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Graphical abstract (5x13):   

Gold surfaces and gold nanoparticles are widely used. The surfaces and nanoparticles often have 

to be coated by sulfur-bound organic ligands, which both provide stability and participate in 

many desired processes. We overview here what, how, and why it is that the core Au-S surface 

bond offers such versatile structure and function.  
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Abstract 

Gold surfaces are widely used in electrochemistry whilst gold nanoparticles have very many 

uses, with both the surfaces and the particles often being protected by sulfur-bound organic 

ligands. The ligands not only provide chemical stability but also directly participate in many 

desired processes.  This review considers the diversity of known atomic structures for gold-sulfur 

interfaces, how these structures facilitate a diversity of mechanisms in electrochemical 

applications, and why this is possible based on recent advances in the basic understanding of the 

electronic structure of gold-sulfur bonds.  Believed once to be Au(I)-thiolate in character and 

hence distinctly different to physisorbed thiols and disulfides, chemisorbed bonds are shown to 

be Au(0)-thiyls instead. A wide range of in-situ STM electrochemical and other data is 

interpreted from this perspective. 

Highlights 
• wide range of in-situ electrochemistry of Au-S bound molecular targets overviewed 
• physisorbed and chemisorbed sulfur ligands to gold show great diversity 
• Au(I)-thiolates destroy surfaces and nanoparticles 
• Au(0)-thiyl species stabilize surfaces 
• chemisorptive and physisorptive bindings share common key properties  
 

Keywords 

Au-S surface bonding; atomically planar Au-surfaces; Au-nanoparticles; Thiol chemisorption on 

Au-surfaces; Adsorption of large molecules and biomolecules; Electrochemistry; In-situ 

electrochemical STM 

1. Introduction 

For thousands of years, solid gold (Au) has been treasured as an economic investment, for 

cultural purposes, and as jewelry [1].  Since antiquity, Au-nanoparticles (AuNPs) have also been 

manufactured for their unique physical properties adorning glass and other surfaces as 

decorations [1–3]. In modern times, Au surfaces and AuNPs are widely used in, e.g., 

heterogeneous catalysis, electrochemistry and electrocatalysis [4–7], molecular electronics [8,9], 

fuel and biofuel cells [10,11], and in medical diagnostics and therapy [12–14]. 

To prevent clogging and the effects of harmful reagents, AuNPs have to be protected by self-

assembled monolayers (SAMs), a bit like tea in a teapot brought to preserve taste and warmth by 

a tea cosy [15–17].  Similarly, Au-surfaces can be protected or functionalized by SAMs, with 
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organic thiol compounds, RSH having acquired a unique status [1,18–22] as these electronically 

“soft” ligands bind well to electronically “soft” surface Au-atoms [23].  The functionalizing 

residues R can be hydrophobic or hydrophilic, electrostatically charged or neutral, or spatially 

large or small [1,18]. The multifarious RSH residues can therefore impose almost tailor-made 

Au-surface properties, reflected in a broad variety of molecular and biomolecular adsorption and 

electrochemical electron transfer (ET) patterns, in which the surface Au-S bond is the central 

electronic contact.   

This review considers the basic elements of the gold-sulfur links that make up these critical 

interfaces:  what are they, how can they be put to work, and why they facilitate so many ancient 

and modern applications. 

2.  What is the structure of sulfur-bonded ligand-protected gold surfaces and 
nanoparticles? 

 

The atomic structure is a common element of gold-sulfur interfaces with properties independent 

of intended function, be this electrochemical in nature or otherwise.  Indeed, a wide variety of 

alkanethiol-bound monolayers or just isolated single molecules have been used [24,25], 

including molecules with sophisticated electrochemical function [26–29] intended, e.g., for in 

molecular scale electronics [9].  To answer the question “What?”, we focus on simple systems 

without explicit function that disclose critical structural questions. 

Many simple systems, like those highlighted in Figs. 1 and 2, in both aqueous electrolytes and 

ionic liquids have been studied [18,30–33]. A highly beneficial combination of electrochemistry 

at single-crystal Au-electrode surfaces, electrochemically controlled scanning tunneling 

microscopy (in-situ STM), X-ray photoelectron microscopy (XPS), and break-junction 

technology has been used [18,26–28,31,32,34,35].  Not only static imaging, but also dynamics of 

molecular surface conformational changes, and even the whole SAM formation process have 

been mapped to single-molecule resolution [31,36]. State-of-the-art theoretical and 

computational work has been paramount in the interpretation of the multitude of physical and 

chemical data, being useful in determining the factors that control structure such as Au-S 

bonding, intermolecular surface interactions, and solvation [25,32,33,35–40]. This work 

complements that done by others under ultrahigh vacuum conditions, emphasizing both 
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adsorbate STM imaging [24,41–43] and surface spectroscopy [44], as well as X-ray 

crystallographic studies [45]. 

Fig.1 

 

Fig.2 

Particularly illuminating for understanding the diversity of available interface atomic structures 

is the class of the four straight and branched butanethiols [25,35].  The butanethiols (Fig. 2) are: 

1-butanethiol [33], 2-methyl-1-propanethiol [32], and 2-methyl-2-propanethiol (tert-butanethiol) 

[39,46], molecules that are all achiral, as well as the chiral pair (R)- and (S)-1-methyl-butanethiol 

[25,37].  The data illustrate the amazing detail extracted from this approach: 

• In spite of their similar structures, the butanethiols display widely different adsorption 

modes, disentangled in minute structural detail.  Mapping of other functionalized alkanethiols 

have been resolved in comparable detail [18]. 

• The butanethiol packing at high coverage is determined primarily by Au-S bonding and 

lateral intermolecular interactions. Solvation is a determinant for functionally charged 

alkanethiols such as cysteamine [18,36] and cysteine [18,30]. 

• The Au-S bond for even the butanethiols of modest structural sophistication leads to 

multifarious Au-surface packing. Binding of straight chain 1-butanethiol is via molecular 

extraction of an Au-atom (“atomic gold mining”) from the Au(111)-surface, leaving a surface 

vacancy, followed by sideway binding of two adsorbate molecules [24,32,33,35,40].  Surface 

vacancies typically coalesce into surface pits. There is no space for this binding mode for the 

bulky tert-butanethiol 2-methyl-2-propanethiol which is the only butanethiol that binds solely on 

a flat Au (111)-surface. 

• Binding of the chiral pair of (R) and (S)-2-butanethiol is particularly intriguing [25,37].  

The individual (R) and (S) enantiomers bind via “atomic mining”, i.e. by Au-atom extraction 

from the Au (111)-surface.  The racemic mixture binds in both a low-density (coverage 25 %) 

and a high-density (coverage 30 %) phase.  While the low-density phase is bound by atomic gold 

mining, to squeeze in more butanethiol molecules in the high-density phase, both atomic gold 
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mining and direct Au-S adsorption operate, Fig. 2.  This is highly unusual, with both binding 

modes operating on the same surface.   

3.  How can sulfur-bonded ligand-protected gold surfaces and nanoparticles be put to 
work? 

The importance of molecules bound to Au-electrodes via pendant S-linker groups is strongly 

illustrated in electrochemical STM and break-junction experiments. Examples of more 

sophisticated Au-S based redox molecules characterized at single-molecule resolution by in-situ 

STM technology and voltammetry on single-crystal electrodes are shown in Fig. 3 [26,27,29,47–

49].  The viologens and tetrathiafulvalenes shown [26–28], as well as the shown transition metal 

complexes of ruthenium, osmium and cobalt [29], provide paradigms describing this field. These 

molecules display in-situ scanning tunneling current/overpotential spectroscopy (STS) 

consistently rationalized as two-step sequential electron transfer (ET) between tip and working 

electrode via the molecule.  Theoretical frameworks for understanding of Au-S molecular redox 

systems such as these have so far rested on phenomenological, although comprehensive views 

and models [48]. These have met with success for organic redox molecules [26,27], transition 

metal complexes [29], redox metalloproteins [34,50,51], and Au-S bound DNA based molecules 

[52].                                   

Fig.3 

As particular examples, monolayer voltammetry of redox metalloproteins and DNA-based 

molecules has evolved [34,48,50–57]. Much current effort is on applied aspects such as 

biosensing [6,12,13], electrocatalysis [2,3,5,6,58,59], biofuel cells [10,11], and 

bioelectrochemistry on living systems [60]. The fundamental electrochemical ET processes are, 

however, also in focus, and structural and electrochemical mapping of single redox 

metalloprotein and DNA-based molecules, using techniques and new theory of in-situ STM/STS, 

has emerged over the last decade [27,34,48,50,53,54]. 

A key aspect of “how” concerns how retaining ET and other natural function of fragile biological 

macromolecules on electrochemical surfaces almost always rests critically on electrode 

preparation. Surface preparation immobilizes the macromolecules gently enough that 

conformational protein structural changes are insignificant. Chemisorbed Au-S bond formation is 

a core link in protein immobilization, but mostly via SAMs of functionalized alkanethiols, the 
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remote, hydrophobic or charged tail group of which provides a non-covalent link to the protein 

[48,61,62]. The reactivity of the immobilized redox metalloproteins is, however, exceedingly 

sensitive to the structural details of the SAM.  This is strikingly illustrated by the voltammetry 

and in-situ STM and AFM studies of the blue Cu-enzyme nitrite reductase on single-crystal 

Au(111) electrode surfaces, modified by a broad variety of aliphatic and aromatic thiol SAMs 

[63,64]. 

 An example of a robust single-molecule-based bioelectrochemical electronic behavior 

based on chemisorbed Au-S head-group interactions is the four-α-helix bundle bacterial protein 

cyt b562 (Escherichia coli) shown in Fig. 4 [50].  Mutations in this protein could introduce 

cysteine (Cys) residues at chosen locations on the outside of the protein.  The success of the 

approach is indicated by the observation of almost ideal protein film voltammetry on single-

crystal Au (111)-electrode surfaces; also in situ STS displayed the expected tunneling-

current/overpotential STS. The results are intriguing, however, in that single or multiple 

attachments at different positions on the ellipsoidal protein is naively expected to give quite 

different redox behavior and different ET pathways through the protein yet little variation was 

actually observed [50]. In addition, the observed cyt b562 conductivity was almost ten times 

higher than nearly all reported in-situ redox single-molecule conductivities. Coherent multi-ET 

has been suggested as a rationale [50], but the question as to the nature of the possibly strained 

Au-S bonds involved is also raised.  

Fig.4 

Further insight into this can be gained by considering the blue-Cu azurin protein from 

Pseudomonas aeruginosa.  Early work [48,54] was continued by other groups [34,51] targeting 

mutant azurins with introduced surface Cys residues linking the protein to an enclosing Au-

surface and Au-tip [34]. A feature of this system first theoretically predicted [48] is that in situ 

STS displays a tunneling current maximum [34,51,66].  This feature has now been observed for 

three azurin binding modes, hydrophobic binding to alkanethiol SAMs [66], physisorbed 

disulfide binding to an Au tip [51], and chemisorbed Au-S binding via inserted mutant Cys 

residues [34]. 

However, physisorptive binding of metalloproteins via –SH or -S-S- groups rather than 

chemisorbed Au-S bonds involving wild type proteins with retained voltammetric activity is 
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actually rare.  The nature of the bonding is therefore just as important as the atomic configuration 

in understanding “how” electrochemical devices function.  Still another notable case is yeast 

cytochrome c [67,68].  The linking chemisorbed –SH group in this case is, however, located 

slightly below the protein surface, and both conformational reorganization and a low-spin/high-

spin transition in the axial heme ligand structure in the protein accompanies binding to the 

surface.  Also, we note that human insulin adsorbs on all three low-index Au-surfaces, Au(111), 

Au(100) and Au(110) via intrinsic disulfide groups, mapped to single-molecule resolution by in 

situ STM [65].  How sulfur-bounded ligand-protected surfaces can be put to work is therefore 

quite complex. 

4.  Why does the nature of the Au-S bond make sulfur-bonded ligand-protected gold 
surfaces and nanoparticles so versatile? 

The questions of “what” and “how” thus both lead to significant questions concerning how it is 

that sulfur-bonded ligand-protected gold surfaces are so versatile.  The Au-S bond can take on 

vastly different chemisorbed geometries and coordinations, and can still function even through 

much weaker physisorbed connections.  There must be a unifying bonding feature that allows for 

this diversity, explaining “why” Au-S bonded molecular adsorption and molecular function 

works so well and can lead to practical devices. 

Comprehensive spectroscopy, diffraction and other surface physics supported by theoretical and 

computational work has disclosed the nature of the Au-S bond [24,38,39,41–44,46,69,70].  

These results are consistent with the in-situ STM & AFM studies [71] and provides a detailed 

understanding of structure and function [40].  For more than 30 years consensus has been that 

thiol adsorption involves a redox process 

RSH + Au(0) → RS−-Au(I) + ½H2 

The reverse process is electrochemical reductive desorption, 

  RS−-Au(I)  +  e−   →  Au(0) +  RS− , 

with the electrochemical signals reflecting highly sensitively the general state of the SAM. 

Au(I)-thiolate bonds are well known in molecular Au-S complexes [72,73], forming a prime 

example of coordination between electronically “soft” metal ions and “soft” ligands [23].  The 

properties of Au atoms in planar Au surfaces are, however, quite different from those in simple 
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compounds. A new analysis, supported prodigiously by computations and data shows instead 

that surface Au-S binding holds a dominant element of Au(0) and thiyl radical RS• character 

[40], character not too different from that found in physisorptive interactions of surfaces to thiols 

and disulfides. Direct contact of the thiolate anion with Au surfaces leads instead to etching or 

even dissolution [74].  This is a real physical distinction as the chemical and spectroscopic 

properties of Au(I)-thiolate and Au(0)-thiyl species are quite different.   

      A recent study [75] of Fe-porphyrin complexes with a Fe-Cys axial ligand that mimic the 

heme protein cytP450 offers a striking illumination. The Fe-Cys bond involves the equilibrium 

Fe(III)- -SR  Fe(II)- •SR that resembles the resonance scenario Au(I)- -SR ↔ Au(0)- •SR. 

However, this equilibrium depicts real and tunable valence tautomerism between two different 

states distinguishable by significantly different spectroscopic properties, while Au(I)-

thiolate/Au(0)-thiyl is instead viewed as presenting single resonance scenarios with different 

electronic charge distributions in the electronic ground and excited states. 

The electronic structure of Au is 5d106s1.  Common belief has been that the Au-S bond to Au 

surfaces bond is covalent and dominated by the open shell 6s and 3p orbitals of Au and sulfur, 

with the Au 5d orbitals in a less prominent role [76]. However, strong Au-Au interactions within 

surface and in Au-Au compounds [72,73,77,78] shifts the 6s band away from the Au Fermi level 

and the 5d band [69], causing the filled 5d orbitals to take over bonding to the sulfur atom. 

Au d

S p

 

The bonding in such circumstances is often dominated by van der Waals dispersion forces as the 

interaction of a low-lying doubly occupied orbital with a high-lying one does not lead to 

significant covalent or ionic bonding [40].  In gold chemistry this is known as the “aurophilic 

effect” [72,79]. 

Binding schemes such as these are, however, limiting cases, mixed by s-d hybridization, 

polarization effects, multifarious coordination, etc. All computations and sophisticated 

experiments show, that Au(0)-thiyl is a tunable, highly significant structural component that 
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typically dominates the binding of SR groups to surfaces.  Related dispersion forces are also 

important for the binding of other electronically “soft” ligands like nitrogen bases and disulfides 

to Au surfaces, including as well situations where Au atoms are mined out of the surfaces [47]. 

This understanding rationalizes the wide range of geometrical structures at interfaces observed, 

as well as the robustness of their electrochemical properties. 

 

5. Conclusions and perspectives 

The Au-S bond on planar and AuNP Au surfaces is an important element that ties together 

binding and packing of a wealth of complex and less complex S-linked molecules and 

biomolecules on both electrochemical and non-electrochemical surfaces. Understanding the 

properties of this structural element is therefore paramount. On the basis of recent detailed 

analysis [40], it is concluded that the Au-S link holds a dominant Au(0)-thiyl character resting on 

strong van der Waals interactions and the aurophilic effect, in addition to secondary covalent and 

ionic Au-S features. There is thus a similarity and continuity between chemisorption and 

physisorption of sulfur compounds to gold.  Aspects [40] of the Brust-Schiffrin core nanoparticle 

synthesis [16,17] can then be understood, as well the results of real time imaging on planar Au-

electrode surfaces as reported for 1-propanethiol [31] and cysteamine [36], anticipated also for 

more complex molecular SAMs [80]. 

The nature of the Au-S link as a radical may indicate reactivity in addition to electrochemical 

reductive desorption.  Mostly, however, radical character of the sulfurs is typically lost owing to 

long-range superexchange coupling that couples sulfur atoms together and diffuses the radical 

character into the gold metal [40,69].  Nevertheless, a study of the effect of O2 on in-situ STM 

imaging of Au-S bound target molecules suggests that residual radical character can still be 

manifested [81]. This understanding may hold clues to the unexpectedly efficient long-range 

conductivity of most of the S-molecular classes discussed, not in the least the metalloproteins 

azurin and cyt b562. Such long-range Au-S based surface electronic effects could be rationalized, 

if reactive intermediates in sequential or superexchange long-range ET via low-lying radical-

derived intermediate states are involved. The new abundantly supported understanding of the 

Au-S surface bond is, finally likely to be of use in forthcoming efforts towards molecular scale 

switching, rectification, amplification, and other molecular electronics, as well as in approaches 
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to Au-S based chemical and biological sensing, fuel cell electrocatalysis, and other developing 

electrochemical high-technology.   
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Fig.1. Examples of functionalized alkanethiols studied by single-crystal voltammetry and in situ 

STM. Top row: Molecular structures. Bottom rows: High-resolution in situ STM images. The 

four images to the left are the molecules indicated, on Au(111). The four images to the right 

show cysteine on Au(110), with sub-molecular resolution images. Adapted from ref 48. 
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Fig. 2.  Shown on the left are observed STM images of the butanethiol family on Au(111), with 

their surface-cell parameters, coverages, and interpreted atomic structures shown on the right.  

Two copies of each unit cell are shown in each structure. 
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Fig.3. Redox molecules surface linked by Au-S or related bonding studied by single-crystal 

voltammetry and in situ STM. Top left: transition metal complexes [Ref 48]. Top right: Au-S 

coated Au-nanoparticles [Ref 48]. Bottom left: viologen and p-tetrathiafulvalene with S-linker 

groups [Ref 26]. Bottom right: Molecular scale Prussian Blue nanoparticles linked to Au(111)-

surfaces via ω-NH3
+-functionalized alkanethiols [Ref 49].  

 

 

 

 

 

 

 

 

 

  



21 
 

 

 
 

Fig.4. Metalloproteins linked to Au-surfaces either via alkanethiol SAMs or directly via surface 

cysteine residues, studied by single-crystal voltammetry and in-situ STM. 

Top row: Schematic view of azurin (left) and cyt b562 (right) on the Au(111)-surfaces. 

Bottom row: In situ STS of the proteins indicated. Adapted from ref 50 and 66. 
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