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Nano-emulsion formation by emulsion phase inversion
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Abstract

The droplet size distribution of an emulsion governs emulsion properties such as long-term stability, texture and optical appearance.
Consequently, means to control the droplet size during emulsification are of interest when well-defined emulsion properties are needed. In
this work, we study emulsions consisting of water, paraffin oil and a mixture of non-ionic surfactants and fatty alcohols by means of laser
light scattering. We investigate the influence of the route of preparation as well as the surfactant concentration on the droplet size distribution.
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bove a critical surfactant-to-oil ratio and following the standard way of emulsion phase inversion, a significant amount of oil drop
iameters less than 1�m were obtained. When changing the way of emulsification and thereby avoiding a phase inversion to occur,
roplets are absent and the droplet size distribution is solely governed by the input of mechanical energy. We demonstrate that em
y the phase inversion method makes use of two effects for the achievement of finely dispersed oil-in-water emulsions. The
icontinuous structure formed by the surfactant at the inversion point determines the size of the resulting droplets while the cor
inimal interfacial tension facilitates the droplet formation, explaining why the droplet size distribution only depends on the we
etween surfactant and oil rather than on the water concentration.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Macroemulsions are dispersions of at least two non-
iscible liquids. They are thermodynamically unstable

ystems that are stabilized kinetically. Consequently, the
tability of an emulsion depends both on its composition and
he size of the emulsion droplets. Typically, the droplet size
f conventional emulsions is larger than 1�m, making these
roplets susceptible to gravity forces. Depending on the
reparation method, different droplet size distributions might
e achieved, explaining why the route of preparation can
ave an influence on the emulsion stability. Emulsions with
roplet sizes between those of conventional emulsions and
icroemulsions, i.e. with a typical size range of 20–500 nm
re termed mini-emulsions[1], ultrafine emulsions[2],
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submicron emulsions[3], translucent emulsions[4] and
nano-emulsions[5,6]. Due to their small droplet siz
nano-emulsions may appear transparent, and Brow
motion prevents sedimentation or creaming, hence offe
increased stability. In contrast to microemulsions, na
emulsions are metastable and can be diluted with w
without changing the droplet size distribution[6].

The preparation of emulsions with droplet sizes
the submicrometer-range may be performed mechani
which involves high-energy input that is generally achie
by high-shear stirring, high-pressure homogenizers, or u
sound generators. The high-energy input leads to defor
forces that are able to break the droplets into smaller o
provided the Laplace pressure is overcome. Additionall
increase of the surfactant content at the interface red
the Laplace pressure[5]. Therefore, the smaller the drop
size, the more energy and/or surfactant is required, ma
this preparation route unfavorable for industrial applicati

927-7757/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.colsurfa.2004.09.029



54 P. Fernandez et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 251 (2004) 53–58

Fig. 1. Schematic illustration of both catastrophic and transitional phase in-
version for the preparation of finely dispersed O/W emulsions. The solid
black line marks the inversion locus, the dotted lines the hysteresis zone.
Within the optimum formulation zone and at the inversion locus, the inter-
facial tension is minimal. During low-energy emulsification, this ultralow
interfacial tension is employed for the formation of finely dispersed droplets,
while the final emulsion should be far away from these regions to enhance
emulsion stability.

when very small droplets are desired. However, submicron
emulsions can also be obtained by employing the physic-
ochemical properties of the system generally referred to as
low-energy emulsification methods. These methods make use
of changing the spontaneous curvature of the surfactant. For
non-ionic surfactants, this can be achieved by changing the
temperature of the system, forcing a transition from an oil-in-
water (O/W) emulsion at low temperatures to a water-in-oil
(W/O) emulsion at higher temperatures (transitional phase in-
version). During cooling, the system crosses a point of zero
spontaneous curvature and minimal surface tension, promot-
ing the formation of finely dispersed oil droplets (see vertical
arrow inFig. 1). This method is referred to as phase inversion
temperature (PIT) method[6–9]. Instead of the temperature,
other parameters such as salt concentration or pH value may
be considered as well, generalized by considering the sur-
factant affinity difference (SAD) instead of the temperature
alone[10].

Additionally, a transition in the spontaneous radius of
curvature can be obtained by changing the water volume
fraction (emulsion inversion point (EIP) method). By
successively adding water into oil, initially water droplets
are formed in a continuous oil phase. Increasing the water
volume fraction changes the spontaneous curvature of the
surfactant from initially stabilizing a W/O emulsion to
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inversion has been mentioned to play a role for the formation
of submicrometer-sized droplets[14].

In the present work, the preparation of O/W emulsions
stabilized by a mixture of two non-ionic surfactants com-
mercially used for the formulation of creams and lotions
was studied in the light of the low-energy emulsification
methods discussed above. We demonstrate that also for these
long-chain surfactants phase inversion and nano-emulsion
formation occur. The influence of the preparation route was
investigated by analyzing the droplet size distribution of
oil-in-water emulsions obtained by pouring the water phase
into the oil and vice versa. We observed that a critical amount
of surfactant is needed for the preparation of submicrometer-
sized droplets by the emulsion inversion point method.
Furthermore, we studied three surfactant-to-oil weight ratios
and successively added water, thereby mapping parts of
the surfactant/oil/water phase diagram. The final droplet
size does not depend on the amount of water added to the
system, demonstrating that the droplet size is determined
by the surfactant-to-oil weight ratio rather than by the water
content. This suggests that the droplet size depends on the
distance given by the lamellar structure at the inversion point.

2. Material and methods
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n O/W emulsion at the inversion locus. This proces
ell known for short-chain surfactants which form flexi
onolayers at the oil–water interface, resulting in a bic

inuous microemulsion at the inversion point. Also dur
his transition-referred to as catastrophic phase inver
inimal interfacial tension are achieved and reporte

acilitate the formation of fine droplets (horizontal arrow
ig. 1) [10–13].

In addition to the low interfacial tension, the format
f a bicontinuous or lamellar structure with a characteri
urfactant-dependent repeat distance at the point of
.1. Chemicals

Emulsions were prepared with Cremophor® A6 and
remophor® A25 (both BASF products), distilled wat
nd paraffin oil (mineral oil, Riedel de Haën, Germany)
remophor® A6 is a non-ionic surfactant consisting
polyethylene glycol alkyl ether (ceteareth-6; CiEj with

= 16–18 andj = 6) and stearyl alcohol at a weight ratio 3
remophor® A25 is also known as ceteareth-25 (CiEj with
= 16–18 andj = 25). The weight ratio Cremophor® A6/A25
as fixed at 7:3. Each sample (with compositions as indic

n Table 1) was prepared with a total mass of 300 g, and
ater-to-oil weight ratio was kept constant at 3.5. Previou
mulsification, the surfactants were mixed into the oil ph
t 80◦C. The water (also at 80◦C) and oil phases were mix
ith a Heidolph IKA stirrer at 150 rpm and subsequently
ogenized with a T25 Ultra-Turrax at 13,000 rpm for 1 m
he samples were cooled at room temperature under m
te stirring at 150 rpm.

able 1
ater/Cremophor® A6/A25/paraffin oil emulsions compositions

water WCremophor Wparaffin oil WCremophor/Wparaffin oil

5.8 2.5 21.7 0.12
3.9 5 21.1 0.24
1.9 7.5 20.6 0.36
0.0 10 20 0.5

water,WCremophorandWparaffin oilare the weight fractions (in wt.%) of wat
remophor® mixture and paraffin oil, respectively.WCremophor/Wparaffin oil

ndicates the surfactant-to-oil weight ratio.
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For all compositions indicated inTable 1, the water phase
was poured into the oil phase (described as W into O or
method A). Furthermore, an additional sample containing
10% Cremophor® mixture was prepared by pouring the
oil phase into the water phase (O into W or method
B).

For the mapping of the phase diagram, increasing amounts
of water were added to mixtures of surfactant and oil at 80◦C.
The total sample mass was 25 g. The surfactant-to-oil weight
ratios correspond to those listed inTable 1. After weighing,
each sample was shaken by hand, and the samples were stored
in a thermostatized chamber at 80◦C for several days in order
to equilibrate the samples.

2.2. Methods

The oil droplet size distribution was measured by means
of laser light scattering (HORIBA La-900). A few drops of
emulsion were injected into a bath of distilled water kept
at 25◦C (sample dilution). The bath is continuously under
agitation in order to disperse the oil droplets within the mix-
ture. A few minutes after pouring, the laser light scattering
measurement was performed.
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resulting emulsion was examined between crossed polarizing
filters, revealing birefringence for the obtained emulsions.

For the dilution lines marked by 1 and 2, correspond-
ing to a surfactant-to-oil weight ratio of 0.50 and 0.36, all
droplets observed were in the submicrometer-size range. As
given inTable 2, the measured droplet size does not signifi-
cantly change upon dilution with water. Laser light scattering
revealed similar droplet size distributions, in location (cen-
tered around 0.5–0.3�m), as well as in shape (monomodal
with similar degree of polydispersity) to those obtained with
the final emulsions.

4. Discussion

For the emulsions prepared by method A, it appears
that the higher the surfactant concentration, the smaller the
droplets that can be obtained. A gap exists between droplets
with sizes centered at∼8–10 and 0.3–0.6�m rather than
a continuous change in droplet size. This suggests two in-
dependent mechanisms of emulsification. The small-sized
droplets do not originate from the mechanical energy in-
put, since the smallest droplet size obtained by means of
Ultra-Turrax homogenization is known to be around 1�m
[3,5]. On the other hand, the droplet size centered around
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. Results

The resulting droplet size distributions for the emulsi
isted in Table 1are given inFig. 2. Depending on the su
actant concentration, the droplet sizes vary when prep
y method A. For 2.5 wt.% surfactant (surfactant-to
eight ratio of ∼0.12), one large peak centered aro
0�m with a small additional peak around 0.6�m is
btained. When increasing the surfactant content to 5
surfactant-to-oil weight ratio of∼0.24), a truly bimoda
istribution is observed with one peak around 8–10�m
nd a second centered at∼0.6�m. Further increasing th
urfactant concentration to 7.5 wt.% results in one p
t 0.4�m, while for the 10 wt.% Cremophor® mixture
ne peak at around 0.3�m is obtained (surfactant-to-o
eight ratios of∼0.36 and 0.5, respectively). Interesting
hen prepared by method B, the emulsion with 10 w
urfactant mixture shows large droplets similar to
ituation observed with 2.5 wt.% surfactant prepared
ethod A. As shown inFig. 2e, a bimodal distribution
btained with a large peak around 10�m and a small one
.6�m.

As shown inFig. 3, parts of the phase diagram w
apped by diluting samples with fixed surfactant-to-oil

ios (0.50, 0.36 and 0.12 marked by 1–3, respectively)
ater and moderately shaking by hand. Upon dilution
ater, the emulsion inversion point is reached and an o
ater emulsion is formed. As indicated in the phase diag

he emulsion inversion point was crossed at a water co
etween 20 wt.% (for a surfactant-to-oil weight ratio of 0.
nd 25 wt.% (for a surfactant-to-oil weight ratio of 0.50). T
–10�m seems to agree with the mechanical disruptio
he oil droplets (and possible partial coalescence of thos
roplets) and is therefore attributed to the homogeniza
rocess.

For high surfactant concentrations, however, the mec
cal emulsification becomes insignificant for emulsions
ared by method A, since only oil droplets with sizes aro
.4�m (7.5 wt.% Cremophor® mixtures) are observed. Th
ize is further reduced to 0.3�m for 10 wt.% surfactan
ndicating that high surfactant contents promote the

echanical emulsification process.
In contrast to the above observations, the sample con

ng 10 wt.% surfactant prepared by method B shows a d
ution of droplets mainly centered at 8–10�m, that can b
ttributed to the mechanical process alone. This indicate

he order of adding the phases (water poured into the oil p
r vice versa) plays a key role in the formation of small-s
il droplets. Note that the case of emulsification by the
ethod is excluded, since this effect is independent o
rder of adding the phases. Additionally, in the presen
eriments, all phases were subjected to the same heatin
ooling procedure. Furthermore, the PIT of the Cremoph®

6/A25 surfactant mixture is above 100◦C.1 Therefore, th
hange in the water volume fraction is assumed to b
ponsible for the non-mechanical emulsification, leadin

1 The PIT can be obtained by measuring the change in conductivity
/W emulsion upon heating. At the inversion point, a non-conductive
mulsion is formed, resulting in a sharp decrease in conductivity. Fo
urfactant mixture investigated here, no such drop could be observed
temperature of about 90◦C.
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Fig. 2. Droplet size distributions depending on the surfactant concentration ((a) 2.5 wt.%; (b) 5 wt.%; (c) 7.5 wt.%; (d) 10 wt.%; (e) 10 wt.%) and the preparation
method ((a)–(d) according to method A; (e) according to method B).

submicrometer-sized oil droplets obtained by means of emul-
sion phase inversion.

A comparison ofFig. 2 and Table 2demonstrates that
no difference exists between the droplet size distributions
of emulsions obtained by means of Ultra-Turrax and by
manual shaking for surfactant-to-oil weight ratios of 0.36
and 0.50. This further emphasizes the fact that the non-

mechanical emulsification is a spontaneous process and al-
ready gentle mixing is sufficient to allow for the formation
of submicrometer-sized droplets.

As can be seen inFig. 2, a critical surfactant-to-oil
weight ratio (larger than 0.24) is needed to exclusively obtain
submicrometer-sized droplets. On the other hand, upon ad-
dition of water, the droplet size distribution does not change
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Fig. 3. Presentation of the different emulsification procedures in the phase
diagram of water/Cremophor® mixture/paraffin oil at 80◦C (in weight frac-
tions). The two different emulsification methods, water phase poured into
the oil phase (A) and vice versa (B) are given by the arrows. The dashed
line marks the emulsion inversion point (EIP). Dotted lines indicate dilution,
leading to final emulsions (closed circles) with 10, 7.5, and 2.5 wt.% sur-
factant mixture, respectively (seeTable 1). Open squares show samples for
which oil-in-water emulsions were observed, while closed squares indicate
compositions for which the phase separation has no occurred yet.

significantly once the EIP is crossed (Fig. 3 and Table 2),
suggesting that for spontaneous emulsification by phase in-
version the surfactant-to-oil weight ratio is of importance
rather than the amount of water.

Our results suggest that the droplet size distribution is
mainly controlled by the structure of the bicontinuous or
lamellar phase formed during the phase inversion, the charac-
teristic distance of which is dependent on the surfactant-to-oil
ratio. This is in agreement with literature data[6] showing
that for emulsions produced by the PIT method, the droplet

F oil pha d struc
m tures th B: sm
d actant

Table 2
Droplet sizes of emulsions with surfactant-to-oil ratios of 0.36 and 0.50,
respectively, upon dilution with water

Wparaffin oil WCremophor Wwater WCremophor/
Wparaffin oil

Droplet size
(�m)

51.3 18.7 30 0.364 0.5
44 16 40 0.364 0.33
36.7 13.3 50 0.364 0.35
29.3 10.7 60 0.364 0.35
22 8 70 0.364 0.36
40 20 40 0.5 0.36
33.33 16.67 50 0.5 0.38
26.67 13.33 60 0.5 0.33
20 10 70 0.5 0.38

Wwater,WCremophorandWparaffin oilare the weight fractions (in wt.%) of water,
Cremophor® mixture and paraffin oil, respectively.WCremophor/Wparaffin oil

indicates the surfactant-to-oil weight ratio. All particle size distributions are
monomodal and centered at the given droplet size.

size is governed by the structure of the bicontinuous phase,
rather than the water content. The high surfactant-to-oil ratio
used in this work results in a lamellar phase with a repeat dis-
tance of some few tens of nanometer. The observed droplets
are, however, in the range of 300–500 nm. This discrepancy
suggests that the droplets grow after formation by Ostwald
ripening similar to what has been reported upon before[14].
Furthermore, this consideration suggests that the low inter-
facial tension associated with the inversion point, which is
usually assumed to assist the droplet formation, might be of
secondary importance.

In order to illustrate the mechanisms involved in this low-
energy emulsification process, the steps of submicron-droplet
formation by phase inversion are given in the following. As
the water phase is poured into the oil phase, the system starts
as a W/O microemulsion[15]. Upon increasing the volume
ig. 4. Scheme of the emulsification procedure (W: water phase; O:
erge together to give elongated and bicontinuous or lamellar struc
roplets are immediately produced and grow in size upon oil and surf
se). Method A: first water-in-oil droplets are produced; those invertetures
at finally decompose into submicrometer-sized oil droplets. Methodall oil
addition. Their size is a result of the mechanical process only.
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fraction of water, water droplets merge together and bicon-
tinuous or lamellar[15] structures are formed, which, af-
ter the EIP is passed, decompose into smaller oil droplets
upon further increasing the water content. Further dilution
with water does not change the droplet size at this stage of
droplet formation. The decomposition into very finely dis-
persed droplets is facilitated by the fact that the interfacial
tension is minimal at the EIP. A high surfactant concentration
allows for a complete solubilization of the oil near the EIP[6],
leading to monomodal emulsions with submicrometer-sized
droplets. For low or medium surfactant concentrations, the
oil solubilization is not complete, resulting in larger droplets
that arise from mechanical emulsification. A critical surfac-
tant concentration is therefore required to guarantee bicon-
tinuous or lamellar structures, which in turn decompose into
submicrometer-sized oil droplets after phase inversion. Con-
sidering the theoretical amount of surfactant required for sta-
bilization of the final droplets, an estimated value of about
10% for the surfactant-to-oil ratio is obtained.2 This sug-
gests that the surfactant used in our study is in excess to
what is needed to stabilize the droplets. The fact that the final
emulsions are birefringent indicates the existence of a liquid
crystalline structure in the emulsions. We therefore suggest
that a large amount of the surfactant is consumed in the ex-
ternal phase forming this crystalline structure. Small angle
X am-
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ical emulsification solely. We demonstrate that a critical
surfactant concentration is necessary for emulsification via
the EIP method. While low interfacial tension might facilitate
the droplet formation, the resulting droplet size distribution
mainly depends on the surfactant-to-oil ratio, suggesting
that the size of the droplets is governed by the lamellar or
bicontinuous structure formed at the inversion point.
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