corresponding XACML policy to be enforced. Then, the PTP produces the smart
policy as shown in 4.2.1, and it properly embeds the invocations to such policy in the
smart resource functions through the RIP. Of course, the smart policy needs to be
deployed on the blockchain first, in order to retrieve its address to be embedded in the
modified smart resource code. We remark that the deployment phase can optionally be
carried out directly by the resource owner instead of the CHD, using our Frontend only as
a translation tool, in case such approach is preferable.

Alternatively, the PAPO also could be implemented as a smart contract and deployed
on the blockchain. This would leave no need for the CHD, and so the entire system would
reside on chain. However, we already stated the practical unfeasibility of such approach in
Section 4.3.2, mainly due to cost constraints.
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In our implementation, the RIP leverages the concept of function modifiers provided
by the Solidity language to embed the PEP functionality within the smart resource.
In Solidity a function modifier is used to wrap a function around a given code. By creat-
ing modifiers containing checks at their beginning, and halting execution in case of failure
through the require (boolean function) Solidity construct, we can control a function
execution. To this aim, our system provides a fixed base contract called linker, that acts
like a bridge between the smart resource and the smart policy. It contains a con-
structor requiring the address of the smart policy as parameter to perform the linking
between the policy and the resource. It then defines a modifier that is used to enforce the
access request evaluation. This modifier simply calls the evaluate function of the smart
policy and halts the execution if it returns false. The smart resource contract needs
only to specify that it inherits from linker and add the modifier to the signature of every
function, not just the critical ones.

5.3. CH

The CHD and CHE are two logic subcomponents of the CH with the task of managing
the access to the blockchain on behalf of, respectively, the PAP and the PEP.

At policy creation time, the CHD receives from the PAP a smart policy written in
Solidity, and it compiles the Solidity code to EVM bytecode (see Section 2.3) using the solc
compiler [46]. The CHD then uses web3j to wrap it into a transaction for the deployment
on the Ethereum blockchain through the geth node. At this stage the CHD can optionally
perform additional checks on the contract deployment transaction. For example, it could
query the blockchain (using the geth node) to check whether the policy creator has enough
credit (i.e., ether) in his account to pay for the expected gas cost, or it could check whether
the smart AMs invoked by the smart policy do actually exist on the chain.

It is worth noticing that the contract deployment transaction needs to be signed by the
user who is paying for it. In particular, once the transaction is ready to be signed, it is
made visible to the resource owner who can check it (possibly exploiting an automatic tool),
sign it, and then communicate the signed transaction back. In our implementation, users
interact with the system through an interactive interface where they are first required to
insert the policies to add, then they are informed of the derived smart contracts and relative
deployment transactions waiting to be signed. The users can then check that the transactions
correctly represent the policies they intended and, if they are satisfied, communicate the
signed version of the transactions. Once the CHD receives the signed transactions, it checks
the signatures, and if they are correct it sends them to the geth node to be broadcast to
the Ethereum communication network.

The CHD receives a confirmation or error message depending whether the deployment
was successful or not. This approach guarantees that the private information of users wallets
are not disclosed to our framework. Once the transaction is actually inserted by a miner
in a block, i.e., the smart policy is on the blockchain, the CHD receives back from geth

the contract address, which is returned to the PAPO to be subsequently embedded in the
smart resource code through the RIP. We remark how the RIP needs such address to
correctly instantiate the linker, and so the smart policy needs to be deployed before the
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smart resource. This is semantically correct, since it prevents the owner from deploying
an unprotected resource.

The role of the CHE, instead, is minimal in the smart resource scenario, because the
code that is inlined in the smart resource by the RIP to invoke the execution of the
proper smart policy, actually implements together the functionality of the PEP and CHE

of our general architecture through one Solidity modifier.

5.4. PDP and PIPs

The traditional tasks of PDP and PIPs are merged together into the smart policy.
This contract is dynamically generated by the PAP from a XACML policy and, once de-
ployed, resides on the Ethereum blockchain in EVM bytecode. As already stated before (see
Section 4.2), the decision process of the PDP is performed by the decentralised execution
of the evaluate function of the contract and the attribute value retrieval is performed by
function calls of the contract directly to smart AMs on the same chain. All the communi-
cation is achieved through smart contract function calls and event firing that are implicitly
managed by the Ethereum protocol.

6. Considerations

The main advantage of our proposal is that the policy management and evaluation
processes are performed on a blockchain and this causes our system to inherit the blockchain
technology advantages, i.e., it is auditable, always available, distributed (so no single point
of failure or attack), tamper resistant, etc.

6.1. Transparency

Since the smart policy contract execution is performed by the blockchain (i.e., repli-
cated among the miners), it is beyond the control of both the resource owner and the subject
making the request. So neither of them can forge a false decision. Moreover, for each access
request, both the policy that has been enforced and the related evaluation result are stored
on the blockchain, thus allowing auditability. Hence, any user whose access request has been
fraudulently denied by the resource owner can use the data stored on the blockchain to prove
that the access right should have been granted instead. Since the blockchain is immutable,
even when a smart policy is revoked, its code and the entire access request log remain
still stored and accessible on the blockchain. Hence, long term auditability is supported.

This is a relevant advantage with respect to running the Access Control system on the
premises of the resource owner. As a matter of fact, the blockchain represents a trusted
execution environment for performing the decision process and a trusted storage system for
storing the resulting access decision. On the contrary, running the Access Control system on
the resource owner’s premises would enable him to alter the execution of the decision process
thus forging a fake access decision and/or to store in the access logs a different decision than
the one resulting from the actual evaluation of the policy. Obviously, if, on the one hand, the
adoption of our system would relieve the resource owner from installing and managing an
Access Control system on his premises, on the other hand, it could introduce some costs for
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blockchain transactions (e.g., in he case of the Ethereum protocol, gas expenses are required
to deploy and execute smart contracts). A description and evaluation of such costs for our
proof of concept implementation is given is Section 7.

Adopting a permissioned blockchain (see Section 2.3), such as Hyperledger Fabric [47], for
the deployment and execution of the proposed Access Control system is a possible solution
to reduce such costs. In fact, the introduction of a level of trust, by allowing only trusted
miners to append new blocks to the chain, allows the use of less complex, and so cheaper,
distributed consensus algorithms. Furthermore, a cryptocurrency backed by a permissioned
blockchain is expected to not experience high price fluctuations (caused by public trading
and speculation), if publicly priced at all, and so it is expected to be more stable and
predictable even from a purely monetary point of view.

It is important to remark that, in our system, auditability concerns the access control
policy storage and evaluation, i.e., the policies that have been uploaded on the blockchain
and the decisions that have been taken concerning the rights to access resources. For what
concerns the enforcement of such decisions, the crucial component actually executing it is
the PEP. If the resources to be protected are traditional digital resources, the PEP is not
deployed on the blockchain. Consequently, the actual enforcement phase does not benefit of
the blockchain advantages, auditability among all. Hence, the PEP could fraudulently ignore
an access decision received from the blockchain, or could even drop an access request avoiding
to invoke the evaluation of the smart policy, for instance because of a malicious resource
owner. Instead, in the smart resources scenario presented in our reference example, the
PEP and the resources to be protected both reside on the blockchain, thus allowing the PEP
code inspection as well as the auditability of the access decision enforcement.

Obviously, the adoption of the proposed system does not relieve the resource owner from
adopting the other typical security measures available for their resources, depending on the
resource type (e.g., in case of a server, promptly install all the newly available security
patches to the operating system).

6.2. Privacy

A clear consequence of auditability is a potential privacy issue. As a matter of fact, the
access control policies, the access requests, and the related access decisions are stored on the
blockchain. Adopting a public blockchain means that all the users of such blockchain can
read such data, and that all the miners are enabled to read them as well, in order to execute
the smart policy contracts when invoked [48]. The only anonymity protection mechanism
offered by most current blockchain protocols is the use of pseudonymity. This property,
weaker than proper anonymity, guarantees that users may take part in the protocol hidden
behind any number of randomly generated identifiers that carry no information between
themselves, nor about the user identity.

Thanks to the pseudonymity property, the access requests and the related access deci-
sions, although publicly accessible, are not directly linked with the real identities of the users
who performed them, but just with their anonymous IDs. However, in some Access Control
scenarios some actors need to know the real identity of a user, violating user pseudonymity.
For example, the resource owners should know which IDs have been assigned to those users
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for which they what to enforce policies based on identity. Moreover, in some scenarios, the
real user identities should be known also by some Attribute Providers, i.e., the entities own-
ing smart AMs to maintain users’ attributes, because these entities must assign to each
ID the right attributes values and must update these values when necessary.

Furthermore, some approaches have been proposed in the literature to break users pseu-
donymity, mainly based on pseudonyms behaviours on the blockchain. The most studied so
called deanonymization attacks mainly concern the Bitcoin protocol and rely on heuristic
rules based clustering [20, 49, 50, 51] to try to group together all pseudonymous IDs belong-
ing to the same user, but similar approaches are possible for similar blockchain protocols.

If the proposed Access Control system is adopted for regulating the access to smart
contracts, such as in the reference example we presented in Section 5, the privacy concerning
access control events is not, however, an issue introduced by our approach. In fact, the
resources protected by the proposed system are smart contracts and, consequently, their
invocations and executions are already registered on the blockchain. Hence, in such case,
our system does not introduce further major privacy issues than the ones already accepted
by using the chosen blockchain protocol. Instead, for what concerns the application to
traditional digital resources, the proposed system, in its current version, can exploit public
blockchains only in those scenarios where the privacy concerning access control events is not
an important requirement.

We point out how auditability and privacy issues are two sides of the same coin, as
they both derive from the blockchain technology feature of storing information in a tamper
free and publicly accessible way. So, in trying to tackle the privacy issue we should not
hinder the desired system transparency. This is achievable by restricting the access to
given information only to the interested parties, and the simplest way would be to adopt
a private blockchain. In such a system, both write (adding new blocks to the chain) and
read (accessing information stored in the blocks) operations are restricted to trusted parties
only. Even if the data can be encrypted in a private chain to further restrict the information
access to other parties, enough miners still need to be able to decipher such information to
efficiently process it in clear. As such a private blockchain does not solve the issue in general,
limiting itself to replace such issue with the need for trust in third parties (the private chain
miners to be trusted).

If the information is obfuscated also for the miners, they consequently can not check
its meaning, hence they are not able to guarantee its content. To allow a consistent chain
without information disclosure, sophisticated cryptography techniques are required. For
example, homomorphic encryption [52] could be used to process encrypted data without the
need to decipher it first. Alternatively zero knowledge proofs could be used to guarantee
that a certain constraint is enforced without disclosing private information. Unfortunately,
the main issue with such approaches is usually their price. For example, homomorphic
encryption is still too costly to be used for complex computations (see [53]). Do note that
some notable exceptions of privacy aware blockchains are available, such as the Zerocash
project [54] based on the Bitcoin protocol, but in general the performance overhead necessary
to use the advanced cryptography techniques employed affects too much the transaction
throughput and system scalability to be deemed worthy. Moreover such systems [54, 55] do
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not usually enable smart contracts.
The current main proposals to achieve privacy in the presence of smart contracts are

to simply encrypt the contract data and calls, only storing on chain such obfuscated infor-
mation (either directly or through a cryptographic hash). Such approach is employed by
Quorum (through so called private contracts and transactions) [56], based on the Ethereum
protocol, and Hyperledger (through so called private channels) [47]. In both cases the min-
ers have no access to the private information and so its consistency needs to be enforced by
the participants (usually through distributed consensus algorithms). For example, double
spending becomes possible within private transactions. To avoid such issue, a proposal to
use the Zerocash tools in a smart contract environment has been proposed in the Quorum
project. A proof of concept preliminary implementation has been presented in [57] to allow
for the private management of digital assets, named z-tokens, while providing proof of assets
transfers (through zero knowledge cryptography). Further approaches for enhancing privacy
in smart contract based blockchains have been recently proposed in the literature as well,
e.g., [58, 59]. However, as clearly claimed by the authors of [58], the cost of the proposed so-
lutions for deploying and executing privacy preserving smart contracts in current blockchain
systems is still too high.

6.3. Modularity

We want to remark that the main contribution of our proposal in the reference example
scenario basically consists in outsourcing the Access Control logic from the smart re-
source. This means that the user relies on a third party service (i.e. our system) to write
all the Access Control logic. However, this does not introduce an heavy trust requirement
in such third party. In fact, the service builds the smart policy and integrates the smart
resource contract instead of the user, but it needs the user approval (i.e. its signature)
to deploy both of them. This means that the user can check before deployment that the
service was not malevolent and stop the deployment at any moment if they are not satisfied.

Such outsourcing of code writing grants a clear advantage in terms of user effort and
errors avoidance. Since the smart policy is automatically generated and linked to the
smart resource any human error is avoided. Furthermore, since the user does not have
to write an Access Control contract custom implementation but relies on a statically written
solution instead, checks of the contract security are easier and generalizable. Of course this
also results in possibly fewer errors in the smart resource implementation in general
since the user can focus all its efforts and attention on its intended logic independently of
the Access Control side. Finally, the introduced modularity in separating the control logic
from the smart contract to be controlled allows for the two contracts to be deployed and
managed separately. Since this results in two distinct transactions, this means that heavier
(in terms of gas cost) contacts are deployable, since the two transactions can fit in different
blocks even if their combined cost would be greater than the block gas limit.

6.4. Policy Complexity

The complexity of a smart policy depends on the number of MatchEs in the original
XACML policy and their individual complexity (dependent on operation and data type of
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the single MatchE). Our proposal is to translate an entire XACML policy into a single
smart contract. In general, blockchain protocols employ techniques to price the scarce re-
sources on chain (such as storage and computation) through proportional fees. In such a
scheme, as the complexity of the XACML policy grows, the corresponding smart policy
gets more expensive in terms of fees. Most blockchain protocols have limits on the maximum
size of blocks (mainly to guarantee reasonable block propagation times among the peers),
and so have a hard limit on transaction sizes as well. This introduces an hard cap on the
maximum size (i.e., complexity) of smart contracts (both for deployment and execution),
including smart policies, that would, in turn, introduce a limit in the maximum com-
plexity of XACML policies supported by our system. For example, our proof of concept
implementation is developed on Ethereum, that uses mandatory gas consumption to pay
for transaction fees, and limits the size of each block by specifying a block gas limit (i.e.,
the maximum cumulative gas allowed to be consumed by all transactions in that block), as
explained in Section 2.3. Consequently the complexity of the XACML policies that can be
expressed is limited by the current block gas limit of the Ethereum blockchain.

However, since the policy complexity limit derives from the underlying blockchain proto-
col and not from the proposal itself, it is easy to circumvent. In fact it is possible to manage
XACML policies of arbitrary complexity by splitting the resulting smart policy in more
than one smart contracts, i.e., to enhance the PTP in order to translate the XACML policy
in a set of interconnected smart contracts. Since the complexity of a policy depends on the
MatchEs it implements, which are translated into checks inside the evaluate function of
the smart policy, it is sufficient to only split the evaluate function checks among different
contracts. The corresponding smart policy, represented by a set of smart contracts rather
than a single one, would contain a main smart contract as entry point to invoke the evaluate
and the other functions, while the body of the evaluate function would contain an external
call to a second smart contract, only tasked at computing a portion of the MatchEs of the
policy, invoking the third contract for computing another portion of MatchEs, and so on,
until all the MatchEs in the original policy are implemented by a smart contract. The last
smart contract returns a result that is passed up to the caller, that combines it with the
result obtained evaluating its portion of MatchEs, and passes this new result to its caller,
and so on, until a result is returned to the main smart policy smart contract, that finally
returns the global result.

Of course the process could be designed efficiently to allow for short circuiting of the
evaluation calls whenever possible. Only the PTP needs to be changed, since the main
smart policy contract would still be the only point to trigger a policy evaluation once
deployed. The split of the smart policy into different contracts would be transparent to
the other modules of the system. As long as the single contracts representing the smart
policy are individually smaller than the gas limit they can be inserted into a block and
so any policy would be deployable. The only drawback is that a smart policy would
require more than one deployment transaction, increasing deployment costs (since multiple
transactions often cost more than a single cumulative transaction). Do note that, in general,
the expected wait time does not necessary increase to validate many smaller transactions
compared to a bigger one, since many small transactions can better fit into the free space
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available in blocks, while a big one has to wait for a single block with a lot of free space (of
course assuming that the big transaction would fit in a block at all).

The previous approach does not decrease the overall cost of the smart policy deploy-
ment (it might increase it, instead). It simply allows to surpass the consumption limitations
for a single contract. Furthermore the proposed solution only concerns policy deployment,
not its execution. If we require the evaluation process to be performed on chain it needs to
be triggered by a single transaction that would have to abide to the block gas limit.

6.5. Delegation

Finally, in order to be successfully adopted in a larger number of application scenarios,
the proposed blockchain Access Control system could be enhanced by introducing further
features, such as delegation capabilities. Delegation is a mechanism that allows a user,
say A, to enable another user, say B, to act on his behalf, i.e., user A is enabled, through
a delegation action, to transfer (some of) his access rights to user B [60, 61]. When the
delegation action is performed by a user on his own initiative (i.e., without a centralized
control or policy owner intervention), policy violations could arise because of such delegation.
Hence, in order to regulate who can delegate whom and to avoid policy violations due to
delegation, some delegation enabled authorization systems allow policy makers to specify a
set of delegation authorization rules, i.e., policy rules which control who can delegate which
privileges to which other users, and/or which additional privileges can be acquired through
delegation by each user.

In order to support delegation, the proposed blockchain based Access Control system
could be modified as follows:

• a new evaluateWithDelegation function is added to smart policies;

• the PTP is modified to translate the delegation authorization rules included in the
policy in order to write the evaluateWithDelegation function (as explained below);

• the PEP is modified to also allow for processing of access requests with delegation;

• the PAP and CHD are enriched to process new createDelegation requests;

• a new type of smart entity, named smart delegation, is introduced to represent a
delegation on the blockchain.

When user A wants to delegate the right to perform an operation o on a resource r to
user B, it starts the createDelegation process by invoking the PAP. The PAP requests a
new createDelegation transaction (processed by the CHD) that deploys on chain a new
smart delegation containing the delegation data specifying, for example, the ID of user
A, the operation o, resource r, ID of user B, and the delegation expiration date. Since it is
requested by the user A to create the new delegation, its expenses are paid by A and are
completely independent from the smart policy and resource owner.

To perform the delegated action on the resource, B submits to the PEP a delegation
access request, specifying the link to the smart delegation (i.e., the address of the
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corresponding smart contract) that, supposedly, grants them the access rights. The PEP
triggers the smart policy evaluation process by creating a transaction which calls the
evaluateWithDelegation function of the smart policy (instead of the evaluate one)
passing the smart delegation link as parameter.

The evaluateWithDelegation function checks that the smart delegation has been
actually created by A, retrieves from it the needed delegation information, and checks
them against the delegation authorization rules. Do note that this is possible, since the
evaluateWithDelegation has been written by the modified PTP, that has translated them
into executable code, similarly of how it does it for normal policy rules into the evaluate

function. If the delegation authorization rules are satisfied, the evaluateWithDelegation

function then calls the evaluate function specifying A as requesting user instead of B, and
returns the access decision accordingly.

In the previous solution, we use a dedicated new entity, the smart delegation, to rep-
resent delegations instead of the simpler solution of storing delegation information directly
inside the smart policy for two main reasons: costs and security. Employing an external
entity to the smart policy makes it possible to have an arbitrary number of delegations
without affecting the smart policy. Saving all delegation information inside the smart
policy would instead bloat it and possibly slow down lookup operations for all users ac-
cessing it. Furthermore, allowing other users than the policy owner to store data inside the
contract would open it to attacks, such as denial of service attacks, by filling it with useless
delegations.

7. Experimental Results

To validate our system, we studied the performance of our proof of concept implemen-
tation analyzing the following three cost measures:

• monetary cost;

• resource cost;

• time cost.

We do note that even the off-chain Frontend of our reference implementation is different
from a traditional XACML Access Control system, mainly for the need for a XACML to
Solidity parser. Nevertheless, the parser complexity is guaranteed linear in the size of the
policy (and easily parallelisable in some cases). We do not consider the parser during
our performance evaluation, focusing only on the on-chain operations. In fact, on modern
hardware, the parsing time is in the order of milliseconds even for big policies, while the on-
chain operations take on average seconds to complete. Thus the different order of magnitude
of the studied measures further justifies our simplification.

We point out that, in an hypothetical scenario where our system is used to regulate
the access to traditional digital resources, the smart policy deployment phase is exactly
the same as the one concerning the smart resource scenario taken into account in our
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reference example. Consequently, the deployment gas and time costs are the same as well.
The smart policy evaluation phase is, instead, different for the two scenarios. In fact,
in the traditional digital resource scenario, a transaction calling the evaluate function of
the smart policy is submitted to the blockchain, while in the smart resource scenario
the evaluate function is called by the smart resource itself, through a smart contract
message. However, the gas cost required for the execution of the evaluate function is the
same in both scenarios, the only difference is that in the traditional digital resources scenario
the transaction cost needs to be paid explicitly (for further details see Section 7.1), while
in the smart resource case this gas cost was covered already by the smart resource
caller. This means that, from the gas cost point of view, the gas price payed in case
of traditional digital resources is an upper bound (i.e., the smart policy cost plus the
transaction cost) for the smart resource scenario (smart policy cost only), obviously,
considering the same smart policy. The evaluate function time cost is the same in both
scenarios as well. However, in the smart resource scenario, the smart resource and
smart policy evaluations are inserted in the same block, and this would mitigate the
time cost of the smart policy. For the previous reasons, in the rest of this section, we
evaluate smart policies deployment and execution costs (considering both gas and time)
independently from the scenario chosen.

7.1. Monetary Cost

Using a fee (or gas) based blockchain, we introduce a monetary cost for every transaction
that is mined. In particular, since our reference implementation is based on the Ethereum
protocol, in which gas is consumed by transactions, we performed a set of experiments to
estimate the gas cost of our two kinds of transactions: smart policy deployment and
evaluation.

7.1.1. smart policy deployment transactions

The gas cost of a transaction deploying a new contract (GasD) can be expressed as
follows:

GasD = FixedCostD + CodeCost + InitCost

where FixedCostD represents the fixed amount of gas that must be payed independently
of the code of the contract to be deployed (e.g. the fixed cost to create a new transaction,
21 000 gas at the time of writing, and the fixed cost to deploy a new contract, 32 000 gas at
the time of writing [7]), CodeCost represents the cost to store the actual contract (i.e., the
code) on the blockchain, and InitCost represents the computational cost incurred to run
the constructor instructions and initialize the contract. In our implementation each contract
representing a policy has a fixed core of utility methods and variables that contribute as a
constant amount to both CodeCost and InitCost. For instance, to save the address of the
contract creator in the constructor requires a store operation (which currently costs 20 000
gas) that contributes to InitCost, while adding functions to revoke the smart policy
increases CodeCost because it increases the code length. The policy dependent contributions
to CodeCost and InitCost are mainly due to the number of rules of the policy, to their
complexity, and to the number of different smart AMs they require to contact.
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Obviously, more rules and more complex rules require more code to be stored and man-
aged. Since each rule consists of a set of MatchEs elements, we measure the complexity of
a policy as a function of the number of MatchEs and of their complexities. Less obvious
is the contribution of the number of smart AMs. This is due to the fact that the smart
policy stores the addresses of the smart AMs needed to retrieve required attributes.
These addresses are known at deployment time and are saved in contract variables by the
constructor, so each address to be remembered causes a costly store operation. Do note
that the internal complexity of the smart AMs does not influence the deployment cost of
a contract requiring them (but it will influence, instead, its execution cost). In our test we
experienced that to deploy an empty policy (i.e., a policy which always returns Permit), we
consumed about 175 000 gas, while to deploy a policy with one simple rule performing the
comparison of the value of one attribute with a constant (i.e., invoking one smart AM) we
consumed about 280 000 gas. Allowing the policy to use an additional smart AM (to get
the attribute values to be used in the MatchEs) consumes approximately 26 000 gas alone
(to store the AM information), and each additional simple MatchE in the policy consumes
about 46 000 gas (but complex MatchEs may consume more gas). These are very rough
estimations, and should only be considered as a lower bound of the actual cost. Knowing
that the current gas limit in our academic testnet is about 4 700 000 for each block, it is pos-
sible to estimate the maximum size (i.e. number of different smart AMs and MatchEs)
of a deployable policy in our testbed. According to our rough estimation, for example, a
policy using 10 different smart AMs and 90 MatchEs would have about the maximum
size that could fit in one block. We think that a policy of that kind is quite large, because
common policies typically use two or three attributes, and we do remark that this is just a
constraint of our reference implementation and not of the proposal itself (see Section 6.4).

7.1.2. smart policy evaluation transaction

To trigger the evaluation of a smart policy for a given access request we use a transac-
tion calling the evaluate function of the contract (See Section 4.2.3). The gas cost of such
transaction (GasE) can be expressed as follows:

GasE = FixedCostE + EvalFunctionCost

Where FixedCostE represents the fixed cost of the transaction performing the call (and
carrying the function parameters), and EvalFunctionCost represents the cost to execute
the evaluate function. As explained in Section 4.3.2, the evaluate function is a com-
bination of boolean functions representing a MatchE each. Furthermore, each encoded
MatchE usually invokes one (or more) smart AM to retrieve attribute values. This means
that the cumulative evaluation cost depends not only on the number of MatchEs and their
individual complexity, but also on the complexity of the smart AMs invoked. The gas cost
estimation is further complicated by the use of short circuiting logical operations. In fact,
the execution of the same expression could have very different costs depending on the ac-
tual values of attributes at execution time. To test this, we performed some experiments
where we evaluated a policy using 3 different smart AMs and 80 MatchEs in conjunction
which exploit the values of the attributes provided by such smart AMs. The first time we
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purposely choose attribute values to satisfy all the MatchEs, obtaining a Permit result
and consuming 210 643 gas for the relative transaction. Instead, setting the attribute values
in such a way that the first MatchE is not satisiefd, the entire expression short circuits
to false without evaluating all the remaining MatchEs. This results in a Deny decision
consuming 32 267 gas only for the relative transaction. The second execution consumed
approximately 15% of the amount of gas consumed by the first execution. Moreover two
thirds of this cost was due to the fixed cost of the transaction itself (more than 20 000 gas).
Hence, considering only the cost due to the EvalFunctionCost, the second execution costs
about 5.6% compared to the first.

Due to all this, it is difficult to get a general estimation of the cost of the evaluation
function. To give an estimation of the gas cost of an evaluation, we deployed a smart policy
consisting of 90 MatchEs referencing 10 smart AMs. The policy was a conjunction of
simple boolean conditions that we knew being all true with the values returned by the smart
AMs (in order to avoid short circuiting). The resulting cost of an evaluation transaction
(returning a Permit) under the previous assumptions is of approximately 230 000 gas. This
shows how the policy evaluation cost (in the worst case that all MatchEs need to be
executed) is considerably lower than the initial policy deployment cost. For example, for
the policy of the above example, the evaluation transaction cost is about 5% of the gas
consumed by the corresponding deployment transaction. Of course, this is just a rough
estimation which depends on the policy an on the smart AMs chosen. For instance, using
a very costly smart AM arbitrarily increase the policy evaluation cost without influencing
the initial deployment cost (that is independent of it).

Given a reference policy invoking a single smart AM and consisting of a conjunction of
n simple single attribute MatchEs crafted to be always true over the smart AM returned
values, we depicted in Figure 5 the deployment and execution costs for increasing values of
n.

We observe in Figure 5 that both the deployment and execution cost are linear in the
number of MatchEs (of the same complexity), and that the deployemnt cost is much higher
than the execution cost. This is a desirable property since the deployment cost needs to be
paid only once, while the executions cost needs to be paid for each access request, resulting
in a high setup cost but relatively low usage cost for smart policies. Finally, we remark
that the block gas limit value in Figure 5 refers to our Academic testnet. Other blockchain
could have a different gas limit, because the block gas limit can be initially set for each
network and even adjusted later.

7.2. Resources

In our framework, the main need for computational resources is for running the block-
chain client. Our reference implementation is based on the Ethereum client geth, that
nowadays runs fine on standard hardware (i.e., two or more CPU cores, 4 or more GB of
RAM memory, and a good network connection) but it requires some storage space (at the
time of writing less than 200 GB for storing the main Ethereum blockchain using geth).
However, since we delegate the storage of policies to the blockchain, we save the storage
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Figure 5: Gas cost of deployment and evaluation of the reference policy with increasing number of
MatchEs n. The last value (n=100) is obtained by artificially increasing the block gas limit.

space required by traditional PAP implementations, although this is not comparable to the
space needed to save the entire blockchain. The storage space requirement can be an issue
in some scenarios, to solve this issue two different solutions are possible. The first one relays
on a third party that is in charge of managing the blockchain side of the client. Of course
this introduces a new cost in the system as well as a point of centralization that needs
to be trusted. The second solution, instead, is to use a light client to interact with the
blockchain. This would result in a reduction of the storage requirements from hundreds of
GB of memory to a few GB, at the expense of potential trust requirement (depending on
how the light node is actually implemented) in other full nodes, i.e., nodes following the full
protocol specifications and storing the entire blockchain. Currently geth provides a ’light
node mode’ but it is still in beta version. Choosing a light client based implementation
would allow to deploy our system on most of the nowadays common machines. As already
stated in Section 6, we remark that this is only an issue for the traditional digital resource
reference example. In fact, in the reference example involving smart resources, the user
needs a blockchain client anyway to manage such smart resources, and so our system
could use the same client, not introducing additional resource requirements.

7.3. Time

The time overhead introduced by operations on the blockchain for the policy creation is
caused by the smart policy deployment phase, while at access request time, it is instead
due to the execution of the smart policy evaluate function. We do not consider the
time needed for the user to check and sign a transaction since it is user dependent. Both
the smart policy deployment and execution times mainly consist in the time elapsed for
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the corresponding transactions to be mined into a block. So, they both are expected to
be roughly equal, on average, to the transaction confirmation time, that depends on the
underlying blockchain. In our case, the Ethereum blockchain is designed to add a new block
on average every 14 seconds. This means that, as long as there is enough free space in
new blocks, a new transaction should take, on average, 14 seconds. In practice, to estimate
this cost, we should also take into account the transaction propagation times (that might be
comparable to the mining time for poorly connected nodes). Moreover, in case of transaction
congestion, a transaction can actually take longer to be included in a block. However, this
time can be manipulated by our system, as well as by the other blockchain users, by choosing
a more competitive gas price (i.e., choosing to pay more for faster confirmations). For these
reasons, there is no simple way to determine how many blocks on average a new transaction
will take to be confirmed. The most important factors influencing confirmation time of a
transaction are highlighted more precisely in the following list:

• Random mining time: in a PoW based blockchain, blocks are generated at ran-
dom times. It is guaranteed that the difference between the generation times of two
consecutive blocks is equal on average to a predefined constant (and PoW difficulty is
adjusted accordingly). This means that, in practice, users can expect an high variance
in the time to be waited between the generation of two subsequent blocks. This is
especially true during difficulty adjustment periods. For example, if the network ex-
periences a sudden drop or increase in the computing power of miners dedicated, this
can negatively affect the block generation time (respectively increasing or reducing the
expected average time) before the difficulty adjustment process can automatically keep
up with the change. Also, during forks, the validation time might increase since the
mining power is split between different branches, and each branch is working to solve
a PoW with a difficulty not correctly proportionate to the actual computing power.

Supposing a constant flow of new transactions submitted to the network, the trans-
actions that are submitted during the mining of the blocks that take more time, have
to compete with more transactions waiting to be mined, and so will overall have a
smaller probability to be added in that block with respect to the transactions that are
submitted during the mining of the blocks that take less time. This is not a problem in
general for a blockchain since the constant expected generation time guarantees that
on average equal transactions will have the same chances of being added and so the
same expected wait time to be validated (assuming blocks are not full). However, in
case of time sensitive applications this could be an issue affecting user experience in
some circumstances.

This issue can be mitigated using different distributed consensus algorithms with guar-
anteed constant mining times, e.g. Proof of Authority (PoA) [42], but such algorithms
usually require to weaken the lack of trust assumptions of public blockchains and so
are used for permissioned ones (see Section 2.3).

• Discrete block creation: a blockchain timestamps transactions by dividing the set
of records in blocks. Basically, the system takes discrete temporal snapshots of its state
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at each block. This discrete time snapshots can be taken at constant times intervals
on average (e.g., in PoW blockchain) or exact constant time intervals (e.g., in a PoA
blockchain), as explained before. In both cases, transactions that are submitted closer
to the moment when the next snapshot is taken have to wait less time for the next
block and so a chance to be validated. In general, transactions submitted immediately
after a new block is found have to wait more than transactions submitted immediately
before a new block is found, assuming that there is enough free space in new blocks
and miners keep listening and adding transactions to their blocks while mining. If
blocks are saturated, instead, the opposite is true since equal transactions will have
more chance to be added to the next block if they are submitted immediately after a
new block is found.

• Latency: the chances for a transaction to be mined increase as more miners get to
know about its existence. This means that transactions submitted by poorly connected
nodes are expected to wait on average more time than identical ones submitted by bet-
ter connected nodes. Furthermore, the unpredictability of network latency influences
the time needed for the transaction to be known and so its chances to be mined. Such
latency is also influenced by the mean used to connect to the blockchain communication
network. For example users connecting through a browser based service (such as the
popular MetaMask [62]), where request needs to travel through the internet to reach
a third party node directly connected to the communication network, will incur in an
higher latency, in general, then users connected directly to the network through a full
node. Finally latency can also be manipulated by malicious entities trying to isolate
nodes to delay their transactions (for example during double spending attempts).

• Congestion: as block space gets exhausted it increases the competition among trans-
actions. The same transaction will have to wait more for validation during times of
high congestion with respect to times that free space in blocks is more abundant. Do
note that in this paper we consider as block congestion the ratio between the total gas
used by all transactions in a block and that block gas limit.

• Fees: as already noted above, users can decide to offer higher fees for their transactions
to be more desirable by miners. This becomes more relevant during high congestion
periods. In fact, if space is available in blocks than it is convenient for miners to insert
any transaction as long as the fees repays for their effort (e.g., computing the contract
contained), so users have no reason to offer higher fees. On the contrary, if blocks
are full (i.e., there are more pending transactions than the space in a block to contain
all of them) then the miners will choose only the higher paying transactions to reap
higher rewards with the same effort (since the gasCost is independent from the gas
actually consumed).

• Lack of a global clock: as for most distributed systems, the communication network
lacks a global clock. This means that each node, and, especially, each miner has its own
local time that may differ (even significantly) from the ones of others. Since miners
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solving a block are the one deciding the block timestamp, this means that blocks can
have inconsistent times among them. Currently, Ethereum only requires that a block
timestamp must be greater than the previous block timestamp [7]. So miners can
maliciously alter their own timestamps. To mitigate this problem, each node could
use its local timestamp to keep a local log recording when transactions and blocks are
first seen by such node. However, this is not a good solution as well, since, as already
explained, network latency could cause a transaction or a block to be seen by a (poorly
connected) node after a significant delay with respect to the time when, respectively,
the transaction has been submitted or the block has been created.

• Context dependent evaluation (evaluation only): the same transaction containing
a function call can take different times to compute depending on the current context
it is executed in. This is strictly connected to the monetary cost we explained before
in Section 7.1, here it suffices to say that since a function execution depends on the
current state it can have different costs and so require more space in a block. This
influences its probability of being mined sooner. For example we can think of a function
that has a conditional clause depending on the current block height number, if it is
even, it terminates, otherwise it does a lot of heavy computations. Clearly the function
will require more computations and so it will cost a lot more gas if the current block
number is an odd number, and heavier transactions have longer expected validation
times.

To alleviate all those issues and reduce the variables that concur to determine a transac-
tion confirmation time, it is generally advisable to consider the blockchain itself as measure-
ment of time through the block height (i.e., the distance of a block from the genesis block).
In fact, by grouping the transactions in immutable discrete snapshots (blocks), it is possible
to see the blockchain as a timestamping service. Using such a solution the confirmation
timestamp of a transaction is the height of the block it was mined in. This means that
we can measure the time it took to confirm a transaction as the difference in block height
between the last known block that the network had mined at transaction deployment time
(relative to the transaction creator) and the block where the transaction has been inserted.
This solution solves the random mining time, discrete block creation and lack of global time
problems showed above. Considering that latency is an unsolvable problem inherent of the
system and the context dependent evaluation problem can be avoided by choosing functions
and context appropriately, using the block height allows us to perform experiments with
only congestion and fees variables to take into account. This way, even if we still have some
degree of unpredictability due to latency, it is easier to isolate the cause of long waits and
delays.

Using block heights as timestamps for transaction confirmations is especially effective in
our academic testnet. In fact the network is heavily underused and so there happens to be
long periods of time during which the blocks are almost empty. This allows us to perform
experiments without worrying about block congestion and fee races.

To test the deployment time of a smart policy we measured the confirmation time,
expressed in block height, of a reference smart policy, increasing the number of MatchEs,
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used as an approximated measure to estimate policy complexity. Each measurement has
been repeated for 50 times. As reference policy we used the aforementioned reference policy
showed at the end of Section 7.1, i.e., a smart policy invoking a single smart AM and
built by a conjunction of n simple single attribute MatchEs crafted to be always true over
the smart AM returned values. Furthermore, to avoid to introduce artificial congestion
in the blocks with the experimental data themselves, we also temporized the deployment of
each policy by waiting for one block after each successive contract deployment.

(a) (b)

Figure 6: Average (with standard deviation) deployment confirmation times, expressed through block height
difference (a) and in seconds passed between the current block timestamp and the timestamp of the block the
transaction gets confirmed in (b). Do note that in (a) the standard deviation is always zero. Experiments
on the Academic testnet.

Figure 6(a) shows the average deployment confirmation time (expressed in number of
blocks) and its variance for an increasing policy complexity, expressed by the number of
MatchEs in the smart policy. We do note that 1 is theoretically the optimum time,
because it means that the transaction is confirmed in the first block available. We observed
that, in our testnet, the actual optimum is 2 instead of 1, i.e., no transaction is inserted in
the immediately available block. This fact can be explained as consequence of the mining
behaviour of our nodes. In fact, it looks like each node, once has created a candidate block
and started to try to solve the corresponding proof of work, ignores new transactions until it
succeeds or some other nodes solves its proof of work first. This means that new transactions
are considered for insertion in new blocks only after the first block that could contain them
is mined, and so they have to wait at least two blocks to be confirmed.

The situation is different for the Ethereum main chain which which is currently experi-
encing a more relevant congestion problem, as we show in Figure 7.
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Figure 7: Percentage of gas used in 25 consecutive blocks of the Ethereum main chain from block 5 429 533
to block 5 429 557 [63], average congestion 83.35% with standard deviation 23.87 .

Figure 6(b) shows the results of the same set of experiments considering block confir-
mation time measured in seconds instead of using block height. Hence, the transaction
confirmation time was measured as the difference in seconds between the timestamp of the
transaction confirmation block and the timestamp of the last block known by the transac-
tion creator at the time the transaction was broadcast to the network. Moreover we point
out that the block confirmation time in our academic testnet (that has been set up to 136
seconds at the time of our experiments) is higher with respect to the main Ethereum net-
work (14 seconds). It is clear from the comparison of the two figures how using block height
as time measure gives a cleaner understanding of the phenomenon. In fact the comparison
between Figure 6(a) and Figure 6(b) shows the impact of the random mining time issue. We
can see clearly in Figure 6(a) that the number of MatchEs in the smart policy has no
effect on the deployment time as long as blocks have enough free space to include the policy
deployment transaction. Instead, from Figure 6(b) it looks like smart policies with 20 or
50 MatchEs have shorter deployment time. Of course there is no reason why this should
be the case, as proved by Figure 6(a) that is derived from the same set of experiments, it is
just a consequence of the randomness of mining times manifested by a relatively low number
of experiments (50). We can compute a theoretical expected validation time as two times
the block confirmation time, i.e., 2 ∗ 136 = 272 seconds (although an unlucky combination
of all the causes affecting confirmation time listed before could cause an extraordinary long
wait). We do note that the expected validation time matches with our experimental results,
as the average of all confirmation times measured is 267.34 seconds, close to the theoretical
value of 272 seconds.

As shown in the previous paragraph, performing experiments on our academic testnet
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(a) (b)

Figure 8: Average (with standard deviation) deployment confirmation times results expressed through block
height difference. Figure (a) depicts the complete results, while Figure (b) represents a zoom on the results
of the experiments with less than 80 MatchEs only. Experiments on the Ropsten testnet.

allowed us to prove some theoretical assumptions, but was not a good simulation of a real
world scenario. To have performance evaluations closer to a real scenario, we decided to
perform our experiments also on the public Ethereum testnet Ropsten. Considering that
it is widely used globally by many users, testing their applications before deployment on
the main Ethereum chain, we believed this was a better simulation of a real world scenario.
In fact both the expected mining times (14 seconds) and block congestion of Ropsten are
closer to the ones of the Ethereum main network. So we repeated the same experiments
on the Ropsten testnet, repeating each measurements 10 times for each experiment. The
deployment confirmation times results, measured in block height difference, are shown in
Figure 8(a).

Figure 8(a) shows that the confirmation times of the experiments concerning the smart
policies with 80 MatchEs are considerably larger w.r.t. the experiments concerning
smart policies with a smaller number of MatchEs. Moreover, this problem has not
been detected in our academic testnet, as shown by Figure 6(a). This happened because the
size of a transaction to deploy a smart policy with 80 MatchEs is close to the gaslimit
of the blocks (see Section 7.1), so this transaction needs blocks with a lot of free space to be
confirmed. This is not an issue in our academic tesnet, where most of the blocks are empty.
Instead, finding empty blocks to fit this transaction is more difficult in a real world network
such as Ropsten. In Figure 8(b) we show the same results zooming on the first seven sets
of experiments only to give a better insight excluding the 80 MatchEs special case.

The results are worse than the ones obtained for the academic testnet, and shown in
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Figure 9: Average block congestion times experienced during the deployment transaction confirmation
experiment shown in Figure 8.

Figure 6(a). Of course this was expected since Ropsten is more congested than our academic
testnet. We note that in Ropsten is possible to achieve the optimum result of mining a
transaction in 1 block only, and this is due to a smarter mining policy adopted by the
Ropsten testnet nodes. We also note that we obtained an average confirmation time quite
low (always less than 4 blocks), and independent from the number of MatchEs. Comparing
this with the results from the experiments with 80 MatchEs, we can conclude that the
number of rules in a smart policy does not influence confirmation times as long as the
resulting transaction is small enough to fit into the average space available in blocks. To
further prove our point we measured the average block congestion during the experiments we
conducted. The results are depicted in Figure 9. To measure the average block congestion
experienced by a transaction, we compute the average of the congestion values of each block
that the transaction had to wait for its confirmation. We then compute the average among
the 10 measurements performed for each experiment. We can see that block congestion does
not influence the block confirmation times. The case with highest block congestion (i.e., 70
MatchEs) is also the one with a lower average confirmation time.

Also for the Ropsten testnet we measured the time in seconds instead of considering
the block height difference. The corresponding results are shown in Figure 10. The same
considerations made before for Figure 6(b) do hold also in this case. We observe that
even if the transaction confirmation times expressed in block height difference are higher in
Ropsten than in the academic testnet (see Figure 8(b)), thanks to the much lower average
block confirmation time (14 seconds vs 136 seconds), the resulting average confirmation
times in seconds are lower in Ropsten (always below 50 seconds in Figure 10 (b)) than in
the academic testnet.
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(a) (b)

Figure 10: Average (with standard deviation) deployment confirmation times results expressed in seconds
passed from the current block timestamp and the timestamp of the block the transaction gets confirmed in.
Figure (a) depicts the complete results, while Figure (b) represents a zoom on the results of the experiments
with less than 80 MatchEs only. Experiments on the Ropsten testnet.

As we have shown in Section 7.1 the smart policy deployment transactions need to
store a new smart contract on the blockchain and execute its constructor. This often results
in transactions consuming a considerable amount of gas and space in a block. In compari-
son, smart policy evaluation transactions (i.e., transactions executing calls to the smart
policy evaluate function) are in general much lighter. This causes those transactions to
be easier to be added to a block and so they take, on average, less time than deployment
ones. This is a good property since each smart policy needs to be deployed only once,
but can be executed several times (as long as the policy remains active). We decided to
give a measure of the system time efficiency by studying the execution of smart policy
evaluation transactions alone. As time efficiency measure we chose to use the execution
throughput. Given n smart policy evaluation requests submitted at the same time, we
define as execution throughput the percentage of them that got evaluated immediately (i.e.,
got confirmed in the first available block). Instead the execution time is simply the average
time that took for all the n requests to be evaluated.

As explained above, the context dependent evaluation issue may affect these results. To
mitigate this, we chose to execute all our experiments on the reference policy described
above, which is built to be non short circuiting, thus ensuring that all the MatchEs of such
policy are always all evaluated in our tests. Furthermore we performed our experiments
on the Ropsten testnet since it better reflects a real world scenario as explained before.
We measured both execution throughput and execution time for an increasing number of
requests and of MatchEs in the smart policies. In particular, we performed a set of five
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Figure 11: Average (with standard deviation) evaluation confirmation times results expressed in block height
difference, for increasing number of execution requests and number of MatchEs in the reference smart
policy executed. Experiments on the Ropsten testnet.

experiments for each fixed number of evaluation requests, the number of simultaneous eval-
uation requests were increasing from 10 to 30, then 50, 70 and finally 90. These experiments
were repeated calling the evaluation of a reference smart policy with 20, 40, 60 and 80
MatchEs. We chose to repeat our experiments only five times for each setup and only for
four different smart policies to avoid excessive network bloating. In fact, the presented
experiments already involved five thousand single transactions. Since we performed those
experiments on the global official testnet we tried to keep the number of transactions con-
tained to avoid affecting all the other users concurrent tests. The cumulative results showing
the average execution times expressed in block height difference are reported in Figure 11,
while in Figure 12(a), Figure 12(b), Figure 12(c) and Figure 12(d) are shown the individual
results for each smart policy. As expected we can notice from the figures how the average
confirmation time increases with the number of evaluation requests. This is expected since
more evaluation transactions compete for the same finite space in each block.

In Figure 13(a), Figure 13(b), Figure 13(c) and Figure 13(d) are shown the results of
the same experiments of Figure 11, but considering the execution throughput instead of the
execution time. The definition of execution throughput is relaxed to consider the percentage
of transactions that are confirmed within x blocks, with x a parameter. The figures show the
results for x between one and four. Unsurprisingly and despite some exceptions, probably
caused by random block congestion, the results show the expected trend that more requests
result in a lower execution throughput (as already verified for execution time). We do note
that no transaction is ever confirmed in one block (i.e., inserted in the first available block),
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(a) (b)

(c) (d)

Figure 12: Average (with standard deviation) evaluation confirmation times results expressed in block height
difference, for increasing number of execution requests to a reference smart policy with 20 (a), 40 (b), 60
(c) or 80 (d) MatchEs. Experiments on the Ropsten testnet.

this is an artificial consequence of our experiments manager program. In fact, we first observe
the current block (i.e. the last block known by our node) and then spend some initial time
to create evaluation requests and broadcast all transactions at once. This, coupled with
network latency, may be an explanation for the observed delay, that, for example, was not
present during the deployment time experiments (where many smart policies got deployed
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(c) (d)

Figure 13: Average percentage of confirmed transactions in x blocks, for increasing number of x and in-
creasing number of requests. Experiments regarding a reference smart policy with 20 (a), 40 (b), 60 (c)
or 80 (d) MatchEs on the Ropsten testnet.

in just one block, see Figure 8(b)).

7.4. Discussion

We would like to remark that the results presented in this section concern the evaluation
of our proof of concept implementation of the reference example proposed. Such system has
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been deployed on a specific testbed based on Ethereum, and the performance we achieved
are heavily dependent on it. However, the aim of this work is to show how it could be
possible to integrate traditional Access Control systems with blockchain technology and to
analyze the resulting main advantages and drawbacks. This is why we would like to maintain
a general point of view rather than focusing on a particular blockchain protocol.

If we take into account the performance aspect only, it is true that the currently available
public blockchain systems are, in general, less efficient than traditional centralised ones in
executing programs. As a matter of fact, the distributed consensus mechanism introduces an
overhead w.r.t. centralised models where the system state updates are managed by a single
(trusted) entity. Moreover, the replication of the shared state (i.e., the blockchain data) and
the replication of new data validation across all the nodes determines an additional burden
for the participants. For those reasons, implementing our system exploiting a public block-
chain protocol is expected to result in worse performances in performing policy evaluation
w.r.t. a traditional centralised Access Control system. In fact, for an access decision to be
taken, at least one transaction needs to be mined. For example, in the Ethereum protocol,
used by our proof of concept implementation, the average mining time to generate a new
block is about 14 seconds (see Section 7.3 for an in-depth analysis concerning our reference
implementation). However, different blockchain protocols have different expected mining
times but, currently, they are typically in the order of seconds. This means that our system
would be slower than traditional ones that could have, in general, decision times even in
the order of milliseconds. As an example, the centralised Access Control system proposed
in [64] for protecting OpenNebula based Cloud services takes about 22 milliseconds to per-
form the evaluation of a policy (called pre-decision phase) with 10 attributes managed by
an AM located on the same machine of the Access Control system, and about 163 and 353
milliseconds to evaluate the same policy where the attributes are managed by, respectively,
2 and 5 AMs located on distinct remote machines. As such, our proposed Access Control
system is a valid alternative to traditional ones only for those application scenarios where
the additional properties provided by blockchain integration are desirable enough to cover
for the diminished performances. This might not be the case for time sensitive scenarios. For
example, a scenario in which our Access Control system can be successfully applied is the
reference example we have chosen. In fact, if we adopt the proposed system to regulate the
execution of smart contracts, then its performance should not be an issues because it is ob-
viously comparable with the execution time of the protected smart contracts. Furthermore,
w.r.t. traditional systems, we have also to take into account the fee paid for the execution
of each transaction. As such, depending on the scenario in which our system is adopted,
controlling the right of executing actions that are not security relevant could become too
expensive. E.g., controlling the access to an office door has different security requirements
and requests frequency compared to a bank vault door. The properties provided from our
proposal do come at a price that is acceptable or not depending on the application scenario.
Furthermore cheaper solutions (in terms of both resources and fees paid) can be employed,
as already suggested in Section 6.1

The main limits to our system performance are determined by the actual blockchain pro-
tocol chosen for running it. We have chosen to implement our proof of concept on Ethereum
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because it currently is, by far, the most used and studied smart contract enabling block-
chain platform. Nevertheless, Ethereum has still some serious performance issues itself. For
instance, despite its developers claim about a world computer [65], the CryptoKitties launch
[66] was able to paralyze the entire Ethereum blockchain for days due to a single game
application. We showed in Section 7.1.2, how a very complex policy can take up to 230.000
gas to be evaluated. This would mean that our system could process, in approximately the
worst case supported, at most 20 evaluate request per block (a new block is created, on
average, every 14 seconds), assuming a block gas limit of 4.700.000 and no other concurrent
transactions. Instead, a policy with 10 MatchEs on 10 different attributes (more common
in practice) would cost approximately 47.000 gas (see Figure 5), resulting in about 99 trans-
actions per block. Such throughput could seem not sufficient for a real world application, but
we should consider that under the previous assumption an Ethereum block could process at
most 223 transactions of the simplest possible kind (i.e., fund transfers), and that common
smart contracts function calls are much more expensive than that, so the real throughput is
actually lower.

This is to remark how the performances of our current implementation are constrained
by the blockchain protocol chosen, Ethereum, that is the most used one today (basically
the reference protocol supporting smart contracts). Finally, we would like to highlight that
the future launch of new and better performing blockchains, or any performance improve-
ment of the Ethereum one, would be beneficial for our system automatically improving its
performance (since the proposal is independent from the blockchain chosen).

8. Conclusions and Future Work

In this paper we presented our blockchain application proposal related to Access Control
systems. Our main contribution is the integration of blockchain technology with a general
Access Control systems to obtain a blockchain based Access Control system. Such novel
system inherits the advantages of blockchain technology.

In our opinion the main advantage obtained is auditability. In fact, delegating the
Access Control policies management and evaluation (through smart contracts) to the block-
chain hands over such tasks to a decentralized, transparent, and immutable system. This
means that resource owners can not fraudulently deny access to subjects without leaving
an auditable trace of the misbehaviour. A deeper analysis of pros and cons is provided in
Section 6.

Our main future work direction of research is split among different topics.

• First we plan to properly address the possible privacy issues of our proposal, starting
from the options showed in Section 6.2. In fact, in order to provide complete au-
ditability, our system stores all information publicly visible on the blockchain (either
as simple data or stored inside the state of the smart contracts involved). It is worth
studying which is the best method to mask such data while still allowing auditability,
if necessary weakening it by providing it only to the parties involved.
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• Another interesting research direction is expanding our work to encompass more Access
Control standards and models. For example, we are studying the possibility to extend
our approach in order to support advanced authorization models, such as the Usage
Control one [10], and to deal with access history [67].

• Finally, we are currently implementing different proof of concept implementations on
blockchain protocols different from Ethereum, in order to obtain a better insight on
the performance of the derived system with different blockchains. Moreover we are
investigating the possibility of developing a dedicated Access Control blockchain as
well as the implications of applying our proposal to permissioned blockchain scenarios.

References

[1] U. Lang, OpenPMF SCaaS: Authorization as a service for cloud & SOA applications, in: Second
International Conference on Cloud Computing (CloudCom 2010), 2010, pp. 634–643.

[2] R. Wu, X. Zhang, G. J. Ahn, H. Sharifi, H. Xie, ACaaS: Access control as a service for iaas cloud, in:
International Conference on Social Computing, 2013, pp. 423–428.

[3] OASIS, eXtensible Access Control Markup Language (XACML) version 3.0 (January 2013).
[4] D. Di Francesco Maesa, P. Mori, L. Ricci, Blockchain based access control, in: IFIP International

Conference on Distributed Applications and Interoperable Systems, Springer, 2017, pp. 206–220.
[5] D. Di Francesco Maesa, L. Ricci, P. Mori, Distributed access control through blockchain technology,

Blockchain Engineering (2017) 31.
[6] D. Di Francesco Maesa, P. Mori, L. Ricci, Blockchain based access control services, in: IEEE Inter-

national Symposium on Recent Advances on Blockchain and Its Applications (BlockchainApp), 2018
IEEE International Conference on Blockchain, IEEE, 2018.

[7] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum Project Yellow
Paper 151.

[8] Ropsetn Revival, https://github.com/ethereum/ropsten. Retrieved June 30 2018.
[9] R. S. Sandhu, P. Samarati, Access control: principle and practice, Communications Magazine, IEEE

32 (9) (1994) 40–48.
[10] A. Lazouski, F. Martinelli, P. Mori, A prototype for enforcing usage control policies based on XACML.,

in: Trust, Privacy and Security in Digital Business. TrustBus 2012. Lecture Notes in Computer Science,
vol 7449, Springer-Verlag Berlin Heidelberg, 2012, pp. 79–92.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, Role-based access control models, Computer
29 (2) (1996) 38–47. doi:10.1109/2.485845.

[12] F. Vincent C. Hu, David, K. Rick, S. Adam, M. Sandlin, K. Robert, S. Karen, Guide to attribute based
access control (ABAC) definition and considerations (2014).

[13] L. S. Sankar, M. Sindhu, M. Sethumadhavan, Survey of consensus protocols on blockchain applications,
in: Advanced Computing and Communication Systems (ICACCS), 2017 4th International Conference
on, IEEE, 2017, pp. 1–5.

[14] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, P. Rimba, A taxonomy of
blockchain-based systems for architecture design, in: Software Architecture (ICSA), 2017 IEEE Inter-
national Conference on, IEEE, 2017, pp. 243–252.

[15] C. Cachin, Architecture of the hyperledger blockchain fabric, in: Workshop on Distributed Cryptocur-
rencies and Consensus Ledgers, Vol. 310, 2016.

[16] M. Iwamura, Y. Kitamura, T. Matsumoto, Is bitcoin the only cryptocurrency in the town? economics
of cryptocurrency and friedrich a. hayek.

[17] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008).
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A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, J. Yellick, Hyperledger fabric: A distributed
operating system for permissioned blockchains, in: Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, ACM, New York, NY, USA, 2018, pp. 30:1–30:15.

[48] S. Yoshihama, S. Saito, Study on integrity and privacy requirements of distributed ledger technologies,
in: 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical
and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on
Cybermatics, IEEE Computer Society, 2018, pp. 1657–1664.

[49] D. Ron, A. Shamir, Quantitative analysis of the full bitcoin transaction graph, in: Financial Cryptog-
raphy and Data Security - 17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013,
Revised Selected Papers, 2013, pp. 6–24.

[50] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, S. Savage, A fistful
of bitcoins: characterizing payments among men with no names, in: Proceedings of the 2013 Internet
Measurement Conference, IMC 2013, Barcelona, Spain, October 23-25, 2013, 2013, pp. 127–140.

[51] D. Di Francesco Maesa, A. Marino, L. Ricci, Detecting artificial behaviours in the bitcoin users graph,
Online Social Networks and Media 3 (2017) 63–74.

[52] C. Gentry, A fully homomorphic encryption scheme, Stanford University, 2009.
[53] M. Van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomorphic encryption over the integers,

in: Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 2010, pp. 24–43.

[54] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: Decentralized
anonymous payments from bitcoin, in: Security and Privacy (SP), 2014 IEEE Symposium on, IEEE,
2014, pp. 459–474.

[55] I. Miers, C. Garman, M. Green, A. D. Rubin, Zerocoin: Anonymous distributed e-cash from bitcoin,
in: Security and Privacy (SP), 2013 IEEE Symposium on, IEEE, 2013, pp. 397–411.

[56] J. Morgan, Quorum whitepaper, Available: https://github.com/jpmorganchase/quorum-
docs/blob/master/Quorum Whitepaper v0.1.pdf 1.

[57] Quorum - ZSL Integration: Proof of Concept, retrieved 30 Dec 2018, https://github.com/

jpmorganchase/zsl-q/blob/master/docs/ZSL-Quorum-POC_TDD_v1.3pub.pdf.
[58] A. Unterweger, F. Knirsch, C. Leixnering, D. Engel, Lessons learned from implementing a privacy-

preserving smart contract in ethereum, in: New Technologies, Mobility and Security (NTMS), 2018 9th
IFIP International Conference on, IEEE, 2018, pp. 1–5.

[59] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts, in: 2016 IEEE symposium on security and privacy (SP), IEEE,
2016, pp. 839–858.

[60] E. Barka, R. Sandhu, A role-based delegation model and some extensions, in: Proc. 23rd National
Information Systems Security Conference, 2000, pp. 101–114.

[61] Q. Wang, N. Li, H. Chen, On the security of delegation in access control systems, in: S. Jajodia,
J. Lopez (Eds.), Computer Security - ESORICS 2008, Springer Berlin Heidelberg, Berlin, Heidelberg,
2008, pp. 317–332.

[62] MetaMask, https://metamask.io/. Retrieved June 30 2018.
[63] Etherscan Ethereum Main Chain, https://etherscan.io/. Retrieved June 30 2018.
[64] E. Carniani, D. D’Arenzo, A. Lazouski, F. Martinelli, P. Mori, Usage control on cloud systems, Future

Generation Comp. Syst. 63 (2016) 37–55.

48



[65] What is Ethereum? - Ethereum Frontier Guide, retrieved 30 Dec 2018, https://ethereum.gitbooks.
io/frontier-guide/content/ethereum.html.

[66] Loveable Digital Kittens Are Clogging Ethereum’s Blockchain - CoinDesk, retrieved 30 Dec 2018,
https://www.coindesk.com/loveable-digital-kittens-clogging-ethereums-blockchain.

[67] F. Martinelli, P. Mori, Enhancing java security with history based access control, in: Foundations of
Security Analysis and Design IV, FOSAD 2006/2007 Tutorial Lectures, Vol. 4677 of Lecture Notes in
Computer Science, Springer, 2007, pp. 135–159.

49


