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Abstract

According to classical DLVO theory all ions of background salt solution with the same ionic charge should result in the same effective force
between colloidal particles. However, the relative effectiveness of different ions in influencing forces between ceramic oxide surfaces follows
either a reversed Hofmeister sequence or a direct Hofmeister sequence depending on the type of oxide and if the pH is above or below the
isoelectric point (iep). This ion specificity is inexplicable in classical double layer theory that deals only with pure electrostatic forces acting
between the ions and the colloidal particles. A theoretical explanation is given here. At, and above, biological salt concentrations other, non-
electrostatic (NES) ion specific forces act that are ignored in such modeling. In this overview we present the basic theory for the double layer near
a single oxide surface and for the extended DLVO forces between oxide colloidal particles that accounts for these NES forces. We will
demonstrate that ion specificity can be understood to a large degree once NES forces are included consistently in the non-linear theory.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

To understand colloid science, the behavior of surfactants in
solution, molecular biology and industrial processes that takes
place in solution it is essential to understand interactions bet-
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ween particles in solution. However, as it turns out an under-
standing of the very basic underlying foundation in colloid
science has been missing. The pioneering work of Hofmeister
[1] showed that crystallization of proteins depended not only on
charge but also on the specific choice of salt solution. This is
true evenwhen salt ions have the same ionic charge. These effects
have, for instance, been observed in experiments as diverse as
double layer force measurements [2–10], bubble fusion [11],
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conformational changes of rhodopsin [12], bacterial cell growth
[13], yield stresses in silica and alumina suspensions [14–17],
cutting-efficiency of DNA by restriction enzymes [18], charge of
globular proteins [19], surface tension of electrolytes [20–23] and
the solubility of protein solutions [24–27]. The relative effec-
tiveness of different anions in crystallizing proteins follows a
reversed Hofmeister sequence for pH below the isoelectric point
(pI), and a direct Hofmeister sequence for pH>pI [24–27]. Such
phenomenon has been known almost since Hofmeister's original
work but it has not been understood. The only ionic characteristics
included in textbook descriptions of colloids and salt solutions are
bulk pH, salt concentration, ionic charges and “hydrated” ionic
radii. Electrostatic theories based on these parameters do not
account for the experimentally observed ion specificity. Since
standard theory failed, it has been customary to invoke various
specific “ionic characteristics” such as “structure breaking”,
“structure creating”, “lyotropic”, “kosmotropic”, “chaotropic”,
“salting-in”, and “salting-out” [28,29]. These concepts attempt to,
and do encompass the missing ion–solvent interactions qualita-
tively. Other authors suggest gel-like layers [30–32], or “fragile”
structure [33], as soft surface layers to account for short range
repulsion, particularly for silica. But all these concepts have
turned out to be difficult to quantify.

Ion specificity means that it is possible to manipulate forces
between colloidal particles not only by changing the pH (sur-
face charge) and salt concentration (screening), but also by
changing ionic species. However, the reason until very recently
was not understood. The ion specific effects reveal a systematic
behavior that suggests that predictive theories should be within
reach. This may, in fact, very well be so. There are at, and above,
biological salt concentrations other, non-electrostatic (NES) ion
specific forces acting that are ignored in such modeling. These
missing forces are variously discussed under familiar, but gen-
erally unquantified, terms, such as, hydration, hydrogen bonding,
π-electron–cation interactions, dipole–dipole, dipole–induced
dipole and induced dipole–induced dipole forces and so on. The
important contribution from many-body electrodynamic fluctu-
ation force is accessible from extensions of the Lifshitz theory
from which, with relevant dielectric susceptibility data on sol-
utions as a function of frequency, the forces can be extracted
quantitatively. We will describe how some of the other unquan-
tified forces also can be estimated from the extended Lifshitz
theory due to Mahanty and Ninham [34] that takes ion size, finite
temperature, and the presence of screening charges into account.
The classical theories of colloid science that ignore such con-
tributions do not account for ion specific phenomena. The pur-
pose of this paper is to present results that may explain some of
these effects in oxide particle suspensions. We present calcula-
tions for the force between oxide surfaces using a modified
Poisson-Boltzmann equation that goes beyond electrostatics in
that it includes also non-electrostatic ion-colloid dispersion
potentials. These dispersion potentials originate from polariz-
abilities of both ions and colloids. In the past these dispersion
potentials have usually been neglected but it is now established
that they are vital, especially at typical biological salt concentra-
tions (0.1 M and above) where electrostatics is screened [1,35–
37]. We will show here how some of the highly ion specific
experimental results obtained by Franks et al. can be understood
[14–17].

The outline of this paper is as follows. We briefly describe
what we learn about ion specificity from rheological and other
experiments with oxide suspension in Section 2. We then de-
scribe the non-electrostatic forces that act on ions near a single
charged planar surface in Section 3. The extended double layer
theory near a single interface is presented in Section 4 and we
summarize briefly in Section 5 the theory of charge regulation
[38] of oxide surfaces in electrolyte solutions. In Section 6 we
present numerical results for ion distributions near oxide sur-
faces for various salt solutions and pH. Then in Section 7 we
present the basic theory of ion specific extended DLVO theory
and present numerical results for forces between two oxide
surfaces (SiO2 and α-Al2O3) under different conditions. Finally,
in Section 8, we summarize our results and the derivation of the
expression for the extended DLVO pressure is presented in
Appendix A.

2. Indirect qualitative force measurements from rheological
behavior of oxide suspensions

Rheological measurements on sub-micrometer suspensions
can be used to qualitatively determine, to some extent, the forces
acting between particles in a particular solution. It is well known
that suspension viscosity is low and nearly Newtonian for well
dispersed suspensions (net inter-particle repulsion) at moderate
volume fractions (15–40 vol.% solids) [39]. When the net inter-
particle interaction is attractive the shear thinning viscosity of
suspension increased and has solid-like characteristics such as
elasticity and yield stress. Both yield stress and elastic modulus
increase as the magnitude of attraction increases [39]. Thus by
measuring the yield stress of a suspension one can determine if
the net force between particles is repulsive or attractive and can
determine the relative magnitude of attraction when all other
factors are maintained constant.

Franks et al. have found that the yield stress of oxide sus-
pensions usually follows a direct or reversed Hofmeister se-
quence. For low isoelectric point materials such as silica, at pH
above the iep, the yield stress increases according to a sequence
of monovalent cations Li<Na<K<Cs [14] when salt concen-
tration is increased above about 0.1 M. This normal Hofmeister
sequence is consistent with the preferred binding of cations
according to the following sequence Cs>K>Na>Li [40]. These
rheological results suggest that the magnitude of attraction bet-
ween silica surfaces (in high concentration of a monovalent
electrolyte) increases according to the following Cs>K>Na>Li.
On the other hand, high iep, materials such as alumina, show
reverse Hofmeister sequences [41]. At pH above alumina's iep,
the yield stresses and (presumed) magnitude of attraction de-
creases according to Li>Na>K>Cs [15]. At pH below their iep,
alumina and zirconia, have yield stresses that decrease according
to the following sequence of monovalent anions IO3>BrO3>
NO3≈Cl>ClO4 [16].

Based on the rheological evidence presented, one would
expect the net inter-particle potential energy between two silica
surfaces and between two alumina surfaces at between about 0.2



Fig. 1. Schematic illustration of the interparticle potential energy for two
alumina or silica surfaces in approximately 0.3–1.3 M monovalent chlorides
based on the rheological evidence. Note that the two curves have different
meaning for the different oxides. For alumina the schematic is developed for pH
about 12 and for silica the schematic is for pH about 8. At other pH values the
sequence may be different.
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and 1.0Mmonovalent salts to qualitatively have the trends shown
in Fig. 1. One of the most comprehensive of the few reports on
direct measurement of surface forces [8] in concentrated (>0.2M)
electrolyte for silica is limited to pH 5.6 and only one surface is
silica, the other is mica. At pH 5.6 where the forces were mea-
sured, the rheological results suggest that the Hofmeister se-
quence is reversed from that shown in Fig. 1, so that the force
measurements [8] are in agreementwith the rheological behaviour
[14] but the sequence depends on the pH.

3. Non-electrostatic forces acting on ions near a charged
interface

It has been customary to assume that only electrostatic forces
have an effect on ions in solution. However, these forces are the
same for all ionswith the same ionic charge and do not explain the
experimentally observed ion specificity. Ninham and Yaminsky
[35] showed that there were other non-electrostatic forces of
electrodynamic origin that successfully competed with the
screened electrostatic forces at and above biological salt con-
centrations. We will show here how these non-electrostatic forces
can be quantified. Mahanty and Ninham demonstrated [34] how
the forces acting on finite size polarizable particles due to
electrodynamic fluctuations could be described. The dispersion
self-energy of a polarizable particle (e.g. an ion) of finite size a as a
function of the distance x from the interface can be written as a
sum of the following two terms [34],

U0 xð Þ ¼ 2 h̄

p3=2a3

Z l

0
dna⁎ inð Þ hðxÞ

e2ðinÞ þ
hð−xÞ
e1ðinÞ

� �
; ð1Þ

U1 xð Þ ¼ h̄

p3=2a3

Z l

0
dna⁎ inð ÞD12 inð Þ hð−xÞ

e1ðinÞ−
hðxÞ
e2ðinÞ

� �
� f xð Þ; ð2Þ

where

f xð Þ ¼ e−x
2=a2−

ffiffiffi
p

p jxj
a

erfc
jxj
a

� �
þ a3

2jxj3
Z jxj=a

0
e−t

2
−e−x

2=a2
� �

; ð3Þ

D12 inð Þ ¼ e1ðinÞ−e2ðinÞ
e1ðinÞ þ e2ðinÞ : ð4Þ

The first energy term is the dispersion self-energy infinitely
far from the interface and the second term is the modification to
this self-energy due to the presence of the interface. Here the
dielectric functions of water (ε2(iξ)) and oxide surface (ε1(iξ)),
as well as the excess polarizability of the polarizable ion
(α⁎(iξ)), all depend on frequency. The excess polarizability of
an ion is the difference between the polarizability of the ion and
the surrounding water. θ(z) is the step function which is unity
when the argument is positive and zero when it is negative. The
excess polarizabilities were taken from Tavares et al. [37]. The
model dielectric functions of water [42], SiO2 [43] and α-Al2O3

[44] were taken from the literature. The magnitudes, and even
the signs, of the dispersion potentials near an interface depend
in a sensitive way on these frequency-dependent quantities.
At finite temperatures the normal electrodynamic modes that
give rise to the dispersion energy are thermally populated [45–
49]. The finite temperature free energy can be obtained from the
corresponding zero temperature energy with the following
substitution:

h̄
2p

Z l

0
f inð ÞdnYkBT

X
nn

Vf innð Þ; nm ¼ 2pkBTn= h̄;

n ¼ 0; 1; 2;…; ð5Þ
i.e. one obtains the result as a summation along the imaginary
frequency axis and the prime indicates that the n=0 term should
be reduced by a factor of two. We will in the following sections
approximate the dispersion potential with the result far from the
interface, which is

UdispersionðxÞ ¼ B=x3 ð6Þ

Bc
−kBT
2

Xl
n¼0

a⁎ðinÞD12ðinÞ
e2ðinÞ : ð7Þ

The estimated B-values for the considered ions and surface
combinations are given in Table 1. Mahanty and Ninham [34]
showed that the n=0 term in the frequency summation becomes
screened in the presence of charged electrolyte ions. The higher
frequency terms (n>0), on the other hand, are unaffected by the
presence of electrolyte since they are evaluated at frequencies
considerably higher than the ion fluctuations.

Parsegian and Ninham showed that the finite temperature
extension of the Lifshitz formalism could accommodate several
other previously more or less unquantified forces [45]. One



Table 1
The estimated B-values used to calculate the ionic dispersion potential for
selected ion-surface combinations

Ion SiO2 Al2O3

Li+ −1.0×10−51 J m3 −2.0×10−51 J m3

Na+ −4.1×10−51 J m3 −8.5×10−51 J m3

K+ −1.6×10−50 J m3 −3.5×10−50 J m3

Cs+ −3.3×10−50 J m3 −7.6×10−50 J m3

Cl− −2.4×10−50 J m3 −6.2×10−50 J m3

Br− −2.9×10−50 J m3 −7.8×10−50 J m3

I− −3.6×10−50 J m3 −9.9×10−50 J m3
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example is proton fluctuations in the microwave region that can
produce an effective attraction between proteins [45]. These
Kirkwood-Shumaker forces are included in the finite temper-
ature Lifshitz theory through the frequency dependence of the
dielectric function of a dilute protein solution [45]. In the low
density limit the Keesom forces acting between permanent
dipolar molecules and the Debye forces due to dipole-induced
dipole interactions are also included in the same Lifshitz ex-
pression [34]. So we emphasize that with the term “dispersion
forces” we refer in general not only to high frequency (optical
and UV) van der Waals dispersion forces but also Kirkwood-
Shumaker, Keesom, Debye and other contributions. All these
contributions can be accessed through the same general for-
malism [34]. The ion solvation energy is the change in self-
energy in bringing an ion from one medium to another. We have
recently explored how dispersion self free energies contribute to
the solvation energy of ions in solution [50], to ion transfer
across low dielectric membranes [51], and to solvation energy
changes as ions move into regions with varying water density
[22]. The last is particularly interesting for our discussion of
non-electrostatic forces acting on ions near interfaces. We ob-
tained an approximate expression for the change in solvation
energy (Usolvation) in bringing an ion from water to air through
the surface region,

Usolvation xð ÞcDGsolvation

1
1þpðxÞ½e2ð0Þ−1�−

1
e2ð0Þ

1− 1
e2ð0Þ

ð8Þ

Here p(x) is the water density profile that can be obtained
from simulations or from experiments. This means that changes
in dielectric properties of the background media near an
interface can also be taken into account in our extended DLVO
theory. One can in the same way include effects of a hydrated
ion size that depends on the distance to the surface. The classical
theories of colloid science which miss such contributions do not
account for a whole variety of ion specific phenomena. In
particular, for example, the interfacial tension of salt water as a
function of concentration and salt type [21,22] and the spec-
ificity of ion transport across low dielectric media [51] are not
accounted for by electrostatic theories alone. The inclusion of
these NES specific ion forces requires that they be treated on the
same level and in the same framework as electrostatic forces in
the nonlinear double layer theory. We carry out such program in
the following sections.
4. The extended double layer theory near a single interface

At chemical equilibrium the ions in solution are distributed
according to a Boltzmann relation [35],

ciðxÞ ¼ ci;0exp½−ðzie/ðxÞ þ UiðxÞÞ�; ð9Þ
where ci,0 and zi denote, respectively, the bulk concentration and
valency of ionic species i. Besides the electrostatic self-consistent
potential (ϕ(x)) each ion is also acted upon by image potentials
and various non-electrostatic forces (Ui(x)). At and above bio-
logical concentrations the image potential is smaller than the
ionic dispersion potential at all ion-surface distances [52]. We
approximate in this workUi(x) with the ionic dispersion potential
given in Eq. (6). The self-consistent electrostatic potential can be
found from the Poisson equation, as:

d2/
dx2

¼ −
qðxÞ

e0e2ð0Þ ; ð10Þ

qðxÞ ¼ e
X
i

ziciðxÞ: ð11Þ

When combined together, Eqs. (9)–(11) give the modified
Poisson-Boltzmann equation. This equation can be solved
numerically after one has decided on the appropriate boundary
conditions. In the case of a single oxide surface the electrostatic
field should go to zero at infinite separation from the surface.
For the case of two equal interacting oxide surfaces considered
later the electric field goes to zero in the midplane between the
plates. There are three commonly assumed boundary conditions
at the surface: (i) constant surface potential, (ii) constant surface
charge, and (iii) charge regulated surface. It is the third bound-
ary condition (first described by Ninham and Parsegian [38])
that is relevant for oxide surfaces. This charge regulation bound-
ary condition will be described in the next section.
5. Charge regulation of oxide surfaces

Surface charge is an important quantity that influences the
stability and rheology of dispersions of ceramic oxide particles in
aqueous electrolyte solutions. Oxide colloidal particles in solution
can become charged by adsorption or desorption of potential
determining ions. We will consider two examples, alumina oxide
and silica oxide surfaces. Reactions that can be described with the
Ninham-Parsegian charge regulation model [38] occur at surface
hydroxyl groups (which are created in reactions with water
molecules: Al+AlO+H2O↔2AlOH). For anα-Al2O3 surface the
interactions can be described as follows [53],

AlOHþ Hþ
s XAlOH

þ
2 Ka1 ¼ ½AlOH�

½AlOHþ
2 �

Hþ
s

	 
 ¼ 10−pKa1

� �
ð12Þ

AlOH XAlO− þ Hþ
s Ka2 ¼ ½AlO−�

½AlOH� Hþ
s

	 
 ¼ 10−pKa2

� �
ð13Þ



Fig. 2. Normalized Cl− co-ion distributions in different 0.4 M salt solutions at
pH 10 near an Al2O3 surface. The different counterions used were: Li

+ (circles),
Na+ (squares), K+ (diamonds), and Cs+ (crosses).
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It is the proton concentration near the interface that is
important,

tHþ
s b ¼ tHþbexpf−½e/ðsurfaceÞ þ UHðsurfaceÞ�g; ð14Þ

tHþb ¼ 10−pH=gHc10−pH; ð15Þ

where the last approximation is that the activity coefficient
(γH) is close to unity. (At sufficiently low salt concentra-
tion the activity coefficient is approximately given by

gHcexp − e2
8pe0e2ð0ÞkT

� �
j

1þ2aj þ 8p
3 c 2aÞ3

� ih �
. The surface elec-

trostatic potential that acts on hydronium ions in close contact
with the interface will be ion specific as discussed in the previous
section. There are, in general, also non-electrostatic forces acting
on the hydronium ions which should be included in the esti-
mation of the surface hydronium concentration. We have here
neglected this contribution (which corresponds to the same con-
stant shift in bulk hydronium concentration for all considered
examples). The surface charge of the alumina oxide surface can
be written as,

r0 ¼ eNs
½AlOHþ

2 �−½AlO−�
½AlOH� þ ½AlOHþ

2 � þ ½AlO−� ; ð16Þ

where Ns is the total site density. This can be rewritten in terms of
the pKa values of the acidic and basic reactions using Eqs. (12)
and (13),

r0 ¼ eNs
½Hþ

s �10pKa1−½Hþ
s �−110−pKa2

1þ ½Hþ
s �10pKa1 þ ½Hþ

s �−110−pKa2
: ð17Þ

(In cases where the pKa values are far enough separated this
expression can be approximated with a sum of two independent
terms, one for the basic reaction and one for the acidic reaction).
The same expressions hold for the SiO2 surface charge density.
James [53] presented the values pKa1=8.50, pKa2=9.70, and
Ns=2.7 sites/nm2 for an α-Al2O3. This leads to an isoelectric
point at pH 9.1. Similarly for SiO2 James [53] gave the values
pKa1=1.34, pKa2=4.6, Ns=3.5 sites/nm2 and an isoelectric
point at pH 3. These pKa values are typically obtained as
theoretical fits to experiments. Since the theory used to obtain
these pKa values is incorrect we can only use them as estimates
of the correct values to exemplify how inclusion of NES forces
influences the result. The boundary condition for the Poisson-
Boltzmann equation is found by combining Eq. (16) with the
following expression,

d/
dx jx¼a

¼ −r0
e0e2ð0Þ : ð18Þ

Here a is the ionic radius which we, for demonstrational
purposes, take to be the same for all ions (2 Å). It is well known
that the surface potential, and hence the surface charge, in the
Ninham-Parsegian charge regulation model [38] depends on pH
and the distance between two oxide surfaces. What has not been
explored in the past is how the previously neglected non-elec-
trostatic forces influence the surface charge and interaction
between two oxide surfaces. This will now for the first time be
explored in the following two sections.

6. Numerical results for the ion specific double layer near
charged oxide surfaces

It has previously been shown that NES forces play a crucial
role in the ion specificity observed in membrane biology [54–
56], ion binding to micelles [57] and polyelectrolytes [58], in
water absorbency of wool fibers [59], and growth rates of Sta-
phylococcus aureus and Pseudomonas aeruginosa [60]. We
will here briefly present some examples that demonstrate the
important influence of these NES forces on ion distributions
near charged oxide surfaces.

We show in Fig. 2 the normalized chloride (co-ion) dis-
tributions near an alumina oxide surface at pH 10 in different
0.4 M salt solutions (LiCl, NaCl, KCl, and CsCl). The cor-
responding normalized counterion distributions are shown in
Fig. 3. It is evident that the different ionic dispersion potentials
acting on the counterions (Li+, Na+, K+, and Cs+) influence
both the counterions and the co-ions. The influence on the co-
ions is due to the non-linear coupling of the ions through the
self-consistent electrostatic potential (which is influenced by the
NES forces). In the same way it is possible to show that the co-
ion distribution depends sensitively on the NES forces acting on
different co-ions. Large attractive NES forces acting between
counterions and the alumina oxide surfaces lead to strong
counterion adsorption at the surface and a depletion of coun-
terions in the middle of the two surfaces. This leads to an
enhanced co-ion concentration between the surfaces, and as we
will show in the next section it also leads to ion specific double
layer pressures.



Fig. 3. Normalized counterion distributions in different 0.4 M chloride salt
solutions at pH 10 near an Al2O3 surface. The different counterions used were:
Li+ (circles), Na+ (squares), K+ (diamonds), and Cs+ (crosses).
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One can see in Fig. 4 how the ion specific double layers also
influence the surface charge density of two alumina oxide
surfaces (20 Å apart) in 0.4 M NaCl, NaBr and NaI. More
polarizable anions are more attracted towards the alumina sur-
face which by electrostatics leads to an enhanced concentration
of hydronium ions near the surface. In the pH range between 5
and 9 one can see that the surface charge density in different
0.4 M salt solutions becomes more positive as we go from NaCl
to NaBr and finally to NaI. This increase of the surface charge
density below the isoelectric point would suggest that the
pressure should increase in the order NaCl<NaBr<NaI. How-
Fig. 4. Surface charge density of an Al2O3 surface as a function of pH in 3
different 0.4 M salt solutions.
ever, as we will see the net effect from the NES forces on the ion
distribution leads to the opposite sequence for pH<pI.

7. Extended DLVO theory and forces between oxide
surfaces

The ion distributions between two oxide surfaces can be used
to calculate the pressure between two parallel charged mem-
branes. For completeness the expression for the force contri-
bution that originates from the overlapping ion profiles is
derived in Appendix A. The double layer pressure between two
planar plates a distance L apart can be written as,

P ¼ kT
X
i

ci L=2ð Þ−co;i
	 


−2
X
i

Z L=2

xo

ci
dUi

dL
dx−

H
6pL3

; ð19Þ

where k, T, c0,i, ci(L/2), x0=2Å, and Ui are Boltzmann's
constant, temperature, ion density in bulk solution, ion density
at the mid-plane between the two surfaces, ion size (which is the
closest distance the ions can come to the interface), and the ionic
dispersion potential acting between each ion and the two in-
teracting surfaces, respectively. The last term is the direct van
der Waals interaction between the two planar surfaces across
water. The Hamaker constant (H) values for the interaction
between alumina oxide and silica oxide surfaces interacting
across water are approximately 5.35×10−20 J and 0.83×10−20 J
[44]. The changes in this direct van der Waals term which are due
to added salt are included in the two first non-linear terms. It is
important to point out that both first two terms in the general case
require that fully non-linear modified Poisson-Boltzmann equa-
tions, including NES forces, are used to obtain correct results.
Fig. 5. Total double layer pressure (excluding the direct van der Waals
interaction) as a function of pH between two Al2O3 surfaces 20 Å apart in
different 0.4 M salt solutions.



Fig. 6. Total double layer pressure (excluding the direct van der Waals
interaction) as a function of pH between two Al2O3 surfaces 20 Å apart in
different 0.4 M salt solutions.

Fig. 8. Total double layer pressure (excluding the direct van der Waals
interaction) as a function of pH between two SiO2 surfaces 20 Å apart in
different 0.4 M salt solutions.
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The ion specific double layer pressures (using Eq. (19) but
excluding the direct van der Waals pressure) are shown in Figs.
5–8) as a function of pH (near the isoelectric points) in various
salt solutions for either alumina oxide (anions in Fig. 5 and
cations in Fig. 6) or silica oxide surfaces (anions in Fig. 7 and
cations in Fig. 8). The theoretical prediction is that the total
double layer pressure should become more attractive in the
following sequences at pH below the isoelectric point:
NaCl<NaBr<NaI for anions and CsCl<KCl<NaCl<LiCl for
Fig. 7. Total double layer pressure (excluding the direct van der Waals
interaction) as a function of pH between two SiO2 surfaces 20 Å apart in
different 0.4 M salt solutions.
cations. Above the isoelectric point the salt ions follow the
opposite sequences. These findings are in excellent agreement
with the observations made on solubility of various protein
solutions [24–27,61,62] where anions follow so-called reversed
Hofmeister sequence below the isoelectric point and a direct
Hofmeister sequence above the iep.

We show in Fig. 9 the total ion specific double layer pressure
at pH 8 between two SiO2 surfaces as a function of surface
separation in 0.4 M LiCl, NaCl, KCl, and CsCl. The result
shows that the interaction becomes more attractive in the
Fig. 9. Total double layer pressure (Eq. (19)) between two SiO2 surfaces (pH 8)
as a function of surface separation in different 0.4 M salt solutions.



Fig. 11. The different contributions to the total double layer pressure (Eq. (19))
between two Al2O3 surfaces (pH 6) as a function of surface separation in a 0.4 M
NaCl solution. The different contributions that we show here are the first non-
linear term in Eq. (19) (circles), the second non-linear term in Eq. (19) (squares),
the sum of the two non-linear terms in Eq. (19) (diamonds), and the total double
layer pressure (crosses).
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sequence LiCl<NaCl<KCl<CsCl in general agreement with
the yield stresses presented in Fig. 6 of [14] (and schematically
in our Fig. 1). More polarizable counterions bind more tightly to
the surfaces leading to a smaller total concentration of ions in
the middle of the two plates. This leads to a larger attraction
between the two plates with increasing attractive NES forces
acting between counterions and the oxide surface. Our results
are also consistent with the zeta potential measurements per-
formed by Franks which become more positive with increasing
anion polarizability (Fig. 4) [14]. At low pH, the Hofmeister
cation sequence observed in yield stress experiments on silica
suspensions is reversed. While the results presented in Figs. 5–
8 show that co-ion effects are quite small, our results do give the
right Hofmeister sequence also when the cations are co-ions to
the silica oxide surface. Here co-ion adsorption enhances the
concentration to such extent that the total number of ions in
between the surfaces increases leading to a reduced attraction
with increasing attractive NES forces acting on the co-ions. This
is a direct consequence of the non-linear coupling between elec-
trostatic and electrodynamic (NES) forces.

The same experimental trends with increasing NES forces
acting on the counterions are observed in yield stress exper-
iments on alumina suspensions below the isoelectric point [16].
We show in Fig. 10 that the total double layer pressures between
two alumina oxide surfaces at pH 6 in 0.4 M NaCl, NaBr, and
NaI do give the right Hofmeister sequence compared with
experiments. The interaction becomes more attractive as the
polarizability of the counterions (and the corresponding NES
forces) increases. We have separated the double layer pressure
between the same two alumina oxide surfaces (pH 6) across a
0.4 M NaCl solution into its different contributions in Fig. 11.
One must, in general, treat both non-linear terms in the ion
specific double layer pressure in a non-linear theory to obtain
correct results. The attractive NES forces acting on the coun-
terions again lead to more attraction between the two surfaces
Fig. 10. Total double layer pressure (Eq. (19)) between two Al2O3 surfaces (pH
6) as a function of surface separation in different 0.4 M salt solutions.
and to reduced surface potentials (which we note also explain
the experimentally observed zeta potentials in alumina suspen-
sions [16]).

8. Summary

We clearly see that inclusion of NES forces provides insights
into ion specific Hofmeister effects also in oxide suspensions. In
this connection it is interesting to note that condensation of
silicate anions in a structural template to form mesoporous silica
depends on the background salt solution and on pH [63]. In the
acidic synthesis (low pH) the induction time for the precipitation
decreases in the order Cl−>Br−>NO3

−. In alkaline synthesis
(high pH) the order is roughly the opposite: ClO3

−>NO3
−>

Br−>Cl−>F−. It is plausible that reconstruction of soft oxide
surfaces depends on the choice of background salt solution.

Considering that force measurements and other experiments
on different oxide surfaces often give different results under
different conditions, we would be very much surprised if the
present theoretical results would be able to explain every dif-
ferent rheological experiments. We have, for instance, not taken
into account of the gel-like layer that under certain conditions
can be formed on the oxide surface. Especially at high pH,
hydroxyl groups in solution can enhance the reaction between
water with, e.g., silica-oxygen bonds and these reactions depend
on the choice of background salt. The bonds may be broken and
form silicic acid chains leading to surface gelation that depends,
in an intricate way, on the manner of preparation and history [31].
Ions that enter this soft surface region will not only experience
simple ionic dispersion potentials as in our approximate formula
but one needs in the calculation of the effective NES forces
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which also act on ions to take into account changes in ion self-
energies [21,22,51,64]. The surface region itself will, further-
more, be differently influenced by different background salt
solutions. At the high particle volume fractions used in the
experiments there will also be an influence of ion specific pH
regulation due to the large concentration of surface reactive groups
in solution. Ion specific effects on solution pH (M. Boström et al.,
J. Phys. Chem. B, submitted for publication) and intermolecular
forces (M. Boström et al., Biophys. Chem., submitted for pub-
lication) have recently been explored in protein solutions by
Boström et al. using a Poisson-Boltzmann cell model. We have
found that the pH in protein and buffer solutions depends, in an
intricate way, on the choice of background salt (and on the NES
forces that act between each ion and protein or buffer present).
It is also important to recognize that there, in general, will be
both bulk effects (e.g. due to changes in bulk pH due to ion–
buffer interactions, as we recently considered, and ion–water
interactions [23]) and surface effects discussed here (due to
ion–surface interactions).

One example where our simple estimates need to be refined
is for the cation effects observed with alumina oxide sus-
pensions at pH's above the iep [15]. Here the experiments as
described in our schematic Fig. 1 suggest that the attraction
between alumina oxide particles increases in the order Cs+<
K+<Na+<Li+. It is clear from Fig. 6 that the theory at the
present level of approximation predicts the opposite sequence.
So there are still many interesting challenges ahead of us before
we fully understand the ion specificity of oxide suspensions.
What seems clear is that there, in general, is an important role
for NES forces (such as ionic dispersion potentials and ionic
solvation energy changes).
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Appendix A. Ion specific double layer pressure

We will for completeness in this appendix derive the ex-
pression for the ion specific double layer pressure following
closely Burak and Andelman [65] and Edwards and Williams
[66]. The free energy of the system is comprised of two parts,
the modified Poisson-Boltzmann energy (FPB) and the ionic
dispersion energy between ions and the two interfaces (Fdisp).
Edwards and Williams [66] made the incorrect assumption that
one can use a linearized version of Poisson-Boltzmann equation
and that the second term should be accounted for in the direct
van der Waals interaction (rather than being treated separately in
a non-linear theory). This is an unfortunate misunderstanding
since correct results clearly require that the fully non-linear
theory to be used to obtain the correct ion profiles which is
needed for both non-linear energy terms. The essential point is
that the electrodynamic ionic dispersion potentials should be
treated on the same non-linear level as electrostatic potential.
The modified Poisson-Boltzmann free energy includes both the
following terms,

FPB ¼ e0e2ð0Þ
2

Z L−a

a

d/
dx

� �2

dxþ kT
Z L−a

a

X
i

ci xð Þ ln
ciðxÞ
ci;0

−1
� �

dx: ðA1Þ

Fdisp ¼
Z L−a

a

X
i

ciðxÞUiðxÞdx: ðA2Þ

Burak and Andelman [65] introduced the trick that one can
imagine that the separation between the two plates is increased
from a distance L to L+δL by inserting a thin slice in the
midplane between the plates. The change in free energy (Eq.
(A4) of [65] with zero electric field in the midplane) is then,

yFPB ¼ yFPB;1 þ yFPB;2 ðA3Þ

yFPB;1 ¼ yx
X
i

zie/ L=2ð Þci L=2ð Þ þ kTci L=2ð Þ ln
ciðL=2Þ
ci;0

−1
� �� �" #

; ðA4Þ

yFPB;2 ¼
Z L−a

a
dx

X
i

yci zie/ xð Þ þ kBT ln
ciðxÞ
ci;0

� �
; ðA5Þ

yFdisp ¼ yx
X
i

ci L=2ð ÞUi L=2ð Þ þ
Z L−a

a
dx

X
i

yciUi xð Þ

þ 2yx
Z L=2
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dx
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ci
dUiðxÞ
dL

:

ðA6Þ

These expressions can be simplified using the Boltzmann equa-
tion in the forms [66],

kBT ln tciðxÞ=ci;0b ¼ −zie/ðxÞ−UiðxÞ ðA7Þ

yFPB;1 ¼ yx
X
i

fciðL=2Þ½−UiðL=2Þ�−kTciðL=2Þg
" #

; ðA4′Þ

yFPB;2 ¼
Z L−a

a
dx

X
i

yci½−UiðxÞ�: ðA5′Þ

The total double layer pressure due to the non-linear ion
profile can then be written as

P ¼ −y Fdisp þ FPB

 �
=yx

¼
X
i

kTci L=2ð Þ−
Z L=2

a
dx

X
i

2ci
dUiðxÞ
dL

: ðA8Þ

To obtain the net pressure on the plates given as Eq. (19) one
should finally subtract the pressure on the outside of the plates
which is

P
i kTci;0. The first term in Eq. (A7) looks identical to

the classical textbook expression [67] in which the osmotic
pressure between two equal plates is given by the ion density in
the midplane. What is new is that there are now two terms and
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both depend in a very ion specific way on the non-linear ion
profiles. One should note that this derivation did not include the
specific nature of the non-electrostatic (or electrostatic) forces
that contribute to Ui(x). This means that one can, for example,
directly extend the present calculation to include image poten-
tials by simply adding a term with the derivative of the image
potential [47] acting on the ions between two planes and, of
course, then also add the image potential in the modified non-
linear Poisson-Boltzmann equation.

We will finally in this appendix derive contributions to the
second pressure term from both ionic dispersion potentials and
image potentials acting on ions in solution. We approximate the
ionic dispersion potential acting on an ion between two plates with,

Udispersion xð Þ ¼ B
x3

þ B

ðL−xÞ3 ; ðA9Þ

this means that the derivative in Eq. (A8) gives,

dUdispersionðxÞ
dL

¼ −3B
ðL−xÞ4 : ðA10Þ

The image potentials [47] acting on an ion in solution
between the two plates can be written as,

Uimage xð Þ ¼ e2ðSi þ S2Þ
16pe0e2ð0Þ ; ðA11Þ

S1 ¼ −2ln½1−D12expð−2jLÞ�=L; ðA12Þ

S2 ¼ D−1
12

Xl
p¼1

e−2j½Lðp−1Þþx�

Lðp−1Þ þ x
þ e−2j½Lp−x�

Lp−x

� �
; ðA13Þ

where κ is the inverse Debye-length. This means that the
contribution to the non-linear pressure from image potentials is
only slightly more complicated than the part from ionic
dispersion potentials. The derivatives of S1 and S2 are,

dS1
dL

¼ 2D12je−2jL

ð1−D12je−2jLÞL−ln 1−D12exp −2jLð Þ½ �=L2 ðA14Þ

dS2
dL

¼
Xl
p¼1

e−2j½Lðp−1Þþx�ðp−1Þf1þ 2j½Lðp−1Þ þ x�g
½Lðp−1Þ þ x�2D12

þ
" #

þ
Xl
p¼1

e−2j½Lp−x�f1−2jLp2 þ p½2jðL−xÞ−1�g
½Lðp−1Þ þ x�2D12

" #

ðA15Þ
It is important to be consistent, i.e. a calculation that includes

image potential in the Poisson-Boltzmann equation should also
include contributions to the pressure from

dUimageðxÞ
dL

¼ e2ðdS1=dLþ dS2=dLÞ
16pe0e2ð0Þ : ðA16Þ
In general the second term in Eq. (A8) should include one
contribution from each additional potential that one takes into
account in the extended Poisson-Boltzmann equation. In Section
7 we take into account the ionic dispersion potential that acts
between each ion in solution and the two oxide surfaces.
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