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Abstract

The subject of this paper is the calculation of charge distribution on and inside thin semicon-
ducting silicon nanowires in electrostatic problems, by a coupled Finite and Boundary Element
Method (FEM/BEM). A hybrid semiclassical (Laplace/Poisson) model is employed and a line
model (with finite thickness) for a silicon nanowire of circular cross-section is proposed here.
This model overcomes the problem of dealing with nearly singular matrices that occur when
the standard BEM is applied to very thin features (objects or gaps). This new approach is also
very efficient. Numerical results are presented for selected examples.
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1 Introduction

Microelectromechanical systems (MEMS) have demonstrated important applications in a wide va-
riety of industries including mechanical and aerospace, medicine, communications, information
technology etc. Nanoelectromechanical systems (NEMS) are “smaller” MEMS in the sense that
they have submicron critical dimensions. Owing primarily to their small size, NEMS can offer
very high sensitivities (e.g. force sensitivities at the attonewton level, mass sensitivities at a sin-
gle molecule or even a single atom level, and charge sensitivities at the level of the charge on a
single electron). In addition, they offer mechanical quality factors in the tens of thousands and
fundamental frequencies in the microwave range ([1] - [5]). Mechanical resonance and losses in
nanometer scale silicon wires have been measured [6]. Fabrication of silicon nanotweezers [7] and
nanoresonators [8] has been demonstrated recently.

Numerical simulation of electrically actuated MEMS devices have been carried out for nearly
fifteen years by using the Boundary Element Method (BEM - see, e.g. [9, 10, 11, 12, 13]) to model
the exterior electric field and the Finite Element Method (FEM - see, e.g. [14, 15, 16]) to model
deformation of the structure. The commercial software package MEMCAD [17], for example, uses
the commercial FEM software package ABAQUS for mechanical analysis, together with a BEM
code FastCap [18] for the electric field analysis. Other examples of such work are [19, 20, 21, 22];
as well as [17, 23, 24] for dynamic analysis of MEMS. A recently published paper [25] addresses the
problem of charge distribution on multiwalled nanotubes, with a classical electrostatics model, by
employing a full three-dimensional (3-D) BEM approach.

MEMS have been analyzed using classical continuum models for the mechanical (elastostatic
or elastodynamic) and electrical (electrostatic) energy domains. These physical models for MEMS,
however, may not be directly applicable to NEMS because of their small sizes. Mechanical and elec-
trical behavior, as well as the coupling between domains, could be different for nanoscale structures,
thus requiring different physical models.

Electrostatic analysis of MEMS assumes that the microstructures can be treated as conductors.
In such cases, the potential in a conductor is uniform, all the charges distribute on the surfaces of
the conductors and the coupling between the electrical and mechanical domains takes place through
the electrostatic forces which act only on the surfaces of the conductors. The conductor assumption
may not hold for some NEM devices. Silicon microstructures, for example, are more appropriately
treated as semiconductors. In such cases, the potential distribution in a semiconductor is no longer
uniform and the charges are distributed not only on the surfaces but also in the bulk of semiconduc-
tors. When the charges are distributed throughout a semiconductor, the electrical and mechanical
domains are coupled not only through the surface but also through the volume of a semiconduc-
tor. Aluru and his co-workers, in recent papers [26, 27], have employed a classical electrostatic
model for conductors, and, depending upon their characteristic length, two different electrostatic
models : semiclassical (Laplace/Poisson) and quantum mechanical (Laplace/Poisson/Schrödinger)
for semiconductors. Numerical results for two-dimensional (2-D) problems are presented in these
papers.

A recent paper [28] describes the study of the charge distribution on thin conducting carbon
nanotubes (CNTs). This requires BEM analysis of the electric field exterior to these thin conducting
objects. In the context of MEMS with very thin beams or plates, a convenient way to model such
a problem is to assume plates with vanishing thickness and solve for the sum of the charges on the
upper and lower surfaces of each plate [29]. The standard Boundary Integral Equation (BIE) with
a weakly singular kernel is used in [29] and this approach works well for determining, for example,
the capacitance of a parallel plate capacitor. For MEMS calculations, however, one must obtain the
charge densities separately on the upper and lower surfaces of a plate since the traction at a surface
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point on a plate depends on the square of the charge density at that point. The gradient BIE is
employed in [30] to obtain these charge densities separately. The formulation given in [30] is a BEM
scheme that is particularly well-suited for MEMS analysis of very thin plates - for h/L ≤ .001 - in
terms of the length L (of a side of a square plate) and its thickness h. A similar approach has also
been developed for MEMS with very thin beams [31]. Similar work has also been reported recently
by Chuyan et al. [32] in the context of determining fringing fields and levitating forces for 2-D
beam shaped conductors in MEMS combdrives. A fully coupled BEM/FEM MEMS calculation
with very thin plates has been completed [33]. See, also, [34] for an application of the thin plate
idea for modeling damping forces on MEMS with thin plates.

The primary contribution of [28], therefore, is the development of a line model of a nanotube
in a 3-D region (called a reduced 3-D model). This model overcomes the problem of dealing with
nearly singular matrices that occur when the standard BEM is applied to very thin gaps. It also
greatly simplifies the BEM calculations and is computationally very efficient. Finally, the actual
charge distribution on the entire surface of a CNT can be recovered at a post-processing step!

Some issues related to the modelling of a silicon nanowire need to be clarified here. Although
silicon nanowires do not have circular cross-sections, this approximation for electrostatic analysis
is considered to be reasonable for the long aspect ratio nanowires that are considered in this paper.
Also, size dependent mechanical properties can be incorporated into the existing framework. One
way to do this is to perform molecular dynamics simulations, extract material properties, and use
them in the model presented in this paper. These effects will be considered in future work.

The present paper is concerned with a geometrical situation that is similar to that considered
in [28]. This time, however, the nanoscale object is a semiconducting silicon nanowire rather than
a conducting carbon nanotube. A semiclassical (Laplace/Poisson) model is employed here in which
the potential in the (long thin circular cross-section) semiconductor is governed by a nonlinear
Poisson equation while the region exterior to the semiconductor (which extends to infinity) is
governed by Laplace’s equation. The FEM is used to model the potential and charge distribution
on and inside the semiconducting nanowire, while the BEM is used to model the region exterior
to the nanowire. The coupled FEM/BEM equations are then solved in a self-consistent manner.
The large aspect ratio of the nanowire is taken advantage of to greatly simplify the analysis of this
coupled, nonlinear 3-D problem; while, at the same time, (as mentioned earlier in this section) the
pitfalls associated with nearly singular matrices, that can arise as a consequence of the presence
of long thin structures, are carefully avoided. The result is a reduction of the full 3-D problem
to a 2-D (axisymmetric) FEM problem in the nanowire (only one finite element is employed in
the radial direction); and, in view of the dimensionality reduction property of the BEM for linear
problems, a 2-D problem in the infinite region exterior to the nanowire.

The present paper is organized as follows. The governing equations and boundary conditions
for this problem are presented first. The FEM (Galerkin) formulation for the potential and charge
distribution inside the nanowire follows. BIEs are next presented for an infinite region containing
one thin semiconducting nanowire and an (infinite) ground plane. The ground is modeled indirectly
by adding a suitable image nanotube to the computational domain. This image tube is a nonphysical
mathematical artifact that is used to guarantee zero potential on the ground plane without directly
modeling it (see Section 2). Next, several sections deal with evaluation of various integrals - singular
and otherwise. Some of these evaluations are rather subtle and of critical importance for obtaining
the numerical results presented in this paper. The next Section describes coupling of the BEM and
FEM equations. A Numerical Results Section and a Concluding Remarks Section, together with
several Appendices, complete the paper.
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2 Governing Equations

Charge distribution on the surface of a thin conducting Single Walled Carbon Nanotube (SWNT)
has been analyzed by a specialized boundary element method in [28]. Carbon nanotubes, however,
are often semiconducting. Modeling of the charge distribution inside and on a semiconducting
silicon nanowire is carried out in this work.
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Figure 1: Silicon wire with image

The physical problem under consideration is a semi-conducting silicon nanowire with a ground
plane, at zero potential, at a distance g from the bottom of the wire. Fig. 1 shows a nanowire with
an image in order to model the ground plane. It is important to emphasize that while the gov-
erning equation in the dielectric region outside the nanowire is linear and homogeneous (Laplace’s
equation), that governing the potential inside the nanowire is both nonlinear and nonhomogeneous.
Therefore, linear superposition, in general, is no longer valid in this problem. The image nanowire
in Fig. 1 is a nonphysical mathematical artifact which is used to guarantee zero potential on the
ground plane without directly modeling it. Alternatively, the ground plane can be directly modeled
with any desired potential prescribed on it. Chen and Mukherjee [35] discusses direct modeling of
the ground plane for the case of conducting carbon nanotubes.

The potential inside and on a semiconducting nanowire is no longer constant, but is governed
by the Poisson equation [27]. The governing equations for this problem are:

Silicon.
εs∇2φ(s) = ρ(s) = −e[p(φ(s)) − n(φ(s)) +N+

D (φ(s)) −N−
A (φ(s))] (1)

n(φ) = n0 exp
[
eφ

kBT

]
(2)

p(φ) = n0 exp
[
− eφ

kBT

]
(3)

N+
D (φ) = ND, N−

A (φ) = NA (4)
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n0 =
ND +NA

2
+

√(
ND +NA

2

)2

+ n2
i (5)

Dielectric
∇2φ(d) = 0 (6)

Boundary conditions
φ(s) = φ(d), on ∂BC ∪ SV L ∪ SV R (7)

εs

(
∂φ

∂r

)(s)

= εd

(
∂φ

∂r

)(d)

, on ∂BC ; φ(s) = φ0 on SV L ∪ SV R (8)

It is noted that the transition boundary conditions on ∂φ/∂n in (8) at a boundary point must
only be used when both φ and ∂φ/∂n are unknown at that point.

The various quantities in (1) - (8) are as follows :
φ(s) : potential in silicon, φ(d) : potential in dielectric, ρ(s) : charge density in silicon, εd : dielectric
constant of the dielectric medium, εs : dielectric constant of silicon, n : electron density, p : hole
density, N+

D : ionized donor concentration, N−
A : ionized acceptor concentration, n0 : bulk electron

concentration, ni : intrinsic electron concentration, e : charge on an electron, kB : Boltzmann
constant, T : temperature in degrees Kelvin. Also, ∂BC is the curved surface of the nanowire and
SV L and SV R are its left and right end planes, respectively.

Some details follow. First:

n = NC exp
[
EF − EC

kBT

]
(9)

where NC is the effective density of state of the conduction band, EF is the Fermi-level energy and
EC is the conduction band energy.

One has:

NC = ni exp

[
ÊC − Ei

kBT

]
(10)

EC = ÊC − eφ(s) (11)

where ÊC is the energy of the bulk conduction band and Ei is the intrinsic Fermi level energy.
Also:

n0 = ni exp
[
EF − Ei

kBT

]
(12)

Combining (9 - 12) yields (2).

3 Finite Element Analysis

The potential and charge distributions inside the semiconducting nanowire are obtained by applying
the finite element method. The potential inside a nanowire is assumed to be axisymmetric, i.e.

φ̄(s)(r, z) = φ(s)(r, θ, z) (13)
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This assumption is approximately valid as long as the nanowire is very thin and the ground
plane is sufficiently far from it. It is needed in order to derive the simplified field equations that
follow. A full 3-D analysis is generally required if the potential is not axisymmetric.

3.1 Interpolation Functions and Galerkin Formulations

The superscript (s) is suppressed in this section in the interest of notational simplicity.

3.1.1 Option one : Line model of silicon nanowire

It is further assumed, for this section only, that the potential is a function of only the axial coor-
dinate z, i.e.:

φ̄(r, z) = φ̃(z) (14)

.. . .. . . . . . . . . . . .
1 2 3 4

η
η = - 1 η = −1/3 η = 1/3 η = 1

z1

Figure 2: Finite element one. Cubic interpolations are used along the axial direction

A typical finite element for the determination of φ̃(z) is shown in Fig. 2. Piecewise cubic
interpolation is used along the axis. The interpolation within a finite element, in terms of the
dimensionless variable:

η =
2(z − z1)

�
− 1 (15)

has the form:

φ̃(η) =
4∑

k=1

Nk(η)φ̃k (16)

in terms of its nodal values φ̃k, and the functions Nk(η), k = 1, 2, 3, 4. These functions are:

N1(η) = −(3η + 1)(3η − 1)(η − 1)
16

, N2(η) =
9(η + 1)(η − 1)(3η − 1)

16

N3(η) = −9(η + 1)(η − 1)(3η + 1)
16

, N4(η) =
(3η + 1)(3η − 1)(η + 1)

16
(17)

In the above, � is the element length.

3.1.2 Galerkin formulation for option one

A Galerkin formulation proceeds as follows:

∫ 


0

[
εs
∂2φ̃

∂z2
− f(φ̃)

]
Nk(z)dz = 0 (18)

In the above, f(φ(s)) is the right hand side of (1).
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3.1.3 Option two : Quadratic radial variation within silicon nanowire

A typical finite element, for the determination of φ̄(r, z) is shown in Fig. 3. Piecewise cubic
polynomial interpolation is used along the axis while, in view of the large aspect ratio of a typical
nanowire, a single quadratic interpolation function is employed in the radial direction. This finite
element is rectangular (axisymmetric with a rectangular cross-section), with length �, and extends
from r = 0 to r = b in the transverse direction.

.

.

. .

.

.

..

. . . . . . . . . . . .
1 2 3 4

5 6 7 8

ρ

η
η = − 1 η = −1/3 η = 1/3 η = 1

ρ = 0

ρ = 1

Figure 3: Finite element two. Cubic interpolations are used along the axial and a single quadratic
interpolation is used in the radial direction

The interpolation within a finite element, in terms of the dimensionless variables:

ρ =
r

b
, η =

2(z − z1)
�

− 1 (19)

has the form:

φ̄(ρ, η) = (1 − ρ2)
4∑

k=1

Nk(η)φ̄k + ρ2
8∑

k=5

Nk−4(η)φ̄k (20)

in terms of its nodal values φ̄k, and the functions Nk(η), k = 1, 2, 3, 4. These functions are defined in
(17). The special quadratic interpolation in the radial direction (20) is adopted since the nanowire
is very thin compared to its length and to ensure that ∂φ

∂r (r, z) = 0 for points on its axis (symmetry
line).

3.1.4 Galerkin formulation for option two

A Galerkin formulation proceeds as follows:

∫ 


0

∫ b

0

[
εs

[
∂2φ̄

∂r2
+

1
r

∂φ̄

∂r
+
∂2φ̄

∂z2

]
− f(φ̄)

]
Mk(r, z)drdz = 0 (21)

In the above, f(φ(s)) is the right hand side of (1), and:

Mk(ρ, η) = (1 − ρ2)Nk(η), Mk+4(ρ, η) = ρ2Nk(η); k = 1, 2, 3, 4 (22)
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4 Boundary Element Analysis

This section presents BIEs for a single thin semiconducting silicon nanowire with an infinite ground
plane. The ground is modelled by adding on a suitable image nanowire in the computational domain
(see Fig. 1 and [28]).

Please note that the BEM needs to be collocated only on the outside nodes (i.e. on ∂BC ∪SV L∪
SV R in Fig. 1). This would be nodes 1, 5, 6, 7, 8, 4 in Fig. 3. Also, by virtue of (20), axial nodes
1, 2, 3, 4 in Fig. 3 have ∂φ

∂r = 0.

4.1 Regular BIE - Source Point Approaching the Nanowire Surface ∂B

For a source point ξ ∈ B → x ∈ ∂B = ∂BC ∪ SV L ∪ SV R (see Fig. 1), one has:

φ(d)(x) =
∫
∂BC

σ(d)(y)
4πεdr(x,y)

dS(y) +
∫
∂B̃C

σ(d)(y)
4πεdr(x,y)

dS(y)

+
∫
∂BC

r(x,y) · n(y)
4πr3(x,y)

φ(d)(y)dS(y) +
∫
SV L∪SV R

r(x,y) · n(y)
4πr3(x,y)

φ(d)(y)dS(y)

+
∫
∂B̃C

r(x,y) · n(y)
4πr3(x,y)

φ(d)(y)dS(y) + C , x ∈ ∂B (23)

In the above, ∂BC and ∂B̃C are the curved surfaces of the nanowire and of its image, respec-
tively, and SV L and SV R are the left and right flat surfaces of the nanowire. Also, φ(d) is the
potential and σ(d) is the charge density per unit surface area, on the outer surface of the nanowire.
The (axisymmetric) potential distribution on the nanowire is φ(d)(r, z) and that on its image is -
φ(d)(r, z). Under these conditions, C = φ∞ = 0 [28].

It is noted that if x ∈ ∂BC , then the third integral in (23) must be interpreted as a finite part
(FP) in the sense of Mukherjee [36] (denoted as

∫
=). Similarly, the fourth integral in (23) is an FP

integral when x ∈ SV L ∪ SV R.
Define:

q(d)(r, z) = 2πbσ(d)(r, z) (24)

where b is the radius of the nanowire (see Fig. 1) and q(d)(r, z) is the charge density, per unit length,
in the nanowire. Also, let:

φ̄(d)(r, z) = φ(d)(r, θ, z), φ̃(d)(z) = φ̄(d)(b, z) (25)

Each term in (23) is now simplified for the special case � >> b, where � is the length of the
nanowire (Fig. 4). In view of the fact that b is small, quantities (O)(bn), n ≥ 2, are neglected in
the rest of this paper. It is important to realize, especially for the evaluation of integrals involving
the potential in (23), that x approaches the surface ∂B from outside the nanowire.

4.2 Evaluation of Various Integrals in (23) for � >> b

The superscripts - and (d) in φ̄(d), (d) in σ(d) and the subscript d in εd are suppressed in this section
in the interest of notational simplification.
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4.2.1 First and second integrals in (23)

Case (a) : x = x̂ ∈ ∂B̂C ⊂ ∂BC in Fig. 4. (This includes the top left and right corners
of the upper wire).

These two integrals are written as I1 and I2, respectively.
The nonsingular second integral is approximated as [28]:

I2 =
∫
S̃A

q(y)
4πεr(x̂,y)

d�(y), x ∈ ∂BC (26)

where:

q(y) = q(b, z) = 2πbσ(b, z) (27)

since σ(y) is assumed to be axisymmetric.

n

y

y
_

e

b b

r

θ

k

j

Figure 5: Geometry for evaluation of various integrals

The first integral above is decomposed as (see Fig. 5):

I1 =
∫
SA−ŜA

q(b, z)
4πε|z|dz +

∫
ŜA

∫ 2π

0

q(b, z)dθdz
8π2ε

√
z2 + 2b2(1 − cos(θ))

(28)

where (27) has been used. The source point x ∈ ∂ ˆ̄BC (with ∂ ˆ̄BC is a line on ∂BC that corresponds
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to ŜA), while the field point y ∈ SA (see Fig. 8 in [28]). Also, the length of the nanowire axis
segment ŜA is �̂.

The second integral in (28) can be reduced to an elliptic integral (see Appendix A).
It is noted that if the axial coordinate of x is inside an element, then ∂B̂C is that element. If

the axial coordinate of x is on an edge of an element, then ∂B̂C is the union of the element before
and the element after the point x.

Case (b) : x = xL ∈ SV L or xR ∈ SV R on the axis of the upper wire (see Fig. 4).
First consider x = xL. This time [28]:

I1 + I2 =
∫
∂B̄C

q(y)
4πr(xL,y)

d�(y) +
∫
∂B̃C

q(y)
4πr(xL,y)

d�(y) (29)

where ∂B̄C is a line on ∂BC parallel to SA.
The second integral in (29) is nonsingular and is evaluated as for (26). The first is nearly

strongly singular. Its evaluation procedure is outlined in Section 2.5 of [28].
The case x = xR is analogous to x = xL and I1 and I2 for this case are evaluated in a manner

similar to that outlined above.

4.2.2 Third and fourth integrals in (23)

Case (a) : x = x̂ ∈ ∂B̂C ⊂ ∂BC “far” from the ends SV L and SV R in Fig. 4.
One has:

I3 + I4 =
∫
∂BC−∂B̂C

r(x̂,y) · n(y)
4πr3(x̂,y)

φ(y)dS(y) +
∫
∂B̂C

r(x̂,y) · n(y)
4πr3(x̂,y)

(φ(y) − φ(x̂))dS(y)

+ φ(x̂)
∫
∂B̂C

r(x̂,y) · n(y)
4πr3(x̂,y)

dS(y) +
∫
SV L∪SV R

r(x̂,y) · n(y)
4πr3(x̂,y)

φ(r, z̄)dS(y) (30)

where φ(y) = φ(b, z) and z̄ is the z coordinate at SV L or SV R. Also, ∂B̂C is a ring of radius b,
length �̂.

1. The second integral in (30) is weakly (O(1/r)) singular and computable (see Appendix A).

2. It is proved in Appendix B that the first (nonsingular) integral in (30) is O(b2). It is assumed
to vanish as b→ 0.

3. It is proved in Appendix B that the last (nonsingular) integral in (30) is O(b2). It is assumed
to vanish as b→ 0.

4. It is well known (see, for example, [13]) that the solid angle integral:

Ω(∂S, x̂) =
∫
∂S

r(x̂,y) · n(y)
r3(x̂,y)

dS(y) = 0 (31)

where Ω is the solid angle subtended by any closed surface ∂S at any point x̂ outside it.

One can interpret the third integral in (30) as:

φ(x̂)
∫
∂S

r(x̂,y) · n(y)
r3(x̂,y)

dS(y) (32)
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where ∂S is the union of ∂B̂C together with two flat disc closure surfaces. As noted before,
the integrals on the flat discs vanish if r0 >> b and b → 0. Therefore, this third integral in
(30) vanishes.

Case (b) : x = xL ∈ SV L or xR ∈ SV R on the axis of the upper wire (see Fig. 4).
This situation is discussed in Appendix C.

Case (c) : x ∈ SV L or ∈ SV R at the upper left or right corner of the upper wire (see
Fig. 15).

This situation is discussed in Appendix D.

4.2.3 Last integral in (23)

It is proved in Appendix B that the last integral in (23) is O(b2) and is assumed to vanish as b→ 0.

4.3 Surviving Integrals from (23)

The following quantities survive:

1. The first and second integrals (23)

2. The second integral in (30) with x̂ ∈ ∂B̂C

3. The second integral in (30) with x̂ = xL ∈ SVL
. This integral approximately equals:

1
2

[
φ(0, 0) − φ(b, 0) − b∂φ

∂z
(b, 0)

]

4. The second integral in (30) with x̂ = xR ∈ SVR
. This integral approximately equals:

1
2

[
φ(0, �) − φ(b, �) − b∂φ

∂z
(b, �)

]

5 Coupling of FEM and BEM

5.1 Computational Domains

The physical and image wires are shown in Fig. 6
The computational domain for the FEM is just the upper half of the upper (physical) wire (see,

also, Fig. 3). Its image is the lower half of the lower (image) wire.
The computational domain for the BEM is the region outside the nanowires.
As mentioned before, the image tube is a nonphysical mathematical artifact which is used to

guarantee zero potential on the ground plane without directly modeling it. This is done by relating
values of potential and charge on the image wire, with those in the physical wire, as shown in Fig.
6. The FEM problem is nonlinear and, in general, the FEM equations are not satisfied inside the
image nanowire.
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5.2 Boundary Conditions, Unknowns and Equations

A single finite element model for the upper wire is shown, for simplicity, in Fig. 7. Two schemes
for solving the coupled problem are shown in Tables 1 and 2, respectively. In both cases, φ = 0 is
imposed on the ends of the wire, ∂φ/∂r = 0 along its axis, and transition conditions at nodes 6
and 7. Since φ is assumed to be constant along the edges, ∂φ/∂r(s) = 0 at nodes 5 and 8 as well.
Also, the FEM equations are used at all 8 nodes.

In the first scheme (Table 1) the axial derivatives are unknown at the end nodes and these are
allowed to be discontinuous. Finally, the BEM equations are imposed at nodes 1,4,8,7,6 and 5 and
hypersingular BEM (HBEM) equations must be imposed at 5,8. (This is a consequence of a well-
known problem - shortage of equations when the standard BEM is imposed at Dirichlet corners).
One has 16 unknowns and an equal number of equations.

The simplified second scheme (Table 2) uses the fact that a nanowire is very thin. This time,
only the internal axial derivatives are considered at the end nodes and the BEM equations are
imposed at nodes 8,7,6,5. (As seen in (23), certain integrals on the ends of the nanowire are
neglected, as was done before in [28]). This scheme has 12 equations and an equal number of

12



boundary conditions unknowns equations
φ = 0 : 1, 4, 8, 5 φ : 2, 3, 7, 6 FEM : 1,2,3,4,8,7,6,5

∂φ
∂r

(s)
= 0 : 1, 2, 3, 4, 8�, 5� ∂φ

∂r

(d)
: 8, 7, 6, 5 BEM : 1,4,8,7,6,5

ε(s) ∂φ∂r
(s)

= ε(d) ∂φ∂r
(d)

: 7, 6 ∂φ
∂z

(s)
: 1, 4, 8, 5 HBEM : 5,8

∂φ
∂z

(d)
: 1, 4, 8, 5

Table 1: Scheme one : boundary conditions, unknowns and equations (see Fig. 7). ': These
conditions are derived from φ =constant at the ends

boundary conditions unknowns equations
φ = 0 : 1, 4, 8, 5 φ : 2, 3, 7, 6 FEM : 1,2,3,4,8,7,6,5

∂φ
∂r

(s)
= 0 : 1, 2, 3, 4, 8�, 5� ∂φ

∂r

(d)
: 8, 7, 6, 5 BEM : 8,7,6,5

ε(s) ∂φ∂r
(s)

= ε(d) ∂φ∂r
(d)

: 7, 6 ∂φ
∂z

(s)
: 1, 4, 8, 5

Table 2: Scheme two : boundary conditions, unknowns and equations (see Fig. 7). ': These
conditions are derived from φ =constant at the ends

unknowns.
The FEM option two (see Section 3.1.3) as well as scheme two are used to obtain the numerical

results that are presented later in this paper.

5.3 Coupling Strategy and Stopping Criteria

Consider Fig. 7 but with many elements instead of a single one. The potential φ is prescribed at
the corners, ∂φ/∂r = 0 on the rest of the symmetry axis, and

ε(s)
∂φ

∂r

(s)

= ε(d)
∂φ

∂r

(d)

(33)

on the rest of the upper line.
The proposed iterative algorithm is as follows:

1. Guess φ on the rest of the upper line.

2. Solve the BEM equations for ∂φ/∂r(d) on the upper line.

3. Find ∂φ/∂r(s) on the upper line (except at its ends) from (33).

4. Solve the FEM equations in the semiconductor with prescribed φ at the corners, ∂φ/∂r = 0
on the rest of the axis of symmetry, and ∂φ/∂r(s) from step (3) above on the rest of the upper
line. Determine φ on the entire boundary of the body and ∂φ/∂z(s) at its ends.

5. Go to step (2) and iterate until convergence.

The FEM residue [r] is defined as:

[r] = [K][φ] − [F ] (34)

The iterations stop when both of the following criteria are met.

13



1. √∑N
i=1[φnew(i) − φold(i)]2

N
≤ ε1 (35)

2. √∑N
i=1[rnew(i)]2

N
≤ ε2 (36)

The values of the tolerances used are ε1 = 10−5 and ε2 = 0.6 × 10−5

6 Numerical Results

6.1 Values of Material and Geometrical Parameters

Material parameters used in the semiconductor simulations reported below are:

εd = 8.854 × 10−12 F/m
εs = 11.7εd
e = 1.6 × 10−19 C
ND = 1018 cm−3

NA = 0
ni = 3.1 × 1016 T 3/2 exp

[
−0.966×10−19

kBT

]
cm −3

kB = 1.38 × 10−23 J/K

The temperature T = 300 K and the potentials on the left and right sides of the nanowire (see
Fig. 6) are φ0 = 0.

The nominal values of the geometrical parameters for the semiconductor calculations are:
� = 1000 nm, b = 1 nm [37] and g = 500 nm.

6.2 Code Verification

6.2.1 FEM code

The FEM equations are used to solve the nonlinear Poisson equation (1) in the axisymmetric silicon
nanowire. The chosen boundary conditions are (see Fig. 6) φ0 = 0 and ∂φ/∂r = 0 on the upper
line of the upper wire. The material parameters and temperature are as given above, and the
geometrical parameters used are : � = 1000 nm and b = 1 nm. The converged numerical solutions
at the center of the upper line (with 135 finite elements) are φ = 1.2451× 10−2 V from the present
code and the same value (to five significant digits) from [38].

6.2.2 BEM code

The BEM code is verified by solving for the charge distribution on a silicon conductor. (Conducting
carbon nanotubes were considered in [28]). The (uniform) potential on the conductor is chosen to
be 1 V. The dimensions of the conductor are : � = 3000 nm, b = 1 nm, and g = 500 nm. The
charge density at the mid-point of the conductor, from the BEM code with 425 boundary elements,
is 8.145 pC/m, while that from Table II of [28] is 8.15 pC/m.
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Figure 8: Potential φ(s) along nanowire (� = 1000 nm, g = 500 nm, b = 1 nm)

6.2.3 Coupled code

This situation is discussed below.

6.3 Numerical Examples

The coupled problem is first solved for the baseline case with � = 1000 nm, b = 1 nm and g = 500
nm. Converged results for the potential φ(s) and charge density ρ(s) along the nanowire are shown
in Figs. 8 and 9, respectively. A total of 142 elements are used along the wire. Corresponding
results for thin conducting tubes, which have constant potential and charge distributions only on
their surfaces, are available in [28].

The above result has been verified by separately computing the left and right hand sides of (1).
The Laplacian of the potential is computed by using the appropriate interpolation functions for
the potential, while the right hand side is computed directly. The results, at the mid point of the
upper line on the upper wire, are 0.0419 and 0.0431 C/cm3, respectively.

Numerical results have also been computed for different values of length (� = 500, 1500 nm;
with g = 500 and b = 1 nm). Results for � = 1500 nm (with 214 elements) are shown in Figs. 10
and 11, respectively. The potential and charge distributions are qualitatively very similar to those
in Figs. 8 and 9, with a suitable stretching of the x axis.

Numerical results for � = 1000, b = 1 nm, with different values of the gap (g = 300, 700 nm),
are substantially the same as the baseline results in Figs. 8 and 9 - i.e. they are insensitive to the
value of the gap. Of course, these results would change for small values of g (for example of the
order of 10 nm), but such results for the potential and charge would no longer be axisymmetric
and the mathematical formulation employed in this paper would break down.
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7 Concluding Remarks

A BEM approach for the electrostatic modelling of the 3-D region exterior to a conducting carbon
nanotube, taking advantage of the typical large aspect ratio of such a tube, has been presented
in [28]. The present paper presents a similar analysis for a semiconducting silicon nanowire. A
hybrid semiclassical (Laplace/Poisson) model is adopted in the semiconductor, and the potential
and charge distribution along the wire are determined by a coupled FEM/BEM approach. The
present approach overcomes the problem of dealing with nearly singular matrices that typically
occur when using the BEM for thin structures. It is also very efficient.

A limitation of the present work is the assumption that the potential and charge distribution
inside the nanowire is axisymmetric. This is true provided that the gap between a nanowire and
the ground is large enough (at least around ten to twenty times the diameter of the nanowire). It
has also been observed that a very fine BEM mesh can cause small oscillations (as a function of the
axial variable) in the calculated potential and charge about its mean value. It is felt that this is
due to the assumption � >> b starting to break down as the length of a boundary element becomes
small. Such oscillations are absent in the results presented in this paper.

For small diameter nanowires, quantum effects can become dominant and the semi-classical
model presented above needs to be corrected (see, e.g. [26, 27] for 2-D analysis of this problem). As
mentioned above, the primary focus of the present paper is to develop an efficient computational
framework and the semi-classical model has been considered as an example. Quantum effects will
be included in the future.

Electromechanical coupling to include deformation of the nanowire will also be considered in
future research. This, together with inclusion of inertia forces, will enable the modeling and solution
of electrodynamic problems. (See, e.g. [24] for dynamic analysis of MEMS).
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Appendix A : Second integral in (28) and second integral in (30)

Definitions of elliptic integrals

Elliptic integrals of the first and third kinds are used in this section. These are defined as:

E!(φ, k) =
∫ φ

0

dθ√
1 − k2 sin2(θ)

(A-1)

E3(n, φ, k) =
∫ φ

0

dθ

(1 − n sin2(θ))
√

1 − k2 sin2(θ)
(A-2)

Second integral in (28)

J =
1

8π2ε

∫
ŜA

q(b, z)dz
∫ 2π

0

dθ√
z2 + 4b2 sin2(θ/2)

(A-3)

The inner integral in (A-3) can be written as:

4√
z2 + 4b2

E1

(
π

2
,

2b√
z2 + 4b2

)
(A-4)

where E1 denotes the elliptic integral of the first kind.

Second integral in (30) for case (a)

From Figs. 4 and 5, one has:

r(x̂,y) = r0(x̂, ȳ) − bk + ber, r · n = −r · er = −r0 · er + b cos(θ) − b = b(cos(θ) − 1)
r2 = z2 + 2b2(1 − cos(θ)) (A-5)

Therefore, this integral can be written as:

S2 = −
∫
∂ ˆ̄BC

[φ(y) − φ(x̂)]dz
∫ 2π

0

4b2 sin2(θ/2)
8π[z2 + 4b2 sin2(θ/2)]3/2

dθ (A-6)

The inner integral in (A-6) can be written in terms of elliptic integrals as follows:

1
2π

√
z2 + 4b2

E1

(
π

2
,

2b√
z2 + 4b2

)
− z2

2π [z2 + 4b2]3/2
E3

[
4b2

z2 + 4b2
,
π

2
,

2b√
z2 + 4b2

]
(A-7)

where E1 and E3 denote elliptic integrals of the first and third kinds, respectively.
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Appendix B : First and last integrals in (30) and the last integral
in (23)

First integral in (30) for case (a)

As before, from Figs. 4 and 5, one has:

r(x̂,y) = r0(x̂, ȳ) − bk + ber, r · n = −r · er = −r0 · er + b cos(θ) − b = b(cos(θ) − 1) (A-8)

Assuming r0 >> b, and one can write:

b

∫ 2π

0

r(x̂,y) · n(y)
4πr3(x̂,y)

dθ ≈ b

∫ 2π

0

r(x̂,y) · n(y)
4πr30(x̂, ȳ)

dθ = − b2

2r30
(A-9)

It is noted that, by assumption, φ(y) is axisymmetric. Therefore, the first integral in (30) is
O(b2) and is assumed to vanish as b→ 0.

Last integral in (23)

This integral is very similar to the first integral in (30), except that (see Fig. 4) ȳ now lies on the
image nanowire ∂B̃C . A calculation very similar to the one in the preceding section shows that this
integral is also O(b2) and is assumed to vanish as b→ 0.

Last integral in (30) for case (a)

i

^.x r y
y

o
_

.
n

b

k

ξ

Figure 12: Integration over right cap

First consider the integral over the right cap SVR
. From Fig. 12:

r(x̂,y) = r0(x̂, ȳ)i − (b− ξ)k (A-10)

With n = −i, r · n = −r0. Assuming ro >> b, one has:

r · n
r3

= − r0
[r20 + (b− ξ)2]3/2 ≈ − 1

r20
(A-11)

Therefore, the last integral in (30) over the right cap becomes:

−
∫ b

ξ=0

φ(ξ, zR)2πξdξ
4πr20

(A-12)

With φ ≈ O(1), the above integral is O(b2), and is assumed to vanish as b→ 0.
It can be shown in an analogous manner that this integral over the left cap SVL

is also O(b2).

19



Appendix C : Equation (30) for case (b) with x̂ → xL ∈ SVL

z

z
b

i

e nr

,
r

l̂

.xL

B∂ C
^

θ

Figure 13: Integration over curved surface

Start with (30) with x̂ → xL and see Figs 4 and 13.

1. The first integral in (30) is O(b2) and is assumed to vanish as b→ 0.

2. For the second and third integrals (J2 and J3) in (30) (see Fig. 13):

r(xL,y) = ber + zi (A-13)

where er is the radial unit vector at xL (er = −n(y)) and i is the unit axial vector. Hence,
r · n = −b.
First consider the integral J2. Referring to (20), one has:

φ(y) − φ(xL) = [φ(b, z) − φ(b, 0)] + [φ(b, 0) − φ(0, 0)] = z
∂φ

∂z
(b, 0) + φ(b, 0) − φ(0, 0) (A-14)

Therefore:

J2 = −
∫ 
̂

0

b2[z∂φ/∂z(b, 0) + φ(b, 0) − φ(0, 0)]
2[b2 + z2]3/2

dz (A-15)

With z = b tan(θ) and tan(α) = �̂/b, one gets:

J2 = −b(1 − cos(α))
2

∂φ

∂z
(b, 0) +

sin(α)
2

[φ(0, 0) − φ(b, 0)] (A-16)

As b→ 0, α→ π/2 and J2 → (1/2)[φ(0, 0) − φ(b, 0) − b∂φ/∂z(b, 0)]

Next:

J3 = −φ(xL)
∫
∂B̂C

b

4πr3(xL,y)
dS(y) = −φ(xL)

∫ l̂

0

2πb2

4π(b2 + z2)3/2
dz = −φ(xL) sin(α)/2

(A-17)

where sin(α) = �̂/

√
b2 + �̂2.

As b→ 0, sin(α) → 1 and one has J3 = −φ(xL)/2.
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Figure 14: Integration over left cap

3. The fourth integral in (30).

First consider only the integral over SV L (see Fig. 14). This integral is evaluated in a finite
part sense [36]. Therefore, the source point xL is first chosen to lie at a distance d from SVL

,
and then the limit d→ 0 is taken.

J4 =
∫
SV L

r(xL,y) · n(y)
4πr3(xL,y)

φ(y)dS(y) =
∫
SV L

r(xL,y) · n(y)
4πr3(xL,y)

[φ(y) − φ(xL)]dS(y)

+ φ(xL)
∫
SV L

r(xL,y) · n(y)
4πr3(xL,y)

dS(y) ≡ J41 + J42 (A-18)

The first and second integrals, J41 and J42 above, have (see Fig. 13):

r = di + ξer, r · n = r · i = d (A-19)

Consider, first the integral J41. One gets (see (20) with r replaced by ξ ):

φ(y) − φ(xL) = (ξ2/b2)[φ(b, 0) − φ(0, 0)] (A-20)

J41 =
d

2b2

[
φ(b, 0) − φ(0, 0)

] ∫ b

0

ξ3

(d2 + ξ2)3/2
dξ (A-21)

With ξ = d tan(θ), the integral in (A-21) becomes:

d

∫ β

0

sin3(θ)
cos2(θ)

dθ = d[sin4(β) sec(β) + cos3 β − 3 cos(β) + 2] (A-22)

where cos(β) = d/
√

(d2 + b2).

Therefore, as d→ 0, J41 → 0.

Next:

J42 = φ(xL)
∫ b

0

2dπξdξ
4π[d2 + ξ2]3/2

=
φ(xL)

2
[1 − cos(β)] (A-23)
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where, as before. cos(β) = d/
√

(d2 + b2).

As d→ 0, β → π/2 and J42 = φ(xL)/2. Therefore, J3 + J42 = 0.

The integral J4, evaluated on SV R, is O(b2), and vanishes as b→ 0.
A very similar discussion applies to (30) when x̂ → xR ∈ SVR

. This time, the surviving term is:
(1/2)[φ(0, �) − φ(b, �) − b∂φ/∂z(b, �)].

Appendix D : Equation (30) for case (c) with x at top left and right
corners (Figure 15)

S S

B

V V

C
^

L

x x∂. .

Figure 15: Solid angle integral

Consider, first. x at the top left corner. In (30), the first two integrals are the same as in case
(a) in Section 4.2.2. The last two integrals in (30) add up to zero as shown below.

Proof of J3 + J4 = 0 for case (c). It is interesting to note that the solid angle integral (see
(31)):

∫
∂D

r(x,y) · n(y)
4πr3(x,y)

dS(y) = 0 (A-24)

where ∂D is any closed region and x → ∂D from the outside. One can choose ∂D = ∂B̂C∪SVL
∪SV

(see Fig. 15). With the integral in (A-24) over SV vanishing for b→ 0, one has:
∫
∂B̂C∪SVL

r(x,y) · n(y)
4πr3(x,y)

dS(y) = 0 (A-25)

Therefore, J3 + J42 = 0 also applies for a collocation point x at the top left corner in Fig. 15.
Finally, with J41 = 0, one has J3 + J4 = 0 for this case.

It can be shown that the results for x at the upper right corner are the same as those for x at
the upper left corner.

22



References

[1] Roukes ML. Nanoelectromechanical Systems. Solid-State Sensor and Actuator Workshop.
Hilton Head, SC, 2000.

[2] Davis ZJ, Abadal G, Kuhn O, Hansen O, Grey F, Boisen A. Fabrication and characterization
of nanoresonating devices for mass detection. Journal of Vacuum Science Technology B 2000;
18:612-616.

[3] Craighead HG. Nanoelectromechanical systems. Science 2000; 290:1532-1535.

[4] Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective
detection of biological and chemical species. Science 2001; 293:1289-1292.

[5] Yang J, Ono T, Esashi M. Surface effects and high quality factors in ultrathin single-crystal
silicon cantilevers. Applied Physics Letters 2000; 77:3860-3862.

[6] Carr DW, Evoy S, Sekaric L, Craighead HG, Parpia JM. Measurement of mechanical resonance
and losses in nanometer scale silicon wires. Applied Physics Letters 1999; 75:920-922.

[7] Boggild P, Hansen TM, Tanasa T, Grey F. Fabrication and actuation of customized nanotweez-
ers with a 25 nm gap. Nanotechnology 2001; 12:331-335.

[8] Cleland AL, Roukes ML. Fabrication of high frequency nanometer scale mechanical resonators
from bulk Si crystals. Applied Physics Letters 1996; 69:2653-2655.

[9] Mukherjee S. Boundary Element Methods in Creep and Fracture. Applied Science Publishers:
London, 1982.

[10] Banerjee PK. The Boundary Element Methods in Engineering. McGraw Hill Europe: Maiden-
head, Berkshire, England, 1994.

[11] Chandra A, Mukherjee S. Boundary Element Methods in Manufacturing. Oxford University
Press: New York, 1997.

[12] Bonnet M. Boundary Integral Equation Methods for Solids and Fluids. Wiley: Chichester, UK,
1999.

[13] Mukherjee S, Mukherjee, YX. Boundary Methods: Elements Contours and Nodes. Taylor and
Francis, CRC Press: Boca Raton, FL, 2005.

[14] Yang TY. Finite Element Structural Analysis. Prentice-Hall: New Jersey, 1986.

[15] Zienkiewicz OC, Taylor RL. The Finite Element Method, Vols. 1,2, 4th. ed. McGraw Hill:
Maidenhead, Berkshire, UK, 1994.

[16] Hughes TJR. The Finite Element Method : Linear Static and Dynamic Finite Element Anal-
ysis. Dover: Mineola, NY, 2000.

[17] Senturia SD, Harris RM, Johnson BP, Kim S, Nabors K, Shulman MA, White JK. A
computer-aided design system for microelectromechanical systems (MEMCAD). Journal of
Micro-Electro-Mechanical Systems 1992; 1:3-13.

23



[18] Nabors K, White J. FastCap: a multi-pole accelerated 3-D capacitance extraction program.
IEEE Transactions on Computer Aided Design and Integrated Circuits and Systems 1991;
10:1447-1459.

[19] Gilbert JR, Legtenberg R, Senturia SD. 3D coupled electromechanics for MEMS : applications
of CoSolve-EM. Proceedings IEEE MEMS 1995; 122-127.

[20] Shi F, Ramesh P, Mukherjee S. Simulation methods for micro-electro-mechanical structures
(MEMS) with application to a microtweezer. Computers and Structures 1995; 56:769-783.

[21] Aluru NR, White J. An efficient numerical technique for electromechanical simulation of com-
plicated microelectromechanical structures. Sensors and Actuators A 1997; 58:1-11.

[22] Mukherjee S, Bao Z, Roman M, Aubry N. Nonlinear mechanics of MEMS plates with a total
Lagrangian approach. Computers and Structures 2005; 83:758-768.

[23] Shi F, Ramesh P, Mukherjee S. Dynamic analysis of micro-electro-mechanical systems. Inter-
national Journal for Numerical Methods in Engineering 1996; 39:4119-4139.

[24] De SK, Aluru NR. Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. Jour-
nal of Microelectromechanical Systems 2004; 13:737-758.

[25] Ke C, Espinosa HD. Numerical analysis of nanotube-based NEMS devices - Part I: Electrostatic
charge distribution on multiwalled nanotubes. ASME Journal of Applied Mechanics 2005;
72:721-725.

[26] Li G, Aluru NR. Hybrid techniques for electrostatic analysis of nanoelectromechanical systems.
Journal of Applied Physics 2004; 96:2221-2231.

[27] Tang Z, Xu Y, Li G, Aluru NR. Physical models for coupled electromechanical analysis of
silicon nanoelectromechanical systems. Journal of Applied Physics 2005; 97:114304(1-13).

[28] Chen H, Mukherjee S. Charge distribution on thin conducting nanotubes - reduced 3-D model.
International Journal for Numerical Methods in Engineering, 68, 910-924, 2006.

[29] Harrington RF. Field Computation by Moment Methods. IEEE Press: Piscataway, NJ, 1993.

[30] Bao Z, Mukherjee S. Electrostatic BEM for MEMS with thin conducting plates and shells.
Engineering Analysis with Boundary Elements 2004; 28:1427-1435.

[31] Bao Z, Mukherjee S. Electrostatic BEM for MEMS with thin beams. Communications in
Numerical Methods in Engineering 2005; 21:297-312.

[32] Chuyan SW, Liao YS, Chen JT. Computational study of the effect of finger width and aspect
ratios for the electrostatic levitating force of MEMS combdrive. Journal of Microelectrome-
chanical Systems 2005; 14:305-312.

[33] Telukunta S, Mukherjee S. Fully Lagrangian modeling of MEMS with thin plates. Journal of
Microelectromechanical Systems 2006; 15:795-810.

[34] Mukherjee S, Telukunta S, Mukherjee YX. BEM modeling of damping forces on MEMS with
thin plates. Engineering Analysis with Boundary Elements 2005; 29:1000-1007.

24



[35] Chen H, Mukherjee S. Modeling of the ground plane in electrostatic BEM analysis of MEMS
and NEMS. Engineering Analysis with Boundary Elements 2006; 30:910-924.

[36] Mukherjee S. Finite parts of singular and hypersingular integrals with irregular boundary
source points. Engineering Analysis with Boundary Element 2000; 24:767-776.

[37] Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST. Small diameter silicon nanowire surfaces.
Science 2003; 299:1874-1877.

[38] COMSOL, Inc. http://www.comsol.com/

25


