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Abstract

We introduce stochastic models of chemotaxis generalizing the deterministic Keller-
Segel model. These models include fluctuations which are important in systems with
small particle numbers or close to a critical point. Following Dean’s approach, we derive
the exact kinetic equation satisfied by the density distribution of cells. In the mean field
limit where statistical correlations between cells are neglected, we recover the Keller-Segel
model governing the smooth density field. We also consider hydrodynamic and kinetic
models of chemotaxis that take into account the inertia of the particles and lead to a
delay in the adjustment of the velocity of cells with the chemotactic gradient. We make
the connection with the Cattaneo model of chemotaxis and the telegraph equation.

1 Introduction

In biology, many organisms (bacteria, amoebae, cells,...) or social insects (like ants, swarms,...)
interact through the process of chemotaxis [1, 2, 3]. Chemotaxis is a long-range interaction
that accounts for the orientation of individuals along chemical signals that they produce them-
selves. Famous examples of biological species experiencing chemotaxis are the slime mold
amoebae Dictyostelium discoideum, the flagellated bacteria Salmonella typhimurium and Es-
cherichia coli, the human endothelial cells etc. When the interaction is attractive, chemo-
taxis is responsible for the self-organization of the system into coherent structures such as
peaks, clusters, aggregates, fruiting bodies, periodic patterns, spirals, rings, spots, honey-
comb patterns, stripes or even filaments. This spontaneous organization has been observed
in several experiments [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and numerical simulations
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Chemotactic attraction
is therefore a leading mechanism to account for the morphogenesis and self-organization of
biological systems. For example, it has been advocated to explain aggregation patterns in
bacteria, tissue organization during embryonic growth, cell guidance, fish skin pigmentation
patterning, angiogenesis in tumour progression and wound healing, formation of plaques in
Alzheimer’s disease, dynamics of blood vessel formation etc [24, 34]. It is fascinating to realize
that the self-organization of chemotactic species in biology shares some analogies with the self-
organization of galaxies in astrophysics and large-scale vortices (like Jupiter’s great red spot) in
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two-dimensional turbulence 1. A first successful model of chemotactic aggregation is provided
by the Keller-Segel (KS) model [41] introduced in 1970. The standard KS model can be written
as

∂ρ

∂t
= ∇ · (D∗∇ρ− χρ∇c), (1)

∂c

∂t
= Dc∆c− kc+ hρ. (2)

It consists in two coupled differential equations that govern the evolution of the density of cells
(or other biological entities) ρ(r, t) and the evolution of the secreted chemical c(r, t). The first
equation (1) is a drift-diffusion equation. The cells diffuse with a diffusion coefficient D∗ and
they also move in a direction of a gradient of the chemical (chemotactic drift). The chemotactic
sensitivity χ is a measure of the strength of the influence of the chemical gradient on the flow
of cells. The coefficient χ can be positive or negative. In the first case (chemoattraction), the
particles climb the chemical gradient and form clusters. In the second case (chemorepulsion),
they descend the chemical gradient and repell each other. In that case, the chemical acts like a
poison. The second equation (2) in the KS model is a reaction-diffusion equation. The chemical
is produced by the bacteria with a rate h and is degraded with a rate k. It also diffuses with
a diffusion coefficient Dc. When chemotactic attraction prevails over diffusion, the KS model
describes a chemotactic collapse leading to aggregates or Dirac peaks. There is a vast literature
on this subject. We refer to Perthame [42] for numerous references in applied mathematics and
to Chavanis [43] for additional references in physics.

The first equation of the KS model can be interpeted as a mean-field Smoluchowski equation
describing a system of Brownian particles in interaction. On the other hand, in the limit of
large diffusivity of the chemical, we can make a quasi-stationary approximation ∂c/∂t ≃ 0 in
the second equation and obtain the screened Poisson equation. We are led therefore to the
simplified Keller-Segel model

∂ρ

∂t
= ∇ · (D∗∇ρ− χρ∇c), (3)

∆c− k2
0c = −λρ, (4)

where we have set k2
0 = k/Dc and λ = h/Dc. In the absence of degradation of the chemical

(k0 = 0), the field equation (4) reduces to the Poisson equation ∆c = −λρ (see [44] and
Appendix C of [32] for a precise justification of these approximations). In that case, the Keller-
Segel (KS) model becomes isomorphic to the Smoluchowski-Poisson (SP) system

∂ρ

∂t
= ∇ ·

[

1

ξ

(

kBT

m
∇ρ+ ρ∇Φ

)]

, (5)

∆Φ = SdGρ, (6)

1These analogies are intrinsically due to the long-range attractive nature of the interaction. In particular, self-
gravitating systems, 2D vortices and chemotactic species interact through a field produced by the distribution of
particles via a Poisson equation (or its generalizations). Furthermore, the process of self-organization is described
by relatively similar relaxation equations corresponding to nonlinear mean field Fokker-Planck equations [35].
Therefore, self-gravitating systems, 2D vortices and chemotactic species share many analogies despite their
very different physical nature. These striking analogies have been emphasized by the author in several papers
[36, 37, 38, 39, 40, 35].
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describing a system of overdamped self-gravitating Brownian particles in the mean field approx-
imation [45, 25, 28, 30, 46, 31, 47, 43, 48, 49]. We have the correspondances: D∗ = kBT/ξm,
χ = 1/ξ, c = −Φ, λ = SdG. In particular, the concentration of the secreted chemical
c(r, t) = −Φ(r, t) in biology plays the role of the gravitational potential (with the opposite sign)
in astrophysics 2. More generally, when we consider a system of Brownian particles interacting
via an arbitrary binary potential u(r − r′) and make a mean-field approximation [53, 54, 55],
we obtain the mean-field Smoluchowski equation

∂ρ

∂t
= ∇ ·

[

1

ξ

(

kBT

m
∇ρ+ ρ∇Φ

)]

, (7)

Φ(r, t) =

∫

ρ(r′, t)u(r− r′) dr′. (8)

The main difference between models (1)-(2) and (7)-(8) comes from the equation for the field
c(r, t) or Φ(r, t). Equation (2) is non-markovian since the concentration of the chemical c(r, t)
at time t depends on the concentration of the bacteria and of the chemical at earlier times.
By contrast, Eq. (8) is markovian since the potential Φ(r, t) is assumed to be instantaneously
produced by the distribution of particles.

It is important to note that the Keller-Segel model is a mean field model which ignores
fluctuations. This implicitly assumes that the number of cells N → +∞ and that we are far
from a critical point [56]. Now, in biology, the number of particles in the system can be relatively
small. Furthermore, from the statistical physics viewpoint, it is natural to investigate the role
of fluctuations during chemotaxis. In order to go beyond the mean field approximation, some
authors [17, 57, 58, 32] have proposed to return to a corpuscular description of the dynamics
and to describe the motion of the particles (chemotactic species or “active” walkers) by N
coupled stochastic Langevin equations of the form

dri
dt

= χ∇cd(ri(t), t) +
√

2D∗Ri(t), (9)

∂cd
∂t

= Dc∆cd − kcd + h

N
∑

i=1

δ(r− ri(t)), (10)

where ri(t) denote the positions of the particles, cd(r, t) is the exact field of secreted chemical
and Ri(t) is a white noise satisfying 〈Ri(t)〉 = 0 and 〈Ri,α(t)Rj,β(t

′)〉 = δijδαβδ(t − t′) where
i = 1, ..., N refer the the particles and α = 1, ..., d to the dimensions of space. Note that the
motion of cells is treated on an individual basis but the chemical signals are treated in the
continuum limit. This separation of scales appears to be reasonable in most applications. In
the mean field approximation, these stochastic equations lead to the KS model (1)-(2)3. When
the reaction-diffusion equation (10) is replaced by a Markovian equation of the form

∆cd − k2
0cd = −λ

N
∑

i=1

δ(r− ri(t)), (11)

2One great achievement of Keller & Segel [41] was to interpret slime mold aggregation as a manifestation of
a fundamental instability in a uniform distribution of amoebae and acrasin (chemoattractant). As noticed in
[50, 51], this instability is closely related to the Jeans gravitational instability in astrophysics [52].

3Stevens [57] gives the first rigorous derivation (in the mathematical sense) of the KS model from an inter-
acting stochastic many-particle system where the interaction between the particles is rescaled in a moderate
way as the population size N tends to infinity.
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we obtain a simplified model of chemotaxis that leads to the simplified KS model (3)-(4) in
the mean field approximation. More generally, for Brownian particles interacting via a binary
potential of interaction u(r− r′), one obtains the stochastic model

dri
dt

= −1

ξ
∇Φd(ri(t), t) +

√

2kBT

ξm
Ri(t), (12)

Φd(r, t) =

N
∑

i=1

m u(r− ri(t)), (13)

considered in [59, 60, 61, 53, 62, 54, 55, 47, 56]. In the mean field approximation [53, 54, 55],
these equations yield the mean-field Smoluchowski equation (7)-(8).

In systems with weak long-range interactions, the mean field approximation is expected
to become exact in a proper thermodynamic limit N → +∞ such that the strength of the
potential scales like 1/N while the volume V remains of order unity [54]. In the context of
chemotaxis, the differences between mean field and non mean field models have been discussed
by Grima [34] who showed situations where the mean field approximation fails to predict the
width of the aggregate sizes. In particular, the disagreement is very severe close to the critical
point where we know that mean field approximation breaks down in general [63]. This is
because the fluctuations become very important so that it is not possible to neglect the two-
body correlation function anymore [56]. On the other hand, the mean field approximation
assumes that the number of particles N ≫ 1. In stellar systems and plasmas, this is always the
case. However, for biological systems, the number of interacting bacteria or cells is frequently
less than a few thousands so that finite N effects and statistical fluctuations are important.
In view of these remarks, it is highly desirable to obtain stochastic kinetic equations that take
into account fluctuations and that go beyond the deterministic mean field Keller-Segel model.
Such equations are discussed in the present paper. In the first part of the paper (Sec. 2),
following Dean’s approach [60], we derive the exact kinetic equation satisfied by the density
distribution of chemotactic species. This equation takes into account stochastic fluctuations
and memory effects present in the field equation for the secreted chemical. If we average over
the noise, we recover the hierarchy of kinetic equations discussed by Newman & Grima [58].
If we make a mean-field approximation, we recover the Keller-Segel model [41]. Therefore,
this exact stochastic kinetic equation generalizes several models introduced in the chemotactic
literature. We also propose a simplified kinetic equation for a coarse-grained density field
(instead of a sum of δ-functions) keeping track of fluctuations. This equation (31)-(32) could
be of practical interest in chemotaxis. In the second part of the paper (Secs. 3 to 6), we note
that the Keller-Segel model is a parabolic model which neglects the inertia of the particles
and which assumes an instantaneous adjustment of the velocity with the chemotactic gradient.
We consider hyperbolic models that generalize this parabolic model. We first consider the
Cattaneo model of chemotaxis [26] which consists in introducing a delay in the establishment
of the current (Sec. 3). Then, we consider hydrodynamic models including a friction force (Sec.
4). Using a semi-linear approximation, we show that the Cattaneo model can be recovered from
these hydrodynamic equations [56]. In Sec. 5, we generalize these models so as to take into
account fluctuations. This leads to stochastic hyperbolic models of chemotaxis which generalize
the ordinary deterministic parabolic Keller-Segel model. Finally, in Sec. 6, we develop a kinetic
theory of chemotactic species in phase space taking into account the inertia of the particles and
the discrete nature of the system. We derive stochastic kinetic equations that should improve
the description of the cells’ motion. The link with the parabolic and hyperbolic models is also
discussed.
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This paper adapts the results of [56] to the context of chemotaxis with complements and
amplification. Although these different stochastic equations (in particular the parabolic ones)
are well-known in statistical physics [59, 60, 61, 62, 56] their application to the context of
chemotaxis, proposed in [56], is new and is an important contribution of the present paper.

2 The stochastic Keller-Segel model

In this section, we introduce a stochastic model of chemotaxis, generalizing the Keller-Segel
model, by taking into account fluctuations. Let us first derive the exact kinetic equation satisfied
by the density distribution of cells whose dynamics is described by the coupled stochastic
Langevin equations (9)-(10). We follow Dean’s approach [60]. The exact density field, expressed
in terms of δ-functions, can be written

ρd(r, t) =
N
∑

i=1

ρi(r, t) =
N
∑

i=1

δ(r− ri(t)). (14)

For any function F (r), we have F (ri(t)) =
∫

ρi(r, t)F (r)dr. Now, using Ito’s calculus [64], one
has

dF (ri)

dt
=

∫

ρi(r, t)
[

χ∇F (r) · ∇cd(r, t) +
√

2D∗∇F (r) ·Ri(t) +D∗∆F (r)
]

dr. (15)

Integrating by parts, we obtain

dF (ri)

dt
=

∫

F (r)
[

−χ∇ · (ρi(r, t)∇cd(r, t))−
√

2D∗∇ · (ρi(r, t)Ri(t)) +D∗∆ρi(r, t)
]

dr. (16)

Then, using dF (ri)/dt =
∫

∂tρi(r, t)F (r)dr and comparing with Eq. (16), we get (using the
fact that F is an arbitrary function)

∂ρi
∂t

= −χ∇ · (ρi(r, t)∇cd(r, t))−
√

2D∗∇ · (ρi(r, t)Ri(t)) +D∗∆ρi(r, t). (17)

Summing this relation over the i, we finally obtain

∂ρd
∂t

(r, t) = D∗∆ρd(r, t)− χ∇ · (ρd(r, t)∇cd(r, t))−
√

2D∗

N
∑

i=1

∇ · (ρi(r, t)Ri(t)). (18)

Now, the last term can be rewritten [60]:

−
N
∑

i=1

∇ · (ρi(r, t)Ri(t)) = ∇ · (ρ1/2d (r, t)R(r, t)), (19)

where R(r, t) is a Gaussian random field such that 〈R(r, t)〉 = 0 and 〈Rα(r, t)Rβ(r
′, t′)〉 =

δαβδ(r − r′)δ(t − t′). Therefore, the system of equations satisfied by the exact density field
expressed in terms of δ-functions is

∂ρd
∂t

(r, t) = D∗∆ρd(r, t)− χ∇ · (ρd(r, t)∇cd(r, t)) +∇ ·
(

√

2D∗ρd(r, t)R(r, t)
)

, (20)

∂cd
∂t

= Dc∆cd(r, t)− kcd(r, t) + hρd(r, t). (21)
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The first and third terms in the r.h.s. of Eq. (20) correspond to a pure Brownian motion
and the second term takes into account chemotaxis, i.e the attraction or repulsion of the cells
by the chemical. As noted by Dean [60], the noise in Eq. (20) appears not additively but
multiplicatively.

Integrating Eq. (10), the concentration of the chemical can be expressed in terms of the
cell paths as [58]:

cd(r, t) = h

∫

dr′
∫ t

0

dt′G(r− r′, t− t′)
N
∑

i=1

δ(r′ − ri(t
′)), (22)

where the Green function for the chemical diffusion equation is given by

G(r, t) = (4πDct)
−d/2exp

[

− r2

4Dct
− kt

]

. (23)

The gradient of the concentration field is

∇cd(r, t) = h

∫

dr′
∫ t

0

dt′∇G(r− r′, t− t′)ρd(r
′, t′). (24)

Substituting Eq. (24) in Eq. (20), we obtain

∂ρd
∂t

(r, t) = D∗∆ρd(r, t)− χh∇ ·
[

ρd(r, t)∇
∫

dr′
∫ t

0

dt′G(r− r′, t− t′)ρd(r
′, t′)

]

+∇ ·
(

√

2D∗ρd(r, t)R(r, t)
)

. (25)

If we average over the noise and introduce the smooth density ρ(r, t) = 〈ρd(r, t)〉, we recover
Eq. (9) of Newman & Grima [58]:

∂ρ

∂t
(r, t) = D∗∆ρ(r, t)− χh∇ ·

∫

dr′
∫ t

0

dt′[∇G(r− r′, t− t′)]〈ρd(r, t)ρd(r′, t′)〉. (26)

If we make a mean field approximation 〈ρd(r, t)ρd(r′, t′)〉 ≃ ρ(r, t)ρ(r′, t′) in Eq. (26), we recover
the Keller-Segel model [41]:

∂ρ

∂t
(r, t) = D∗∆ρ(r, t)− χ∇ · (ρ(r, t)∇c(r, t)), (27)

with

c(r, t) = h

∫

dr′
∫ t

0

dt′G(r− r′, t− t′)ρ(r′, t′). (28)

Given the definition of the Green function G, the smooth concentration c(r, t) is solution of the
reaction-diffusion equation

∂c

∂t
= Dc∆c− kc+ hρ. (29)

We also note, for future reference, that the steady solutions of the KS model (27) correspond
to a mean field Boltzmann-like distribution

ρ = Aec/Teff , (30)
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where Teff = D∗/χ is an effective temperature given by an Einstein relation.
Grima [34] has shown that the mean field approximation may lead to wrong results if we

are close to a critical point or if the number of particles is not large enough. Therefore, it
may be useful to have a more general model than the Keller-Segel model (1)-(2) which keeps
track of fluctuations. Equations (20)-(21) are exact and contain the same information as the
N -body stochastic Langevin equations (9)-(10). They are not very useful for practical purposes
since they govern the evolution of a density field which is expressed as a sum of δ-functions.
It is easier to directly solve the equivalent N -body stochastic Langevin equations (9)-(10).
However, using phenomenological arguments like those described in [62, 56], we can consider a
spatio-temporal coarse-grained distribution ρ(r, t) which smoothes out the exact density field
ρd(r, t) while keeping track of fluctuations. We also assume that the spatio-temporal window
is sufficiently small so that we can make the approximation ρ(2)(r, r′, t) ≃ ρ(r, t)ρ(r′, t). In that
case, we obtain the stochastic Keller-Segel model for the coarse-grained distribution

∂ρ

∂t
(r, t) = D∗∆ρ(r, t)− χ∇ · (ρ(r, t)∇c(r, t)) +∇ ·

(

√

2D∗ρ(r, t)R(r, t)
)

, (31)

∂c

∂t
= Dc∆c− kc+ hρ, (32)

generalizing the deterministic Keller-Segel model (1)-(2). This equation is one of the most
important result of this paper. As shown in Appendix B of [56], the form of the noise term
in Eq. (31) can be obtained from the general theory of fluctuations developed in Landau &
Lifshitz [65]. This provides another, direct, justification of the stochastic Eq. (31). As shown
in [56], the mean field approximation breaks down close to a critical point because the two-
body correlation function diverges. In that case, it may be more relevant to use the stochastic
Keller-Segel model (31)-(32) including fluctuations instead of the deterministic Keller-Segel
model (1)-(2).

It is also very important to take into account fluctuations when the system can be found in
several metastable states. If we introduce the coarse-grained free energy functional

Fc.g.[ρ, c] =
D∗

χ

∫

ρ ln ρ dr+
1

2h

∫

[

Dc(∇c)2 + kc2
]

dr−
∫

ρ c dr, (33)

we can write the stochastic equation (31) in the form

∂ρ

∂t
= ∇ ·

[

χρ(r, t)∇δFc.g.

δρ

]

+∇ ·
(

√

2D∗ρ(r, t)R(r, t)
)

. (34)

This equation can be viewed as a Langevin equation for the field ρ(r, t). The evolution of the
probability of the density distribution W [ρ, t] is governed by a Fokker-Planck equation of the
form

∂W [ρ, t]

∂t
= −

∫

δ

δρ(r, t)

{

∇ · ρ(r, t)∇
[

D∗

δ

δρ
+ χ

δFc.g.

δρ

]

W [ρ, t]

}

dr. (35)

At equilibrium, we have W [ρ] ∝ e−Fc.g.[ρ]/Teff−α
R

ρdr with Fc.g.[ρ] =
D∗

χ

∫

ρ ln ρ dr − 1
2

∫

ρ c dr

(we have substituted Eq. (32) with ∂c/∂t = 0 in Eq. (33)). For N → +∞, the equilibrium
distribution W [ρ] is strongly peaked around the global minimum of Fc.g.[ρ] at fixed mass M =
∫

ρ dr. However, the system can remain trapped in a metastable state (local minimum of
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Fc.g.[ρ]) for a very long time which becomes infinite at the thermodynamic limit N → +∞. Let
us be more precise. If we ignore the noise term, Eq. (34) reduces to

∂ρ

∂t
= ∇ ·

[

χρ(r, t)∇δFc.g.

δρ

]

, (36)

which is the deterministic Keller-Segel model (27). This equation satisfies an H-theorem

Ḟ = −
∫

1

χρ
(D∗∇ρ− χρ∇c)2 dr− 1

h

∫

(Dc∆c− kc+ hρ)2 dr ≤ 0, (37)

with Ḟ = 0 iff the distribution is given by Eq. (30). Therefore, a steady state is stable iff it is a
(local) minimum of free energy at fixed mass. Assuming that the free energy is bounded from
below, we know from Lyapunov’s direct method that the system will relax towards a steady
state that is a minimum (global or local) of the free energy functional Fc.g.[ρ] at fixed mass
(maxima or saddle points of free energy are linearly dynamically unstable with respect to mean
field Fokker-Planck equations [35]). If the free energy admits several local minima, the selection
of the steady state will depend on a notion of basin of attraction. Without noise, the system
remains on a minimum of free energy forever. Now, in the presence of noise, the fluctuations
can induce dynamical phase transitions from one minimum to the other. We should therefore
see the system “jump” between different states. Thus, accounting correctly for fluctuations
is very important when there exists metastable states. The probability of transition scales
as e−∆F/Teff where ∆F is the barrier of free energy between two minima. Therefore, on an
infinite time, the system will explore all the minima and will spend most time in the global
minimum. This will be the case only if N is not too large. Indeed, for systems with long-range
interactions, the barrier of free energy ∆F scales like N so that the probability of escape from
a local minimum is very small and behaves like e−N . Therefore, even if the global minimum is
in principle the most probable state, metastable states are highly robust in practice since their
lifetime scales like eN . They are thus fully relevant for N ≫ 1: metastable states are in practice
“stable states”. These interesting features (basin of attraction, dynamical phase transitions,
metastability,...) would be interesting to study in more detail in the case of chemotaxis. The
study of the stochastic Keller-Segel model will be considered in future publications.

3 The Cattaneo model of chemotaxis

The general Keller-Segel (GKS) model [41] can be written as

ξ
∂ρ

∂t
= ∇ · (D2(ρ, c)∇ρ−D1(ρ, c)∇c), (38)

∂c

∂t
= Dc∆c− k(c)c+ h(c)ρ, (39)

where D1 = D1(ρ, c) and D2 = D2(ρ, c) can both depend on the concentration of the cells
and of the chemical. This takes into account microscopic constraints, like close-packing effects,
that can hinder the movement of cells and lead to nonlinear diffusion and nonlinear mobility.
The GKS model (38)-(39) can be viewed as a nonlinear mean field Fokker-Planck equation
associated with a notion of effective generalized thermodynamics [35]. The first equation can
be written in the form of a continuity equation ∂tρ = −∇ · J with a current

J = −1

ξ
(D2(ρ, c)∇ρ−D1(ρ, c)∇c) . (40)
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It is important to note that the GKS model is a parabolic model like the usual heat diffusion
equation. Like for the Fourier law of heat conduction, it is assumed that the current J is
instantaneously equal to the right hand side of Eq. (40), that we shall call the “chemotactic
gradient” for future reference. In the context of heat conduction, Cattaneo [66] has proposed
a modification of Fourier’s law in order to describe heat propagation with finite speed. In the
context of chemotaxis, Dolak & Hillen [26] have introduced a Cattaneo model for chemosensitive
movement. They assume that the current is not instantaneously equal to the chemotactic
gradient but relaxes to it with a time constant 1/τ . Then, the corresponding Cattaneo model
for chemosensitive movement reads

∂ρ

∂t
+∇ · J = 0, (41)

τ
∂J

∂t
+ J = −1

ξ
(D2(ρ, c)∇ρ−D1(ρ, c)∇c). (42)

Taking the time derivative of Eq. (41) and using Eq. (42), we obtain the hyperbolic model

τ
∂2ρ

∂t2
+

∂ρ

∂t
=

1

ξ
∇ · (D2(ρ, c)∇ρ−D1(ρ, c)∇c). (43)

This equation, which is second order in time, is analogous to the telegraph equation which
generalizes the diffusion equation by introducing memory effects. For τ = 0, we recover the
GKS model (38)-(39) as a particular case.

4 Hydrodynamic models of chemotaxis

The parabolic Keller-Segel model [41] is able to reproduce the formation of clusters (clumps)
resulting from chemotactic collapse. This can explain experiments on bacteria like Escherichia
coli or amoebae like Dictyostelium discoideum exhibiting pointwise concentrations [4, 14, 9, 11,
5, 6, 7, 8]. Recently, several experiments with human endothelial cells have shown the formation
of networks that can be interpreted as the initiation of a vasculature [10, 13, 27, 16, 15]. Cells
randomly spread on a gel matrix autonomously organize to form a continuous multicellular
network which can be described as a collection of nodes connected by chords [27]. This process
takes place during the early stages of vasculogenesis in embryo development. These filaments
are observed in the experiments of capillary blood vessel formation. These structures cannot be
explained by the Keller-Segel parabolic model which generically leads to pointwise blow-up 4.
In order to account for these filaments, hyperbolic models of chemotaxis have been introduced
[27, 67, 38, 29, 50, 32, 68]. They have the form of damped hydrodynamic equations 5 taking

4In fact, some Keller-Segel models including cell kinetics can, under certain conditions, give rise to network-
like patterns (see Fig. 12c of [24]).

5The type of hydrodynamic equations (44)-(45) including a long-range mean field interaction, a density
dependent pressure and a friction force were introduced in Chavanis [69] (see also [36]) for Langevin particles in
interaction and called the damped Euler equations. Their application to chemotaxis and gravity was mentioned.
These equations can be derived from kinetic equations (nonlinear mean-field Fokker-Planck equations) by using a
local thermodynamic equilibrium condition (L.T.E.) to close the hierarchy of hydrodynamic moments [69, 47, 32].
However, they remain heuristic because the L.T.E. approximation is not rigorously justified. By contrast, in
the strong friction limit ξ → +∞, we can rigorously derive the GKS model (38)-(39), also called the generalized
Smoluchowski equation, by using a Chapman-Enskog expansion [70] or a method of moments [71, 32, 35]. The
model considered by Gamba et al. [27] (see also [67, 15, 29]) corresponds to ξ = 0 in Eq. (45). It can be derived
in an asymptotic limit of kinetic equations of a different type (see [29] and Appendix D of [32]). In more recent
papers [68], the aforementioned authors have also included a friction force in their model.
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into account inertial effects :

∂ρ

∂t
+∇ · (ρu) = 0, (44)

∂

∂t
(ρu) +∇(ρu⊗ u) = −D2(ρ, c)∇ρ+D1(ρ, c)∇c− ξρu. (45)

Considering the momentum equation (45), the inertial term (l.h.s.) models cells directional
persistence, i.e. the natural tendency of a particle to continue in a given direction in the absence
of any interaction. When D2(ρ, c) depends only on the density, the first term on the r.h.s. can
be interpreted as a barotropic pressure force −∇p(ρ) (see [35] for different examples of equations
of state). The pressure law is expected to be linear for low densities and to increase rapidly
above a certain threshold ∼ σ0 in order to describe the fact that the cells do not interpenetrate.
For example, in [69, 40, 32] we proposed to take p(ρ) = −σ0Teff ln(1 − ρ/σ0) which returns
the “isothermal” equation of state p = ρTeff for dilute systems ρ ≪ σ0 where the motion of
an individual cell is not impeded by the other cells [25], and which diverges when the cells are
compressed towards the maximum density ρ → σ0. Another possible equation of state is the
polytropic one p(ρ) = Kργ [72, 32] taking into account anomalous transport (normal transport
corresponds to the isothermal case γ = 1). The chemotactic response D1(ρ, c) of the bacterium
to the chemical gradient (second term in the r.h.s. of Eq. (45)) can also depend on c and ρ so as
to take into account anomalous reactivity (the normal case corresponds to D1(ρ, c) = ρ but the
form D1(ρ, c) = ρ(1− ρ/σ0) has also been considered to take into account volume filling effects
[24, 69, 40, 35]). Finally, the last term in the r.h.s. of Eq. (45) is a friction force that measures
the importance of inertial effects. It parametrizes the tendency of the organisms to continue
in a given direction. In this inertial model, the velocity of a particle takes a finite time ξ−1 to
get aligned with the chemotactic gradient while in the Keller-Segel model, this alignement is
assumed to be instantaneous (see below). The “delay” in the alignement of the velocity with
the chemotactic gradient is similar to the idea that is at the heart of the Cattaneo model in
Sec. 3.

If we neglect the friction force (ξ = 0) we recover the model introduced by Gamba et al. [27].
Alternatively, if we neglect the inertial term (l.h.s.) in Eq. (45) and substitute the resulting
expression [69, 50, 32]:

ρu = −1

ξ
(D2(ρ, c)∇ρ−D1(ρ, c)∇c) , (46)

in Eq. (44), we recover the GKS model. This is valid in a strong friction limit ξ → +∞. We
can also obtain a more general model taking into account some memory effects. If we neglect
only the nonlinear term ∇(ρu⊗ u) in Eq. (45), we obtain

∂

∂t
(ρu) = −D2(ρ, c)∇ρ+D1(ρ, c)∇c− ξρu, (47)

which is equivalent to the Cattaneo model (42) with τ = 1/ξ. Taking the time derivative of Eq.
(44) and substituting Eq. (47) in the resulting expression, we obtain a simplified hyperbolic
model keeping track of memory effects

∂2ρ

∂t2
+ ξ

∂ρ

∂t
= ∇ · (D2(ρ, c)∇ρ−D1(ρ, c)∇c) . (48)

This provides a new justification (see also [56]) of the Cattaneo model of chemotaxis from the
damped hydrodynamics equation (44)-(45). This can be viewed as a semi-linear hydrodynamic
model since its derivation assumes that the nonlinear term ∇(ρu ⊗ u) in Eq. (45) can be
neglected while the full nonlinearities in the r.h.s. of Eq. (45) are taken into account.
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5 Stochastic hydrodynamic models of chemotaxis

In this section, we generalize the previous hydrodynamic equations in order to take into account
fluctuations. We restrict ourselves to the standard situation where D2 = ξD∗ and D1 = ρ. The
stochastic damped Euler equations generalizing Eqs. (44)-(45) can be written

∂ρ

∂t
+∇ · (ρu) = 0, (49)

∂

∂t
(ρu) +∇(ρu⊗ u) = −ξD∗∇ρ+ ρ∇c− ξρu−

√

2D∗ξ2ρ R(r, t). (50)

As shown in Appendix B of [56], the form of the noise in these equations can be obtained by
applying the general theory of fluctuations developed by Landau & Lifshitz [65]. If we neglect
the inertial term (l.h.s.) in Eq. (50) and substitute the resulting expression

ρu = −(D∗∇ρ− χρ∇c)−
√

2D∗ρ R(r, t), (51)

where χ = 1/ξ in Eq. (49), we recover the stochastic Keller-Segel equation (31). This is valid
in a strong friction limit ξ → +∞ with ξD∗ ∼ 1. As in Sec. 4, we can obtain a more general
model taking into account some memory effects. Indeed, if we neglect only the nonlinear term
∇(ρu⊗ u) in Eq. (50), we find

χ
∂

∂t
(ρu) = −D∗∇ρ+ χρ∇c− ρu−

√

2D∗ρ R(r, t). (52)

Taking the time derivative of Eq. (49) and substituting Eq. (52) in the resulting expression,
we obtain the stochastic Cattaneo model of chemotaxis

χ
∂2ρ

∂t2
+

∂ρ

∂t
= ∇ · (D∗∇ρ− χρ∇c) +∇ · (

√

2D∗ρR). (53)

6 Stochastic kinetic models of chemotaxis

In order to take into account fluctuations in a rigorous way, we must start from a microscopic
description of the dynamics of the chemotactic species. In Sec. 2, we have considered an
overdamped dynamics. However, according to recent observations in biology (as discussed in
Sec. 4), it is important to take into account the inertia of the particles. A kinetic model
of chemotaxis taking into account finite N effects and inertial effects has been proposed in
Chavanis & Sire [32]. In the simplest case, the motion of the biological entities is described by
N coupled stochastic Langevin equations of the form

dri
dt

= vi, (54)

dvi

dt
= −ξvi +∇cd(ri(t), t) +

√
2DRi(t), (55)

∂cd
∂t

= Dc∆cd − kcd + h

N
∑

i=1

δ(r− ri(t)), (56)
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where ξ is a friction coefficient and D a diffusion coefficient in velocity space. We can intro-
duce an effective temperature Teff through the Einstein relation Teff = D/ξ [32, 35]. The
overdamped stochastic equations (9)-(10) can be recovered in a strong friction limit ξ → +∞,
neglecting the inertial term in Eq. (55), and writing χ = 1/ξ and D∗ = D/ξ2. We now pro-
ceed in deriving the exact kinetic equation satisfied by the distribution function of cells whose
dynamics is described by the coupled stochastic Langevin equations (54)-(56). The exact dis-
tribution function, expressed in terms of δ-functions, can be written

fd(r,v, t) =

N
∑

i=1

fi(r,v, t) =

N
∑

i=1

δ(r− ri(t))δ(v − vi(t)). (57)

For any function F (r,v), we have F (ri(t),vi(t)) =
∫

fi(r,v, t)F (r,v)drdv. Now, using Ito’s
calculus, one has

dF (ri,vi)

dt
=

∫

fi(r,v, t)

[

∇rF (r,v) · v − ξ∇vF (r,v) · v +∇vF (r,v) · ∇cd(r, t)

+
√
2D∇vF (r,v) ·Ri(t) +D∆vF (r,v)

]

drdv. (58)

Integrating by parts, we obtain

dF (ri,vi)

dt
=

∫

F (r,v)

[

−v · ∂fi
∂r

(r,v, t) + ξ
∂

∂v
· (fi(r,v, t)v)−∇cd(r, t) ·

∂fi
∂v

(r,v, t)

−
√
2D

∂

∂v
(fi(r,v, t)Ri(t)) +D∆vfi(r,v, t)

]

drdv. (59)

Then, using dF (ri,vi)/dt =
∫

∂tfi(r,v, t)F (r,v)drdv and comparing with Eq. (59), we get

∂fi
∂t

+ v · ∂fi
∂r

+∇cd ·
∂fi
∂v

=
∂

∂v
·
(

D
∂fi
∂v

+ ξfiv

)

−
√
2D

∂

∂v
· (fiRi) . (60)

Summing this relation over the i, we finally obtain

∂fd
∂t

+ v · ∂fd
∂r

+∇cd ·
∂fd
∂v

=
∂

∂v
·
(

D
∂fd
∂v

+ ξfdv

)

−
√
2D

N
∑

i=1

∂

∂v
· (fiRi) . (61)

Now, proceeding like in [60], the last term can be rewritten:

−
N
∑

i=1

∂

∂v
· (fi(r,v, t)Ri(t)) =

∂

∂v
· (f 1/2

d (r,v, t)Q(r,v, t)), (62)

whereQ(r,v, t) is a Gaussian random field such that 〈Q(r,v, t)〉 = 0 and 〈Qα(r,v, t)Qβ(r
′,v′, t′)〉

= δαβδ(r − r′)δ(v − v′)δ(t− t′). Therefore, the system of equations satisfied by the exact dis-
tribution function expressed in terms of δ-functions is

∂fd
∂t

+ v · ∂fd
∂r

+∇cd ·
∂fd
∂v

=
∂

∂v
·
(

D
∂fd
∂v

+ ξfdv

)

+
∂

∂v
·
(

√

2DfdQ(r,v, t)
)

, (63)

∂cd
∂t

= Dc∆cd − kcd + h

∫

fd(r,v, t)dv. (64)
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This will be called the stochastic Kramers equation of chemotaxis for the exact distribution
function. Using Eq. (24), it can be written

∂fd
∂t

+ v · ∂fd
∂r

+ h

∫

dr′dv′

∫ t

0

dt′∇G(r− r′, t− t′)fd(r
′,v′, t′) · ∂fd

∂v
(r,v, t)

=
∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

+
∂

∂v
·
(

√

2DfdQ(r,v, t)
)

. (65)

If we average over the noise and introduce the smooth distribution function f(r,v, t) = 〈fd(r,v, t)〉,
we recover Eq. (60) of Chavanis & Sire [32]:

∂f

∂t
+ v · ∂f

∂r
+ h

∂

∂v
·
∫

dr′dv′

∫ t

0

dt′∇G(r− r′, t− t′)〈fd(r,v, t)fd(r′,v′, t′)〉

=
∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

. (66)

If we make a mean field approximation 〈fd(r,v, t)fd(r′,v′, t′)〉 ≃ f(r,v, t)f(r′,v′, t′), we recover
Eqs. (66)-(68) of Chavanis & Sire [32]:

∂f

∂t
+ v · ∂f

∂r
+∇c · ∂f

∂v
=

∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

, (67)

∂c

∂t
= Dc∆c− kc + h

∫

f(r,v, t)dv. (68)

This can be viewed as a mean field Kramers equation of chemotaxis in the same way that the
Keller-Segel model can be viewed as a Smoluchowski equation of chemotaxis. In fact, the Keller-
Segel model (1)-(2) can be recovered from Eqs. (67)-(68) in a strong friction limit ξ → +∞
by using a Chapman-Enskog expansion [70] or a method of moments [32]. Let us note, for
future reference, that the steady solutions of the mean field Kramers equation of chemotaxis
correspond to a mean field Maxwell-Boltzmann-like distribution

f = A′e−β(v2/2−c), (69)

where β = 1/Teff is the inverse effective temperature. If we integrate this distribution over
the velocitities we recover the distribution (30) that is the steady solution of the Keller-Segel
model (1)-(2).

As discussed in the Introduction, the mean field approximation may not always give a
good description of the dynamics. On the other hand, Eqs. (63)-(64) for the distribution
function expressed in terms of δ-functions are exact but they are too complicated for practical
purposes because they contain exactly the same information as the N -body stochastic Langevin
equations (54)-(56). Therefore, as in Sec. 2, we shall introduce a simplified kinetic equation
for a coarse-grained distribution function f(r,v, t) which smoothes out the exact distribution
function fd(r,v, t) while keeping track of fluctuations. We propose the simplified stochastic
model

∂f

∂t
+ v · ∂f

∂r
+∇c · ∂f

∂v
=

∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

+
∂

∂v
·
(

√

2DfQ(r,v, t)

)

, (70)

∂c

∂t
= Dc∆c− kc + h

∫

f(r,v, t)dv. (71)
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This model takes into account inertial effects and fluctuations so that it should provide a good
description of the dynamics of chemotactic species. As shown in Appendix B of [56], the form
of the noise in these equations can be obtained by applying the general theory of fluctuations
developed by Landau & Lifshitz [65].

Let us try to make a connexion with the hydrodynamic equations introduced phenomeno-
logically in Sec. 5. Taking the hydrodynamic moments of the stochastic Kramers equation (70)
and proceeding as in [32], we obtain

∂ρ

∂t
+∇ · (ρu) = 0, (72)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −∂Pij

∂xj
+ ρ

∂c

∂xi
− ξρui −

∫

√

2DfQidv, (73)

where ρ(r, t) =
∫

fdv is the density, u(r, t) = (1/ρ)
∫

fvdv is the local velocity, w = v −
u(r, t) is the relative velocity and Pij =

∫

fwiwjdv is the pressure tensor. Defining g(r, t) ≡
∫ √

2DfQdv, it is clear that g is a Gaussian noise and that its correlation function is

〈gi(r, t)gj(r′, t′)〉 = 2D

∫

√

f(r,v, t)f(r′,v′, t′)〈Qi(r,v, t)Qj(r
′,v′, t′)〉dvdv′

= 2Dδijδ(r− r′)δ(t− t′)

∫

f(r,v, t)dv = 2Dδijδ(r− r′)δ(t− t′)ρ(r, t). (74)

Therefore, the equation for the momentum (73) can be rewritten

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −∂Pij

∂xj
+ ρ

∂c

∂xi
− ξρui −

√

2DρRi(r, t). (75)

This equation is not closed since the pressure tensor depends on the next order moment of
the velocity. If, following [32], we make a local thermodynamic equilibrium (L.T.E.) approx-
imation fLTE(r,v, t) ≃ (β/2π)d/2ρ(r, t)e−βw2/2 to compute the pressure tensor, we find that
Pij ≃ Teffρδij . In that case, Eqs. (72) and (75) return the stochastic damped Euler equa-
tions (49)-(50). We recall, however, that there is no rigorous justification for this local ther-
modynamic equilibrium approximation. Therefore, it does not appear possible to rigorously
derive the damped hydrodynamic equations (49)-(50) from the Kramers equation (70)-(71)
by a systematic procedure. Alternatively, if we consider the strong friction limit ξ → +∞
for fixed β, implying D = ξ/β → +∞, the first term in the r.h.s. of Eq. (70) implies that
f(r,v, t) ≃ (β/2π)d/2ρ(r, t)e−βv2/2 + O(1/ξ), u = O(1/ξ) and Pij = Teffρδij + O(1/ξ) [32]. To
leading order in 1/ξ, Eq. (75) becomes

ρu ≃ −1

ξ

(

Teff∇ρ− ρ∇c+
√

2DρR(r, t)
)

. (76)

Inserting Eq. (76) in the continuity equation (72) and recalling that Teff = D/ξ = ξD∗

and χ = 1/ξ, we recover the stochastic Keller-Segel model (31)-(32). It is therefore possible
to rigorously derive the stochastic Keller-Segel model (31)-(32) from the stochastic Kramers
equation (70)-(71) in the strong friction limit ξ → +∞.

7 Conclusion

In this paper, we have derived generalized Keller-Segel models of chemotaxis taking into ac-
count fluctuations. This leads to stochastic kinetic equations instead of deterministic equations.
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Fluctuations become important close to a critical point [63, 34, 56], so it is valuable to have
a model of chemotaxis going beyond the mean field approximation and taking into account
fluctuations. The divergence of the spatial correlation function close to the critical point has
been analyzed in detail in [56] for Brownian particles interacting through a binary potential.
These particles are described by a stochastic Smoluchowski equation coupled to the markovian
field equation (8). The general methods developed in [56] can be extended to the stochastic
Keller-Segel model (31) coupled to the non-Markovian field equation (2). Accounting for fluctu-
ations is also important when the number of particles N is small and when there exists several
metastable states. In that case, fluctuations can trigger dynamical phase transitions from one
state to the other.

We have also introduced kinetic models of chemotaxis in phase space taking into account
inertial effects. In the strong friction limit, we recover the Keller-Segel model describing an over-
damped dynamics. We have discussed the relation between the kinetic equations in phase space
and the hydrodynamic equations introduced phenomenologically. Finally, we have shown how
the Cattaneo model of chemotaxis [26] could be obtained from these hydrodynamic equations.

This paper and [56] are the first attempts to include fluctuations in the kinetic equations of
chemotaxis (the main results were given in [56] and they have been discussed here specifically
with more details and amplification). In view of the importance of the Keller-Segel model in
biology, the stochastic equations that we propose can have a lot of applications and can open
the way to many new investigations. Their detailed numerical and analytical study is therefore
of considerable interest. We hope to come to these problems in future works.

Note added: Until now, fluctuations have been ignored by people working on chemotaxis.
Therefore, Ref. [56] and the present paper are the first attempts to include fluctuations in
the Keller-Segel model. However, after submission of these papers, a paper by Tailleur &
Cates [arXiv:0803.1069] (now published as Phys. Rev. Lett. 100, 218103 (2008)) came out
on a related subject. These authors also consider the effect of fluctuations in the motion
of bacteria. However, their goal is different. They are mainly interested in deriving transport
coefficients from microscopic models, so they do not take into account the long-range interaction
between bacteria due to chemotaxis. Alternatively, in our approach, the transport coefficients
D∗ and χ appearing in the Langevin equations are introduced phenomenologically but long-
range interaction between bacteria due to chemotaxis is fully taken into account. Therefore,
these two independent studies are complementary to each other.
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