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Abstract

Over the last three decades there has been an outstanding growth in the development of deterministic finite element codes with exten-
sive analysis capabilities. Extension of such deterministic codes to solve problems in stochastic mechanics is of much interest to the aca-
demic research community and industry. In this paper we discuss some of the issues involved in integrating fully grown third-party
deterministic finite element codes with stochastic projection schemes. The objective of this study is to lay the foundation for development
of an easy-to-use general-purpose stochastic finite element software for carrying out probabilistic analysis of large-scale engineering sys-
tems. We present a brief introduction to stochastic reduced basis projection schemes and the steps involved in coupling them with a typ-

.ical deterministic finite element software. We demonstrate with the help of a number of case studies how a coupled framework can be

used for solving problems in probabilistic mechanics.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there has been much interest in develop-
ing general-purpose probabilistic methods for reliability
analysis and design of engineering systems in the presence
of uncertainty. Stochastic finite element analysis (FEA) is
becoming an increasingly important research field due to
the increasing push towards high-fidelity analysis capabil-
ity for uncertainty quantification and their application to
robust design optimization. A key step in these approaches
involves estimating the structural reliability which is usu-
ally defined in terms of the probability of failure (Py) given
by the following multi-fold integral:

Py = /(6)do, ' (1)

g(6)<0
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where f{6) is the joint probability density function of the
vector of random variables 6 and g(#) defines the limit state
function. To approximate Py via Monte Carlo simulations
or a response surface method, the multi-dimensional limit
state function (which is not usually given in explicit form)
needs to be evaluated repeatedly. Hence, a great deal of fo-
cus of the contemporary research in stochastic mechanics
has been on harnessing deterministic FE codes to compute
the limit state function at a single point.

Many such software systems are available, among which
the most noted are NESSUS [1], COSSAN [2] and
CalREL/FERUM/OpenSees [3-6]. ANSYS Inc. has incor-
porated probabilistic design capabilities in its recent
releases, namely the ANSYS Probabilistic Design System
and the ANSYS DesignExplorer [7]. For a detailed discus-
sion on general-purpose software for structural reliability;
see, for example, [8]. NESSUS is especially attractive since
it already contains interfaces to many commercial FE
codes and is easy to use because of a user friendly graphical
user interface. The SSFEM module for FERUM developed
by Sudret and Kiureghian [6] is a standalone code for
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structural response and reliability analysis based on poly-
nomial chaos expansions. However, because of not being
able to interact with more powerful third-party codes its
capabilities are limited. In most of the software systems
the underlying algorithm for computing the probability
of failure hinges on approximate methods such as
FORM/SORM, polynomial response surfaces or simula-
tion methods. These algorithms are particularly attractive
since they require minimal interaction with the third-party
(FE) codes which in turn reduces implementation complex-
ity. Another important contribution was made by Keese [9]
and Yongke [10] who successfully coupled a stochastic
finite element library (StoFEL) with ANSYS for approxi-
mating the structural response statistics and carrying out
graphical post-processing.

The objective of this paper is to show how a determinis-
tic FE software can be used to facilitate the stochastic anal-
ysis of engineering systems. The key idea is to leverage
deterministic FE codes to carry out spatial discretization
to arrive at a system of random algebraic equations. We
use reduced basis projection schemes for extracting the
solution process by solving this system of equations. In
the semi-discretized form of the partial differential equa-
tions (PDEs) the solution process is approximated by a lin-
ear combination of unknown coefficients and stochastic
basis vectors chosen from a preconditioned stochastic
Krylov subspace of appropriate dimension. Subsequently,
Galerkin projection schemes are used to extract the solu-
tion process. For a detailed discussion on the theoretical
and implementation aspects of stochastic projection
schemes; see, Refs., [11-15]. Post-processing and sampling
the solution can provide a measure of the probability of
failure or any other response statistic of interest. On the
downside, coupling stochastic projection approaches to
deterministic solvers is more involved since it requires com-
munication with the FE code at various levels. A more
detailed discussion on this issue is presented later in this
paper. We demonstrate and establish the advantages of a
coupled framework where a deterministic FE software sys-
tem and a stochastic solver can interact with each other.

In the remainder of this paper we present further details
on stochastic projection schemes and how these schemes
can be made to interact with deterministic FE software.
The next section outlines stochastic finite element analysis
including random field discretization and semi-discretiza-
tion of stochastic PDEs. Section 3 presents a brief intro-
duction to subspace projection schemes. In Section 4 we
discuss the issues and the steps involved in interfacing sto-
chastic projection schemes with third-party FE codes when
the source code is not available. Section 5 demonstrates
how such a coupling can be achieved. We present a case
study using FEAP,, as a third-party FE code. A number
of illustrative problems in stochastic mechanics are solved
using the coupled framework to demonstrate the capability
and the scope of the strategies discussed. In the last section
we conclude the work by summarizing the key points and
outlining some directions for future research.

2. Stochastic finite elements

To illustrate the basic steps involved in stochastic FEA,
consider a two-dimensional isotropic solid with random
elasticity matrix. The elasticity matrix can be represented
as a function of spatial coordinates and a random dimen-
sion, i.e.,

D(x; w) = h(x; @)Dy, (2)

where h(x; ®) : 2 x R* — R represents a random field and
Dy is the deterministic part of the elasticity matrix. To facil-
itate the computational treatment of uncertainties we need
to discretize random fields into a finite number of random
variables. In the next subsection we briefly discuss random
field discretization techniques.

2.1. Random field discretization

Various discretization techniques are available in the lit-
erature [16,17] for approximating random fields, including
the mid-point method, shape function methods, optimal
linear estimation (OLE), weighted integral methods,
orthogonal series expansion and the Karhunen-Loéve
(KL) expansion scheme; see, for example, Refs. [6,18,19].
Amongst the various techniques for random field discreti-
zation, KL expansion is particularly useful since it can
capture the variability using a fewer number of random
variables. However, for KL expansions, closed form solu-
tions are only available for some special correlation func-
tions and simple geometries. Therefore, a numerical
solution is essential to deal with complicated domains
and more general correlation functions. In this section we
present a Galerkin based numerical procedure for solving
the KL eigenvalue problem.

2.2. Numerical solution of KL eigenvalue problem

The Karhunen-Loéve expansion is one the most com-
monly used techniques for representing random fields in
terms of a finite set of random variables in a Fourier-type
series as

h(x; 0) = (h(x; 0)) + Y O(@)\/Diri(x), (3)
i=1

where 0{w) is a set of random variables, 4; and k{x) are the
eigenvalues and eigenfunctions of the following integral
eigenvalue problem:

/ Riu(x, X)1¢;(x) dx = Ax,(X), 4)
2

where Ry(x,x’) is the correlation function of the random
field A(x; w). The solution of the above equation can be eas-
ily obtained using the numerical quadrature method [20].
However, expansion methods where each eigenfunction is
approximated by a linear combination of chosen basis
functions and undetermined coefficients, are more accurate
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and computationally efficient for analytically defined ker-
nels [19]. In an expansion method we approximate each
eigenfunction as follows:

N

Ki(x) =Y eymy(x), (5)
=1

where 71(x), 72(X), . . ., Tx(X) are the basis functions and ¢;

are the undetermined coefficients. Substituting the above
equation into Eq. (4) and orthogonalizing the error with
respect to each basis function (mi(x)) gives

— 7; e { /¢ nj(x')nk(x')dx'J —0, (6)

which can be compactly written as

AX = AMX, (7

where the matrices are defined as follows:

A= / / Ru(x, X (x) 7 (x') dx X, (8)
¢ Jé

Xy = ¢y )

Ay = s, (10)

M = / 7 (x)me(x) dx. (11)
¢

It is interesting to note that the above matrices can be eas-
ily generated by using a standard deterministic FE code if
the basis functions n{x)’s are chosen to be the finite ele-
ment shape functions over the region ¢ [9]. For example,
the matrix M can be generated as a special case of the mass
matrix by setting the density value to unity. The matrix A
can be approximated as follows:

An /¢ /¢ N(x) "Ry (x, X)N(x) dx d, (12)

where N(x) is a vector of finite element shape functions.
The covariance function Rj(x,Xx’) can be approximated
as N(x)CN(x)T, where C;j = Rj(x;,x;). Substituting this
approximation for the covariance function into Eq. (12)
gives

A=MCM. (13)

Once matrices A and M are computed Eq. (7) can be read-
ily solved for eigenvalues A and the eigenvectors X. The
value of the eigenfunctions at any point within the domain
can be approximated using Eq. (5).

The discretized version of a general non-Gaussian
random field can also be written in a similar form; for
example, using a polynomial chaos expansion, the elasticity
matrix in Eq. (2) can be written as

D(x;0) = Y Dy(x)I(6), (14)

i=0

where I'y(0) are multi-dimensional Hermite polynomials in
01,0,,...,0, and D; are the coefficients of expansion which
can be computed as

(D(x; @) I'(0))
(rey -

where (-} denotes the expectation operator.

D;(x) = (15)

2.3. Spatial discretization

As the problem is set in a probabilistic framework, spa-
tial discretization has to be carried out using the discretized
random fields. Using standard mesh generation proce-
dures, the spatial domain can be readily discretized into a
number of elements [21]. However, since the constitutive
matrix is random, the stochastic element stiffness matrix
is given by the following integral evaluated over the
domain 2, of each element

k= / B'D(x; w)Bdx, (16)

where B is the strain—displacement matrix. Substituting Eq.
(14) into the above equation gives

k= / BT [}N: D,-(x)Fi(H)J Bdx = ZN:kfFi(ﬂ), (17)

i=0

where { = [, B'D;(x; »)Bdx. Computation of the above
integral is straightforward if the deterministic FE solver
allows for a user defined elasticity matrix. However, alter-
native strategies for approximating Eq. (17) must be devel-
oped if such a capability does not exist. In summary, to
compute each element matrix the deterministic solver must
receive random field data from the stochastic solver, i.e.,
the expansion coefficient D(x).

Subsequent assembly of the element stiffness matrices by
the deterministic solver and application of the specified
boundary conditions result in the global stochastic stiffness
matrix K(8) € R™". For a solid subjected to static loads we
arrive at the following system of linear random algebraic
equations:

K(0)u(0) = f, (18)

where u(6) € R" is the random displacement vector. f € R”
denotes the excitation vector which we assume to be deter-
ministic for simplicity of presentation. It follows from Eq.
(17) that the global stiffness matrix K(#) can be written in
the following form:

K(0) = iK,T,»(G), (19)

i=0

where I'{60) are multi-dimensional Hermite polynomials in
01,0,...,0,, Ko € R™" is the mean global stiffness matrix
and K; € R™" are weighted stiffness matrices.
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3. Stochastic subspace projection schemes

A number of numerical methods for solving Eq. (18) can
be found in the literature such as perturbation methods,
Neumann series expansions, response surface methods,
etc. However, our focus is on the application of stochastic
projection schemes since recent studies have shown that
they are computationally efficient and provably convergent
[11-15]. The fundamental result underpinning stochastic
reduced basis projection schemes is that the solution of
Eq. (18) lies in the stochastic Krylov subspace. The sto-
chastic Krylov subspace of order m is defined as

A n(K(0),f) = span{f, K(0)f, K(0)f,... , K(0)"'f}. (20)

A stochastic reduced basis approximation of the solution
process can hence be written as

6(0) = Sowo(0) + &9, (0) + - + &b, (0) = W(0)E,  (21)

where WY(0) = {¥,(0),¥,(0),...,¥,(0)} € R™"D is a set
of basis vectors spanning the stochastic Krylov subspace
A (K(6),1) and &= {¢&, f,,...,ém}T e R™! is a vector
of undetermined coeflicients. An arbitrary degree of accu-
racy can be achieved by using more and more basis vectors
from .#",,(K(8), ). In practice, however, basis vectors span-
ning the preconditioned stochastic Krylov subspace
A ((K(0))"'K(8),f) are used to ensure that highly accu-
rate results can be obtained using a few basis vectors. A
good choice for preconditioner is the deterministic matrix
K;' [11].

It is to be noted here that the basis vectors chosen
from the preconditioned stochastic Krylov subspace
A ((K;"K(6), ) can be readily applied to solve problems
with Gaussian uncertainties. However, to facilitate the
treatment of non-Gaussian uncertainties basis vectors
shall be further expanded in terms of multi-dimensional
Hermite polynomials. This can be easily achieved by
exploiting the recursive nature of the basis vectors span-
ning #,,((K;'K(0),f). This step also enables the applica-
tion of higher order reduced basis methods which is
difficult to achieve otherwise. For a detailed discussion
and motivation; see, for example, [13-15]. The general
expression for the stochastic basis vector ,,(6) after
rewriting in terms of Hermite polynomials is given by

bnl0) = D021 (0), (22)

where Y = (KaIZQOZfz‘OKil//;."Dijk)/(F,f) (for m> 1) and
the tensor Dy = (I':.I;I"). Substituting the preceding equa-
tion into Eq. (21) and rearranging gives

(6) = [Z nir,] : (23)

where IT, = 2, ¢}, ..., y"] € R™D),

To compute the approximate solution process we
employ the Galerkin projection scheme which ensures that
the residual error vector is orthogonal to the approximat-

ing subspace. Substituting Egs. (19) and (23) into Eq.
(18) gives

€(0) = (i Kiri<0)) (Zl Hiri(e)) % ~f. (24)

The vector of undetermined coefficients & can now be com-
puted by enforcing the Galerkin orthogonality condition
€(0) L ¥(6) which gives the following system of equations:

() (Somr) (S
= < <§i; niTr,.) f>. (25)

Since by definition (I';) = 0 for i >0 and (I'g) = 1, the pre-
ceding equation simplifies to

P N P .
(Z > n?K,nkDi,k> & =TT, (26)

=0 =0 k=0
where Dy = (I'T;T). It can be noted that Eq. (26) is a re-
duced order deterministic set of linear algebraic equations
of size (m+ 1) X (m + 1) which can be readily solved for
the coefficient vector £. Alternative projection schemes
based on the stochastic Petrov—Galerkin approach and
strong orthogonality conditions can also be devised to esti-
mate the undetermined coefficients; see Nair [13] for an
overview of the theoretical aspects of stochastic reduced
basis projection schemes.

It is straightforward to post-process the final expression
of the solution process obtained using stochastic reduced
basis projection schemes. Applying the expectation opera-
tor to Eq. (23) gives the following expression for the mean:

i= < [‘i n,-rl} &>, (27)

which reduces to @ = ITy& after using the properties of the
PC basis functions. Closed form expressions for the covari-
ance matrix and the L,-norm of the residual error can also
be readily derived; see, Ref. [15].

4. A typical coupled framework

In this section we present a brief outline of how a gen-
eral stochastic toolkit capable of performing random field
discretization and solving a system of random algebraic
equations can be coupled with existing deterministic FE
codes with minimal or no intrusive modifications. Fig. 1
outlines an overview of the steps involved in a typical cou-
pled software framework. It shows various levels of inter-
actions between different computational modules. The
model information is accessed via an intervening interface
by the stochastic solver to facilitate the random field dis-
cretization. The stochastic solver then sends the discretized
random field data to the deterministic code which it uses to
create the assembled mean and weighted stiffness matrices.
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Fig. 1. Levels of communications between a stochastic solver and a deterministic solver.

Subsequently the stochastic solver approximates the solu-
tion process using stochastic projection schemes. Post-pro-
cessing can be done using either or both the solvers.

4.1. Choice of interface

Before delving into the details of the various steps listed
in Fig. 1, we first discuss some issues involved in the design
and development of an appropriate intervening interface.
Such an interface is essential to facilitate the efficient
transfer of data and information between various codes.
Essentially, we need to create various input files for the
deterministic FE software to generate the mean and
weighted stiffness matrices. Automation of the process,
exploitation of parallelization opportunities and a graphi-
cal user interface (GUI) are some of the desired features.
Any of the computer languages, viz., C, C++, Java, For-
tran, etc. can be used to create such an intervening link.
However, we propose the use of the Matlab [22] inter-
pretive technical computing environment to build the inter-
face. Matlab provides an intuitive computing environment
with advanced tools for algorithm and application develop-
ment. Besides, it can be used as a powerful scripting envi-
ronment to control the execution and inputs/outputs
from a number of participating codes. As Matlab is rou-
tinely and widely used in academia and industry to build
and test algorithms, it seems to be a preferred environment
to be able to attract a wide variety of users as well as
developers.

4.2. General approach

Fig. 2 lists the set of instructions a user must carry out
either manually or via the Matlab scripting environment.

Step 1 involves creating a geometry model of the structure
under consideration. For simple geometries deterministic
FE software or the open source mesh generator DIST-
MESH [23] can be used. For more complex geometries
any of the readily available CAD packages such as CATIA
or Pro/Engineer can be helpful. Subsequently, a mesh is
created using the same software and written to a file. Most
of the CAD packages provide access to nodal and element
connectivity data which can be easily read by Matlab.

In the next step the analyst must identify uncertain
parameters and construct probabilistic models. For scalar
uncertainties probability distribution functions of the ran-
dom parameters are constructed. This could be done by
applying kernel density estimation techniques to available
field data [24] or by soliciting expert opinion. While, for
spatially varying random fields a suitable correlation func-
tion is assumed or constructed from field data [16]. Next,
the random field model, i.e, mean, standard deviation
and the correlation function is passed to the stochastic
toolkit to carry out the random field discretization. The
stochastic solver needs the mesh description for discretizing
the random field model.! The random field can be discret-
ized on the structural mesh using any of the discretization
techniques such as the Karhunen-Loéve expansion scheme
(as discussed earlier). The data arising from random field
discretization is subsequently passed to the deterministic
solver to facilitate the spatial discretization.

Spatial discretization involves the computation of the
integral in Eq. (17). As mentioned earlier if the determinis-
tic FE code allows for user defined constitutive properties,

"It is possible in theory to carry out random field discretization
independently of a CAD package — we present a problem later where we
have chosen to do so to demonstrate the generality of implementation.
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For i = 1 to N+1 do

End

Algorithm for Coupling
1. Create geometry and mesh with a CAD software
2. Identify uncertain parameters
3. Create random field models
4. Discretize random fields using the stochastic toolkit
5. Select element types, material types and boundary conditions
6. Retrieve data from steps 1, 4 and 5

7. Create input files for deterministic FE software

8. Run deterministic FE software, determine K;

9. Retrieve and send all K, and f; to stochastic toolkit

10. Run stochastic solver to gemerate the solution process

11. Postprocessing and visualization of response statistics

Fig. 2. Computational steps involved for N random variables.

this can be done efficiently. Here, the expansion coefficients
in Eq. (14) are treated as pseudo-elasticity matrices for cal-
culating PC expansions of the element stiffness matrix. An
alternative approach is to use the following approximation
for the stochastic element stiffness matrix [10]:

k= / B"DyBdx

+ { / B’ (i D,»(xcem)> de} ry(0). (28)

In other words, it is assumed that the expansion coefficients
do not change significantly over the element domain. Each
element appears to have a unique constitutive matrix given
by Di(Xcent), Where Xcene 1S the centroid of the element under
consideration.

Having obtained the mesh data, random field data, ele-
ments and material constants, loading, and boundary con-
ditions we can generate N+ 1 different input files using
Matlab. These input files contain instructions to be carried
out by the deterministic FE software. Input files can be fed
in parallel into the deterministic FE software to compute
the mean and weighted stiffness matrices and load vectors.
Given the mean and weighted stiffness matrices a PC
expansion of the global stiffness matrix can be constructed
as in Eq. (19). Given the PC expansion of the stochastic
global stiffness matrix, we can run the stochastic solver
and apply stochastic projection schemes to extract the solu-
tion process by solving a system of linear random algebraic
equations. The current methodology can also be used for
direct Monte Carlo simulation and perturbation analysis.
It is worth noting here that PC projection schemes [25]

can also be used in lieu of the stochastic reduced basis
projection scheme in this step. Once the solution process
has been approximated in a reduced basis, post-processing
can be carried out to extract all the response statistics of
interest. The summary statistics can be fed back into the
deterministic FE code for graphical post-processing, if
required.

5. Demonstrative applications

In this section we demonstrate how the steps discussed
in the previous sections can be implemented to solve a
range of problems in probabilistic mechanics. We have
chosen FEAP,, as the third-party FE code for the case
studies. However, the approach presented is quite general
and can be used in conjunction with any third-party FE
codes such as ABAQUS and ANSYS [26].

5.1. Implementation details

It is evident that leveraging the deterministic FE capa-
bilities compliments the stochastic FE analysis. Fig. 3
shows the essential elements of a typical stochastic finite
element library. Model building, mesh generation and com-
putation of stiffness matrices can be done in a conventional
deterministic manner whereas random field discretization
and solution of the system of random algebraic equations
is carried out using stochastic solvers.

We now illustrate how the steps discussed in earlier sec-
tions can be implemented to solve a typical problem in
probabilistic mechanics. Consider a thin square plate of
unit length, clamped at one edge while being subjected to
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a uniform in plane tension at the opposite edge; see, Fig. 4.
The external loads are assumed to be deterministic and of
unit magnitude.

The domain of the plate is discretized into 16 square
elements which leads to a total of 50 degrees of freedom.
A mesh file is generated using Matlab containing nodal
coordinates and connectivity data for the elements. The
modulus of elasticity of the plate is modeled as a two-
dimensional Gaussian random field with mean g =1 and
standard deviation ¢ = 0.2. The random field is assumed
to follow the exponential correlation model given below:

R(X, XI) = exp (_ le b_lxlll _ lxlb_lezl), (29)
Loading F

- —»

L1,

/. L

Fig. 4. Schematic of the plate problem.

where b; = b, = 1. The random field is discretized using the
KL scheme with four random variables. We select plane
stress elements and material type as elastic isotropic with
v =0. With this information we generate five input files
for FEAP,,, one for the mean stiffness matrix and the other
four for weighted stiffness matrices. These input files are fed
into FEAP,, to compute the matrices K;, i=0,1,...,4 and
the load vector which are eventually used by the stochastic
solver to compute the solution process. We use three
stochastic basis vectors for reduced basis approximation
of the solution process.

Three strategies for calculating the element stiffness
matrices are compared. In the first strategy, the integral
in Eq. (16) is directly evaluated using Gauss quadrature.
In the second strategy, the element stiffness matrices are
computed via the centroid approximation given in Eq.
(28). In both the strategies we use the analytical solution
for the KL eigenvalue problem over the square domain.
In the third strategy we use the centroid approximation
technique in Eq. (28) and the expansion coefficients D{x)
are computed using Galerkin based numerical solution of
the KL eigenvalue problem as presented in Section 2.

Table 1 compares the results obtained using the three
strategies. We compare the mean and standard deviation
of the displacement at point E in Fig. 4. It can be noted
that the accuracy of Eq. (28) is reasonable even for the
coarse mesh used. The Galerkin based numerical solution

Table 1
Comparison of discretization schemes

Deflection at point E Mean deflection Standard deviation

in y-direction

in y-direction

KL Exact 1.03249
KL Approx. 1.03381
KL Numerical 1.03414

0.19859
0.20148
0.19919
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gives results very similar to the analytical solution for the
test case. The approximation errors incurred tend to reduce
rapidly when the mesh is refined further. It is anticipated
that for problems where the correlation length of the ran-
dom field is small, a highly refined mesh may be required
to ensure good approximations.

In the next subsection we present some illustrative exam-
ples to demonstrate the capabilities of the coupling strategy
outlined in the present paper.

5.2. Elasticity problem ~a plate with holes

The problem considered here is a square plate with five
circular holes as shown in Fig. 5. The plate geometry is
defined by the parameters /=1, R=0.2 and r =0.1. The
plate is clamped at the bottom edge CD and subjected to
a uniform in-plane tension of unit magnitude at the oppo-
site edge AB. The Young’s modulus of the plate is modeled
by a two-dimensional homogeneous Gaussian random pro-
cess with exponential correlation function given by Eg.
(29), where b=[0.1 0.1]. The mean and the standard
deviation of the Young’s modulus are assumed to be unity
and 0.2, respectively and Poisson’s ratio is set to zero.
Fig. 6 shows the spatially discretized plate containing 945
triangular elements and 566 nodes. The model contains a
total of 1132 degrees of freedom with two degrees of free-
dom per node. Mesh generation was carried out using the
open source code DISTMESH [23].

The random field is discretized using the numerical KL
scheme. As discussed earlier in Section 2.1 a numerical
solution of the KL integral eigenvalue problem is crucial
to discretize random fields defined over complicated
domains such as the one shown in Fig. 5. A finite element
based numerical approach is used here to decompose the
exponential correlation kernel which provides the eigen-
functions and the eigenvalues.

A E (0.73,1.00) B

112

ap

]

1]
X

o] | +|D

Fig. 5. Schematic for problem.

IARIDRRDDRAR BRI RRS SR PRS
Sy

Fig. 6. Spatial triangulated mesh.

We use FEAP,, to compute the mean and weighted stiff-
ness matrices for carrying out the probabilistic analysis
using the stochastic solver. The mean and standard devia-
tion of the nodal response values are computed for up to
six terms in the KL expansion and up to seven stochastic
basis vectors in reduced basis approximation of the solu-
tion process. Figs. 7 and 8 exhibit the results when six
modes are retained in the KL expansion and fifth-order
stochastic reduced basis scheme is used to estimate the
solution. Fig. 7a shows the undeformed mesh and imposed
deterministic deformation and Fig. 7b shows undeformed
mesh and imposed probabilistic mean deformation. The
two figures look quite similar, however, the standard devi-
ation of displacement as reported in Fig. 8 is significant in
both directions.

Table 2 contains the estimated mean and standard devi-
ation of displacement at the point E in Fig. 5. The coordi-
nates of the point E are x =0.73 and y = 1.00 and is the
point of maximum deflection in the y-direction. Mean
and standard deviation are computed in both x- and y-
directions using reduced basis approximations with up to
six stochastic basis vectors and with six independent ran-
dom variable in the KL expansion.

It can be observed from the results presented in Table 2
that the values of the mean and the standard deviation of
displacement at the point E tend to converge as the order
of approximation is increased. In principle, a good estimate
of the solution process can only be obtained by reducing
the error in representing the random field as well as in solv-
ing the system of random algebraic equations. Further, the
mesh used for spatial discretization must be sufficiently fine
to capture the local solution characteristics.

5.3. Aircraft wing — bending problem

The next problem considered is a simplified aircraft wing
model in bending. The wing geometry is shown in Fig. 9,
where the values in brackets show the coordinates of points
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Fig. 7. Undeformed mesh, deterministic solution and the mean solution using six stochastic basis vectors and six terms in the the KL expansion: (a)
undeformed mesh and deterministic deflection and (b) undeformed mesh and mean deflection.
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Fig. 8. Estimation of standard deviation using six stochastic basis vectors and six terms in the KL expansion: (a) standard deviation in x-direction and (b)

standard deviation in y-direction.

Table 2

Estimated values of the mean and the standard deviation using SRBMs of order up to five and six terms in the KL expansion

For M=6 Mean Standard deviation

Direction x Direction y Direction x Direction y
SRBMI 8.311095¢—-02 2.541100e+00 1.088438e—01 - 1.042519¢—01
SRBMII 8.376228e—-02 2.541139¢+00 1.108716e—01 1.061627e—01
SRBMIII 8.377725¢—-02 2.541139e+00 1.107900e—01 1.061283e—01
SRBMIV 8.376410e—02 2.541138e+00 1.107829e—01 1.061225e-01
SRBMV 8.376349¢—02 2.541138e+00 1.107865e—01 1.061225¢-01

A, B, C, D and E, respectively. All degrees of freedom are
restrained along the edge AE and a transverse force F of
magnitude 2 units is applied in z-direction along the edge
CD. The Young’s modulus of the wing is assumed to be
a two-dimensional homogeneous Gaussian random process
with mean = 0.26 MPa and standard deviation 10% of the
mean value and Poisson’s ration v =0.3. The exponential

correlation function is used to model the uncertainty in
the Young’s modulus.

As mentioned earlier in Section 4.2, random field dis-
cretization can be carried out independently of the FE sol-
ver by using any of the CAD packages in conjunction with
a random field dicretization library. This is a desirable
feature of a stochastic FEA framework for a number of
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Fig. 9. Schematic of an airplane wing.

reasons [27]. Firstly, since the random field discretization
procedure does not change with the choice of element for-
mulations and boundary conditions, discretized random
field data can be computed and stored and made available
whenever needed. Secondly, for loosely correlated random
fields one can have the freedom of choosing a relatively
coarser mesh compared to the spatial mesh. Thirdly,
the spatial mesh is regulated by the stress gradients of the
response whereas random field mesh size depends on the
correlation length of the covariance function [28]. Hence,
a separate mesh is often desirable in practice.

Here we demonstrate the generality of our software
framework which allows the use of two independent
meshes for spatial and random field discretization, respec-
tively. Fig. 10a shows the spatial mesh for the airplane
wing problem. The discretization is carried out using the

a
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open source code DISTMESH [23]. The mesh contains a
total of 133 triangulated elements with 97 nodes. For illus-
tration purpose, we use a separate mesh for random field
discretization as shown in Fig. 10b. This mesh is generated
using ANSYS and contains 157 four-noded planar ele-
ments with 188 nodes. Once again we use a spatially vary-
ing exponential correlation function as in Eq. (29) to
characterize the random field.

The number of KL eigenmodes to be retained while dis-
cretizing a random field depends on the magnitudes of the
corresponding eigenvalues. Only those eigenvalues with
greatest values are retained. The eigenvalues represent the
amount of energy (variance) captured along each of the
corresponding eigenmode. The percentage of the total
energy captured by first M eigenmodes can be computed
by the formula

M
E wred = Zi——-l)"i
captured = Zoo '11'

i=1

x 100. (30)

The fact that a larger number of terms in the KL expansion
is necessary to represent the random field accurately for
smaller correlation lengths is supported by the curves
shown in Fig. 11. Fig. 11 represents the decaying trend of
the eigenvalues obtained by solving the KL integral eigen-
value problem for the wing problem. Note that for larger
correlation lengths the decay is rapid whereas the decay
is slower for smaller correlation lengths; e.g., using only
10 terms 92% variance can be captured for correlation
length [2.0 1.0] whereas 89 terms are needed to capture
the same amount of variance when correlation length is
reduced to [0.2 0.1].

We analyze the response at the point C on the wing
structure (see Fig. 9), which is the point of maximum trans-
verse displacement. The mean transverse displacement and
the standard deviation are computed for the correlation
length, b=[0.2 0.1]. Fig. 12 shows the estimated mean

b
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Fig. 10. Spatial and random field meshes for the airplane wing problem: (a) spatial mesh and (b) random field mesh.
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Fig. 11. Normalized eigenvalues for different correlation lengths.

and standard deviation by using first- and second-order
reduced basis methods for up to 50 terms in the KL expan-
sion. The graph for estimated percentage variance captured
for increasing number of eigenmodes is also shown which
illustrates the contribution of each eigenvalue.

Once appropriate meshes for spatial and random field
discretization have been chosen, a typical solution method-
ology to a probabilistic problem involves two levels. One is
establishing the minimum number of terms to be retained
in the KL expansion for a given correlation length to rep-
resent the spatial variability accurately. For the wing struc-
ture the first ten eigenmodes capture more than 92%
variance when the correlation length is [2.0 1.0] which
ensures an acceptable level of accuracy. At the second level
an appropriate number of basis vectors for representing the
solution process is required to minimize the errors in solv-
ing the resulting system of random algebraic equations.

We now approximate the solution using up to four sto-
chastic basis vectors for the case when correlation length b
is [2.0 1.0]. Convergence is rapidly achieved for the mean
and the standard deviation. Estimated L, norm of residual
error values for SRBMI, SRBMII and SRBMIII are
4.747e—-3, 1.362e—3 and 3.716e—4, respectively. Fig. 13
shows the mean values of the displacement of the wing esti-
mated using third-order stochastic reduced basis method. It
was noted that the maximum value of the transverse dis-
placement given by deterministic analysis is 0.470, whereas
the mean and standard deviation of deflection at the same
point given by the probabilistic approach is 0.474 and
0.036, respectively. Fig. 14 shows the standard deviation
of the transverse deflection along the span of the wing.

5.4. Timing studies

Solving real life engineering problems in a probabilistic
setting becomes computationally challenging especially
when the number of random variables and/or degrees of
freedom are increased. It has been a daunting task to solve
a problem in stochastic mechanics with more than a few
tens of random variables and a few thousands of degrees
of freedom. In this section we demonstrate how such com-
plex problems can be solved using a coupled framework
which combines reduced basis projections schemes with
third-party FE software. We present some timing studies
conducted on a linear static plate problem with random
Young’s modulus. .

Consider again the simple plate problem described in
Section 5.1. We discretized the plate into a number of
quadrilateral elements and compute the solution process
using second-order reduced basis projection schemes. We
retained 20 random variables in the KL expansion for ran-
dom field discretization. The scatter plot (on log scale) in
Fig. 15 reports the wall time taken to solve the problem
for increasing number of degrees of freedom. The runs”
were conducted on a Pentium IV 2 GHz processor funning
on Linux. The wall time shown in the graph does not
account for the time taken for random field discretization.
The total wall time shown includes the time taken for cre-
ating the input files for the deterministic FE software, time
taken by deterministic FE software to compute the mean
and weighted matrices and the time taken by stochastic sol-
ver to compute the solution process and its statistics. We
computed the solution process for up to 20,402 degrees
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Fig. 13. Mean transverse deflection. Fig. 14. Standard deviation of transverse deflection.

of freedom. The results obtained are quite encouraging and  an hour of computer time. Note that alternative schemes
suggest that problems with thousands of degrees of free-  such as MCS and PC projection schemes would be signifi-
dom and many random variables can be solved in under  cantly more expensive for the same problem [14]. It is to be
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Fig. 15. Scatter plot for up to 20,402 degrees of freedom for 20 random variables in KL expansion (log scale).

noted here that parallelization of computation of mean and
weighted stiffness matrices can make the whole process
many times faster. Further, optimizing the file read/write
process is also expected to significantly improve speed.

6. Concluding remarks

Over the past three decades, a significant amount of
effort has gone into developing and testing deterministic
FE software. However, general-purpose software tools
for stochastic analysis are still at its very beginning. This
paper presented a stepping stone towards developing a
general-purpose software for computational stochastic
mechanics. The approach presented exploits existing FEA
tools for carrying out spatial discretization of stochastic
PDEs and has a number of attractive features: (1) users
familiar with FEA and a basic understanding of probabil-
ity theory will be able to use stochastic projection schemes,
(2) direct access to the extensive library of existing finite
element formulations for plate and shell structures, three-
dimensional elasticity, heat transfer, etc., becomes possible,
and (3) future extensions of the framework, for example to
non-linear problems and non-probabilistic uncertainty
models, can be readily implemented.

In this paper we presented strategies for interfacing
stochastic reduced basis projection schemes with third-
party deterministic finite element codes. We outlined a brief

introduction to stochastic projections schemes and
addressed the issues involved while using them in conjunc-
tion with deterministic FE software. We demonstrated
the usefulness and capabilities of such a coupling with
the help of a number of problems from stochastic struc-
tural mechanics. However, the coupling presented works
only for linear static problems with uncertainties in mate-
rial properties. Further work is required to extend the pres-
ent framework to tackle geometric uncertainties.

One of the major challenges in developing such a soft-
ware is the choice of solution method for semi-discretized
system of equations. Our emphasis is on using stochastic
reduced basis projection schemes for solving real life engi-
neering problems since they have a rigorous mathematical
underpinning and are computationally efficient at the same
time. We presented detailed timing studies to demonstrate
the usefulness of a typical coupled framework. The results
obtained suggest that linear stochastic systems with many
thousands of degrees of freedom and tens of random
variables can be solved using a tractable amount of compu-
tational resources.
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