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Abstract

We present a discontinuous Galerkin method on a fully unstructured grid for the
modeling of unsteady incompressible fluid flows with free surfaces. The surface is
modeled by embedding and represented by a levelset. We discuss the discretization of
the flow equations and the level set equation as well a various ways of advancing the
equations in time using velocity projection techniques. The efficacy of the method
for the representation of the levelset and its reinitialization is discussed and several
numerical tests confirm the robustness and versatility of the proposed scheme.
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1 Introduction

In maritime engineering, as in numerous other fluid driven applications, one
is often interested in the modeling and prediction of phenomena involving free
surfaces, e.g., water wave load or current load on structures. Such modeling
efforts are not only complicated due to the free surface but also by the need
to accurately account for the fluid-structure interaction problems, often in
geometrically complex domains. Furthermore, such types of problems often
involve a variety of length scales, from an incoming wave length of several
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meters to the flow at microscopic scale around the structures, putting rather
severe requirements on suitable computational techniques.

Classical strategies for incorporating a free surface in the flow simulation in-
clude moving (Lagrangian) grid techniques (22), marker and cell (MAC) (10),
volume of fluid (VOF) (14), and level set methods.

In this work we shall pursue the latter technique, level set methods, (18; 23;
20) to define the surface as the zero contour of a function. This function is
subsequently advected with the flow as an implicitly defined identifier of the
interface.

We shall discuss the development of a high order accurate discontinuous
Galerkin (DG) method for solving the incompressible unsteady two-fluid Navier-
Stokes equations. The DG method utilizes a fully unstructured grid based on
nodal triangular elements, thus enabling the treatment of general geometries.
A high-order nodal basis is used to enable local high-order and is well suited
for problems with many scales.

We shall furthermore discuss the use of high-order schemes for advancing
the unsteady equations. For computational reasons, a common approach is
to decouple the evaluation of the pressure and the velocities, and treat the
diffusive term implicitly and the non-linear terms explicitly. As is well known,
this introduces time splitting errors. In an attempt to address this, we explore
the use of a semi implicit spectral deferred correction method, following the
work in (6; 17), although recast to work on the physical variables and therefor
suited to free surface flow problems. The study exposes errors associated with
low stage-order, impacting the accuracy adversely for such methods when
used for initial-boundary-value problems. However, the examples also show
the method to be very flexible and with potential to achieve high temporal
order.

In Sec. 2 we describe the equations for the two-dimensional incompressible
two-fluid flows. Section 3 is devoted to the DG method in general and how to
apply it to an elliptic problem and the Navier-Stokes equations. This sets the
stage for Sec. 4 where we discuss different ways of achieving high temporal
order, while Sec. 5 describes in detail the level set method, its reinitializa-
tion, boundary conditions, and solution. In Sec. 6 we present a few numerical
examples while Sec. 7 concludes with a few remarks.
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2 The Two-Fluid Navier-Stokes Equations

We shall consider the dynamics of a two-dimensional incompressible non-
reacting two-fluid, described by the two sets of Navier-Stokes equations

∀x ∈ Ωl : ρl

(
∂ul

∂t
+ (ul · ∇)ul

)
= −∇pl + µl∇2ul , ∇ · ul = 0 , (1)

∀x ∈ Ωg : ρg

(
∂ug

∂t
+ (ug · ∇)ug

)
= −∇pg + µg∇2ug , ∇ · ug = 0 . (2)

In both fluids, ρ, and µ, represent the constant density and dynamic viscosity,
respectively. In each fluid we also have the velocity field, u, and the pressure
field, p. The full computational domain, Ω = Ωl ∪Ωg is assumed fixed in time
while both Ωl and Ωg are time-dependent. We shall also call the boundary of
Ω for ∂Ω while Γ = Ωl ∩ Ωg represents the interface between the two fluids.

At the interface between the two fluids, we have the continuity and kinematic
condition

∀x ∈ Γ : ul = ug , (µl∇ul − µg∇ug) · nΓ = (pl − pg + σκ)nΓ ,

where nΓ is the normal along Γ, κ = ∇ · nΓ is the local curvature of the
interface, and σ is the coefficient of surface tension.

Let us introduce the scalar level set function, φ, defined as

φ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 x ∈ Ωl

0 x ∈ Γ

< 0 x ∈ Ωg

, (3)

with which we can now define

ρ(φ) = ρg + (ρl − ρg)H(φ) ,

µ(φ) = µg + (µl − µg)H(φ) ,

where H(x) is the classic Heaviside function. We shall also define the global
quantities

u =

⎧⎪⎨
⎪⎩

ul, x ∈ Ωl

ug, x ∈ Ωg

,

and likewise for the pressure, p.

Following (21), one easily shows that we can now combine all the pieces to
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arrive at a formulation

ρ(φ)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µ(φ)∇ ·∇u− σδ(φ)κnΓ , ∇ ·u = 0 , (4)

where δ(φ) = ∂
∂φ

H(φ) is the Dirac delta function. Note that the correct way of

writing the diffusion term for varying viscosity is ∇ · µ(φ)∇u. The version in
Eq. (4) is correct up until the interface Γ. Having in mind the approximations
at the interface that we introduce in the coming sections, we assume this
approximation to be of same magnitude and to simplify the scheme.

Assuming φ is differentiable, we can move φ with the flow u

∂φ

∂t
+ u · ∇φ = 0. (5)

If we further seek a non-dimensional form using

x = Lx̃ , u = Uũ , t = (L/U)t̃ , p = ρlU
2p̃ , ρ = ρlρ̃ , µ = µlµ̃ ,

where ˜ -variables refer to the dimensionless variable, we recover the general
form

ρ(φ)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p +

1

Re
µ(φ)∇ · ∇u − 1

We
δ(φ)κ(φ)

∇φ

|∇φ| ,

∇ · u = 0 , (6)

where we have further utilized the properties of the level set function, φ, that

nΓ =
∇φ

|∇φ|

∣∣∣∣∣
φ=0

.

In Eq.(6), which is the general form we shall consider subsequently, we now
have

Re =
ρlLU

µl

, We =
ρlLU2

σ
,

as the Reynolds and the Weber number, respectively, being measures of the
dynamics of the equations.

We shall generally assume that ∂Ω = ∂ΩW ∪ ∂ΩO where ∂ΩW refers to hard
walls where we impose a no-slip condition

u = 0 , x ∈ ∂ΩW ,

while we, at open boundaries, ∂ΩO, shall impose

(n · ∇)u = 0 , x ∈ ∂ΩO .
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3 The Spatial Discretization

We begin describing the spatial discretization for the conservation law ∂q
∂t

+
∇ · f (q) = 0, and subsequently extend it to the incompressible Navier Stokes.

The computational domain, Ω, is split into K non-overlapping triangular ele-
ments Dk, such that ∪kD

k = Ω, and we define a standard triangular element
I,

I = {(r, s) ∈ R2 | r, s ≥ −1 ; r + s ≤ 0}. (7)

Operations on I are trivially related to those on Dk by standard curvilinear
mappings.

In the standard element the value of a function q is represented by a Lagrange
interpolating polynomial based on nodes ri

q(r, t) ≈ q̃(r, t) =
N∑

i=1

q̂i(t)Li(r) , (8)

where N is the number of nodes in the element, q̂i(t) = q(ri, t), and Li(r) is
the ith Lagrange interpolating polynomial.

Consider the weak elementwise formulation of the conservation law

∀ i ∈ [0 . . . N ] :
∫
D

(
∂q̃

∂t
+ ∇ · f̃

)
Li(x) dx = 0. (9)

Integration by parts yields

∀ i ∈ [0 . . .N ] :
∫
D

∂q̃

∂t
Li(x) − f̃ · ∇Li(x) dx = −

∮
∂D

n · f∗Li(x) dx,

(10)

where n is the outward pointing normal vector on ∂D. On the right hand side,
the numerical flux f∗ is used for imposing boundary conditions on each ele-
ment, thereby specifying how information passes between adjacent elements.
This is the classical Discontinuous Galerkin (DG) method in weak form. In-
tegrating by parts again, we end up with the strong formulation of the DG
method,

∀ i ∈ [0 . . .N ] :
∫
D

(
∂q̃

∂t
+ ∇ · f̃

)
Li(x) dx =

∮
∂D

n · (f̃ − f ∗)Li(x) dx.

(11)

In what remains we shall focus on this form, using the weak form only for
illustrative purposes. Introducing the vector q̂ = {q̂1, ..., q̂N} and similar for
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f̂ , and defining the operators M̂, Ŝ and F̂ with the elements

M̂ij =
∫
D

LjLi dx , Ŝij =
∫
D
∇LjLi dx , F̂ij =

∮
∂D

LjLi dx,

the DG method in the strong formulation translates into

M̂
∂q̂

∂t
+ Ŝ · f̂ = F̂(n · (f̂ − f̂

∗
)) . (12)

The numerical flux f̂
∗

is a function of q on the boundary of the local element
q− and the neighboring element q+. Three different fluxes are utilized here, a
central flux, the Lax Friedrich flux and a flux for applying boundary conditions:

f̂
∗
C(q−, q+) =

1

2
(f (q−) + f(q+)) ,

f̂
∗
LF (q−, q+) =

1

2
(f (q−) + f(q+)) − c

2
(q+ − q−) ,

f̂
∗
BC(q−, q+) = f̂(qBC) ,

where c is the maximum wave-speed, c = max |λ(∂f
∂q )|. If not otherwise stated,

we will use the central flux for linear terms and the Lax-Friedrich flux for
nonlinear terms, i.e., for the momentum equation in Navier-Stokes equation
and in the levelset reinitialization equation to be discussed later.

The accuracy of the interpolation depends strongly on the distribution of
nodes within the standard element. In (11) it is discussed how to distribute
the nodes to ensure wellbehaved interpolations up till 16th order. The nodal
distribution takes into account that a boundary integral is a vital part of
the method, hence nodes are placed on the element boundary such that the
boundary integral can be easily evaluated. The nodal distribution for elements
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Fig. 1. Nodes in standard element of order 3, 5, 7 and 9

of order 3, 5, 7 and 9 are illustrated in Fig. 1. Nodes on the edges are Legendre-
Gauss-Lobatto quadrature nodes, hence the boundary integral operator F̂ can
be expressed as

F̂ = RT F̂
e

R (13)
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where R extracts the nodes on the element edges, and F̂
e

performs the 1D
integration over the edges,

F̂ e
ij =

∫
edge

lj li dx, (14)

with li being the 1D Lagrangian interpolation polynomial defined by the nodes
on an edge. This formulation simplifies the evaluation of the boundary integral,
only needing values on the nodes on the edge of the neighboring element, e.g.

F̂(q− + q+) = RT F̂
e

(R+q+ + R−q−) (15)

where R+ and R− extract matching nodes on the edge from the local and
neighboring element respectively.

In (13) it is discussed in detail how to compute the operators, M̂, Ŝ, F̂, for the
standard element efficiently and accurately.

3.1 Elliptic problems

When solving the incompressible Navier Stokes equations as subproblem a
density weighted Poisson problem with Neumann boundary conditions,

∇ · 1

ρ
∇p = f in Ω (16a)

n · ∇p = 0 on ∂Ω, (16b)

where ρ is a function of space x. This is not a problem for which the DG
method was originally intended.

A characteristic of this pure Neumann problem is that it is singular and needs
a consistent right hand side f to ensure solvability. When solving the in-
compressible Navier Stokes equations, the right hand side f is not in general
consistent, giving the system no solution. Thus, to find a solution, we need to
ensure that the right hand side is consistent.

Define L = ∇ · 1
ρ
∇, let R(L) and N(L) denote the range and null space of L.

The right hand side is consistent when f ∈ R(L). Also R(L) = N(LT )⊥. If L

is symmetric, then R(L) = N(L)⊥. The null space of L is known to be the
constant vector, N(L) = 1. Hence, in the symmetric case we remove from f
the part existing in N(L)

f ∗ = f − 1 (1 · f)/(1 · 1),

to ensure solvability.
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The standard procedure in DG methods (4; 1) when discretizing higher order
operators such as the Laplace operator is to split the system into two first
order equations

∇ · q = f, (17a)

∇p = ρ q. (17b)

If we approximate the first in the weak DG sense and the second in the strong
sense, using the notation (·, ·)D and (·, ·)∂D for the integrals we obtain

− (q,∇Lj)D = (f, Lj)D − (n · q∗, Lj)∂D (18a)

(∇p, Lj)D = (ρ q, Lj)D + (n(p − p∗), Lj)∂D (18b)

where p∗ is the Dirichlet conditions and n·q∗ is the Neumann conditions. Since
we have only Neumann condition on the global boundary, the (p − p∗)-part
disappears by taking p∗ = p−. Using the discrete operators on the standard
element, we get

−Ŝ
T
q = M̂f − F̂(n · q∗) (19a)

Ŝp = M̂(ρ q) + F̂(n(p − p∗)) (19b)

Consider the simplified special case where ρ is constant and 1, and consider
only one element, hence having Neumann conditions on all boundaries so the
F̂(n(p − p∗)) term drops out, then combining Eqs. (19a) and (19b) yields

−Ŝ
T

M̂
−1

Ŝ p = M̂f − F̂(n · q∗). (20)

Since M̂ is symmetric, then so is inverse, hence Ŝ
T

M̂
−1

Ŝ forms a symmetric
system. In a multi-element setup, we require weak continuity between the
elements, hence keeping the F̂(n(p − p∗)), but the resulting system will still
be symmetric as long as the numerical fluxes p∗ and q∗ are symmetric over
element boundaries, i.e. the same flux function is used in neighboring elements.
In this work we use central fluxes for p∗ and q∗, i.e.

p∗(p−, p+) =
1

2
(p− + p+) ,

and similar for q∗. Internal penalty fluxes (1) are equally efficient, although
often leading to a slightly worse conditioning.

If solving this Poisson equation with Dirichlet or periodic boundary conditions,
a stabilizing term controlling the null space is needed. In this case we use a
standard penalty penalization technique (1).

8



3.2 The Navier Stokes equations

We now present the scheme used to solve the incompressible Navier Stokes.
Let us first introduce the notation

(f, g)Dk =
∫
Dk

f g dx , (f, g)∂Dk =
∫
∂Dk\∂Ω

f g dx ,

(f, g)∂Ω =
∫
∂Dk∩∂Ω

f g dx ,

thereby separating inner element boundaries from the global domain bound-
aries. Rewriting Eq. (6), introducing the variable g, and leaving out the surface
tension for now, we obtain

∂ui

∂t
+ ∇ · (uui) = −1

ρ
∇ip +

1

Re

µ

ρ
∇ · gi , (21a)

∇ui = gi . (21b)

Define the following:

Nk(ui) = (∇ · (uui), Lj)Dk − (n · (uui − (uui)
∗), Lj)∂Dk , (22a)

Lk(g) = (∇ · g, Lj)Dk − (n · (g − g∗), Lj)∂Dk , (22b)

P k(p) = (∇p, Lj)Dk − (n(p − p∗), Lj)∂Dk , (22c)

to obtain the DG formulation(
∂u

∂t
, Lj

)
Dk

+ Nk(u) = −P k(p) +
1

Re

ν

ρ
Lk(g) − (u − u∗, Lj)∂Ω (23a)

(∇ui, Lj)Dk = (g(ui), Lj)Dk + (n(ui − u∗
i ), Lj)∂Dk (23b)

where the (·, ·)∂Ω accounts for the global boundary conditions. Defining dis-
crete versions of the above

Nk(ui) = Sk (uui) − Fk(n · (uui − (uui)
∗)) (24a)

Lk(g) = Sk g − Fk(n · (g − g∗)) (24b)

Pk(p) = Sk p − Fk(n(p − p∗)) (24c)

we end up with the following locally defined nodal scheme

Mk ∂u

∂t
+ Nk(u) = −Pk(p) +

1

Re

ν

ρ
Lk(g) − Fk

∂Ω(u − u∗
∂Ω), (25a)

Sku = Mkg + Fk(n(ui − u∗
i )), (25b)

where again g can be eliminated locally. For the fluxes in Eq. (24) and for the
flux in Eq. (24a) we use a Lax-Friedrich flux, while for the remaining we use
a central flux.
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4 The Temporal Scheme

The incompressible Navier Stokes (INS) equations are a combination of non-
linear advection, linear diffusion, and an algebraic constraint. On top of the
INS, we shall need to solve the level set equation, Eq. (5).

An often used approach for solving the INS is an explicit-implicit splitting,
treating the diffusion part implicitly, the nonlinear part explicitly, and fur-
thermore decoupling the calculation of the pressure from the velocities, thus
introducing the potential for time splitting errors. This is equally true when
solving the INS and the level set equation as we would like to decouple the
evaluation of the level set from the velocities and the pressure, hence we have
to be careful not to produce lower order time splitting errors.

4.1 Velocity Projection

We will now return to the incompressible Navier Stokes equations, and illus-
trate the standard velocity projection technique using a semi-implicit Euler
approximation. We consider the following

∂u

∂t
= −1

ρ
∇p + N(u) + L(u) + f , u|∂Ω = ub (26a)

∇ · u = 0, (26b)

with N(u) being the nonlinear advection and L(u) the diffusion. The purpose of
the pressure variable is to assure no divergence in the new velocities. Consider
a semi-implicit approximation of the time derivative and remove the implicit
diffusive part

un+1 = ūn + h
(
− 1

ρ
∇pn+1 + N(ūn) + fn+1

)
, (27a)

0 = ∇ · un+1, (27b)

yields an equation for the pressure

∇ · 1

ρ
∇pn+1 = ∇ ·

(1

h
ūn + N(ūn) + fn+1

)
. (28)

This is a Poisson problem, and Neumann boundary conditions can be found
from the original equation

n · ∇p = n · ρ
(
−∂u

∂t
+ N(u) + L(u) + f

)
, on ∂Ω (29)
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which must be approximated to the same order as the time derivative. For a
higher order method, this implies extrapolation of the non-linear as well as
the linear term (16; 9) Having the pressure, we can insert it into Eq. (27a)
and as the last step we solve for the new velocities.

ūn+1 − hL(ūn+1) = un+1 (30)

Velocity projection is often used with an Adams-Moulton or BDF-type ap-
proximation of the time derivative and extrapolation of the nonlinear part,
hence a k’th order BDF(k) method:

1

h

k−1∑
i=−1

αiun−i = −∇pn+1 +
k∑

i=0

βiN(un−i) + L(un+1) + fn+1, (31)

where the αi’s are the BDF coefficients and the βi’s are extrapolation coeffi-
cients. This formulation is 1st order using a BDF(1) method, 2nd order using a
BDF(2), and gives O((∆t)5/2) order using a BDF(3). For a thorough analysis,
see (16; 9; 8)

The velocity projection approach may yield O((∆t)5/2), but being able to
discretize in space to basically any order, on would like to mimic this in time.
Furthermore, the BDF method in its original form is fully implicit, making it
difficult to include more equations, e.g. the level set equation, in the solution
process without increasing the amount of work significantly, or by extensive
use of extrapolation like for the non-linear term above. Finally, how to apply
Neumann type of boundary conditions for the velocities and retain the order
is remains unknown (9; 8).

4.2 SISDC

Minion (17) presents a Semi Implicit Spectral Deferred Correction (SISDC)
method to time integrate the incompressible Navier Stokes to arbitrary order
of accuracy. It is based on low order time integration methods, which are
corrected iteratively. The time splitting errors of the low order methods are
corrected as any other part of the error, hence the final method does not suffer
from order reduction due to the splitting. We can split and decouple terms as
needed – an attractive and flexible feature. Hence we should be able to include
the level set variable in a simple and computationally inexpensive way, and
still retain high order.

In (17) an alternative formulation using u = m + ∇χ is proposed, thereby
eliminating the pressure variable. This, however, makes it difficult to apply
velocity boundary conditions and to obtain and use the pressure, which is
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required in the free surface flow formulation. Here we will present a variant,
which uses the velocity and pressure variables directly.

4.2.1 SISDC for ODEs

Let us first introduce the SISDC for ODEs for which we shall follow the original
development in (6). Assume we want to solve the ODE

u′(t) = f
(
u(t), t

)
, u(a) = ua, t ∈ [a, b], (32)

Before we continue, some definitions are appropriate. Let ti be a grid in the
interval, a = t0 < t1 < ... < tM = b, and let v = (v0, ..., vM) be the values of
v(t) at the nodes, vi = v(ti). Define the Lagrange interpolant as

ṽ(t) = LM(v, t) =
M∑
i=0

vi πi(t), (33)

where the fundamental polynomials πi(t) are defined by

πi(t) =
M∏

j=0
j �=i

t − tj
ti − tj

. (34)

The Lagrange interpolant, Eq. (33), is a continuous function, hence we can
differentiate and integrate it.

We define the integration operator Ij+1
j as

Ij+1
j v =

∫ tj+1

tj
ṽ(τ) dτ, j = 0, ..., M − 1 (35)

The grid, {ti}, is typically chosen as teh nodes of a Gauss quadrature formula
to enable high accuracy integration.

The spectral deferred correction method is based on the Picard solution of the
ODE, Eq. (32),

u(t) =
∫ t

a
f
(
u(τ), τ

)
dτ + ua. (36)

Given an approximation of the solution v(t), let the error be δ(t), such that
u(t) = v(t) + δ(t). Substituting this into Eq. (36) gives

v(t) + δ(t) =
∫ t

a
f
(
v(τ) + δ(τ), τ

)
dτ + ua. (37)
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A measure of the error can be found by considering the error equation. Insert-
ing v(t) for u(t) in Eq. (36) we have

ε(t) =
∫ t

a
f
(
v(τ), τ

)
dτ + ua − v(t). (38)

Subtracting Eq. (38) from Eq. (37) gives a correction equation

δ(t) =
∫ t

a
f
(
v(τ) + δ(τ), τ

)
− f

(
v(τ), τ

)
dτ + ε(t). (39)

which is on the same form as Eq. (36). We can solve the correction equation
as we solved the original ODE, and the result can be used for updating the
solution. We simply need to specify how to evaluate the integrals.

Consider Eq. (36) for the i’th interval, hi = ti+1 − ti. Using an explicit Euler
approximation for the integral we recover the approximation

vi+1 = hif(vi, ti) + ui. (40)

Similarly, using an explicit Euler approximation for Eq. (39) gives

δi+1 = δi + hi (f(vi + δi, ti) − f(vi, ti)) + εi+1 − εi. (41)

Subtract the residual, Eq. (38), at time ti from that at time ti+1, to get

εi+1 − εi =
∫ ti+1

ti
f(v(τ), τ) dτ − vi+1 + vi. (42)

Combined with Eq. (41) yields a direct equation for the updated solution
v∗

i+1 = vi+1 + δi+1

v∗
i+1 = v∗

i + hi (f(v∗
i , ti) − f(vi, ti)) +

∫ ti+1

ti
f(v(τ), τ) dτ. (43)

To complete the correction procedure, we need to specify how to calculate
the integral in Eq. (43). This is where the spectral integration is needed. Let
fi = f(vi, ti), and let f̃ be the Lagrange interpolant of the fi’s. We can now
integrate using Eq. (35)

∫ ti+1

ti
f(v(τ), τ) dτ ≈

∫ ti+1

ti
f̃ dτ = I i+1

i f , (44)

which completes the scheme. A similar expression exists for the implicit Euler
approximation

v∗
i+1 = v∗

i + hi

(
f(v∗

i+1, ti+1) − f(vi+1, ti+1)
)

+ I i+1
i f . (45)

and a right hand side f can be split into different parts treated explicitly and
implicitly in a straight forward manner.

13



One can repeat the process with another correction step, using the new v∗
i as

vi, which can be shown to raise the order of the approximation by one. This can
continue as long as the integral, Eq. (44), is evaluated sufficiently accurately.
Using M +1 points in the Lagrange interpolant provides an O(hM+2) accuracy
for the integral, and an O(hM+1) global accuracy for the solution. A complete
error analysis is provided in (6).

4.2.2 SISDC and INS

Consider the integral form of the momentum equation:

u(ti+1, x) = u(ti, x) +
∫ ti+1

ti
(−∇p + N(u) + L(u) + f ) dt (46)

As we want to remove the pressure from the spectral integration, we evaluate
the pressure part of the integral using the mean value theorem,

u(ti+1, x) = u(ti, x) − ∆ti∇p(ξi) +
∫ ti+1

ti
(N(u) + L(u) + f ) dt (47)

where ξi is unknown, ti < ξi < ti+1. This allows the construction of the SISDC
method, treating the linear term implicitly and the nonlinear explicitly, on the
form

u∗
i+1 = u∗

i + ∆t
[
−∇p∗ξi

+ N(u∗
i ) − N(ui)+

L(u∗
i+1) − L(ui+1)

]
+ I i+1

i F (u), (48a)

0 = ∇ · u∗
i+1. (48b)

where F (u) is the integrand of Eq. (47). This formulation can be combined
with either a pressure projection or velocity projection approach.

4.2.3 Test of SISDC on INS

We shall test the velocity projection SISDC method on the following traveling
wave solution of the incompressible Navier Stokes equations

u =
3

4
+

1

4
cos(2π(x − t)) sin(2π(y − t))e−α8π2t, (49a)

v =
3

4
− 1

4
sin(2π(x − t)) cos(2π(y − t))e−α8π2t, (49b)

p =
1

64

(
cos(4π(x − t)) + cos(4π(y − t))

)
e−α16π2t. (49c)

Here α determines the decay of the waves, e.g., α = 0 implies a traveling wave.
The right hand side forcing f in the momentum equation is found by inserting
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the solution into the Navier Stokes equation. The solution is periodic, is set
up in a [0; 1] × [0; 1] box and the solution is calculated up till T = 4.

The problem is solved on a grid having 226 elements of order 4. Figure 2 shows
error plots for the test problem set up using periodic boundary conditions. The
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Fig. 2. Order Results 3rd to 5th order

velocities all show more or less optimal order. The 4th order method seems
to display some kind of order reduction, reducing to 3rd order for small time
steps. However the 5th order method does not show alike. The 5th order
method hits the limit of the spatial discretization at around 10−6 and does
not improve beyond this point.

The pressure shows only second order in all plots. This is casued by the fact
that we do not know the pressure time, ti+ξ, hence the pressure is compared
with the exact solution at time ti+1/2, which is only second order accurate.
However since the velocities are high order, we would expect the pressure to
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be of equally high order.

4.3 Boundary Conditions in SISDC

So far we have not discussed the impact of boundary conditions. While bound-
ary conditions for the velocities usually are available, conditions for the pres-
sure are not and these must be approximated from the flow. In (16) it is argued
that the Neumann condition for the pressure needs to be approximated to the
same order in time as the time stepping method to avoid order reduction.

Applying velocity conditions to the SISDC method is not straight forward.
Imposing prescribed boundary conditions on the implicit step even for simple
problems like the heat equations will cause an order reduction similar to that
of Runge Kutta methods, i.e., it is caused by the low stage-order, which is
determined by the order of the internal scheme in the SISDC scheme. Using
a high-order internal scheme in the SISDC may help alleviate this problem,
although no analysis is available. Further discussions along this line can be
found in (17).

Furthermore, it is not known how to approximate the pressure Neumann con-
dition to sufficient order in a useful way. So far we have only been able to
obtain 1st order accuracy for the pressure, limiting the order of accuracy for
the velocities to 2nd order for the SISDC method with complex boundary
conditions.

4.4 Time Stepping INS and the Level Set Equation

The level set equation, as the nonlinear part of the Navier-Stokes equation,
has no need for implicit time stepping. Hence we seek to include it in a way
which requires as little extra work as possible, e.g., in the form

ui+1 = F (ui+1, ui, pi+1, φi),

∇ · ui+1 = 0,

φi+1 = G(ui+1, ui, φi),

where subscript i + 1 refers to implicit and i to an explicit dependence. We
solve for the velocities and the pressure as before, with the only difference
that viscosity and density may vary in time. Afterwards we solve the level set
equation, using the newly calculated velocity ui+1.

The above formulation fits directly into the SISDC projection method, using
explicit or implicit approximations as appropriate. Unfortunately, as discussed
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above, it remains unknown how to apply pressure boundary conditions without
impacting the accuracy adversely.

For problems requiring such types of boundary conditions, e.g., nonperiodic
problems, we may consider other methods more appropriate and we shall use
the classic BDF-type scheme described previously.

In the equation for the velocities, we need the level set at time ti+1, hence
we need to extrapolate, which we do with an explicit Adams method of the
same order as the BDF method. When the pressure and the velocities are
calculated, we will calculate the level set explicitly based on a BDF scheme

1

h

k−1∑
i=−1

αiφn−i = −un+1 · ∇φ̄n+1 (50)

where φ̄n+1 is the extrapolated level set, and un+1 the newly calculated ve-
locity. Applying the BDF scheme for the level set, and simply using the value
from the Adams method, minimizes the time splitting errors.

5 The Level set Modeling of the Free Surface

In the continuous case in Sec. 2 the choice of the level set function is arbitrary
as long as it is differentiable and fulfills Eq.(3).

We will choose φ to be the signed distance to the interface. To avoid handling
discontinuities in e.g. µ(φ) and ρ(φ), the interface is given a thickness of size
ε, i.e., we use a smooth Heaviside function

H(φ, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 φ < −ε

1
2

+ φ
2ε

+ 1
2π

sin
(

πφ
ε

)
−ε ≤ φ ≤ ε

1 φ > ε

(51)

This is only one of many possible definitions of a smooth Heaviside function
(24). Using a high order method to enable high precision, it is important
that the function is as smooth as possible. The above Heaviside function has
continuous first and second derivative, while the third is discontinuous at
φ = ±ε. It is possible to design higher order polynomials or combinations
of polynomials and trigonometric functions which are as smooth as required.
However, the coefficients and the size of the derivatives grow larger with the
degree of smoothness, which also makes the differentiation less accurate. When
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a very smooth function is needed, and the thickness is less important,

Hs(φ, ε) =
1

2
+

φ

2
√

φ2 + ε2
(52)

can be used.

The interface thickness ε should be chosen as small as possible for accuracy
but big enough to stabilize the system. A typical choice is ε of the local size of
an element. Note that ε does not have to be a global constant, but may vary
throughout the domain.

The smooth Heaviside function only depends on the level set for |φ| < ε. In
order to update the level set in Eq.(5) with good precision within the distance
ε from the interface, the level set need to be accurate in a distance slightly
larger, say 1.5ε. Hence the level set need only to be a signed distance function
within 1.5ε of the interface, as elsewhere only the sign is needed. This lowers
the computational cost of handling the level set, since we need only consider
the level set in elements within 1.5ε of the interface, e.g., the gray elements in

Fig. 3. Elements within 1.5ε of the interface

Fig. 3.

5.1 Reinitialization of the level set

A fluid particle at a certain distance from the interface will, as time progresses,
seldom remain at that distance. Hence, even if the initial level set is a signed
distance function, it will not remain so and to retain the level set as a signed
distance function, it must be reinitialized. If the level set is not reinitialized,
areas of small and large gradients will form, changing the thickness of the
interface and eventually degrading the accuracy and stability of the method.

The reinitialization procedure must not move the interface, i.e., the zero con-
tour must remain unchanged, and φ must be found such that |∇φ| = 1. In
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(23) the following reinitializing equation was proposed

φτ + sign(φ0)(|∇φ| − 1) = 0, (53)

where φ0 is the initial level set to be reinitialized and τ is an artificial time.
Evolving this equation to steady state will produce a signed distance function
φ. The characteristic lines of the system are normals to the interface, and
the characteristic speed is 1, hence the level set will be reinitialized from the
interface along the interface normals. As we seek the level set reinitialized in
a distance 1.5ε from the interface, it is sufficient to run the reinitialization
to time τ = 1.5ε. However, if the initial level set is already close to a signed
distance function, fewer iterations are often sufficient.

The reinitialization equation, Eq. (53), is a Hamilton-Jacobi equation and the
signed distance function is a C0 function. Figure 4 is a 1D example showing

� �

φ

x

Fig. 4. Two surface points produces a level set function with a sharp peak

how two surface points result in a level set function with a peak. A standard
high-order method does not handle such discontinuities easily, especially when
differentiating as in Eq.(53), and the method may turn inaccurate, difficult to
solve, or even unstable. The use of WENO methods has been proposed (26)
to overcome such problems but remains a challenge at general unstructured
grids.

We will solve a slightly modified reinitialization equation, which will only
make the level set a distance function within |φ| < ε. Outside we will make it
approach the value 5

4
ε:

∂φ

∂t
= sign(φ0, ε)(l(φ, ε) − |∇φ|) + νw

∂2φ

∂w2
+ γ(1 − l(φ, ε))(

5

4
ε sign(φ) − φ)

(54)

The first term is like the original reinitialization equation apart from the func-
tion

l(φ, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, |φ| < ε,

0, |φ| > 5
4
ε,

1 − 4 |φ|−ε
ε

, in between,

which, for |φ| < ε, is like the original, but for |φ| > 5
4
ε forces the level set to be

flat with a smooth transition in between. Figure 5 shows how this modification
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Fig. 5. Peak is removed

will reinitialize the example from Figure 4, and how peaks outside |φ| > 5
4
ε

are removed.

The second term is diffusion along the characteristics w = ∇φ
|∇φ| , νw being a

diffusion constant. For a distance function the gradient along a characteristic
is constant almost everywhere, w ·∇φ = 1, hence the term has no effect there.
However, where peaks exists in the level set function, this term will smoothen
the peaks and make the level set infinitely smooth. This effectively controls
peaks within |φ| < 5

4
ε.

The last term is forcing the level set outside |φ| > 5
4
ε toward the value 5

4
ε.

This is useful if ε depends on x, to make sure the level set value far away from
the interface is close to 5

4
ε. For constant ε it may be omitted.

5.1.1 Boundary conditions for the reinitialization

Boundary conditions for the original reinitialization equation, Eq. (53), is
needed when the interface intersects the domain boundary ∂Ω. The top dotted

Fig. 6.

part of the right boundary in Fig. 6 intersects characteristics of the level set,
while the bottom part does not, i.e., boundary conditions are needed for the
bottom part. In the modified reinitialization equation, Eq. (54), we have intro-
duced diffusion, implying also that the top part requires boundary conditions.
The boundary conditions can be found by reinitializing the boundary using

∂φ

∂τ

∣∣∣∣∣
x∈∂Ω

= sign(φ0, ε)(β l(φ, ε) − |∇φ|)|x∈∂Ω
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where β = |∇φ − n(n · ∇φ)| is the slope of the level set on the boundary.

When restricting attention to a band of elements within a certain distance of
the interface, also boundary conditions on the outermost elements must be
given. Using the modified reinitialization equation, the value of the level set
far away from the interface is 5

4
ε, and this may be used as boundary value on

the outermost element boundaries.

5.1.2 Discretization of the Reinitialization Equation

The discretization of Eq. (54) follows the previous discussion directly. Rewrite
the equation

∂φ

∂t
= sign(φ0, ε)(l(φ, ε) − |h|) + νww · g + f , (55a)

∇φ = h , (55b)

∇(w · h) = g , (55c)

We discretize this as(
∂φ

∂t
, Lj

)
Dk

= (sign(l − |h|) + νww · g + f, Lj)Dk , (56a)

(∇φ, Lj)Dk = (h, Lj)Dk + (n(φ − φ∗), Lj)∂Dk , (56b)

(∇(w · h), Lj)Dk = (g, Lj)Dk + (n · w(h − h∗), Lj)Dk (56c)

or in discrete operators

∂φ

∂t
= s(l − |h|) + νww · g + f , (57a)

Skφ = Mkh + Fk(n(φ − φ∗)), (57b)

Sk(w · h) = M kg + Mk(n · w(h − h∗)) (57c)

If global boundary conditions are needed, a Fk
∂Ω(φ−φ∗

∂Ω) term can be included
in Eq. (57a).

5.1.3 Filtering the reinitialization process

It is necessary to use a filtering technique for stabilizing the reinitialization
process and retain high order accuracy. Even though the modified reinitial-
ization equation makes the system much easier to handle, it is still necessary
to filter. What we basically use is a low-pass exponential filter, the precise
description can be found in (7).

Consider the filtered result Tu, where T = I−H, I being the identity operator
and H pick out the high modes. Applying an explicit method to solve Eq. (53)
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and the exponential filter this corresponds to

φ̃i+1 = φi − ∆t sign(φ0)(|∇φi| − 1) (58a)

φi+1 =
(
I − H

)
φ̃i+1 (58b)

Iterating the original reinitialization equation, Eq. (53), to steady state implies
eventually |∇φ|−1 = 0. When adding the filter, the steady state solution will
emerge when the filter and the forcing balances, ∆t sign(φ0)(|∇φi| − 1) ≈
Hφi. The errors due to filtering becomes a part of the solution. Filtering of
steady state problems must be designed with care. We have designed the
reinitialization method such that filtering only takes place when necessary, and
then only as little as possible, and preferably never in elements containing the
interface. This is applied adaptively, by calculating a measure of the “need for
filtering” and using this measure to determine the degree of filtering in each
element. We have used a very simple measure, η = ||∇φi|−1| in each element,
and we apply more filtering in elements with large η.

Kanevsky et al. (15) have recently developed time-consistent filters especially
designed for time-integrating solutions of DG methods to steady state. Such
filters would be interesting to test as part of the reinitialization process.

5.1.4 Reinitialization test

Figure 7 shows the upper right part of the reinitialization of a circular interface
in a 1 × 1 domain, centered at (0.5; 0.5) and with a radius 0.3. The domain

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9 −0.1

−0.1

−0
.1

0

0

0.1

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

−0.2

−0.2

−
0.1

−0.1

−0.1

−0.1

0

0

0

0.1

0.1

0.2

0.2

Fig. 7. Reinitialization of circle after time τ = 0.155 (left) and τ = 0.5 (right).
Dotted lines are exact distance contours, solid lines are level set contours.

is discretized using 894 elements of 3rd order. We are using a big ε such that
the level set will be a distance function in the whole domain. On the right
plot, the true and exact solution is indistinguishable apart from close to the
center of the circle at (0.5; 0.5) due to the local loss of smoothness. Oscillations
coming from the discontinuity is controlled by the filtering with the price for
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stability being some accuracy, but only close to the discontinuity. The left plot
shows the level set contours at τ = 0.155, and illustrates that the level set is
first reinitialized at the interface and the reinitialization progresses along the
characteristic lines, almost with speed one. The speed is not exactly one due
to the smoothed sign function. At this point of τ = 0.155, the level set would
be accurate in a band wide enough for further use.

6 A Few Numerical Tests

In the following we shall show a few examples of the performance of the
proposed scheme. In doing these we have not made any attempt to optimize the
grids and elements in all tests are of same size in the entire domain. However, in
all tests there are regions which could be resolved using much larger elements,
hence decreasing the total number of elements and the computing time while
maintaining accuracy.

6.1 Zalesaks problem

Zalesak (25) proposed a test to evaluate how well a method transports an
interface. The Zalesak disk is rotated one revolution around the center of the
domain using φt − u · ∇φ = 0. The Zalesak disk, including the grid used, is
depicted in Fig. 8. The rotation is a shape preserving transformation, hence
reinitialization is not necessary. The solution method uses a small amount of
filtering to control oscillations coming from the discontinuities. Figure 8 shows
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Fig. 8. Zalesaks problem, grid (left) and solution after one revolution for 3rd (middle)
and 5th (right) order elements. Entire domain is [−4; 4]x[−4, 4] hence only a part
of the domain is shown

the initial disk and the disk after one full revolution using 3rd and 5th order
elements respectively. The grid has 894 elements. For comparison with other
methods, counting the number of unknown, the 3rd order element has 10 and
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the 5th has 21 unknowns, in total 8940 and 18774 unknowns respectively,
corresponding approximately to rectangular grids of size 95x95 and 137x137.

Results using the 5th order elements show that the DG method can evolve
the Zalesak disk well and solve it accurately without the need for any special
techniques or tricks. Note that the disk itself is only resolved with about 30
elements, i.e., a relatively coarse grid.

Results using 3rd order elements show a typical degradation of the solution,
when the method have difficulties representing the smallest scales of the prob-
lem.

The DG method works very well where the level set is smooth, while where
the surface has sharp corners and where two surfaces are very close, it is less
accurate. Compared to lower order methods using a 137x137 grid, the results
are excellent.

To show the effect of reinitialization, we present in Fig. 9 the results after one
full revolution where also reinitialization is applied. The test use 3rd order
elements and should be compared with the middle plot in Fig. 8. Plots (a)
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Fig. 9. Zalesaks problem including reinitialization. On left (a) is used minimal dissi-
pation, in the middle (b) a bit more while the right (c) is a prelimenary result using
a scheme with improved local mass conservation.

and (b) applies two different levels of filtering and diffusion, (a) as little as
possible and in (b) somewhat more, emphasizing that dissipation must be
applied with care. Plot (c) is a preliminary result using a technique for local
mass conservation presented in (20), showing superior preformance for this
particular example.

6.2 Standing Wave

In a box of size 1×2, the water in rest fills half the box and the initial surface
is set to 1 + 0.2 sin(πx), see Fig. 10. The density ratio used are true values
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for water and air 1000:1, while the viscosity for both fluids are set to 1. Slip

0 1
0

1

2

Fig. 10. Standing wave initial conditions

boundary conditions, i.e., no stress conditions (2), are set at all boundaries,
apart from at the 4 corners, where homogeneous Dirichlet conditions are used.
Velocities are set to zero, and at time 0 the water is “released” and it will start
to move from side to side. Due to viscosity, the wave-height will decrease. The
integration is carried out until T = 2, where the wave has moved back and
forth almost 2 times.

The problem was solved on a grid having 62 elements of order 4. Figure 11
(left) shows the area of the water over time for different time steps. It shows
that mass is quite well conserved even for a longer integration time on this
very coarse grid. Figure 11 (right) shows the energy over time for different
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Fig. 11. Standing Wave mass conservation (left) and energy (right) as a function of
the timestep, ∆ = 2/N .

time steps. Energy is lost due to viscosity. If integrating once with very small
time step and defining that as the true solution, the energy converges toward
the true solution in O(∆t3/2) for a 2nd order BDF/Adams combination.
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6.3 A Wobbling Bubble

The wobbling bubble test displays an example of a surface tension driven flow.
A bubble formed initially as an ellipse and without a gravitational force, will
oscillate due to the difference in curvature and the induced surface tension.

The test is set up in the domain (x, y) ∈ [−1
2
; 1

2
]×[−1

2
; 1

2
] . Initial and boundary

conditions are

u(x, 0) = 0,

u(x, t) = 0, on ∂Ω

The surface is initially an ellipse with semi axis 0.2 and
√

2
10

. Density ratio is
1000:10 while viscosity ratio is 1

2
: 1

2
. Using the bubble rest diameter L = 0.2,

U = 0.1, ρl = 1000, µl = 0.5 gives a Reynolds number of Re = 40. Surface
tension is of size σ = 50 giving a Weber number of We = 0.4.

The problem is solved on a grid having 894 elements of order 3. The level
set uses ε = 0.075, which is a bit bigger than the side-length of the biggest
element. Figure 12 shows 8 still pictures of the wobbling bubble over almost

Fig. 12. Surface at times t = 0, 0.1, ..., 0.7. Dotted lines are level set contours at
−0.1,−0.05, ..., 0.1

one period and Fig.13 illustrates the y-diameter of the bubble as a function
of time. As expected, the oscillations decrease over time due to viscosity. The
right plot shows the relative area as a function of time, and illustrates a mass
loss of about 3.5% after time T = 2.

The mass loss is primarily due to effects depending on the surface thickness,
described by the level set parameter ε. Decreasing ε decreases the mass loss,
i.e., it is simply a question of resolution.
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Fig. 13. Bubble diameter (left) and area (right)

6.4 Bubble falling

The falling bubble test shows that the method has no problem handling the
merge of water volumes.

The test is set up in the domain (x, y) ∈ [−1
2
; 1

2
] × [−1

2
; 1

2
]. Initial conditions

are u(x, 0) = 0. Boundary conditions are periodic in the horizontal direction
and u(x, t) = 0 elsewhere. The bubble is initially an ellipse with semi axis

0.2 and
√

2
10

and center (0.1; 0.2), the surface is at hight -0.3. Density ratio is
1000:10 while viscosity ratio is 4 : 1

2
. Using the bubble rest diameter L = 0.2,

U = 0.1, ρl = 1000, µl = 4 gives a Reynolds number of Re = 25. Surface
tension is not included. The problem is solved on a grid having 894 elements
of order 3. The level set uses ε = 0.05.

t = 0 t = 0.6 t = 0.68 t = 0.72

t = 0.74 t = 0.82 t = 1.0 t = 1.3

Fig. 14. Surface at different times. Dotted lines are level set contours at
−0.1,−0.05, ..., 0.1

Figure 14 shows the surface at 8 different times, focusing on times where the
bubble hits the surface and merges with the remaining water. The viscosity
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in the air is so big that the surface is seen to sink slightly before the bubble
impacts. Figure 15 plots the mass change in time, and documents about 4%

0 0.5 1 1.5 2 2.5 3

0.98

1

1.02

1.04

time

Fig. 15. Area of water (relative) shows small changes in time

added mass at bubble impact. Reducing the surface thickness reduces this
change in mass.

6.5 Flow Generated Surface Waves

This test highlights surface waves generated by an obstacle below the surface.
The domain is (x, y) ∈ [−1; 1] × [−1

2
; 1

2
] and in the middle a rigid box of size

0.15 × 0.2. Initial and boundary conditions are

u(x, 0) = (1, 0),

u(x, t) = (1, 0), at inflow, top and bottom boundaries

u(x, t) = 0, on box boundaries

(n · ∇)u(x, t) = 0, at outflow boundary

The surface is initially at rest at height 1
4
, and at inflow set at height 1

4
for

all time. The density ratio is 1000:10 while the viscosity ratio is 1:1. Using the
box height, L = 0.2, and the inflow condition, U = 1, ρl = 1000, µl = 1, gives
a Reynolds number of Re = 200. Surface tension is neglected. The problem

Fig. 16. Surface at times t = 0, 0.5, ..., 2.5
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Fig. 17. Detailed flow with streamlines behind box at time 3.5 and 4.0

is solved on a grid having 304 elements of order 5. Figure 16 shows 6 still
pictures of the surface, while Fig. 17 shows 2 still pictures of the flow rear of
the obstacle. There is no steady state solution, the surface will oscillate due to
the shedding of Von Karman vortices. We can calculate the force on the box
by integrating up the pressure at the box boundaries. In Fig. 18, the force is
split up into its x and y component. The y component of the force corresponds

0 1 2 3 4 5 6 7 8

200

250

0 1 2 3 4 5 6 7 8
200

250

300

x-force

y-force

time t

time t

Fig. 18. Force on box in x and y direction as a function of time

to the force if the box had been massless. However also gravity pulls on the
box, hence the actual lift applied to the box will be less, and depend on its
weight. We see that after a transition phase of about 4 time units, the flow
enters a quasi-stationary state, where we can read the period to be slightly
less than one time unit.

7 Concluding Remarks

We have discussed the development of a levelset based discontinuous Galerkin
methods as an approach to modeling the incompressible Navier-Stokes equa-
tions with free surfaces. The scheme, solving the problem as a two-fluid prob-
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lem with the interface described by a levelset, utilizes a nodal high-order dis-
continuous Galerkin discretization on a fully unstructured grid and a veloc-
ity projection scheme in combination with a semi-implicit approach in time
to advance the unsteady equations. As an alternative we propose the use of
a semi-implicit spectral deferred correction projection (SISDC) formulation
which has a number of attractive properties, although at present it remains
unknown how to use it in finite domains without impacting the accuracy ad-
versely.

A modified level set equation was introduced to enable the robust and simple
representation of the free surface and we discussed appropriate boundary con-
ditions for the level set at inflow and outflow boundaries. A few tests confirm
the accuracy, robustness, and versatility of the proposed scheme.

However, the work also suggests a number of open questions. In particular,
the correct treatment of boundaries in the SISDC approach is one of inter-
est as the formulation appears to have the potential to reach higher accuracy
than standard projection methods. Furthermore, the introduction of the lev-
elset raises a number of questions in relation to its treatment around no-slip
boundaries and multiply connected surfaces, i.e., since there is zero velocity
on no-slip boundaries, the zero level set will never intersect or move on a
no-slip boundary, e.g., for a wave hitting the box, the level set would wrap
around the box. Whether this “wrapping” is acceptable, or a heuristic should
be applied for updating the level set in cells on no-slip boundaries newly filled
with/emptied for water, or if slip conditions are more appropriate, is a topic
for further investigation.
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