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SUMMARY

This thesis examines firm innovation in China from firm-level human capital per-

spective since resource-based theory and upper echelon theory reveal that the reason

why firms vary in performance is that they differ in human capital. Two types of

human capital are examined: general human capital measured by number of highly

educated workers, and managerial human capital measured by characteristics (edu-

cation and age) of general manager and management team. Besides human capital

indicators, we also take R&D, firm size, market structure, firm age, ownership, city

fixed effects, and industry fixed effects into account. Given the fact that innovations

are made up of multifarious elements and hard to measure and define, this thesis

examines firm innovation from three different aspects, patent applications, product

innovation and total factor productivity.

The datasets from two comparable firm-level surveys conducted by the World

Bank including data from 1998-2000 and from 2000-2002 respectively. Firms in the

first dataset (year 1998-2000) are from large cities such as Beijing, while firms in the

second dataset (year 2000-2002) are from provincial middle cities. Notably, these two

datasets are comparable but at the same time are from different market environment.

This enables us to test model consistency and at the same time examine how different

market environment influences firm innovation. The most important results of patent

application regression are that general human capital, or skilled human capital, plays

an important role in innovation in more developed areas, i.e., large cities, while it

has a much smaller or no effect on innovation in less developed areas, i.e., provincial

middle cities; R&D has a very significant and positive effect on innovation in less

x



developed areas while it has a smaller or no effects on innovation in more developed

areas. Interestingly, we get the same results when we use total factor productivity

to study technological change. A possible explanation is that there’s enough R&D

in more developed areas while it is not enough in less developed areas. Thus, the

bottleneck in more developed area is human capital while in less developed area

it is R&D. A policy implication is that to make innovation process more efficient,

policies in more developed areas should focus more on promoting human capital aspect

rather than R&D and meanwhile policies in less developed areas should focus more

on promoting R&D spending. Moreover, we find that the education of managerial

personnel (including both general manager and management team) has a positive

effect while their age has a negative effect on firm innovation.

In particular, we find that R&D has a very significant and positive effect on prod-

uct innovation, or new product introduction. This is consistent with three product

innovation measures and across two datasets. Moreover, we find that the marginal

effect of R&D is much larger in more developed area than in less developed area

when we use value based innovation measure. However, when we use count measure

of product innovation, we find that the marginal effect of R&D on product innovation

is larger in less developed area than in more developed area. A possible explanation

is that the unit value of new products introduced is larger in more developed area

than in less developed area. At the same time, we find that the effect of management

team’s education differs in two datasets. The relationship between number of new

products introduced and average years of schooling of management team is concave

in more developed area while it is monotonically increasing in less developed area.

The implication is that in more developed areas, firms with higher human capital

might focus more on the quality of product innovation rather than the quantity.

xi



CHAPTER I

INTRODUCTION

Manufacturing plays an important role in China’s rapid economic growth. As a pil-

lar industry and driver of Chinese economic growth, manufacturing has contributed

more than 40 percent of China’s gross domestic product (GDP) in terms of industrial

scale and structure. According to data from National Bureau of Statistics of China

(NBSC), during the last 30-odd years since reform and opening began, manufactur-

ing in China has grown much faster than the overall economy. The average growth

of manufacturing output was about 20 percent per annum between 2005 and 2013

compared to around 10 percent of the overall growth rate. In 2012, China’s manu-

facturing added value reached US $ 2,080 billion, or about 20 percent of the global

total, making China a manufacturing giant. However, now China faces competition

in manufacturing not only from developing countries such as Vietnam, but also de-

veloped countries. After the 2008 global financial crisis, western countries around the

world focused once again on manufacturing and launched manufacturing development

strategies. For example, US launched a national strategic plan for advanced manu-

facturing in 2012. Given the importance of manufacturing in its overall economy and

intense competition faced by China, innovation becomes vital for manufacturing in

China.

Clearly, the importance of innovation has been widely recognized in China as we

can see that R&D spending expands largely. According to OECD, China was the

second largest R&D spender in 2012, allocating around 294 billion dollars compared

to top-spending the US at around 454 billion dollars that year. In fact, China is

forecast to overtake the European Union and the United States in R&D by 2019
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(See Figure 1). Does this mean that China has finished the transition from “Made

in China” to “Innovated in China”? Probably not. Despite success in some areas,

notably high-speed rail, solar energy, supercomputing and space explorations, China

is still far from an innovative country. For example, there was no Chinese company

listed on 100 most innovative companies by Thomson Reuters in 2013. There was

only one Chinese company, Huawei, entering the list in 2014 while around 40 percent

listed firms were from the US.1 It seems that there’s an asymmetry between innovation

input and output in China. All these facts motivate us to examine firm innovation

in China.

Figure 1: China forecast to outpace the US in R&D spending around 2019. (Source:
OECD Science, Technology and Industry Outlook 2014)

1For example, I.B.M., Apple, Microsoft, Boeing, Exxon mobile and Intel.
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Innovation is significantly influenced by several external factors resulting in spe-

cific innovation systems. An innovation system includes not only networks of in-

novative companies with research organizations, suppliers and customers, but also

several institutional factors, such as the way publicly financed research is organized,

or the region’s system of schooling, training and financial institutions. Production

of economically useful new technological knowledge results from collective actions of

different actors of the system connected by various linkages ranging from informal to

formalized network relationships (Acs et al., 2002). Although the sector in which a

firm operates is an important element of the context within which decisions about

the commitment of resources to R&D and innovation is made, it is the firm which

makes the investment decision and the firm which enjoys the rewards of innovation.

According to resource-based theory and upper-echelon theory, firm-level human capi-

tal, especially managerial human capital, is very important to firm behavior and thus

firm innovation. This is the motivation underlying this thesis.

To understand the exact role of innovation in the economy and innovation itself,

the measurement of innovation is critical. However, the unanimity with which its

importance is recognized is not matched by adequate development in methods for

its measurement. This is due to the fact that the innovative process is difficult to

define and measure. Moreover, innovations are made up of multifarious elements,

for example, process innovation and product innovation.2 Generally, there are three

ways of measurement: (1) a measure of the inputs into the innovation process, such

as R&D expenditure; (2) an intermediate output, such as the number of inventions

which have been patented; (3) a direct measure of innovative output. Early innovation

studies in 1950s and 1960s, such as Scherer (1982,1984a,1986), mainly relied on R&D

2Schumpter (1934) distinguishes five types of innovation: the introduction of a new or a new
quality of a good; the introduction of a new method of production; The opening of a new market;
the conquest of a new source of supply of raw materials or half-manufactured goods; the carrying out
of a new organization of any industry. This thesis will only deal with the technological innovations,
i.e., product innovation and process innovation (those classified by Schumpeter in points 1 and 2).
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as proxy for innovation. R&D suffer from measuring only the budgeted resources

allocated towards trying to produce innovative activity (Acs et al., 2002) and thus

cannot represent the whole of innovative activity. It often fails to take into account

the innovative activity of small and medium-sized firms. Because of data availability,

advances in innovation studies in 1970s made in the use of patent data, an intermedi-

ate measure of economic activity, as a proxy for economic output. Although patents

are good indicators of new technology creation, they do not measure the economic

value of these technology (Hall et al., 2001; Acs et al., 2002). Also, as Pakes and

Griliches (1980) pointed out that patents are a flawed measure (of innovative output)

particularly since not all new innovations are patented and since patents differ greatly

in their economic impact. Also, there is a different propensity to patent between firms

and sectors. Compared to proxies of innovation activities such as R&D expenditures

or patents, innovation output measures provide a direct indicator of innovation. The

advantage of the direct indicators over patents and R&D expenditures is that they

document the ultimate end of every innovation process.

When we choose to use innovation output to measure innovation, we still encounter

some alternatives: innovation counts, innovation sales, innovation sales share. Inno-

vation counts measure is better than patents in the sense that it includes not only

patented innovation but also non-patented innovation. However, like patents, inno-

vation counts measure assumes that all innovations have the same technological and

economic relevance, a simplification that obviously does not correspond to reality.

In fact, every single innovation has, in fact, a different technological, economic, and

commercial value. Furthermore, it frequently happens that the technological and eco-

nomic values of an innovation fail to coincide. Compared to it, innovation sales are

in monetary units and this eliminates the problem of the different commercial value

of individual innovations, and the technology flows are, in fact, measured directly in

money terms. However, innovation sales also has its limitation. For example, it is
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influenced by price and market condition. Given the advantage and disadvantage of

different measures, we will use all the measures in our study to get a deeper under-

standing. In addition, the concept of total factor productivity (TFP) change is used

synonymously with technological change in the productivity literature (Nishimizu and

Page, 1982). By definition, TFP is the proportion of output not explained by the

amount of inputs used in production.

The second chapter reviews innovation history during the last decades and related

literature. The factors important to innovation in China are policy support, rapid

economic growth, FDI, R&D inputs and human capital growth. The third chapter

explores firm-level innovation from a human capital point of view using patents as

proxy for innovation. In the theoretical model, two firms compete with each other in

a three-stage Cournot, innovation stage and production stage. Skilled human capital

level can affect innovation success probability directly and via R&D level indirectly.

Managerial human capital can affect firm innovation through their choice of projects

and R&D level. We find that a firm’s innovation is not only determined by its human

capital level, firm characteristics, and its market share, but also might be affected

by market environment. In the empirical study, we use two firm-level datasets from

China, one from metropolitan cities and one from provincial middle cites. Human

capital indicators are skilled human capital (number of highly educated workers),

general manager’s education and experience, and management team’s education and

age. We find that a firm’s skilled human capital and managerial personnel’s education

have significantly positive effects on innovation while the management team’s age

has a significantly negative effect on innovation. The effect of R&D on patents is

insignificant in large metropolitan cities while it is positive and significant in provincial

middle cities.

In the fourth chapter, we study the relationship between firm-level human capital

and product innovation. Three measures are used: new product sales proportion,
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new product sales, and number of new products. We find that for skilled human

capital, we find that it also tends to have a positive effect across the three measures,

though it is not significant in regression using new product proportion as product

innovation measure. When new product sales proportion and new product sales are

used as product innovation measures, we find that management team’s average years

of schooling has a positive effect in determining product innovation, however, its

effect in Data 2000 when new product count used as product innovation measure

is negative and significant. This indicates that though the results from the three

regressions are generally consistent, but they still differ. When compare the results

using different innovation measures, we should be very cautious. Another thing is

that different from results in last chapter where R&D has a positive effect only in

Data 2003, less developed areas, we find that R&D has a very significant and positive

effect on product innovation no matter which product innovation measure is used.

This indicates that R&D is still important in promoting product innovation and

policies supporting investment in R&D is still important. Our results still hold when

endogeneity is considered. Notably, in all three models, we all find that general

manager’s postgraduate degree has a large and significant effect in less developed

areas but insignificant at all in more developed areas. The reason might be that in

less developed areas, market development is much more incomplete and thus general

manger’s education matters more. A higher education can enable a general manager

to make more insightful decision.

In the fifth chapter, the relationship between firm-level human capital, R&D and

total factor productivity (TFP) is examined. Firstly, production function is estimated

using methods proposed by Levinsohn and Petrin (2003, LP, thereafter) and Acker-

berg, Caves and Frazer (2006, ACF) since inputs are very likely to be correlated with

productivity. We then use TFP from ACF method to examine the determinants of

TFP. We find that skilled human capital is important in determining TFP even when

6



it is already included in production function. Management team’s age has a negative

effect on TFP. Management team’s average schooling has a positive and significant

effect in less developed areas, but we fail to find a significant effect in more devel-

oped areas. Notably, R&D has a positive and significant effect across both datasets.

When the endogeneity of number of highly educated workers, and general manager’s

postgraduate degree is considered, our main results still hold.

This dissertation makes four main contributions: (1) it provides both theory and

theoretical framework for studying firm innovation in a human capital view, not only

skilled human capital but also managerial human capital and R&D human capital.

Growth theory only provides a theoretical framework to incorporate skilled human

capital into innovation. Though there are some empirical studies on firm innovation

human capital, those studies are either on the relationship between firm innovation

and managerial human capital or on the relationship between firm innovation and

skilled human capital and none of them take care of skilled human capital and man-

agerial human capital at the same time. (2) Using detailed firm-level data, we are

able to study the effects of skilled human capital, general manager’s education and

experience, and management team’s education and age. (3) Two datasets from two

different levels of cities, metropolitan cities and provincial middle cities enable us to

examine the effect of market environment on firm innovation. (4) Several technolog-

ical change measures are used at the same time and thus we can get a much better

understanding of firm innovation in China.

The thesis is organized as follows. Chapter 2 presents the history of innovation in

China and innovation literature. Chapter 3 examines the relationship between firm-

level human capital and innovation using patents as proxy for innovation. Chapter

4 studies the relationship between firm-level human capital and product innovation.

Chapter 5 examines the relationship between firm-level human capital, R&D and

TFP. Chater 6 concludes.
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CHAPTER II

BACKGROUND AND RELATED LITERATURE

2.1 Innovation in China

Previous studies have shown that government policy, increasing financial and human

capital investment in innovation and infrastructures are crucial determinants of na-

tional innovative capacity (Furman et al., 2002; Furman and Hayes, 2004). Liu and

Buck (2007) further emphasized that learning and imitation strategies are particularly

important for developed countries to catch up rapidly and enhance its own innovative

capacity.

Firm innovation roots in the development of science and technology in a society.

Meanwhile, government policy and social environment play an important role in pro-

moting the development of science and technology in a society. Thus, to trace back the

history of firm innovation in China, besides R&D activities conducted by government

and firms, we will also focus on government policy and social environment.

Traditionally, it is literature and the arts rather than science and technology that

is regarded as important or as carrying social status. But this began to change

when a rapidly modernizing West came knocking on the Qing Dynasty’s door in the

late 1700s. At the same time, long-lasting wars in China from that time until around

1949-1950 began. During wars, the development of science and technology and indus-

trialization is very slow. From 1949 to 1957, China practiced central planning under

the direction of the State Planning Commission (SPC). The main function of plan-

ning was to set production goals, controlled prices, and allocated resources throughout

most of the economy by state-owned enterprises. As a result, by 1978 nearly three-

fourths of industrial production was produced by centrally controlled, state-owned
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enterprise, according to centrally planned output targets (Morrison, 2014). Private

enterprises and foreign-invested firms were generally barred but China had a close

economic cooperation with Soviet Union. While the Soviets provided a massive tech-

nology transfer, China took charge of all science and research facilities and focused

them on mammoth projects to create an industrialized economy as fast as possible.

Its science establishment was decimated by political campaign and the Cultural Rev-

olution, which lasted from 1966 to 1976. Thus, until 1976, there’s very little progress

in firm innovation.

Beginning in 1978 the Chinese government changed the economic system gradually

towards a market economy, allowing non-state enterprises to produce and compete

with state enterprises. When Xiaoping Deng launched reform and opening in 1978,

he focused immediately on science and technology as key to China’s modernization.

Still, at that time, China’s economy featured a “up-to-down” type. That is, at na-

tional level, central government set objectives and allocate resources to basic science

and key areas. For example, in 1978 the State Science Commission summoned some

20,000 experts to draft a new blueprint for science to serve as a drive for restarting

China’s economy. The plan focused on 27 sectors of research and 108 key research

projects. Eight large projects were planned in the fields of agriculture, energy, ma-

terials, electronic computers, lasers, space science, high-energy physics and genetic

engineering. Especially, to promote the development of science and technology, in

1983 a leading group for science and technology was created, which is under the di-

rect guidance of the premier. Throughout the 1980s and early 1990s, science and

technology system reforms and new programs went into fast-forward. In the late

1990s, Chinese scientists and the government together began to push for a “national

innovation system”, they began to strengthen their research institutes, investing in

people and infrastructure with the goal of creating 30 globally recognized research
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centers. In 2005, CPC elevated indigenous innovation to a strategic level. The land-

mark document ”The National Medium-and Long-Term Plan for the Development of

Science and Technology (2006-2020)”(MLP) is launched in 2006, served as the grand

blueprint of science and technology development. Throughout the policy changes in

the recent decades, we can see that Chinese government almost always put science

and technology as its one of its primary objectives. Policy support provides the first

condition for the development of innovation in China.

Economic growth provide the source and market for innovation. On the one hand,

as economy prosper, firms are more easily to gain profits and thus they can put more

in R&D. On the other hand, with fast economic growth, market demand will also

increase. Both effects can promote firm innovation. Figure 2 presents the aggregate

growth from 1979-2013. For the last decades, the average economic growth rate of

China is around 10%. However, there are also two low economic growth period. In

late 1980s, the growth rate began to decrease and this might reflect the impacts of

China’s austerity economic policies in the late 1980s. The low growth rate around

1999 might reflect the 1997 Asian financial crisis (Zheng and Tong, 2014).

Like any other developed country, learning and imitation strategies are particu-

larly important(Kim and Nelson, 2000; Hu et al., 2005). Thus, international tech-

nology spillover channels, FDI and international trade, are very important drivers

of innovation in developed countries. There are several channels through which in-

ternational technology can promote local innovation. Firstly, local firms can learn

about the designs of new products and technology through interaction with foreign

firms. Secondly, technology spillovers from foreign firms to local firms can be realized

through human capital mobility or labor market turnover. Thirdly, foreign firm’s

R&D activities in China can stimulate local firm’s innovation (Liu and Buck, 2007).

Fourthly, the import of technology also acts as a channel through which domestic
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Figure 2: Chinese Real GDP Growth: 1979-2013 (percent) (Source: Morrison (2014))

local firms may ”reverse engineer” the products of their foreign rivals (Coe and Help-

man, 1995). Finally, exports can also promote domestic firm’s innovation through

learning by exporting (Salomon and Shaver, 2005). Figure 3 shows that from the end

of 1980s, FDI began to increase very fast, from around 4 billion dollars in 1991 to

124 billion dollars in 2013.

We can see that, ”indigenous innovation” policies do not advocate closed-door

innovation or technological autarchy. Global technology sourcing and the integration

of acquired technologies into new technological solutions are explicitly mentioned

in the MLP as types of indigenous innovation. At the same time, the plan also

sets as target the increase in domestic R&D expenditures relative to expenditure on

technology import. Figure 4 shows that China’s R&D expenditure and import. We

can see that for more than ten years, china’s technology import always stay in a

high level and domestic R&D even grow much faster. In 1997, R&D is less than half

of technology import expenditure., but in 2010, R&D is almost triple of technology
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Figure 3: Annual FDI Flows to China: 1985-2013 ($ billions) (Source: Morrison
(2014)). Data are from the United Nations.

import expenditure. Besides large R&D expenditure spending, China’s human capital

also increases a lot and this provides a base for innovation. Figure 5 shows the growth

of human capital from 1985 to 2007. Human capital index in 1985 is around 100, then

it grew gradually until the beginning of 1990s to around 150. From the middle of

1990s, human capital growth becomes faster and in 2007, it is around 450.

To sum up, we can see that there are several reasons account for the develop-

ment of innovation in China: government policy support, fast economic growth, FDI,

Technology Import, R&D spending growth and human capital growth.

Last but not the least, intellectual property protection is also important to a

country’s innovation. Kanwar and Evenson (2003) found evidence that intellectual

property rights can serve as incentives for spur innovation using cross-country panel

data. The first patent law in China was passed in 1984. China’s patent office grants

three types of patents: invention, utility model and design patents. An invention

patent is a new or improved technical solution for a product or process. A utility
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Figure 4: Expenditure on Domestic R&D and Technology Import. (Source: Ernst
and Naughton (2012)

Figure 5: The index of total human capital, 1985-2007. (Source: Li et al. (2009)
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Figure 6: Chinese patent applications, 1986-2007. (Source: Hu and Jefferson (2009)

model is a new technical solution for the shape and/or structure of a product fit

for practical use. A design patent is considered more narrow than the other classes

and covered a new design of the shape, pattern, or the combination. Applications

for invention need to pass a substantive examination for utility, novelty and non-

obviousness before granted. The utility model and design patents generally cover

more incremental innovations and are only subject to examination for utility. Figure

6 shows patent applications in China during 1986-2007. We can see that from 1986

to 1999, patents grow gradually, but from 2000 patent application began to surge.

Moreover though at the end of 1990s there were more foreign inventions, but from

2004 domestic invention began to surpass foreign invention.

2.2 Previous Studies in Innovation

The studies on innovation began to be a long-lasting hot topic since Schumpeter

(1942). He asserted that large firms operating in concentrated industries consti-

tute the engine of technological progress. Moreover, he argued that monopoly and
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oligopoly firms are more able of conducting meaningful R&D because they can use

funds earned from profits to finance R&D. In particular, Schumpeter argued that

oligopolistic market structures, with their perceived intensity of product and factor

cost competition, will achieve more innovation and thus make a greater contribution

to social welfare than the severe price competition exhibited by perfectly competi-

tive market structures.Two hypotheses are formulated as two hypotheses (Symeonidis

1996). The first hypothesis postulates a positive relationship between the incentive

to innovate and market share or power. Large market share implies greater certainty

that a new product will also achieve higher market share and generate profits. Higher

profit margins, due to market power, also provide finance for R&D, which is impor-

tant since capital markets may be reluctant to fund innovative projects. The second

hypothesis states that large firm size and innovation are correlated. He believed that

a large firm in a concentrated market can innovate more. Since then, a lot of studies

began to test Schumpeterian hypotheses. Scherer (1965a, 1965b) used a sample of

448 firms from the 500 largest US industrial firms in 1955 and he found evidence of an

inverted-U relationship between R&D employment intensity and sales for the pooled

sample and for most sub-samples (the chemical sector was an exception, the rela-

tionship being clearly positive). He also found that the number of patents increased

less than proportionately with sales, except for a few very large firms. These results

were interpreted by Scherer as a clear refutation of the Schumpeterian hypothesis of

a positive effect of firm size on innovation. Acs and Audretsch (1988) use direct mea-

sure of innovation, find that the total number of innovations is negatively related to

concentration and unionization, and positively related to R&D, skilled labor, and the

degree to which large firms comprise the industry; these determinants have disparate

effects on large and small firms.

Schumpeter, particularly in his early work, also emphasized the important role

that committed entrepreneurs capable of overcoming an inert or resisting environment
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may play in innovation and, largely for this reason, Schumpeter is also acknowledged

as an important source of inspiration in the entrepreneurship literature (Landstrom

et al., 2012). Nelson and Winter (1982) proposed a theory of firm-level knowledge and

believed that the strategies that firms pursue with respect to innovation is important

and the outcomes of their actions are shaped by these strategies. Cohen and Levinthal

(1990) also focus on the importance of firm-level knowledge, in particular so-called

absorptive capacity, which they see as critical for the ability to identify and exploit

external sources of knowledge in innovation. These studies provide theoretical base

for our study.

Another important factors related to innovation is human capital. Human capital

of firm is defined as the knowledge and skills of its professionals that can be used

to produce professional services. In Romer model, skilled workers or human capi-

tal is explicitly included in the innovation model. A constant problem for human

capital study is how to measure it. Pennings et al.(1998) use firm tenure, indus-

try experience, and graduate education to capture firm-level human capital to study

technology adoption. Ballot et al.(2001) constructs measures of a firm’s human cap-

ital stock based on firms’ past and present training expenditures to study its effect

on productivity. Instead of making any comparison among different measures, we

believe that a good measure should meet its own research objective. In our paper,

our objective is to study how different types of human capital affect firm’s technology

decision, to innovate or to imitate. Aghion et al.(2009) suggest that firms with more

workers with ”high brow” education tend to innovate and firms with more workers

with ”low brow” education tend to imitate.

Numerous studies in management have sought to identify factors that can stim-

ulate firm innovation. Calantone et al. (2002) examined the relationship among
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learning orientation and firm innovativeness. They believed that learning orienta-

tion was composed of four factors: commitment to learning, shared vision, open-

mindedness, and intraorganizational knowledge sharing. Their empirical results sup-

ported that learning orientation is critical for innovation using data collected from

large US firms. Jung et al. (2008) examined how transformational leadership by

top managers (CEOs) affect their companies’ innovativeness. Using data collected

through multiple sources on 50 Taiwanese electronics and telecommunications com-

panies, their results confirmed a direct and positive effect of CEO transformational

leadership on organizational innovation. Moreover, their results revealed moderating

effects by the uncertainty and competition of market environment.

17



CHAPTER III

FIRM-LEVEL HUMAN CAPITAL AND PATENTS

3.1 Introduction

Why do firms differ in innovation? Economists have long sought answers to this

question because characteristics of innovative firms can have significant implications,

not only for firm success but also the economic growth of a country. Along this

avenue, literature on testing Schumpeterian hypotheses (Schumpeter, 1942), which

argue that large firm operating in a concentrated market is the main engine of tech-

nological progress, has offered numerous insights as to how firm size and market

structure affect firm innovation. Although it provides an effective framework for ex-

ploring the issue, the large body of work also leaves many questions unanswered. Most

notably, the literature, which is almost exclusively on firm size, industry character-

istics, market structure, and/or part of human capital information, seldom touches

the characteristics of firms besides size and strategic choice. Moreover, leaving strate-

gic choices outside the framework results in ignoring the interaction between a firm

and its market environment. In this article, we attempt to fill those gaps first the-

oretically and then by exploiting the detailed and comprehensive firm-level data in

Chinese manufacturing industry.

Traditionally, the most important explanatory factor of innovation is R&D spend-

ing because it is believed that R&D is the input in producing innovation.1 However,

in essence, those studies are deficient. First, they simply regard R&D as the most

important input of innovation without going deeper into the details of R&D and

1This idea is expressed through the knowledge production function by Griliches (1979) and has
been followed by many studies (Pakes and Griliches, 1984; Hall, Griliches and Hausman, 1986; Hall
and Ziedonis, 2001).
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the mechanisms of R&D in affecting innovation. Thus, they fail to take other firm

resources, mainly a firm’s skilled human capital, into consideration. Second, they

ignore the non-R&D innovation, which is usually important to firm innovation.

In addition, innovation includes not only R&D innovation but also non-R&D

innovation. Generally, there are three types of creative activities that do not require

R&D. First, Kim and Nelson (2000) found that many imitative activities, including

reverse engineering, do not require R&D, and the imitation is mainly dependent on the

firm’s technical personnel and engineers. Second, firms can make minor modifications

or incremental changes to products and processes, relying on engineering human

capital. Moreover, Hansen and Serin (1997) noted that the innovation process in

low-and medium-technology sectors is more related to adaptation and learning by

doing, based on design and process optimization, rather than from R&D. Third,

firms can combine existing knowledge in new ways, for example in industrial design

and engineering projects (Grimpe and Sofka, 2009). Due to the large share of firms

that innovate without performing R&D, we can conclude that studies that only focus

on R&D should not be enough to fully explain innovation differences across firms.2

This paper explores firm-level innovation from a human capital point of view. In

the theoretical model, two firms compete with each other in a three-stage Cournot,

innovation stage and production stage. Skilled human capital level can affect inno-

vation success probability directly and via R&D level indirectly. Managerial human

capital can affect firm innovation through their choice of projects and R&D level. We

find that a firm’s innovation is not only determined by its human capital level, firm

characteristics, and its market share, but also might be affected by market environ-

ment. In the empirical study, we use two firm-level datasets from China, one from

metropolitan cities and one from provincial middle cites. Human capital indicators

are skilled human capital (number of highly educated workers), general manager’s

2We find that around 25% of firms with patents have no R&D spending in both of our data sets.
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education and experience, and management team’s education and age. We find that

a firm’s skilled human capital and managerial personnel’s education have significantly

positive effects on innovation while the management team’s age has a significantly

negative effect on innovation. The effect of R&D on patents is insignificant in large

metropolitan cities while it is positive and significant in provincial middle cities.

Several difficulties arise in our study. First, the form of R&D to be included in

the empirical study is difficult to be determined, and what’s worse, R&D may be

endogenous. Lagged R&D expenditure may also affect a firm’s number of patents,

but R&D is highly correlated in a firm over time.3 Simply including contemporary

R&D and its lag may bring about serious multicollinearity. Also, we notice that R&D

is a long-run plan and it may not distribute evenly over years.4 Thus, we use average

R&D over years in our estimation. Moreover, R&D may be endogenous in a firm’s

knowledge production function. To decrease the endogeneity of R&D, we exclude

current R&D when calculating average R&D over time. Second, the endogeneity of

skilled human capital and General Manager’s education may bias our estimates. We

use instrumental estimates to solve this problem. The instruments we used are city

average and industry average of the corresponding variables: average skilled human

capital over cities, average skilled human capital over industries, average General

Manager’s education over industries, average General Manager’s education over cities.

All the above averages exclude firm itself. In addition, for skilled human capital, we

also use the number of applicants for the positions and the average number of weeks

those positions are vacant as instruments.

This paper makes three main contributions: (1) it provides both theory and the-

oretical framework for studying firm innovation in a human capital view, not only

3In our datasets, we notice that R&D over time does correlate with each other highly. In fact
the correlation coefficient is always above 0.90.

4For example, a firm may invest a lot of R&D in one year, but in the following two years, its
R&D investment may be much less than this amount.
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skilled human capital but also managerial human capital and R&D human capital.

Growth theory only provides a theoretical framework to incorporate skilled human

capital into innovation. Though there are some empirical studies on firm innovation

and human capital, those studies are either on the relationship between firm inno-

vation and managerial human capital or on the relationship between firm innovation

and skilled human capital and none of them take care of skilled human capital and

managerial human capital at the same time. (2) Using detailed firm-level data, we

are able to study the effects of skilled human capital, general manager’s education

and experience, and management team’s education and age. (3) Two datasets from

two different levels of cities, metropolitan cities and provincial middle cities enable

us to examine the effect of market environment on firm innovation.

One of the limitations in our study is that patent is not a perfect measure of

innovation. Pakes and Griliches (1980) observed that patents are a flawed measure

(of innovative output); particularly since not all new innovations are patented and

since patents differ greatly in their economic impact. Thus, the relationship between

human capital and patents cannot fully reveal how much human capital contributes

to firm productivity via innovation. Moreover, the patent propensity rate for product

and process innovation can differ a lot.5 To better understand how firm human capital

affects product innovation and process innovation, it is also interesting to study how

human capital affects new product sales. We will pursue the productivity and new

product sales in future research.

The chapter is organized as follows. Section 3.2 introduces firm-level human cap-

ital into innovation. Section 3.3 presents a theoretical framework where two firms

Cournot compete with each other in a two-stage game. In Section 3.4 we introduce

the data. Section 3.5 introduces our methodology strategy. In Section 3.6, we present

5Arundel and Kabla (1998) found that the propensity rate for product innovations is 35.9% on
average and 24.8% for process innovation on average using Europes largest industrial firms survey
in 1993.
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our main results and interpret the findings. Section 3.7 presents further investigation.

Section 3.8 concludes.

3.2 Human capital and Innovation

Why human capital might be essential in firm innovation study in China? First,

according to the resource-based view of the firm, performance differences across firms

can be attributed to the variance in the firms’ resources and capacities. Resources

that are valuable, unique, and difficult to imitate can provide the basis for firms’

competitive advantages. Among all the resources in a firm, human capital has long

been argued as a critical resource (Pfeffer, 1995). Although human resources may be

mobile to some degree, because some capabilities are based on firm-specific knowledge,

and others may only be valuable when integrated with additional individual capacities

and specific firm resources that may not be mobile (Hitt et al., 2001), the idea that

a firm’s human capital is critical still holds. Moreover, upper echelon theory argued

that organizations are just reflections of their top managers (Hambrick and Mason,

1984). Thus, given the importance of firm human capital, studying firm innovation

from a human capital view becomes very natural.

Second, on a macro scale, human capital has long been introduced into innovation

in endogenous growth theory (Romer, 1986, 1990; Lucas, 1993). Barro (2001) further

proposed that higher human capital stock tends to generate higher growth through

at least two channels: on the one hand, more human capital facilitates the absorption

of superior technologies from leading countries, and for this channel, schoolings at

secondary and higher levels should be especially important; on the other hand, human

capital tends to be more difficult to adjust than physical capital. The endogenous

growth theory takes human capital as one of the most important inputs in innovation

from the macro level and this inspires us to notice the importance of human capital

in firm innovation. However, we still know relatively little about firm level human
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capital and innovation given the difference between micro and macro study.6

Third, as a developed country, China has a distinct form of innovation compared

to developed country. Nahm and Steinfeld (2014) pointed out that these forms pertain

not to upstream research and development (R&D) or new-to-the-world invention, but

instead to downstream efforts involving both the redefinition of existing technologies

and the commercialization of new ones. Thus, given the downstream type of inno-

vation, skilled human capital has a especially important role in innovation in China

compared to that in developed countries. For example, Ge and Fujimoto (2004) de-

scribe how Chinese motorcycle assemblers, through reverse engineering, effectively

modularized the firm-specific, integral designs of Japanese lead firms. In this process,

it is engineering personnel’s skill rather than formal R&D matters the most. Thus, in-

novation in those firms exhibits some peculiar features that R&D would not capture,

incurring the risk of underestimating their innovation effort. In fact, in some small

and medium firms, innovation often occurs without the performance of formal R&D.

Meanwhile, a firm might invest more R&D than it should do because of government

subsidies or tax incentive. In this case, R&D may overestimate its innovation capa-

bility. Thus, traditional firm innovation study based on R&D remains quite limited,

causing a significant bias in understanding firm innovation.

In my study, firm-level human capital can be divided into two types: managerial

human capital and skilled human capital. Managerial human capital is embodied in

CEOs, top management top and all managers. Top executives have the discretion to

control R&D expenditure in firms. Also, because R&D expenditure is a long-term

investment that is considerably risky with high failure rates, top managers monitor

6For example, human capital in a region or a country cannot be adjusted easily in a short run,
while in a firm human capital can always be adjusted through hiring and firing workers and job
training. Thus, human capital in a firm is more apt to suffer from endogeneity than in the country
level. Moreover, in a firm, the role of the CEO or general manager and the whole management team
can also be very important for firm innovation because they are related to the firm’s innovation
strategy and management.
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R&D expenditure closely and adjust its level based on their preferences. Moreover,

top management teams have the task of formulating and implementing the firm’s

strategy (Hambrick and Mason, 1984), and as part of their leadership function, CEOs

must coordinate and control team behaviors. Research examining the relationship be-

tween managers’ personal characteristics and organizational outcomes has taken two

different approaches. One approach is to directly assess the psychological attributes

of the managers and examine their link to outcomes (Miller et al., 1982). Another

approach is to assess demographic characteristics (such as age and education), making

the assumption that such characteristics are related to cognitive abilities, attitudes,

and expertise (Bantel and Jackson, 1989). In this study, we use the demographic

characteristics because it is more practical.

On the other hand, skilled human capital is related to all skilled workers in a firm

and it can be seen as a general measure of human capital in a firm and thus it is

fundamental to firm’s behavior and performance. The mechanisms between skilled

human capital in a firm and innovation can be in two channels. First, higher skilled

human capital means higher ability of learning by doing and thus can improve a firm’s

innovation ability. The relationship between learning-by-doing and patents has been

studied by Lieberman (1987), and it found that patenting in process innovation in the

chemical industry was largely an outgrowth of “learning by doing.” Second, skilled

human capital and a firm’s R&D together affect the firm’s innovation through R&D

innovation. The complementary relationship is modeled by Romer (1990), where

innovation is produced by combining R&D and human capital together. 7

7There’s also a probability of knowledge spillover channel which means that when theres more
skilled human capital in a firm, there will be more internalization of outside R&D spillover or
knowledge spillover into the firm. This has been explained in knowledge spillover literature, such as
Audretsch and Feldman (1996). We will save this for future study.
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3.3 Theoretical framework

This section presents our theoretical framework and it allows us to see how firms

choose their optimal innovation project, optimal human capital and R&D investment,

and thus we can derive expressions for firm innovation, which we estimate in the

empirical part.

Our framework is based on Rosen (1991) and Howitt and Mayer-Foulkes (2005).

We examine firm innovation using a duopoly model with risk-neutral firms in a three-

stages game.8 In the first stage, the firms invest in a risky innovation project. In the

second stage, they will choose their own human capital level. In the third stage, the

firms choose their R&D level.

Since backward induction can give us subgame-perfect equilibrium, we consider

first the output market decision in production stage. We consider an industry consist-

ing of two firms with Cournot competition. The firms produce a single homogenous

good and each maximize its single-period profit. Assume the expected output market

profit be a function of the firms’ constant marginal costs of production ci, i = 1, 2.9

The inverse demand curve the firms face is linear. The single period profits of the ith

firm are given by10

Πi = [A− 2ci + cj]
2 (1)

where A is subject to A − 2ci + cj > 0 for i, j ∈ 1, 2. Equation (1) implies that

firm i’s profit is decreasing with its own cost, but increasing with its rival’s cost and

8Firms engage in innovation because a successful project lowers their production cost in the
sequent output market competition. To simplify our analysis, we follow Spence (1984) and Rosen
(1991) and use cost-reducing technology to represent innovation because we can always break a
product into a Lancasterian bundle of services and model product improvement as a reduction in
the cost of producing services.

9Constant marginal cost might be restrictive since in reality firms might have increasing or
decreasing marginal cost. When there is increasing marginal cost, other things equal, firms will
produce less; vice versa. However, a constant marginal cost assumption doesn’t influence our main
conclusion as long as it has nothing to do with firm innovation behavior.

10The profit function form is derived from Cournot.
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thus the firm’s profit will increase with its own innovation success but decrease with

its rival’s innovation success.

In innovation stage, the two firms choose their own R&D project, human capital

level, and the level of R&D investment sequentially. Moreover, we assume that they

conduct their own projects at the same time and are completed before the start of

the output game. Two outcomes may arise for each project: either it succeeds or

it fails. The set of R&D strategies from which the firms choose and the outcome of

innovation are common knowledge.

There are three substages in the innovation stage. First, both firms choose projects

pi(i = 1, 2) from the continuum of projects, α, in the set (0, 1). Higher values of

αrepresent projects that have a greater chance of success at any fixed level of invest-

ment. If a project α yields a successful innovation for a firm, then the firm’s cost is

reduced by γα, where γ is differentiable in α and γ′(α) < 0, which means that as α

increases from 0 to 1, the cost reduction will decrease. Therefore, if firm i succeeds in

innovation, its marginal cost will become ci− γ(αi) and if it fails its marginal cost of

production will still be ci but the firm will lose its R&D spending and wage for skilled

workers. Projects should be made based on the existing technology base, the firm’s

human capital, and the market. Optimal project should enable the firm to generate

the maximum of expected profit.

Second, for each project α, there is an optimal human capital level. Third, based

on its human capital level, a firm then decides its optimal R&D level. We know

that innovation as a way of knowledge creation is an activity with a basic element

of uncertainty (Maskell and Malmberg, 1999). For project α, based on Howitt and

Mayer-Foulkes (2005), we also assume that the success probability of a certain project

at time t in firm i is given by

µi = SiRi (2)
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Where Ri is firm i’s R&D expenditure and Si is firm i’s skilled human capital

that can promote innovation. Note that both Si and Ri are standardized into values

with range [0, 1]. The relationship of Si and Ri expressed in equation (2) means that

we implicitly assume that they are both complementary and substitute to each other.

For example, if we have Si = 0.2 and Ri = 0.5, we then get a probability of 0.1. If

we only have Si = 0.1, we can have more R&D ( in fact Ri = 1), we then get the

same probability. Thus, in this sense, Si and Ri are substitutes. On the other hand,

when we take the derivative with respect to Si, we will get Ri, this means that the

marginal effect of Si on innovation success probability is increasing with Ri. In this

sense, Si and Ri are complementary to each other. Note that, even if we have Si = 1

and Ri = 1, we still cannot ensure a project will be successful with probability 1

because every project further has its own successful probability in nature. That is,

the success probability of innovation in firm i is

Ii = αiSiRi (3)

This means that a firm’s innovation depends not only on its R&D investment Ri,

but also the firm’s skilled human capital and whether or not it chooses the “right’

project. A larger αi means a much easier project, and a smaller αi means a more

difficult project.

Next, we will use backward induction to examine firm’s strategic choices at equi-

librium. First, we will examine how firms make their R&D decisions. That is, a firm

first takes a project and human capital level as given and choose its optimal R&D

level, Ri. Second, when it makes its skilled labor decision, it can forecast its optimal

R&D level and it will make its human capital decision based on its forecasting of op-

timal R&D level. Finally, when firm chooses optimal project, αi, it can forecast the

optimal R&D level and optimal human capital level, Si. and it will make its project

choice decision based on his forecasting. Given project αi and its human capital level,
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Si, firm i will maximize its expected profit

Πi = αiµiπ
S
i + (1− αiµi)πFi − rRi − wSi (4)

where πSi is the profit firm i will get if its innovation is successful and πFi is its

profit if its innovation fails. r is the cost rate for R&D and it may include the interest

rate, government incentives and subsidies for firm R&D. w is the wage for skilled

workers. Equation (4) states that the expected profit is the firm’s expected profit

after innovation minus its expenditure on innovation, R&D and wages for skilled

workers.

The firm’s after-innovation profits πSi and πFi are determined not only by firm i’s

innovation, but also firm j’s (j 6= i; i, j = 1, 2.) innovation because the two firms

Cournot compete with each other in the same market. Firm j also may succeed or

fail in innovation; thus, we will have

πSi = αjµjπ
SS
i + (1− αjµj)πSFi (5)

πFi = αjµjπ
FS
i + (1− αjµj)πFFi (6)

where πSSi is firm i’s profit when both firms succeed in their innovation, πSFi is firm

i’s profit when firm i succeeds while firm j fails, πFSi is firm i’s profit when firm i fails

while firm j succeeds, and πFFi is firm i’s profit when both firms fail. Obviously, the

firm’s after-innovation profits πSi and πFi are the weighted average of two situation

respectively. We will take πSi in equation (5) for example. Specifically, for firm i,

if its innovation succeeds, then its profit is πSi . This includes two situations: firm j

succeeds or firm j fails. The probability of the innovation success of firm j is αjµj and

the probability of the innovation failure of firm j is(1−αjµj). For the two situations,

firm i’s profits are πSSi and πSFi respectively. Then πSi is the expected profits under

two situations.
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We then plug equations (5) and (6) into equation (4), and then take the derivative

with respect to Ri and thus we get the reaction function of firm i. Following the same

procedure, we then get the reaction function of firm j. Combine the two reaction

functions together and we then solve for the optimal R&D, Ri, given αi,

R∗i =
−r + 4αjγ(αj)Sj(A+ ci − 2cj + γ(αj))

4αiαjγ(αi)γ(αj)SiSj
(7)

Equation (7) shows that a firm’s R&D spending is determined not only by its

own and rival’s technology level (cost function) (ci, cj), but also both firms’ skilled

human capital level and their project choices (Si, Sj, αi, αj). The implication is that

the rival’s information can be used as instruments for the firm’s R&D in empirical

study. More specifically, we use the rival firm’s R&D as an instrument.

When we take derivatives with respect to different variables and parameters re-

spectively, we can analyze a firm’s R&D behavior more specifically.11 Under assump-

tion γ(αi)+αiγ
′(αi) > 0, we find that the derivative of R∗i with respect to αi is smaller

than zero, implying that to ensure a certain level of innovation success probability

firm will choose more R&D spending if they choose riskier project given skilled labor,

consistent with our intuition. By taking derivative with respective to ci and cj respec-

tively, we get that firm will invest more R&D if it has a less advanced technology and

if its rival has a more advanced technology. That is, firms in a market with laggard

technology have less R&D investment than firms in a market with advanced technol-

ogy. Similarly, we get that R&D is increasing with its rival’s human capital level, and

decreasing with its own human capital level. This is very easy to understand since

firm tend to invest more R&D when the competition is more intensive and because of

the complementary effect between R&D and human capital level, more human capital

tends to induce less R&D. Similarly, we get that firms in a market with higher human

capital level have more R&D investment than firms in a market with lower human

11The details will be available upon request.
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capital level.

Also, firms can chooses its optimal human capital level. We can solve that

S∗i =

√
(−2A+ 4ci − 2cj + γ(αj))r

(2
√
wαiγ(αi)

(8)

We can see that firm’s skilled human capital decreases with local wage, its rival’s

cost but increase with its own cost. Also, we can easily that that it increase with

R&D cost, r. This is the substitution effect between R&D and human capital level.

Similarly to R∗i , when under assumption γ(αi) + αiγ
′(αi) > 0, we find that the

derivative of S∗i with respect to αi is smaller than zero, implying that to ensure some

certain level of innovation success probability, given R&D spending, firm will choose

higher skilled human capital level if they choose riskier project, consistent with our

intuition.

Finally, we can solve for the optimal project. We will not discuss it in detail

since our focus is skilled human capital and Rosen (1991) used the same framework

to study the choice of project. Thus, if interested, please see Rosen (1991) for more

detail. Here we plot the relationship between profit and projects in Figure 7. We

can see that profit is a concave function of project, α, and there’s an optimal value,

α∗, so that firm can get maximum profits.

Plug R∗i , S
∗
i and α∗i into (3), we finally get the innovation level at equilibrium

I∗i = Ii(A, ci, cj, w, r) (9)

Therefore, we can see that at equilibrium, firm i’s innovation is determined is

determined by market demand (A), its own and rival’s technology level, and R&D

cost rate and wage.
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Figure 7: Profit and innovation project

3.4 Empirical strategy

3.4.1 Specification

However, in reality, because of asymmetric information, imperfect decision process,

financial constraints, and some other reasons, actual project choice, αri , and actual

R&D level, Rr
i , cannot be the optimal levels. That is, Sri 6= S∗i and Rr

i 6= R∗i . Among

all the reasons, managerial human capital in a firm is usually a very important factor

which affects the difference between actual decision and optimal level. We have

|Sri − S∗i | = ϕS(Mi) (10)

and

|Rr
i −R∗i | = ϕR(Mi) (11)

where Mi is a firm’s managerial human capital, ϕS(Mi) is the distance between
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the actual skilled human capital and optimal skilled human capital, ϕR(Mi) is the

distance between the actual R&D expenditure and optimal R&D level. Here, we

use absolution value of difference to measure distance. Also, we have∂ϕ
S(Mi)
∂Mi

< 0and

∂ϕR(Mi)
∂Mi

< 0, implying that the higher managerial human capital, the closer the actual

decision and the optimal level.

Finally, we get the actual innovation level is determined by

Iri = Ii(A,Ri, Rj, Si, Sj, ci, cj,Mi,Mj, w, r) (12)

In equation (12), we also include Ri, Rj, Si, Sj to control for the influential factors

other than what we consider in our model. In sum, our theoretical framework indicates

that a firm’s innovation is determined by a combination of the firm’s skilled human

capital, managerial human capital, firm R&D, and market demand. Thus, in our

empirical study, we not only need to include a firm’s skilled human capital, managerial

human capital, firm’s R&D, firm characteristics and market share in our estimation,

but also market environment. We use firm characteristics to control for the firm’s cost

and market share for the demand faced by the firm. Moreover, we use two datasets to

control for the effects of market environment (or the other firm) on firm innovation.

From equation (12), we get that skilled human capital in a firm and its managerial

human capital together with firm R&D all are vital for a firm’s innovation. Thus, they

should be included in studying a firm’s innovation. In addition, firm characteristics,

i.e., firm size, firm age and ownership structure, market structure, industry fixed

effect, and city fixed effect are also controlled. Also, R&D is added into specification

to control for factors affecting R&D other than the variables we already controlled.

In reality, innovation is usually very hard to measure and a common practice is to

use the number of patent application to measure innovation. It is assumed that

pati = ρiI
r
i (13)
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where ρi is the patenting propensity ratio of a firm, an it is usually determined by

the characteristics of innovation, firm size, government policy, and some other factors

inside the firm.

Combined equations (12) and (13), the knowledge production function, or patent

production function, in our study is specified as12

log(pati) = β0 + β1HCi + β2 log(RDi) + β3SZi + β4MKTSHRi + β5Wi + ui (14)

where pati is the number of patents applied for in China, HCi is human capital

indicators, RDi is R&D expenditure, SZi is firm size, MKTSHRi is market share, Wi

is some control variables, such as industry and city fixed effect, and ui is a disturbance

term, assumed to be distributed independently but not necessarily identically across

firms, for firm i = 1, 2, ..., n.

Though patent number is not a perfect measure for innovation output as we men-

tioned before, it still constitutes a relevant measure of the technological effectiveness

of R&D activity (Griliches, 1990). We use the number of patents applied for in China

as our dependent variable though there are data for both number of patents applied

for and actually granted in our dataset.13 There are two reasons for us to use number

of patents applied for. One is to decrease the external effect of patent granting pro-

cess. The other is that in our database, the two variables differ very little and give us

similar results.14 By using patents applied for we implicitly assume that firms apply

patent honestly, that is, firms only apply patents when they feel their innovation can

12Another way to get empirical specification is to adopt patent production function directly from
literature (Kortum and Lerner, 1999, 2000; Hall and Ziedonis, 2001). However, our theoretical
framework features two advantages that make them more appropriate for our study. First, it illus-
trates how firm-level human capital influences firm innovation. Second, it shows how firms affect
each other through strategic choices and thus we can see how market environment can affect firm
innovation. This provides us theoretical explanation for why we get similar but different results
across two datasets in our empirical study.

13In addition, we have patented data applied for and actually granted in US, but there’s too little
useful value and thus we only use patent data in China.

14The results are available upon request.
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meet the criterion for a patent. This is not an unreasonable presumption since patent

application has its cost and firms will not waste its resources.

We use skilled human capital, GM’s tenure and education, and the average age

and average years of schooling of management team as our human capital indicators.

GM’s tenure is the years he holds his position. We use number of highly educated

workers or skilled workers to measure a firm’s skilled human capital. We use GM’s

graduate degree dummy to account for his education. Education of management is

the average years of schooling of the management team.

However, an identification problem, ignored by almost all Schumpeterian studies,

arises as we include a firm’s skilled human capital level in our estimation because

factors affecting a firm’s workforce adjustment are very likely to be related to fac-

tors affecting the firm’s innovation. For example, a firm that wants to be active in

innovation tends to hire more highly educated workers. Thoenig and Verdier (2003)

mentioned that by employing a larger share of skilled labor, firms can reduce informa-

tional leakages and spillovers, which can be freely acquired by outside competitors,

and thereby lessen the threat of imitation and technological leapfrogging because

of tacit knowledge and non-codified know-how embedded in skilled workers. More-

over, successful innovation may also increase the proportion of skilled workers in

the whole workforce (Krueger, 1993) because more advanced technology needs to be

complementary to be productive. The endogeneity of skill adjustments in response

to technological changes within a firm is also mentioned by Fleisher et al.(2011).

Following Fleisher et al.(2011), for skilled human capital, we use the number of

applicants for the positions and the average number of weeks those positions are

vacant as instruments. Given labor market supply level, usually a firm with more

killed human capital will attract more applicants and it is also much easier for them

to get a proper candidate and thus less vacant weeks for those positions than firms

with less human capital. On the other side, they are not likely to be correlated with
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firm’s innovation behavior except through human capital. The underlying reason

is that number of applicants and number of vacant weeks are largely determined

by applicants’ behavior, which is independent of firm’s innovation behavior, other

than through human capital channel. The way firm’s skilled human capital affects

applicants’ behavior is that a firm with higher skilled human capital usually pays

higher than firms with less human capital. Thus, they can be instruments for skilled

human capital. In addition, we use average skilled human capital over cities excluding

firm itself and average skilled human capital over industries excluding firm itself as

instruments. The two instruments are correlated with a firm’s skilled human capital

since a firm’s skilled human capital is to some extent determined by its industry

characteristics and the city where it locates. Moreover, since we already exclude

firm itself from the average values, the correlation between instruments, the average

values, and the error term in equation (14) should be very small. Similarly, General

Manager’s postgraduate degree dummy also might be endogenous and we use city

average excluding firm itself and industry average excluding firm itself as instruments.

Another important variable in the patent production function is R&D spending

by the firm. However, how to include R&D in the patents estimation equation is

still a question. Much of the early work focused on how the lag structure of R&D

affects patents (Pakes and Griliches, 1980; Hausman, Hall and Griliches, 1984). They

largely concluded that the lag structure is very poorly identified because of the high

within-firm correlation of R&D expenditure over time. Moreover, when many lags

are included in the model, the estimate of the sum of the coefficients is roughly the

same as the estimated coefficient of contemporaneous R&D when no lags are included.

Following their conclusion, some literature use only contemporaneous level of R&D

in their specification (Hall and Ziedonis, 2001). However, by doing so, two problems

might arise. First, R&D expenditure is a long-term investment (Barker and Mueller,

2002). Thus, only including contemporaneous R&D cannot capture a firm’s real
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innovation efforts.15 In this point of view, an average R&D over years rather than

R&D of a certain year is a better innovation input measure for the firm.16 Second,

contemporaneous R&D is very likely to be endogenous. That is, there is a possible

correlation between unobserved innovation productivity shocks and R&D level. Thus,

we exclude current R&D from the averages to lessen endogeneity.

Firm size is measured by the log of the net value of total assets in the survey year

rather than the log of total sales to lessen the correlation between firm size and other

variables. Intuitively, firms with more resources will tend to innovate more because

it has the ability to innovate. Generally, we expect a positive effect of firm size and

when human capital is considered. We use two approaches to study the effect of

market environment on innovation. First, we include market share of each firm in

our model to account for a firm’s market position. Second, we use two datasets, one

from metropolitan cities and the other from provincial middle cities, to examine how

firms in different markets, a more advanced one and a less advanced one, innovate.

3.4.2 Regression models of count data

The number of patents applied for by a firm is a count variable, so we need to use

models of count data. In the following, we will introduce Poisson model, Poisson

QMLE and negative binomial model in the framework of linear exponential family

(LEF). This presentation follows Cameron and Trivedi (2013). A density fLEF (y|µ)

is a member of a linear exponential family if

fLEF (y|µ) = exp{a(µ) + b(y) + c(µ)y} (15)

where the function b(.) is a normalizing constant, and µ = E[y], and the function

15Specifically, if a firm decides to develop a new product, its R&D investment structure over time
may be a combination of a large initial R&D spending in the first year and some additional R&D
investment in the following years. In this case, the R&D level in a certain year cannot represent the
firm’s innovation endeavor.

16For example, in our data, theres a firm with R&D in 1998 of RMB 944.660 million and its R&D
in year 1999 and year 2000 are RMB 249.075 million and RMB 191 million, respectively.
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a(.) and c(.) are such that

E[y] = −[c′(µ)]−1a′(µ) (16)

where a′(µ) = ∂a(µ)
∂µ

and c′(µ) = ∂c(µ)
∂µ

, and

V (y) = [c′µ]−1 (17)

Different functional forms for a(.) and c(.) lead to different LEF models. From

equations (16) and (17), we can see that for LEF family, the variance is proportional

to the expectation. Special cases of the LEF include Poisson and binomial (with

number of trials fixed), and exponential. For example, the Poisson density can be

written as exp{−µ+ylnµ−lny!}, which is an LEF model with a(µ) = −µ, c(µ) = lnµ

and b(y) = −lny!.

A regression model is formed by specifying the density to be fLEF (yi|µi) where

µi = µ(Xi, β), for some specified mean function µ(.). The MLE based on an LEF,

β̂LEF maximizes

LLEF =
n∑
i=1

{a(µi) + b(yi) + c(µi)yi} (18)

The first-order conditions can be written as

n∑
i=1

1

vi
(yi − µi)

∂µi
∂β

= 0 (19)

where vi = [c′(µi)]
−1 is the specified variance function that is a function of µi and

hence β.

Under the standard assumption that the density is correctly specified, then we

have

√
n(β̂LEF − β0)

d−→ N(0, A−1) (20)
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where A = limn→∞
1
n

∑n
i=1

1
vi

∂µi
∂β

∂µi
∂β′ |β0 .

When the density is unknown or misspecified, the estimator is called Quasi-

maximum likelihood estimator (QMLE).17 Gourieroux, Montfort and Trognon (GMT,

1984) show that when the mean is correctly specified, but other features of the dis-

tribution such as the variance and density are potentially misspecified, β̂LEF
p−→ β0 so

the MLE is still consistent for β0. Also,

√
n(β̂LEF − β0)

d−→ N(0, A−1BA−1) (21)

where A is defined above and B = limn→∞
1
n

∑n
i=1

ωi

v2i

∂µi
∂β

∂µi
∂β′ |β0 . Note that vi is the

working variance, the variance in the specified LEF density for yi, whereas ωi is the

variance for the true dgp. Given specification of a true variance function, so ωi = ω(.),

one can potentially obtain a more efficient estimator. The negative binomial model

with mean µ and variance µ + αµ2 is one of the examples. We can see that NB

model generalizes the Poisson QMLE model by allowing for an additional source of

variance.18

3.5 Data

In this paper, we use data from two surveys. The first is “The Study of Compet-

itiveness, Technology & Firm Linkage” conducted by the World Bank in China in

2002. The second is “Investment climate survey” conducted also by the World Bank

in 2003. Though with different names, these two surveys are very similar.19 The

first dataset was carried out in 2001-2002, covered firms in five big cities, Beijing,

17In application, because it is only ordinary Poisson with robust error, we still call it Poisson in
our results analysis.

18The other difference between QMLE and NB is that the regression coefficients are fitted differ-
ently because different weights are used when estimated and these weights are inversely proportional
to the variance.

19Both of them collected information on innovation and technology, firm productivity, finance,
labor, and the obstacles to doing business, etc. Both are filled up by the senior manager of the main
production facility of the firm and the accountant and/or personnel manager of the firm.

38



Chengdu, Guangzhou, Shanghai, and Tianjin.20 Most quantitative questions covered

the period 1998-2000; most qualitative questions covered only the time of the survey,

2000 (We call the first dataset as Data 2000, thereafter). The second dataset was

conducted in 2003 and covered firms in 18 cities, smaller than the cities surveyed

in 2000.21 Most quantitative questions covered the period 2000-2002; most quali-

tative questions covered only year 2002 (We call the second dataset as Data 2002,

thereafter). Both samples consist of both manufacturing and service firms.22

The data are randomly selected from all firms in their respective cities and indus-

tries. The resulting size range is extreme, with the reported number of production

workers ranging from 3 to 83542 in Data 2000 and from 1 to 70169 in Data 2002.

In order to reduce the heterogeneity among firms, we restrict our data only in man-

ufacturing industry and also confine our research to the subsample with at least 50

total workers, at least 10 highly educated workers and 10 less educated workers and

RMB 3000,000 sales. As a result, there are 624 firms in Data 2000 and 913 firms

in Data 2002. We also collect Consumer Price Index (CPI) for each city from the

statistic yearbook of the city’s corresponding province. We then use them to trans-

form all price-related variables into real value. The same datasets are used through

this dissertation. Thus, we will only discuss new variables in the data part of in later

chapters but full statistics tables will be presented for convenience.

20The sample includes 1548 observations and 1206 variables.
21The 18 cities are: Benxi, Changchun, Changsha, Chongqing, Dalian, Guiyang, Haerbin,

Hangzhou, Jiangmen, Kunming, Lanzhou, Nanchang, Nanning, Shenzhen, Wenzhou, Wuhan, Xi’an
and Zhengzhou. This sample includes 2400 establishments and 1073 variables.

22The industries cover electronic components, autos and auto parts, clothing and leather prod-
ucts, electronic and communication equipment, household electrical goods, information technology
services, accounting, auditing, and nonbank financial services, business logistics services, advertising
and marketing services, and communication services. In Data 2002, chemical products and medicine,
biotech products and Chinese medicine, and metallurgical products are also included.
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In the survey, there is information on average education level for each occupa-

tion.23 Following Fleisher et al.(2011), we classify the employees into two categories:

highly educated and less educated workers. By averaging the workers’ schooling codes

for each occupation over sample, we designate each occupation level as either highly

educated or less educated based on the average schooling of workers in the occu-

pation.24 Consistent with Fleisher et al.(2011), our highly educated group mainly

consists of “engineering and technical personnel” and “managerial personnel (includ-

ing sales)”. We then use number of highly educated workers (Ls) as our skilled human

capital measure in a firm. Note that the survey data only provide us the information

on number of employees for different occupation for the years 2000 and 1998. We

impute employment for different occupations for 1999 in Data 2000 and year 2000 in

Data 2002.25 Finally, we round them to get Ls 2000.

We use self-reported market share to account for market structure. The self-

reported market share is rarely used in literature, but it is much better than calcu-

lated market share used in previous literature (e.g., Blundell et al., 1999) because to

calculate, one needs first to define the market which is usually not an easy task. By

using self-reported market share, we don’t need to define the market, and moreover

the “market” definition used here is related to the firm the most, and thus we can

get the real market effect on the firm.

We use number of patents applied for in China as our dependent variable. There

is also information about number of patents applied for in the US and number of

23In both surveys, workers are classified into: basic production workers, auxiliary production
workers, engineering and technical personnel, managerial personnel, service personnel and other
employees. Moreover, there is no explicit explanation for “other employees.

24We average years of schooling both over the whole sample and over industries, and both indicate
the same classification.

25We use weighted average employment of 2000 and 1998, using ratio of total employment of 1999
to 2000 and 1999 to 1998 as weights to impute employment for 1999 in Data 2000. Similarly, for
Data 2002, we impute the employment for different occupation for year 2000 using weighted average
employment of 2002 and 2001 and use the ratio of total employment of 2000 to 2002 and 2001 to
2002 as weights.
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patents actually granted in the US; however, useful values are too few.26 Here, we

have two measures of patent, number of patents applied for by firms and number

of patent actually granted in China. However, the two measures are very similar.27

Moreover, when we try to use the two measures as our dependent variables we get

similar results. Thus, in this paper, we only present empirical analysis using patent

applied for in China as our dependent variable.

We then present a statistics summary for the full sample in Table 1 (Data 2000)

and Table 2 (Data 2002). We can see that firms in Data 2000 do better than firms

in Data 2002 even if there is a time trend in Data 2002 with average 0.84 patents in

year 2000 in Data 2000 and average 0.74 patents in year 2002 in Data 2002. Also,

we can see that for both datasets, number of patents increases over time. Generally,

firms are bigger in Data 2002 and they have more highly educated workers and more

total workers, with around 180 highly educated workers and 950 total employment

in Data 2000 and around 162 highly educated workers and 750 total workers in Data

2002. We can see that sales of firms in metropolis (Data 2000) are more than firms

in provincial big cities (Data 2002), though the different is not big, all around 0.3

Billion RMB. However, there’s very large difference in R&D between two datasets,

with around 15-19 Million RMB in Data 2000 and around 2-4 Million RMB in Data

2002. Another important difference between two datasets is that firms in Data 2000

have a higher market share (16.13%) than in Data 2002 (9.01%). In addition, there’s

little difference in General Manager’s education and experience and the firm’s age.

Table 3 presents the differences of human capital indicators between firms with

26In Data 2000, number of nonzero values for number of patents applied for in US are 2,4,3 for
year 2000, 1999 and 1998, respectively; number of nonzero values for number of patent actually
granted in US are 4,5,4 for year 2000, 1999 and 1998, respectively. In Data 2002, number of nonzero
values for number of patents applied for in US are 2,1,1 for year 2002, 2001 and 2000, respectively;
number of nonzero values for number of patent actually granted in US are 2,1,1 for year 2002, 2001
and 2000, respectively.

27There are around 8.5%-11% firms apply for patents in 2000 Data while around 7%-9% firms
apply for patents in 2002 Data. Meanwhile, there are around 7%-10% firms are actually granted
patents in 2000 Data while 7%-9% firms in 2002 Data actually granted a patent.
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Table 1: Descriptive Statistics (Data 2000)

Year Observation # Mean Std. Dev. Min Max

Panel A: Patents and Human Capital Variables

Number of patents applied by firm in China 2000 624 0.84 4.28 0 50
1999 624 0.67 3.43 0 38
1998 624 0.39 1.89 0 20

Number of patents applied by firm in China with patents>0 2000 74 7.11 10.56 1 50
1999 74 5.66 8.46 1 38
1998 66 3.73 4.64 1 20

Number of highly educated workers in firm (Hundred) 2000 623 1.84 3.25 0.1 41.33
1999 619 1.76 2.83 0.1 24.96
1998 623 1.81 2.79 0.1 27.31

Years of schooling of General Manager (GM) 2000 622 14.03 2.30 5 18
Years of GM holding the position 2000 623 5.69 4.44 0 30
GM’s postgraduate dummy (=1, postgraduate) 2000 622 0.16 0.37 0 1
Management team’s average age 2000 614 36.29 6.63 18 54
Management team’s average schooling 2000 615 11.88 1.50 8 18
Number of applicants for skilled position(Hundred) 2000 418 0.37 1.30 0 15.95
Number of weeks to fill last job for skilled positions 2000 431 3.78 7.73 0.5 87.5

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2000 603 19.00 237.06 0 5673.04
1999 611 15.20 194.83 0 4618.87
1998 610 15.31 183.43 0 4238.68

Value of total sales (Million RMB) 2000 624 334.31 1828.58 3 31600
1999 624 318.91 1933.77 3.01 32200
1998 614 253.86 1613.49 3.04 28900

Total number of employees (Hundred) 2000 624 9.45 15.05 0.5 170.98
1999 623 9.12 14.59 0.5 184.66
1998 621 9.46 15.12 0.5 180.59

Net value of total assets (Million RMB) 2000 622 102.79 430.07 0.013 7554.332
Firm’s market share 2000 583 16.13 20.53 0.1 98
Firm age 2000 624 17.81 17.37 0 92
Shareholding firms dummy 2000 624 0.16 0.37 0 1
State-owed firms dummy 2000 624 0.24 0.43 0 1
Foreign invested firms dummy 2000 624 0.39 0.49 0 1
Other firms dummy 2000 624 0.21 0.41 0 1

patents and without patents in both datasets. We can see that in both datasets, skilled

human capital, or number of highly educated workers is higher in firms with patents

than firms without and the difference is statistically significant in both datasets. Also,

we found that firms with general manager with postgraduate are more likely to have

patents and the difference is statistically significant. Similarly, we find that firms with

management team with higher average schooling are more likely to have patents and
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Table 2: Descriptive Statistics (Data 2002)

Year Observation # Mean Std. Dev. Min Max

Panel A: Patents and Human Capital Variables

Number of patents applied by firm in China 2002 910 0.71 3.68 0 77
2001 910 0.50 2.29 0 31
2000 910 0.44 2.12 0 28

Number of patents applied by firm in China with patents>0 2002 114 5.68 8.97 1 77
2001 94 4.85 5.48 1 31
2000 90 4.48 5.28 1 28

Number of highly educated workers in firm (Hundred) 2002 904 1.57 2.86 0.1 42.81
2001 902 1.58 3.07 0.1 53.83
2000 899 1.59 3.19 0.1 60.86

Years of schooling of General Manager (GM) 2002 903 14.15 2.23 5 18
Years of GM holding the position 2002 901 5.86 4.47 1 23
GM’s postgraduate dummy (=1, postgraduate) 2002 903 0.17 0.37 0 1
Management team’s average age 2002 879 36.50 5.31 20 51
Management team’s average schooling 2002 883 12.13 1.50 8 18

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2002 904 4.14 26.45 0 534.97
2001 892 3.79 32.73 0 782.41
2000 891 2.53 17.94 0 451.20

Value of total sales (Million RMB) 2002 909 271.05 1246.51 3.11 29700
2001 906 224.28 938.37 3.09 21300
2000 901 198.78 763.11 3.01 15800

Total number of employees (Hundred) 2002 909 7.36 13.21 0.5 155
2001 908 7.45 13.46 0.5 199.06
2000 904 7.38 13.65 0.5 220.44

Net value of total assets (Million RMB) 2002 905 96.52 411.77 0.11 8207.21
Firm’s market share 2002 884 8.96 16.38 1 99.46
Firm age 2002 910 15.96 14.34 2 52
Shareholding firms dummy 2002 910 0.29 0.45 0 1
State-owned firms dummy 2002 910 0.26 0.44 0 1
Foreign invested firms dummy 2002 910 0.22 0.41 0 1
Other firms dummy 2002 910 0.24 0.42 0 1

the difference is also statistically significant. Thus, a preliminary result from data is

that human capital in a firm might play an important role in firm’s innovation.

3.6 Results

Controlling for city and industry effects, Table 4 reports the results from regressing

number of patents applied for on human capital and a firm’s other characteristics
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using two different regression specifications: OLS and Negative Binomial.28 For all

the specifications, the number of patents applied for in China is used as the dependent

variable. Columns (1) and (2) in part I in Table 4 (the left half) are estimated using

only cross-sectional data in year 2000 in Data 2000 while in columns (3) and (4) in part

II in Table 4 (the left half), Data 2002 is used and only cross-sectional data in year

2002 in Data 2002 are used because our human capital indicators are only available for

the survey year. All specifications include city dummy variables and industry dummy

variables. OLS estimator is the simplest to use and requires the least requirements to

be consistent, but it ignores the count nature of the data. Negative Binomial model

fits data better, and thus our analysis will be based on it, this is consistent with

overdispersion with large number of zero counts in the data (Dhongde, 2014).29

To better understand our results, we calculate marginal effects for Negative Bi-

nomial in Column (3) and (6) in Table 4 for Data 2000 and Data 2002 respectively.

Marginal effects are attained at mean. The first important result we can see is that

the number of highly educated workers has a positive and significant coefficient across

both datasets, suggesting a positive effect of skilled human capital on innovation.

That is, when a firm has more skilled human capital, it will tend to have more in-

novation. Specifically, we get a marginal effect of 0.0768 using year 2000 data and a

marginal effect of 0.0183 using year 2002 data and both are significant at 1% level,

indicating that other things equal, when highly educated workers increase 100 people,

for firms with mean values the number of patents will increase 0.0768 in Data 2000

and 0.0183 in Data 2002, respectively. We can see that the effect of skilled human

capital is quite significant both statistically and economically, and it is robust across

28In our datasets, there are about 90% observations with zero patents. Therefore, zero-inflated
models are also a possible choice. In fact, Zero-inflated Negative Binomial (ZINB) regression even
fits Data 2000 a little bit better than Negative Binomial regression. The criterion we use is the sum
of the absolute differences between predicted value and the observed value. However, ZINB fails to
converge since Maximum Likelihood Estimation (MLE) encounter flat region when maximize. We
also tried Poisson model, but it is dominated by NB regression because of overdispersion.

29Our criterion is the sum of the absolute differences between predicted value and observed value.
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both datasets. This is consistent with previous studies. Audretsch and Acs (1991)

also concluded that skilled labor has a positive effect on innovation using industry

level data.30 Their results indicated that other things equal, when number of skilled

labor increases, innovation would also increase. Very interestingly, we notice that the

effect of skilled human capital has a larger effect in Data 2000 than in Data 2002 even

when there’s a time trend in Data 2002, implying in an advanced market environment

might have a larger positive effect of skilled human capital on innovation.

General manager’s experience is positive and significant both statistically and

economically in Data 2000. In NB model, we find the marginal effect is around

0.0451, which means that for an average general manager in an average firm, when

general manager holds the position for one additional year, the number of patent

application will increase 0.0451. This is consistent with Lin et al.(2011) that showed

that general manager’s tenure has a positive effect on R&D expenditure. The reason

why we get a positive effect of GM’s tenure might be that a GM with longer tenure

can be more experienced with the firm and the market structure and the technology

opportunity in this industry, and he can thus have a good judgment regarding a firm’s

innovative capacity and market demand. This is especially true for firm innovation

that is full of uncertainty. However, there are also some studies that found that general

managers tend to make fewer changes in strategy as their tenure increases. Hambrick

and Fukutomi (1991) claimed that this lack of change occurs because when tenure

increases, GM became conservative and more strongly committed to implementing

their own paradigm for how the organization should be run.31 The positive effect of

30Similarly, they defined skilled labor as the percentage of employment consisting of professional
and kindred workers, plus managers and administrators, plus craftsmen and kindred workers.

31Moreover, there are some researchers who found that CEOs tend to make fewer changes in
strategy as their tenure increases. One reason is that with each increasing year of tenure, CEOs
have less interest in pursuing strategies of innovation through higher R&D expenditure, preferring
instead to emphasize stability and efficiency (Barker and Mueller, 2002). The other reason is that
longer-tenured CEOs may lose touch with their organizations’ environments and therefore may not
make the changes and investments desired to keep the firm evolving over time.
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GM tenure in our study indicates that the effect of good judgment is larger than the

effect of conservative leadership.

Instead of including GM’s college degree in the estimation as in other literature

(e.g., Lin et al., 2011), we include GM’s postgraduate degree to indicate GM’s edu-

cation because there are more than 70% of firms’ GM with a college degree and thus

under this situation, the study of a postgraduate degree will be more meaningful.

Table 3 shows that GM graduate is insignificant in NB model in Data 2000 while

it is significant both in Poisson model and NB model in Data 2002. In NB model,

the coefficient of postgraduate degree is 0.127 indicating that for an average GM in

an average firm, when a firm’s GM with postgraduate degree, its innovation will in-

crease 0.127 compared to firms having GM only with college degree. This means that

compared to college education, postgraduate education of GM is more important to

innovation. Notably, compared to other factors, this effect is much larger.

Moreover, Table 4 presents that management team’s average age has a negative

and significant coefficient in both datasets while their average schooling tends to have

a positive coefficient among all the models though it is only significant in column (3).

Thus, we can get that management team’s average age has negative effect on inno-

vation while their average education has a positive effect on innovation. Specifically,

in Table 4 we get that the marginal effect of management team’s average age in

column (6), -0.00677, means that other things equal (at mean), for average manage-

ment team in an average firm when management team’s average age increases one

year, the firm’s number of patents will decrease 0.00677. Our results are consistent

with our intuition and previous management studies. Older executives tend to be

more conservative (Hambrick and mason, 1984) and empirical studies have found

that older top managers tend to be risk averse (Barker and Mueller, 2002) and follow

lower-growth strategies (Child, 1974). One reason is that older executives have less of

the physical and mental stamina needed to implement organizational changes (Child,
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1974). Another reason is that older managers may have greater difficulty grasping

new ideas and learning new behaviors (Hambrick and Mason, 1984) because some

cognitive abilities seem to diminish with age, including learning ability, reasoning,

and memory. Finally, younger managers are likely to have received their education

more recently than older managers, so their technical knowledge should be superior

(Bantel and Jackson, 1989).

Meanwhile, Table 4 shows that management team’s average schooling has a pos-

itive effect and is significant in negative binomial model in part I, implying that the

higher education of management team, the more innovation a firm can have. The

importance of the top manager’s education has been studied in a number of studies.

Attained education level is always assumed to be correlated with cognitive ability,

and higher levels of education should be associated with higher ability to generate

(and implement) creative solutions to complex problems. Hitt and Tyler (1991) found

that more educated executives have greater cognitive complexity and such cognitive

complexity provides greater ability to absorb new ideas and therefore increases the

tendency toward accepting innovations.

R&D in Part II in Table 4 has a positive effect, consistent with previous studies

(e.g., Pakes and Griliches, 1980; Scherer, 1983; Brouwer and Kleinknecht, 1999).

Its marginal effect is 0.0112, implying that for an average firm when R&D increase

1000 RMB, other things equal, the number of patents will increase 0.0112, which

is comparable to Hall and Ziedonis (2001) which reported the coefficient of the log

form of R&D is 0.196 using Poisson model.32 However, we failed to find a significant

effect of R&D in Part I in Table 3. Like us, Lieberman (1987) also failed to detect

a strong R&D effect, and they argued that their failure might stem from the poor

quality of the available R&D data. Different from him, we claim that the relationship

32The relationship between patents and R&D has also been studied at the firm level and they
reveal a strong link between total corporate R&D expenditure and patents (e.g., Bound et al., 1984;
Pakes and Griliches, 1984).
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between R&D and innovation, when measured by patents, may be affected by market

environment. In theoretical part, we have showed that market environment with

advanced technology and more human capital stimulates firm R&D. Also, in the

datasets R&D in Data 2000 is around 5 times R&D in Data 2002. Thus, we conclude

that it might be that all firms have more than enough R&D over what is needed

so the variation in R&D is not the reason why our dependent variable, number of

patents, varies.

Market share has a positive effect across all models and is significant in Poisson in

Part I and significant in Poisson and Negative Binomial in Part II, strongly support-

ing Schumpeterian hypotheses. This is not hard to understand. With bigger market

share, firms can have more profit, and thus firms can have more resources to put into

R&D. This is important because possible failures in financial markets may force firms

to rely on their own supra-normal profits to finance the search for innovation (Bhat-

tacharya and Ritter, 1983). Also, with bigger market share, firms can appropriate

more profits from more sales using innovation.33

Firm size tends to have a positive effect and is significant in Poisson model in Part

I in Table 4, and this is consistent with Schumpeterian hypothesis and the literature

(e.g., Scherer, 1983); that is, larger firms tend to have more innovation. Holding

R&D expenditures constant, large firms are more likely to apply for patents than

small firms. The reason may be that larger firms are more likely to have the spe-

cialized staff and legal departments that facilitate filing and enforcement of a patent

claim (Lieberman, 1987). The coefficient is 0.346 in Poisson in Part I, comparable

to Brouwer and Kleinknecht (1999) where the coefficient for firm size is 0.38-0.62 for

different datasets, and industry dummies and R&D collaboration are controlled.

33See Blundell, Griffith and Reenen (1999) for more reasons.
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3.7 Further Investigation

In estimating our equation, we face a possible econometric problem concerning the

potential correlation between the independent variables, skilled human capital and

General Manager’s postgraduate dummy, and unobservable or unmeasurable firm-

specific characteristics, such as the quality of human capital. The ordinary Poisson

and NB estimates would then be subject to omitted-variable misspecification and

bias. One of the traditional ways to correct the bias is to use panel data. With

panel data, we can de-mean the variables and thus all time-invariant firm-specific

characteristics would be removed. If none of the unobservable or unmeasurable firm-

specific characteristics change over time, we will get unbiased estimates. However,

for our data, a three-year panel data, most variation of the data is cross-sectional.

Applying the de-mean method will then wipe out useful interfirm variation. Thus, in

our study, we use cross-sectional data that make the best use of information on firm

characteristics.

Though we can always use GMM to deal with endogeneity in nonlinear model,

our main method, control function approach, can be more efficient. Let y1 denote the

response variable, y2 the endogenous explanatory variable, and z the 1× L vector of

exogenous variables (which includes unity as its first element). Consider the model

E(y1|z, y2, r1) = exp(z1δ1 + α1y2 + r1) (22)

where z1 is a 1× L1 strict subvector of z that also includes a constant and r1 is the

error term. Suppose first that y2 has a standard linear reduced form with an additive

and independent error

y2 = zπ2 + v2 (23)

D(r1, v2|z) = D(r1, v2) (24)

so that (r1, v2) is independent of z. Then

E(y1|z, y2) = E(y1|z, v2) = E(exp(r1)|v2) exp(z1δ1 + α1y2) (25)
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If (r1, v2) are jointly normal, then E(exp(r1)|v2) = exp(θ1v2), where we set the in-

tercept to zero, assuming z includes an intercept. This assumption can hold more

generally, too. Then

E(y1|z, y2) = E(y1|z, v2) = exp(z1δ1 + α1y2 + θ1v2). (26)

This expectation immediately suggests a two-step estimation procedure. The first

step is to estimate the reduced form for y2 and obtain the residuals. Second, include

v̂2, along with z1 and y2, in Poisson QMLE or Negative Binomial.

Though in the linear model, control function estimates are identical to 2SLS esti-

mates, in the exponential model, we can obtain a more efficient estimator via control

function method. Moreover, we can still take the count data feature and overidenti-

fication feature in the second stage of control function by using Poisson QMLE and

Negative Binomial model.

Table 5 shows the results of IV estimation and skilled human capital and GM’s

postgraduate degree dummy are treated as endogenous. The instruments for skilled

human capital in Data 2000 are the number of applicants for the positions, the average

number of weeks those positions are vacant, average skilled human capital over cities

excluding firm itself, average skilled human capital over industries. The instruments

for skilled human capital in Data 2002 are the same but we have no information

on the number of applicants and average vacant weeks. The instruments for GM’s

postgraduate are average postgraduate over cities excluding firm itself, and average

postgraduate over industries excluding firm itself for both datasets. In Table 5, we

show both results from 2SLS and control function using Negative Binomial. As we

analyzed above, we will rely on control function since it is more efficient.

In Table 5, we can see that compared to the results in Table 4 where no endogeneity

is treated, skilled human capital or the number of highly educated workers, are still

very significant and the magnitude also changes very little. The effect of postgraduate

degree in Data 2000 now have a much larger effect, more than twice, and now become
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Table 5: IV Estimation Results

Year 2000(Data 2000) Year 2002(Data 2002)
2SLS NB CF 2SLS NB CF

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers 0.500** 0.250*** 0.582** 0.188***
(Hundred) (0.201) (0.0746) (0.284) (0.0454)
General Manager’s tenure (years) 0.170*** 0.156*** 0.0160 0.0192

(0.0473) (0.0480) (0.0222) (0.0289)
General Manager’s postgraduate degree 1.714** 0.722** 0.552 0.841***
dummy (=1 if has a postgraduate degree) (0.839) (0.362) (0.395) (0.276)
Management team’s average age -0.0424 -0.0503* -0.00432 -0.0666***

(0.0501) (0.0277) (0.0239) (0.0248)
Management team’s average schooling 0.0334 0.216 0.0983 0.141

(0.114) (0.138) (0.0764) (0.0958)

Panel B: R&D and Firm Characteristics
Log (average R&D in previous two years) -0.0116 -0.0427 0.0264* 0.109***

(0.0321) (0.0274) (0.0150) (0.0195)
Market Share 0.0238* 0.0223*** 0.0126* 0.0320***

(0.0129) (0.00750) (0.00756) (0.00539)
Firm Size (log (net value of total assets)) -0.102 0.103 -0.158 0.00232

(0.134) (0.138) (0.152) (0.0894)
Firm Age (year) -0.0151 -0.0147 -0.0143 -0.00760

(0.0135) (0.0140) (0.00975) (0.0106)
Shareholding firms dummy -0.132 0.00527 -0.0962 -0.106

(0.710) (0.513) (0.213) (0.336)
State-owned firms dummy -0.473 -0.191 -0.471 -0.795**

(0.428) (0.586) (0.306) (0.359)
Foreign invested firms dummy 0.0120 -0.553 0.437 -0.940**

(0.661) (0.465) (0.433) (0.384)
Constant 1.381 -4.688* -0.0339 -16.34***

(3.681) (2.664) (1.443) (2.011)
City dummies Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Residual1 -1.062** -0.206**

(0.471) (0.104)
Residual2 -2.733 0.610

(2.818) (0.989)
Over-identification Test: Chi2 7.487 1.481
P-value (0.112) (0.477)
lnalpha 2.011*** 1.921***

(0.199) (0.151)
Number of observations 354 354 826 826
Adjusted R2 0.201 0.183

(1) Standard errors in parentheses: * p <0.10, ** p <0.05, *** p <0.01.
(2) In this model, both skilled human capital (number of highly educated workers) and GM’s postgraduate
degree are treated as endogenous. We use the corresponding city average skilled human capital (excluding
firm self) and industry average human capital (excluding firm self), number of applicants for skilled
position, and number of weeks skilled positions vacant as instruments for skilled human capital. But we
have no information on applicants for skilled position and number of weeks skilled position vacant in Data
2002. Thus, for Data 2002, we only use city average and industry average excluding firm itself as IV. For
GM’s postgraduate degree, we use the corresponding city average and industry average excluding firm
itself as IV.) 53



Table 6: Basic Results with Smaller Sample

Year 2000(Data 2000) Year 2002(Data 2002)
OLS NB OLS NB

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers 0.445** 0.263*** 0.556 0.166***
(Hundred) (0.173) (0.0752) (0.372) (0.0608)
General Manager’s tenure (years) 0.372** 0.208*** 0.00965 0.0130

(0.163) (0.0381) (0.0442) (0.0355)
General Manager’s postgraduate degree 1.408 0.141 1.049 1.327***
dummy =1 if has a postgraduate degree) (0.938) (0.397) (0.725) (0.295)
Management team’s average age -0.0565 -0.0845*** -0.0134 -0.0915**

(0.0655) (0.0306) (0.0521) (0.0360)
Management team’s average schooling -0.127 0.311* 0.213 0.267**

(0.158) (0.163) (0.194) (0.120)

Panel B: R&D and Firm Characteristics
Log (average R&D in previous two years) -0.0558 -0.0590* 0.0551** 0.0932***

(0.0541) (0.0328) (0.0268) (0.0269)
Market Share 0.0323* 0.0242*** 0.0174 0.0352***

(0.0175) (0.00934) (0.0112) (0.00797)
Firm Size (log (net value of total assets)) 0.185 0.0709 -0.148 -0.0383

(0.293) (0.172) (0.373) (0.155)
Firm Age (year) 0.00534 0.0302** -0.0194 -0.0163

(0.0145) (0.0141) (0.0176) (0.0112)
Shareholding firms dummy 0.135 0.658 -0.304 -0.130

(1.302) (0.732) (0.541) (0.405)
State-owned firms dummy 0.0334 0.410 -0.936 -0.437

(1.003) (0.562) (0.715) (0.428)
Foreign invested firms dummy -0.173 0.342 0.556 -0.702

(1.209) (0.573) (0.819) (0.483)
Constant -0.694 -6.985*** -0.658 -18.20***

(5.392) (2.633) (3.423) (3.303)
City dummies Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
lnalpha 2.119*** 1.662***

(0.186) (0.184)
Adjusted R2 0.170 0.158
Number of observations 310 310 388 388

(1) Standard errors in parentheses: * p <0.10, ** p <0.05, *** p <0.01.
(2) Different from Table 4, we now restrict the sample to larger firms and now there are around 20%
firms with nonzero patents while in Table 4 there are around 10% firms with nonzero patents.
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Table 7: IV Estimation Results with Smaller Sample

Year 2000(Data 2000) Year 2002(Data 2002)
2SLS NB CF 2SLS NB CF

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers 0.511** 0.207** 0.614* 0.186***
(Hundred) (0.202) (0.0823) (0.323) (0.0443)
General Manager’s tenure (years) 0.274*** 0.283*** 0.00923 0.0205

(0.0837) (0.0649) (0.0420) (0.0357)
General Manager’s postgraduate degree 2.537** 0.810 0.938 1.567***
dummy (=1 if has a postgraduate degree) (1.248) (0.498) (0.650) (0.326)
Management team’s average age -0.0279 -0.0578 -0.0165 -0.0896**

(0.0810) (0.0386) (0.0518) (0.0365)
Management team’s average schooling -0.146 0.0172 0.184 0.305**

(0.191) (0.178) (0.160) (0.122)

Panel B: R&D and Firm Characteristics
Log (average R&D in previous two years) -0.0542 -0.0611* 0.0504* 0.0843***

(0.0545) (0.0342) (0.0259) (0.0275)
Market Share 0.0404** 0.0149 0.0172 0.0373***

(0.0196) (0.00919) (0.0108) (0.00834)
Firm Size (log (net value of total assets)) -0.0661 0.155 -0.226 -0.0831

(0.236) (0.200) (0.299) (0.144)
Firm Age (year) -0.00834 -0.00182 -0.0189 -0.0148

(0.0185) (0.0168) (0.0173) (0.0116)
Shareholding firms dummy 0.0235 0.248 -0.313 -0.0704

(1.689) (0.711) (0.478) (0.415)
State-owned firms dummy -0.955 0.189 -0.983 -0.393

(1.093) (0.700) (0.660) (0.421)
Foreign invested firms dummy 0.190 0.103 0.559 -0.806*

(1.584) (0.723) (0.766) (0.464)
Constant 2.110 -3.849 0.469 -20.54***

(6.172) (3.144) (3.366) (3.653)
City dummies Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Residual1 -1.245** -0.330***

(0.509) (0.0830)
Residual2 -3.560 -1.062

(3.409) (1.253)
Overidentification Test: Chi2 7.583 1.686
P-value (0.108) (0.430)
lnalpha 1.799*** 1.602***

(0.201) (0.184)
Number of observations 203 203 390 390
Adjusted R2 0.201 0.157

(1) Standard errors in parentheses unless otherwise specified: * p <0.10, ** p <0.05, *** p <0.01
(2) Different from Table 5, we now restrict the sample to larger firms and now there are around 20%
firms with nonzero patents while in Table 5 there are around 10% firms with nonzero patents. In this
model, both skilled human capital (number of highly educated workers) and GM’s postgraduate degree
are treated as endogenous. We use the corresponding city average skilled human capital (excluding firm
self) and industry average human capital (excluding firm self), number of applicants for skilled position,
and number of weeks skilled positions vacant as instruments for skilled human capital. But we have no
information on applicants for skilled position and number of weeks skilled position vacant in Data 2002.
Thus, for Data 2002, we only use city average and industry average excluding firm itself as IV. For GM’s
postgraduate degree, we use the corresponding city average and industry average excluding firm itself as
IV.
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significant at 5% level but it almost has no change in Data 2002 in that it still has

a very significant effect and only slight lower effect. The significance of GM’s tenure

has no change and its effect becomes only slightly lower. The effect of management

team’s age now has a larger effect and it becomes more significant in Data 2000 but it

almost has no change in Data 2002. Management team’s average schooling still tends

to be positive but neither is significant in both datasets. Thus, we can conclude that

our main results still hold.

In addition, the residuals from first stage are significant in both datasets indicating

that the existence of endogeneity. We also partially test the validity of the instruments

by the over-identification test and do not reject the null that the over-identifying

instruments are valid assuming a subset of the instruments is valid and identified the

model. The error term in our model is very likely to be heteroskedastic, and thus we

use robust standard error. Since both Sargan’s and Basmann’s tests assume that the

errors are i.i.d., then these tests are not valid here.34 Thus, we use Wooldridge’s score

test of overidentifying restrictions, which is robust to heteroskedasticity (Wooldridge,

1995).

Moreover, to see the influence of too many zeros in our datasets, we further restrict

our sample to firms with at least 200 total employment and 30 Million RMB, and we

present the basic results in Table 6 with smaller sample and its IV estimation results

in Table 7. Compared to results in Table 4, there’s little change in Table 6. For

example, the coefficient of skilled human capital is still significant and the magnitude

of it becomes a little bit smaller, from 0.292 to 0.263 in Data 2000 and from 0.182 to

0.166 in Data 2002. Similarly, compared to Table 5, the results from Table 7 changes

also very little. Thus, we conclude that our results are robust even if there’s a lot of

zeros in our datasets.

34See more in Sargan (1958) and Basmann (1960).
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3.8 Conclusion

We first explain the reason why we need human capital in our firm innovation study.

First, a firm’s human capital is its one of the most important resources, and thus it is

how we can differentiate firms. This is from resource-based theory. Second, traditional

economic theory assumes that firms are homogenous except for market share and

firm size. We emphasize that the characteristics of a firm’s decision makers, GM

and management team, will largely affect their decision-making and thus the firm’s

performance and other aspects of the firm. Moreover, upper echelon theory argues

that a firm is a reflection of top managers. Human capital plays its role in three

ways. First, skilled human capital affects a firm’s success probability directly, and it

can also affect the firm’s success probability indirectly via affecting the firm’s R&D

level choice. Second, R&D human capital determines innovation directly. Third,

managerial personnel can affect a firm’s project choice and R&D choice. Better

managerial personnel will make decisions closer to optimal levels.

Our major findings are as follows. Skilled human capital has a positive effect in

both datasets and the effect in Data 2000 is much larger. Moreover, we find that

GM’s education and experience have positive and significant effects on innovation.

Management team’s education has a positive effect on innovation while the team’s

average age has a negative and significant effect on firm innovation. Notably, R&D

has a positive and significant effect on innovation in Data 2002 while it is insignificant

in Data 2000.

Implications from our results are that: (1) human capital, skilled human capital

and characteristics of managerial personnel, is very important in determining firm’s

innovation. Without considering them, the study of firm innovation may be biased

because of heterogeneity. Moreover, when both variables are included, human capital

can account for the impact of other innovation, i.e. all the other “on the job learning”

or “learning by doing”. (2) Controlling only market share or market fixed effect
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is not enough for firm innovation study. Comparing firm innovation in different

market environments is essential to studying how market environment affects a firm’s

innovation. Thus, besides knowledge spillover, we find that the strategic choice of a

firm plays an important role in how the market environment affects firm’s innovation.

This is consistent with Grabowski (1968) which stated that firm decisions on R&D

are strongly influenced by the behavior of competitors. (3) R&D and skilled human

capital level might be endogenous in long run. Without dealing with this problem,

we might misinterpret their effects.

Our results are subject to two caveats that warrant further research: one relating

to innovation measure; the other relating to innovation strategies. First, as we admit-

ted previously, patent number is not a perfect measure for firm innovation because

value of patents varies and a lot of innovation is not patented. Further studies on

new product sales and Total Factor Productivity (TFP) might provide us with more

insights into firm innovation. Second, in our study, we only focus on firm’s R&D

and non-R&D innovative activities in house without considering a firm’s other inno-

vative strategies, like R&D cooperation and licensing from other firms, and so forth.

However, in reality, firms will choose their innovative method among all the possible

strategies.
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CHAPTER IV

FIRM-LEVEL HUMAN CAPITAL AND PRODUCT

INNOVATION

4.1 Introduction

Product innovation or new product introductions are vital to most manufacturing

firms’ growth and prosperity (Scherer, 1984b). For some technology driven indus-

tries, the contribution to profits of new products was over 40 percent (Booz Allen

and Hamilton 1982). This is particularly true for China. Firms in China face more

complex environmental situations than their counterparts in market economies since

the relatively underdeveloped government, legal, and financial institutions in China

lead to environmental turbulence as well as dysfunctional competition (Nee, 1992; Xin

and Pearce, 1996; Peng and Heath, 1996). Firms tend to adopt a product innovation

strategy in a turbulent environment because such an environment triggers unlearn-

ing of current routines and offers novel opportunities to take advantage of emerging

market needs (Miller, 1987). Moreover, extant research suggests that a product in-

novation strategy leads to higher performance in volatile environments (Covin and

Slevin, 1989). Thus, examination of the determinants of firm-level product innovation

opens an important window to examine Chinese economic growth.

It is important to make a distinction between product innovation and process

innovation since they have different effects on a firm. A pure process innovation

simply changes the way in which a product is made, without changing the product

itself (except perhaps the price at which it will be sold). In contrast, a pure product

innovation creates a new or improved product for sale without any change in the

production process —except that more inputs (labor, machine time and materials)
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may be required (Swann, 2009). Moreover, Greenhalgh and Rogers (2010) believed

that the essential effect of process innovation is one of cost reduction in production

while the success development of a new product results in a different configuration of

changes in both costs and rewards. Cassiman and Vanormelingen (2013) found that

compared to process innovation product innovation bring more firm-specific price-

cost margins. Specifically, they indicated that product innovations increase markups

on average by 5.1% points by shifting out demand and increasing prices and process

innovation increases markups by 3.5% points due to incomplete pass-through of the

cost reductions associated with process innovation. Product innovation is vital to a

firm since it allows the firm to gain a competitive advantage by differentiating its

output and increasing the quality and variety of goods.

In this chapter, based on the studies in economics, management and marketing

mentioned above, we try to examine firm innovation from a human capital perspec-

tive. Specifically, we will take usual economic factors which have effects on product

innovation, such as R&D, firm size, market structure, firm characteristics, industry

and city fixed effects, into account. At the same time, we also pay attention to dif-

ferent capacities of a firm, such as the ability to identify and understand the users’

needs, and effectiveness in marketing. Rather than assessing the capacities directly,

we use demographic characteristics of General Manager (GM) and management team

(including sales personnel), such as age and education, in our study. Because of the

objective and comparable nature of demographic characteristics, our study is more

objective and more generalized. Moreover, based on resource based theory, we re-

gard human resources as the base of a firm, and thus firm’s skilled human capital is

fundamental to firm activity and thus product innovation. Therefore, skilled human

capital also need to be included.

We still use the same datasets as in the previous chapter.One important advantage

of our datasets is that we have a consistent definition of new product and this ensures
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the validity of our results. A product innovation can be recognized as a new product

innovation only when it was subsequently sold at a price at least 5% higher or lower

than the products the firms sold or increased the sales of the main business line

by more than 2%. More importantly, our definition can keep product proliferation

out of our datasets. Product proliferation is that firms fill up a product space (or

characteristics) with slightly different versions of the same products (Swann, 2009).

A new product because of product proliferation is not so much the innovation in any

one product. Product proliferation is a strategy by firms to segment markets to get

more profits, one way to exert price discrimination, and to deter others from entering

the market. Thus, we can see when a new product is introduced only because of

product proliferation, it will usually be more difficult for it than a new product with

real innovativeness to have a higher price or to increase market share.

Another advantage of our datasets is that we have three product innovation mea-

sures: new product sales proportion, new product sales and new product innovation

count. These measures enables us to study product innovation from three dimensions,

the proportional aspect, value, and count and thus we can have a better understanding

of product innovation. If we only have information on the proportion of new product

sales in total sales, we may fail to distinguish the meaning of the same proportion for

firms with different total sales in the same industry or the same competitive market.

For example, a proportion of 0.5 never means the same level of innovativeness for

a small bread producer with $1000 total sales and its rival firm with $10,000 total

sales. But proportion can be very useful across different industries, for example, if

we want to compare the innovativeness of a pen producer and a car producer, new

product sales will be less appropriate than proportion. New product innovation count

is a good way to compare the innovativeness of firms but it also has its drawbacks.

For example, when we use new product count to compare, we implicitly assume that

each new product innovation the same value. Moreover, we have information on both
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self-reported market share and number of competitors faced by firm. Thus, we can

use number of competitors rather than market share to capture the effect of market

structure on product innovation since market share can be highly correlated with

product innovation sales and counts.

Lots of studies only include firms with innovation or R&D their samples and

therefore might suffer a sample selection problem. For example, Cohen et al.(2002)

only include firms with industrial R&D facilities, and thus their study are essentially

heavily biased towards large-scale, technologically-intensive firms, despite the inclu-

sion of around 20 small firms. suffer from a sample selection problem when we try to

generalize their findings. Our datasets are from random survey data and in nature

include both innovative firms and non-innovative firms and thus our results can be

generalized without bias.1 However, there are also some challenges we need to tackle

with our datasets. The first challenge is that our three dependent variables, new

product sales proportion, new product sales and new product innovation count, are

of three data type, continuous, proportional and count data. Different types of data

types needs different estimation techniques.

The second challenge we encountered arises from the fact that there are around

50% observations with zero product innovation and the zeros are very likely to come

from two different channels. There are some firms with real zero product innovation

who don’t do any innovation somehow. But there are some firms with zero prod-

uct innovation in our datasets are not completely non-innovative firms. They were

recorded as with zero product innovation because their product innovations haven’t

meet the definition of product innovation in this survey. In this way, the distribu-

tion of the data has been changed around zero. Taking both the types of dependent

variables and the more ”zeros” into account, we will use zero-inflated beta model in

1More specifically, the sampling methodology for the surveys is stratified random sampling. The
strata used are firm size, business sector, and geographic region.
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estimating new product innovation proportion, Tobit model in estimating new prod-

uct sales, and negative binomial model in estimating new product counts. We will

explain more details in the methodology part. Finally, similar with previous chapter,

we need to deal with the endogeneity of our human capital measure. The reason is

that if a firm wants to be active in product innovation it will employ a much more

educated GM and management team. Same as in the previous chapter, we will still

use the same instruments.

We find that for skilled human capital, we find that it also tends to have a positive

effect across the three measures, though it is not significant in regression using new

product proportion as product innovation measure. When new product sales propor-

tion and new product sales are used as product innovation measures, we find that

management team’s average years of schooling has a positive effect in determining

product innovation, however, its effect in Data 2000 when new product count used as

product innovation measure is negative and significant. This indicates that though

the results from the three regressions are generally consistent, but they still differ.

When compare the results using different innovation measures, we should be very

cautious. Another thing is that different from results in last chapter where R&D has

a positive effect only in Data 2003, less developed areas, we find that R&D has a

very significant and positive effect on product innovation no matter which product

innovation measure is used. This indicates that R&D is still important in promot-

ing product innovation and policies supporting investment in R&D is still important.

Our results still hold when endogeneity is considered. Notably, in all three models, we

all find that general manager’s postgraduate degree has a large and significant effect

in less developed areas but insignificant at all in more developed areas. The reason

might be that in less developed areas, market development is much more incomplete

and thus general manger’s education matters more. A higher education can enable a

general manager to make more insightful decision.
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The paper is organized as follows. Section 4.2 reviews related studies. Section

4.3 introduces the data. Section 4.4 presents empirical strategy. In section 4.5, we

present our main results and interpret the findings. Section 4.6 concludes.

4.2 Product Innovation and Related Literature

According the definitions by (Swann, 2009), a pure product innovation creates a new

or improved product for sale without any change in the production process-except

that more inputs might be required and a pure process innovation simply changes

the way in which a product is made, without changing the product itself. In reality,

these two types of innovation often coexist, for example, an improved products often

require some innovations in the production process. However, this never means that

we don’t need to make a distinction between them. The primary difference between

product innovation and process innovation is that product innovation is more closely

and directly related to final products and thus to the market, profits, firm performance

and firm growth.

Though firm innovation has always been a hot topic in economics, there’s much

less literature on product innovation rather than general firm innovation in economics.

Early from 1970s, Utterback and Abernathy (1975) argued that characteristics of

the innovative process and of a firm’s innovation attempts vary systematically with

differences in the firm’s environment, competition and growth strategies and also with

the state of development of process technology and they also empirically examined

their arguments. They found that at early stage of process development, product

innovation dominated while at the mature stage, process innovation would dominate.

Thus, we can get that a market with more demand potential can promote product

innovation. Swann (2009) clearly distinguished the differences between the two types

of innovation and analyzed them respectively in economics. In his analysis, both

product and process innovation allow the innovative firm to capture a larger market
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share but in different ways. Process innovation takes market share symmetrically

from both products with higher quality and lower quality while product innovation

takes market share more from the products with much higher quality and much less

so from the products with lower quality. Moreover, when firms aim to get a larger

market share, product innovation might be more helpful. Thus, from previous studies,

we can see that it is important for us to focus only on product innovation rather than

general innovation.

Not surprisingly, determinants of general firm innovation in economics still ap-

plies in product innovation study. For example, the structural characteristics of

industry including market opportunities, technological opportunities and appropri-

ability conditions have been examined in the literature (Souitaris, 2002; Dougherty,

1990; Geroski, 1990; Levin et al., 1985). In particular, the Schumpeterian tradition

(Acs and Audretsch, 1988), i.e., in the relationship between firm size and/or market

structure and innovation, has always been recognized as an important strand. How-

ever, most of the current studies on product innovation is centered in management

and marketing literature. Many of these investigations adopt resource-based theory,

which emphasize the heterogeneity of firms and the role played by internal attributes

in firm strategies. In this perspective, each firm possessed a unique set of resources

and capacities, tangible and intangible, which have been acquired and over time and

which finally determine a firm’s strategy and performance. Of them, firm’s human

capital is especially important. As early as 1960s, Myers and Marquis (1969) found

that identifying and understanding the users’ needs are very important to product

innovation, and new products were more successful if they were designed to satisfy a

perceived need than if they were developed to simply take advantage of a new tech-

nology. Moreover, Rubenstein et al. (1976) examined 103 projects in US industrial

firms and concluded that internal management factors were primary influences on

product success. In fact, Hopkins (1980) and Cooper (1975) concluded the principal
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causes for failure as ineffective product marketing and poor market research. Zirger

and Maidique (1990) examined over 330 new products in the electronics industry

and suggested the following key factors affect product outcome are the quality of

the R&D organization, the technical performance of the product, the product’s value

to the customer, the synergy of the new product with the firm’s existing compe-

tences, and management support during the product development and introduction

processes. They concluded that successful product innovation is strongly influenced

by the firm’s understanding of its customers’ needs and its effectiveness in marketing.

From above, we can see that most of these studies are case studies and directly assess

different capacities of a firm involving in product innovation.

4.3 Data

In our datasets there are two important measures of product innovation: percentage of

new product sales in total sales (proportion) and number of introduced new products

in existing business line (count).2 For simplicity, we call them proportion measure

and count measure respectively. These two measures have been popularly used in

innovation studies (Katila, 2002; Hall et al., 2009). Multiplying the percentage of new

product sales to total sales, we then get new product sales (value), which is popular

in innovation studies (Atuahence-Gima and Li, 2004; Liu and Buck, 2007). Similarly,

we call it value measure. Compared to patents used in last chapter, these three

measures having the advantage of including not only patented innovation but also

non-patented innovation. Moreover, they can indicate market acceptance of a new

product while some patented innovations have no market value. We use these three

product innovation measures at the same time to try to get a more comprehensive

2Compared to datasets in previous chapter, in Data 2002 we drop 3 observations with new product
count 1000, 2000 and 3200 respectively since they are far from the mean without them, 11.04. But
our main results are robust to the datasets with these extreme values. In this chapter, we have 624
observations in Data 2000 while we have 910 observations in Data 2002, three less than in previous
chapter.
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understanding. It should be noticed that the percentage measure and value measure

include both new products introduced in existing business line and new products in

a new business line. The difference is that by entering a new line, firms make a larger

change and face more risk than staying in a existing business line. Note for proportion

measure and value measure for each year, that is for year 1998-2000 in Data 2000

and for year 2000-2002 in Data 2002. Though they are three-year panel, we only use

data in survey year, i.e., year 2000 in Data 2000 and year 2002 in Data 2002, as we

only have information on human capital in survey years. In particular, we should

note that for the count measure, it is the number of new products introduced from

1998-2000 and thus it is for three years in Data 2000 while in Data 2002, it is the

total number of new products introduced from 1999-2002 and thus it is for four years.

To make product innovation more meaningful, the survey has its own definition

of product innovation. A new product in a year should be one which was introduced

or produced for the first time at the beginning of the year.3 For example, a new

product is recorded as a new product in the survey in year 2000 should be introduced

or produced for the first time after January 1, 2000. Most importantly, it should also

need to meet at least one of the following criteria: (1) was subsequently sold at a

price at least 5% higher or lower than the products the firms sold on January 1, 2000;

(2) increased the sales of the main business line by more than 2%.

Figure 8 and Figure 9 presents the distributions of three product innovation mea-

sures over cities in both datasets. In both figures, all histograms indicates that distri-

bution of product innovation over cities is not even. Notably, the distributions of three

measures are of different patterns even for the same datasets. Specifically, in Data

2000, when we use count measure, Beijing has the most product innovation while it

is Shanghai when proportion measure and value measure are used. The city with the

least product innovation is Guangzhou when proportion measure is used, Chengdu

3We can see that in this definition, innovation defined as “new to the firm”.
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Figure 8: Distributions of Three Product Innovation Measures over Cities (Data 2000)

when value measure is used and Tianjin when count measure is used. Similarly, three

measures indicate different distributions over cities in Data 2002. Chongqing has

the largest product innovation proportion while Kunming has the smallest product

innovation proportion; Shenzhen has the most new product innovation sales while

Kunming and Nanning has the least; Hangzhou has the largest product innovation

counts while Jiangmen and Kunming has the smallest product innovation by counts.

We can see that these three measures have correlated with each other but at the same

time they differ a lot. We present the correlation matrix among three measures in

Table 8.We can see that across both datasets, the correlation coefficient between pro-

portion measure and value measure is largest, around 0.3, followed by the correlation

coefficient between proportion measure and count measure, which is around 0.2. The

correlation coefficient between value and count is the smallest, around 0.1. Thus, we

can see any conclusions derived by comparing among measures should be cautious.
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Figure 9: Distributions of Three Product Innovation Measures over Cities (Data 2002)

Table 8: Correlation Matrix among Three Product Innovation Measures (Proportion,
Value, and Count)

Data 2000 Data 2002
Proportion Value Count Proportion Value Count

Proportion 1.00 1.00
Value 0.30 1.00 0.35 1.00
Count 0.25 0.14 1.00 0.20 0.11 1.00

Besides information on new products introduced, we have another important in-

formation in this chapter and it is the number of competitors each firm faces. More

specifically, it is the number of competitors a firm has within its main business line

in domestic market. It is coded as five categories: 1 if the number of competitors is

between 1 and 3 (including); 2 if between 4 and 6 (including); 3 if between 7 and 15

(including); 4 if between 16 and 100; 5 if more than 100. On average, there are 2.97
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competitors faced by firms in Data 2000 and 3.47 competitors faced by firms in Data

2002. That is, markets in Data 2002 are more competitive than those in Data 2000.

This is consistent with self-reported market share, which is 9.01 for firms in Data

2002 while it is 16.13 for firms in Data 2000. Different from previous chapter, we use

number of competitors rather than market share to account for market environment

as market share, measured using total sales, should be very closely related to total

sales which is closely related to the value measure and the proportion measure of

product innovation.

We then present statistics summary in Table 8 (Data 2000) and Table 9 (Data

2002). We can see that the average number of products introduced by firms in existing

line from 1998-2000 is 6.68 in Data 2000 while it is 11.04 in Data 2002. It seems that

there are more product innovation in Data 2002, judging only from these new product

counts. However, we still need to notice that 6.68 new products are for three years

but 11.04 are for four years and it is only for existing business line rather than total

number of introduced new products, including both existing and new business line.

Thus, until now we cannot see that firms in Data 2000 has less product innovation

than in Data 2002. There are 321 firms out of total 621 firms (51.69 %) with at least

one new product in existing line and 530 firms out of 900 firms (58.89 %) has non-zero

new products in existing line. Thus, there are slightly more firms with non-zero new

products introduced in the existing business line. When it comes to the percentage

of new products in total sales, the two datasets have very similar percentage (13%,

15%, 18% in year 1998, 1999, 2000 respectively) in Data 2000 versus (13%, 16%,

19% in year 2000, 2001, 2002 respectively). Similarly, the percentage for firms with

non-zero new products introduced is similar too and is around 30% for both datasets.

Though new product sales differ somewhat the years before the survey year, 40.98 and

79.34 Million RMB (around 4.95 and 9.58 Million dollars)in Data 2000 versus 63.97

and 69.91 Million RMB (around 7.73 and 8.45 Million Dollars) in Data 2002, it is
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Table 9: Descriptive Statistics for Product Innovation Study (Data 2000)

Year Observation # Mean Std. Dev. Min Max

Panel A: Product Innovation and Human Capital Variables

Number of introduced new products in existing business line 1998 to 2000 621 6.68 26.73 0 300
Number of introduced new products in existing business line(>0) 1998 to 2000 321 12.92 36.11 1 300
Percentage of new product sales in total sales 2000 607 0.18 0.27 0 1

1999 610 0.15 0.24 0 1
1998 606 0.13 0.23 0 1

Percentage of new product sales in total sales(>0) 2000 300 0.36 0.28 0.01 1
1999 268 0.33 0.27 0.01 1
1998 244 0.31 0.27 0.01 1

New Products sales (Million RMB) 2000 607 95.76 474.83 0 6952.25
1999 610 79.34 716.98 0 2894.08
1998 598 40.98 185.65 0 2149.95

Number of skilled workers (Hundred) 2000 623 1.84 3.25 0.1 41.33
1999 619 1.76 2.83 0.1 24.96
1998 623 1.81 2.79 0.1 27.31

Total number of employees (Hundred) 2000 624 9.45 15.05 0.5 170.98
1999 623 9.12 14.59 0.5 184.66
1998 621 9.46 15.12 0.5 180.59

Years of schooling of General Manager (GM) 2000 622 14.03 2.30 5 18
Years of GM holding the position 2000 623 5.69 4.44 0 30
GM’s postgraduate dummy (=1, postgraduate) 2000 622 0.16 0.37 0 1
Management team’s average age 2000 614 36.29 6.63 18 54
Management team’s average schooling 2000 615 11.88 1.50 8 18

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2000 603 19.00 237.06 0 5673.04
1999 611 15.20 194.83 0 4618.87
1998 610 15.31 183.43 0 4238.68

Value of total sales (Million RMB) 2000 624 334.31 1828.58 3 31600
1999 624 318.91 1933.77 3.01 32200
1998 614 253.86 1613.49 3.04 28900

Self-reported Market share 2000 583 16.13 20.53 0.1 98
Self-reported number of competitors 2000 576 2.97 1.30 1 5
Net value of total assets (Million) 2000 622 102.79 430.07 13 7554.33
Firm age 2000 624 17.81 17.37 0 92

quite similar in the survey year across the two datasets, 95.76 Million RMB (around

11.57 Million Dollars) versus 99.56 Million RMB (around 12.03 Million Dollars).4

Also, judging from the value and proportion measures, new product innovation in

both datasets increases with time. In addition, the largest number of new product

4We use the exchange rate at that time. The World Bank annual average exchange rate for US
dollar to Chinese yuan (1 US to Chinese yuan) is Exchange rate is 8.279, 8.278,8.278,8.277,8.277 for
year 1998-2002.
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Table 10: Descriptive Statistics for Product Innovation Study (Data 2002)

Year Observation # Mean Std. Dev. Min Max

Panel A: Product Innovation and Human Capital Variables

Number of introduced new products in existing business line 1999 to 2002 900 11.04 39.32 0 672
Number of introduced new products in existing business line(>0) 1999 to 2002 530 18.75 49.82 1 672
Percentage of new product sales in total sales 2002 887 0.19 0.26 0 1

2001 890 0.16 0.24 0 1
2000 885 0.13 0.22 0 1

Percentage of new product sales in total sales(>0) 2002 485 0.35 0.27 0.0001 1
2001 444 0.31 0.25 0.0001 1
2000 409 0.28 0.25 0.0028 1

New Products sales (Million RMB) 2002 886 99.56 541.87 0 8609.11
2001 886 69.91 370.91 0 4602.50
2000 876 63.97 370.08 0 4739.06

Number of skilled workers (Hundred) 2002 904 1.56 2.86 0.1 42.81
2001 902 1.57 3.05 0.1 53.83
2000 899 1.58 3.18 0.1 60.86

Total number of employees (Hundred) 2002 909 7.32 13.15 0.5 155
2001 908 7.40 13.38 0.5 199.06
2000 904 7.33 13.58 0.5 220.44

Years of schooling of General Manager (GM) 2002 903 14.15 2.23 5 18
Years of GM holding the position 2002 901 5.87 4.47 1 23
GM’s postgraduate dummy (=1, postgraduate) 2002 903 0.17 0.37 0 1
Management team’s average age 2002 879 36.51 5.31 20 51
Management team’s average schooling 2002 883 12.11 1.53 5 18

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2002 904 4.13 26.45 0 534.97
2001 892 3.78 32.73 0 782.41
2000 891 2.52 17.94 0 451.20

Net value of total assets (Million RMB) 2002 909 268.80 1244.89 3.11 29700
2001 906 222.96 937.67 3.09 21300
2000 901 197.79 762.64 3.01 15800

Self-reported Market share 2002 884 8.96 16.39 1 99.46
Self-reported number of competitors 2002 893 3.46 1.36 1 5
Asset value (Million) 2002 905 96.30 411.73 0.11 8207.21
Firm age 2002 910 15.94 14.32 2 52

innovation is 300 in Data 2002, much smaller than it in Data 2003, which is is 672.

However, the biggest new product sales don’t differ so much, 6952.25 Million RMB

(around 839.85 Million Dollars) in year 2000 in Data 2000 versus 8609.11 Million

RMB (around 1040.12 Million Dollars) in year 2002 in Data 2002.
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4.4 Empirical Framework

4.4.1 Estimation Specification

Based on above analysis, we then specify our empirical specification as

log(producti) = α0 + α1 log(HCi) + α2 log(RDi) + α3Xi + εi (27)

where producti is firm is new product innovation measure, new product sales

proportion, new product sales, or number of new product; HCi is the human capital

measures; RDi is firm’s R&D input of last period; Xi is other firm characteristics; εi

is error term.

For new product innovation, we have information on new product sales proportion

(proportion measure), new product sales (value measure) and number of new products

(count measure). Each of them measure different dimensions. First, new product

sales proportion is the share of new product sales in total sales in a year. The feature

that it contains no unit makes it a good measure under the assumption that firms

compared are with the same firm size or total sales. However, if the assumption fails

the proportion measure will be less meaningful since the same new product proportion

means different for firms with different total sales. For example, a large new product

proportion might mean very few new product innovation for a firm with small total

sales while a small new product proportion for a large firm might means a lot of

product innovation. Second, new product sales stands for realized benefits of product

innovation for a firm. Thus, we can use it to compare any product innovation given

the value is measured correctly and prices don’t differ a lot. This feature makes it

a very popular innovation measure. However, its limitation is that the prices might

differ a lot and the value of product innovation might be measured incorrectly. Third,

the number of new product is meaningful in that it provides a comparable measure

independent of price and product categories and it is also used a lot in previous

studies (e.g., Wu, 2013). Compared to patents, it together with other two measures
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includes not only patented innovation but also non-patented innovation. But we need

to make an assumption that all innovation are of the same value before we use it to

compare. Therefore, each measures have its advantages and disadvantages. By using

them together, we can gain more understanding about product innovation in a firm.

Like in the previous chapter, our human capital measures are: skilled human

capital, or the number of highly educated workers, general manager (GM)’s tenure,

GM’s postgraduate degree dummy, management team’s average schooling and av-

erage age. Skilled human capital is used to measure a firm’s skilled human capital

roughly and it serves as the base of human capital in a firm. It may includes technical

personnel’s human capital, managerial personnel’s human capital and salesmen’s hu-

man capital and so on. However, it doesn’t include basic production worker (usually

with high school education or below)’s human capital. The information on GM and

management team is to measure how managerial human capital might affect product

innovation. The reason why managerial human capital is important to product inno-

vation roots in knowledge search literature and attention-based theory. Knowledge

based theory argues that searching broadly enables a firm to see more new techno-

logical developments, and learn from them to finally boost its innovation capacities

(Katila, 2002). Attention-based theory suggests that the effectiveness of knowledge

search is constrained by limited managerial attention, and engaging with too many

channels results in a poor allocation of managerial attention (Leiponen and Helfat,

2010). We expect that a firm with more skilled human capital will have a higher

knowledge search capacity. GM and management teach with higher education have

more knowledge search capacities and also might also can allocate their attention

more efficiently. Management team’s age is very likely to have an negative effect on

knowledge search capacity and attention an the main reason is that older people usu-

ally have less energy physically. Moreover, the knowledge structure of older people
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might be less compatible with current technological development than younger peo-

ple. However, we are uncertain about the effect of GM’s tenure since a GM with more

experience can have better judgment and more insight when he makes decisions. On

the other hand, a GM holding his position too long might also stick to his own phi-

losophy too much, and he is reluctant to make any changes even when his philosophy

is not right. The effect of GM tenure on product innovation is determined by which

effect dominates.

R&D is pursued by firms to order to get innovation. It should have an positive

effect with product innovation. However, when R&D spending itself becomes one of

the firms objective, it might has no effect on innovation. For example, in the land-

mark document “The National Medium-and Long-Term Plan for the Development of

Science and Technology (2006-2010) (MLP), it clearly states that one of its goal is

to increase China’s gross expenditure on R&D to 2.5 percent of GDP by 2020 from

1.3 percent in 2006. R&D itself cannot produce innovation. There should be com-

plementary human capital. If R&D is higher than needed given its human capital

level, R&D will have no effect on innovation. The Scientific Activity Predictor form

Patterns of Heuristic Origins (SAPPHO) study also identified the mediating role of

human capital in influencing the effect of R&D on innovation. First, R&D teams

must be efficient and effective in their development efforts. The second is that there

should be an executive champion, a senior member of the firm with power and au-

thority who fought for the product. Product champions facilitate the allocation of

resources to the development efforts, and stimulate cooperation and communication

between the functional groups, which are also important in product success.

Market structure, especially competition, should be very important for product

innovation since it influence firm’s innovation incentives and the probability of product

innovation success. Arrow (1962) showed that a secure monopolist gains less from

perfectly patentable process innovations than would a competitive firm facing the
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same market demand. Chen and Schwartz (2013) showed that compared to Arrow’s

result for process innovations, the gain from a product innovation can be larger to

a secure monopolist than to a rival who faces competition from independent sellers

of the old product. Moreover, monopolist usually have more resources to develop

more products and to cover the possible loss from developed and introducing new

products. Therefore, we expect that competition should have a negative effect on

product innovation. Since market share is obviously endogenous for new product

sales, here we use number of competitors for a firm to account for market competition.

Thus, we expect that the number of competitors should have a negative effect on

product innovation.

In addition, we also control for firm size, firm age, ownership dummies, city fixed

effects and industry fixed effects. We want to emphasize the importance of industry

effect on product innovation since different industries mean different product life cycle

and technology stage. Balachandra and Friar (1997) argued that models that do not

take contextual issues into account may lead to erroneous conclusions. Link (1987)

found that in the high-tech field, the technology is developed very rapidly, and so new

product introductions come quickly.

There are three challenges with respect to estimation. First, our three product

innovation measures, the new product sales proportion, new product sales, the number

of new products are of three different types, proportion data within 0 to 1, continuous

data, and count data. Therefore we need different techniques to deal with them. For

proportion data, since its value is within 0 to 1 (0 and 1 are included), the prediction

using OLS or count data regression technique such as poisson, is very likely to be out of

the range and thus cannot be used. Similarly, for the number of new products, we need

to use count data techniques, such as poisson and negative binomial. Second, there

are about half zeros in our datasets. Also, according to our new product definition,

zero product innovation might come from at least two sources: firms with true zero
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new product introduced and firms with new product innovation introduced but fail

to meet the new product definition. Combined the first and second issues, we will use

zero-inflated beta regression for proportion measure, Tobit model for value measure

and negative binomial for count data. For proportion data, generalized linear model

method (GLM) proposed by Pakes and Wooldridge (1996) is also a good way to

model proportion model but it cannot deal with the inflated zero problem. For value

measure, Tobit model is used to deal with inflated zero problem. For count data

measure, both negative binomial model and zero-inflated negative binomial can deal

with count data feature and zero inflated problem. But when we compare predicted

values with observed values, we find that negative binomial fits the data better. Since

negative binomial model has been introduced in last chapter, in the following, we will

only explain Tobit model and zero-inflated beta model in details. Third, skilled human

capital and general manger’s education are very likely to be endogenous. Firms plan

to be active in product innovation introduction will hire general manager with higher

education and more highly educated workers. Like in last chapter, for number of

highly educated workers, we will use number of applicants for the skilled positions,

vacant weeks of skilled position before filled, city average and industry average both

excluding firm itself as instruments. Note that for Data 2002, we have no information

on applicants and vacant weeks, so we only use city average and industry average

excluding firm itself. For general manager’s postgraduate degree dummy, we use city

and industry average excluding firm itself as instruments. For all the models, we use

control function technique.

4.4.2 Estimation Techniques

Tobit model is devised by Tobin (1958) for situations where y∗, the latent variable,

is observed for values greater than 0 but is not observed for values of zero or less.

The latent variable, y∗, is linear in regressors with additive error that is normally

77



distributed and homoskedastic. It is defined as

y∗ = β0 + xβ + u (28)

with the error term

u|x ∼ N (0, σ2). (29)

and

y = max(0, y∗) (30)

The above equations implies that the observed variable, y, equals y∗ when y∗ ≥ 0,

but y = 0 when y∗ < 0. Thus, observed 0’s on the dependent variable can mean

either a “true” 0 or censored data. In our situation, a new product can be counted as

a new product if its price is 5% higher price than its current products or increase the

total sales by more than 2%. Thus, even if a firm has some new product introduced

but cannot meet the above criterion, it is still a product with ”0” product innovation.

Moreover, firms without any new product introduced, that is, less than “0” product

innovation, are also counted as firms with “0” product innovation. But they are two

different types of firms with respect to product innovation. Thus, the observed “0”,

the lower limit, is not necessarily zero, nor is it the same for all firms. Thus, OLS

estimator are biased downward and we need to use Tobit model in our analysis.

Maximum-likelihood estimation of the Tobit model is straightforward. Since y∗

is normally distributed, y has a continuous distribution over strictly positive values.

More specifically, the density of y given x is the same as the density of y∗ given x for

positive values, and we have

P (y = 0|x) = P (y∗ < 0|x) = P (u < −xβ|x) = 1− Φ(xβ/σ) (31)

where Φ(.) is the cumulative density function of the standard normal distribution.

We have absorbed the intercept into x for notational simplicity. We further denote
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φ(.) as the density function of the standard normal distribution, we then have the

log-likelihood function

logL(β, σ) =
∑
yi>0

(− log σ + log φ(
yi − xβ

σ
)) +

∑
yi=0

log(1− Φ(
xβ

σ
)) (32)

From equation (28), we can see that βj measure the partial effects of xj on E(y∗|x),

where y∗ is the latent variable. In our analysis, if our goal is to understand the

underlying propensity to innovate, then we will be interested in the marginal effect

of x on y∗. However, we are more interested in understanding the amount of product

innovation by innovative firms along, that is, the effect of x on y|y > 0. Moreover, we

are interested in the effect of x on the probability of firms having product innovation,

P (y > 0|x). The three marginal effect expressions are derived using standard results

on moments of Tobit, as follows5

∂E(y|y > 0,x)

∂x
= β(1− δ(−xβ

σ
)) (33)

where δ(α) = λ(α)(λ(α)− α), λ(α) = φ(α)/(1− Φ(α)), and α = −(xβ/σ).

∂P (y > 0|x)

∂x
=
β

σ
φ(

xβ

σ
) (34)

Marginal effect expressed in equation (33) measures how the expected value of

product innovation changes for firms with non-zero product innovation (innovative

firms) when independent variable, x changes. Marginal effect expressed in equation

(34) measures how the probability of being a firm with product innovation changes

as x changes.

Another important methodological issue arises when considering the modeling of a

proportions variable such as our dependent variable, the share of new product sales in

total sales. Two features of this variable should be taken into account when estimated

5See more in the chapter 17 in Wooldridge (2012).
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as the dependent variable. The first feature is that, as a proportion, its value lies in

[0,1] (including 0 and 1). One way to handle this is to use logit transformation6

y =
1

1 + exp(−xβ)
(35)

However, as we can see from equation (35) the transformed dependent variable

cannot be 0 and 1, but we have almost half of the observations with 0 proportion

of product innovation and thus this method is not appropriate for us.7 Pakes and

Wooldridge (1996) proposed to use generalized linear model (GLM). Their approach

combined logit transformation (transform data into (0,1)) and binomial distribution

(dealing with the value 0 and 1)together. Thus, if the data are usual proportion

data without the second feature mentioned in the following, we can use this method.

The second feature is that, as we mentioned in Tobit part, firms with zero product

innovation actually comes from at least two sources because of the product innovation

definition: firms with product innovation but fail to meet the new product definition

and defined as firms with zero product innovation, and firms with real zero new

product introduced. We can still use Tobit model if we don’t have the first feature.

With the first feature, Tobit model, is a conceptually flawed model for proportion

model (Cook et al., 2008). Thus, given the two features of our dependent variable,

we will use zero-inflated beta model as it is proposed in Cook et al.(2008) to deal with

proportional data with a mass at zero. They define the zero-inflated beta probability

density as

g(y; θ) =


0 if y < 0

δ if y = 0

(1− δ)f(X; θ) if 0 < y < 1

(36)

6This is based on Baum(2008)
7Moreover, proportion data has the nature of heteroskedastic nature and its conditional variance

must be a function of the conditional mean, a weighted least square method is developed to deal
with it based on logit transformation. See more in Baum (2008).
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where

f(y; p, q) = [
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1] for 0 < y < 1. (37)

Thus following Cragg (1971) and Cook et al.(2008), zero-inflated beta regression

can be formulated as

f(yi = 0|Xi) = 1− C(α′Xi) for yi = 0 (38)

and

f(yi|Xi) = C(α′Xi)[
Γ(p+ q(Xi))

Γ(p)Γ(q(Xi))
yp−1(1− yi)q(Xi)−1] for 0 < yi < 1, (39)

where q(Xi) = p exp(−β′Xi) and p are parameters for the beta distribution.

C(α′Xi) represents the probability of a firm choosing to have product innovation.

α stands for marginal effect on the decision to do product innovation or not, while β

stands for the effect on how much to do product innovation for firms with non-zero

product innovation. Note that the fact that α and β are allowed to be different indi-

cates that the two effects mentioned above are allowed to be different. This regression

is fitted using maximum likelihood estimation.

4.5 Results

We present the results from new product sales proportion regression in Table 11. We

use zero-inflated beta model in this regression.8 Column(1) presents the coefficients

from ZIbeta, zero-inflated beta model; column (2) presents the coefficients from zero-

inflated part of zero-inflated beta model; column (3) presents the marginal effects of

independent variables on observed dependent variable, new product sales proportion,

8As we mentioned before, generalized linear model (GLM) proposed by Pakes and Wooldridge
(1996) and popular in proportion data regression might be appropriate here. Also, Tobit, which
is often used to deal with censored data is might also be appropriate here because our dependent
variable with zero value might come from more than one sources. Therefore, in the model selection,I
also tried GLM and Tobit. But when we compared actual value and predicted value, we find that
zero-inflated beta model fits better.
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given uncensored and the marginal effects are calculated at mean; column (4) presents

the marginal effects of independent variables on probability of being uncensored, that

is, of being a firm with non-zero new products introduced. Columns (5)-(8) are

similar but for different dataset, Data 2002. New product sales proportion is used as

dependent variable. City and industry dummied are controlled.

We find that in Data 2000, out of all the human capital indicators, we only find

a positive effect of the average schooling of management team on the probability of

being a new product introducer, or the negative effect of being a firm with zero new

product introduced. The marginal effect is 0.0460 in Data 2000, which means that

other things equal, for an average firm in the sample, when the average schooling

of management team increase 1 year, the probability of a firm being a new product

introducer will increase 0.046. In Data 2002, the effect is comparable, an extra year of

schooling of management team will increase the probability of being a new product in-

troducer in Data 2002 is 0.0326, only slight lower than in Data 2000. Notably, general

manager’s postgraduate degree has a positive and significant effect both statistically

and economically on the probability of being a new product introducer in Data 2002.

More specifically, other things equal, the probability of being a new product producer

will increase 0.209 if an average firm with a general manager holing a postgraduate

degree than not. We also find a negative effect of the age of management team on the

probability of being a product innovator. When management team’s age increases

one year, the probability of a firm being a product innovator will decrease 0.00848,

not a large effect. Also, we fail to find any significant effect of human capital on the

amount of sales proportion change given only product innovator.

Notably, we find a positive effect of R&D on new product sales proportion both

on the decision of being a product innovator (the probability of non-zero new product

introducer) and the amount of new product sales proportion given non-zero product

innovator and both effects are comparable across the two datasets. Specifically, other
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things equal, for an average firm with nonzero product innovation, if its R&D increase

1 percent, its number of product innovation will increase 0.00683 in Data 2000 and

it will increase 0.00316 in Data 2002. Other things equal, for an average firm, the

probability of being a product innovator will increase 0.0275 and 0.0210 respectively

in Data 2000 and Data 2002 with 1 percent increase in R&D.

Moreover, we find that number of competitors have a negative effect on product

innovation and the effects a little bit across the two datasets. In Data 2000, we

only find a negative effect on the amount of product sales proportion for product

innovators but there’s no significant effect on the probability of being an product

innovator. In data 2002, we find both a negative effect on the amount and the

probability. More specifically, in Data 2000, we find that other things equal, for

an average product innovator with non-zero product innovation, when the number

of competitors it faces increase 1, its product innovation proportion will decrease

0.0228. In Data 2002, when number of competitors increases 1, other things equal,

the new product sales proportion of an average innovator with non-zero new product

introduced will decrease 0.0143; for an average firm, when the number of competitors

increases 1, the probability of being a product innovator will decrease 0.0272.

We can conclude from Table 11 that for a firm, management team’s education

will promote the probability of being a product innovator for both more developed

areas and less developed areas. General Manager’s postgraduate degree has a large

effect on the probability of being a product innovator in less developed areas but no

significant effect in more developed areas. The reason might be that in less developed

areas, since the market is less developed, a general manager with higher education is

more important than in a more developed market. We also find that the management

team’s age has a negative effect on the probability of being a product innovator in less

developed area but no significant effect in more developed area. Moreover, we find

that R&D has a positive effect on both the amount of new product sales proportion
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for product innovators and the probability of being a product innovator. The number

of competitors has a negative effect on the amount of new product sales proportion

for product innovator in both areas, but it only has decisive effect of being a product

innovator in less developed areas.

In Table 12, we present new product sales regression. Column(1) the coefficients of

Tobit; column (2) presents the marginal effects of independent variables on observed

dependent variable, new product sales proportion, given uncensored and the marginal

effects are calculated at mean; column (3) presents the marginal effects of independent

variables on probability of being uncensored, that is, of being a firm with non-zero

new products introduced. Columns (4)-(6) are similar but for different dataset, Data

2002. Log of new product sales is used as dependent variable. City dummies and

industry dummies are controlled.

The first important result is that number of educated workers has a positive effect

on both the amount for the uncensored firms but also on the probability of being

a non-zero product innovator for both datasets even we have controlled firm size by

using log of net value of total assets. The two marginal effects are both comparable

across both datasets and this indicates that our result are robust. More specifically,

its marginal effect on the amount of new product sales for product innovator is 0.0922

and 0.120 respectively in Data 2000 and in Data 2002, indicating that when number

of highly educated workers increases 100, the new product sales will increase 0.0922

percent and 0.12 percent respectively in Data 2000 and data 2002; its marginal effect

on the probability of being uncensored or being a product innovator, is 0.0114 and

0.0137 respectively in Data 2000 and Data 2002, indicating that when number of

highly educated workers increases 100, the probability of being a product innovator

increases 0.0114 and 0.0137 respectively. The effects of number of highly educated

workers, or skilled human capital make sense in that skilled human capital is the base

of firm innovation. On the one hand, even without R&D, skilled human capital can
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produce product innovation via “learning from doing”, communication with suppliers

and consumers and so on. On the other hand, skilled human capital is complementary

to R&D activities and be supportive to product innovation.

Moreover, we find that the average years of schooling has a positive effect on both

the amount of new product sales for product innovator and the probability of being a

product innovator in both datasets and the effects are comparable in the two datasets.

More specifically, its marginal effect on the amount of new product sales for product

innovator is 0.291 and 0.221 respectively in Data 2000 and Data 2002, indicating

that other things equal, for an average product innovator, when management team’s

average schooling increases 1 year, new product sales will increase 0.291 percent and

0.221 percent, and this is very significant both statistically and economically; its

marginal effects on probability of being a product innovator is 0.0360 and 0.0251

respectively in Data 2000 and Data 2002, indicating that other things equal, for an

average firm, when its management team’s years of schooling increases 1 year, its

probability of being a product innovator will increase 0.0360 and 0.0251 respectively

in Data 2000 and Data 2002.

Moreover, as in new product sales proportion regression, we only find the sig-

nificant effects of general manager’s postgraduate degree and management team’s

average age on both the amount of new product sales for product innovator and the

probability of being a product innovator in Data 2002. Specifically, the two marginal

effects of general manager’s postgraduate is 1.034 and 0.118 respectively, indicating

that other things equal, when an average firm with a general manager holding a post-

graduate degree than not, the product innovator’s new product sales will increase

1.034 percent, while the probability of being a product innovator for an average firm

will increase 0.118. The two marginal effects os management team’s age is -0.0687

and -0.00782 respectively, indicating that other things equal, when the average age of

management team in an average firm increases 1 year, the product innovator’s new
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product sales will decrease 0.0687 percent while the probability of being a product

innovator for an average firm will decrease 0.00782.

R&D has a significant effect on both the amount of new product sales for product

innovator and the probability of being a product innovator across both datasets. The

two effects across the two datasets are comparable though they are a little bit larger

in Data 2000. More specifically, the marginal effect of R&D on the amount of new

product sales for product innovators is 0.193 and 0.146 respectively, indicating that

other things equal, for an average product innovator, when R&D increase 1%, its new

product sales will increase 0.193 % and 0.146% respectively in Data 2000 and Data

2002; its marginal effect on the probability of being a product innovator is 0.0239 and

0.0166 respectively, indicating that other things equal, for an average firm, when its

R&D increase 1%, its probability of being a product innovator will increase 0.0239

and 0.0166 respectively in Data 2000 and Data 2002.

Number of competitors only has significant effects in Data 2002. Other things

equal, when number of competitors increases 1, the amount of new product sales will

decrease 0.22 percent for a product innovator, and for an average firm, its probability

of being a product innovator will decrease 0.0251. We only find a significant effect

of firm size, measured by log of net value of total assets, in Data 2000. Other things

equal, when net value of total assets increases 1%, for an average product innovator,

its new product sales will increase 0.19%, and for an average firm, its probability of

being a product innovator will increase 0.235.

To sum up the results in Table 12, number of skilled human capital, management

team’s average schooling and R&D aa have positive effects on both amount of new

product sales for product innovator and on the probability of being a product inno-

vator. General manager’s postgraduate degree have positive and significant effects on

the amount of new product sales for product innovator and the probability of being

a product innovator only in Data 2003. Management team’s average age and number
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Table 13: New Products Counts Regression (Dependent Variable: Number of New Products)

Year 2000(Data 2000) Year 2002(Data 2002)
NB Marginal Effect NB Marginal Effect

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers(Hundred) 0.0996** 0.459** 0.0978** 0.623**
(0.0390) (0.201) (0.0388) (0.254)

General Manager’s tenure (years) 0.0686** 0.317** 0.0288* 0.183*
(0.0281) (0.146) (0.0165) (0.107)

General Manager’s postgraduate degree 0.0653 0.301 0.574*** 3.653***
dummy (=1 if has a postgraduate degree) (0.327) (1.516) (0.182) (1.168)
Management team’s average age 0.0139 0.0640 -0.0234 -0.149

(0.0186) (0.0881) (0.0179) (0.114)
Management team’s average schooling -0.209** -0.964** 0.192*** 1.225***

(0.0843) (0.442) (0.0589) (0.394)

Panel B: R&D and Firm Characteristics

Log(average R&D in previous two years) 0.0652*** 0.301*** 0.0779*** 0.496***
(0.0165) (0.0744) (0.0126) (0.0840)

Number of competitors -0.00948 -0.0437 0.00981 0.0625
(0.0903) (0.416) (0.0612) (0.390)

Firm size(log(net value of total assets)) 0.0174 0.0801 -0.0235 -0.150
(0.0640) (0.295) (0.0554) (0.352)

Firm age (year) -0.00338 -0.0156 0.00534 0.0340
(0.00669) (0.0311) (0.00658) (0.0418)

Shareholding firms dummy 1.048*** 4.836*** 0.232 1.476
(0.346) (1.846) (0.226) (1.461)

State-owned firms dummy 0.568* 2.619* 0.251 1.601
(0.309) (1.516) (0.243) (1.568)

Foreign invested firms dummy 1.439*** 6.640*** -0.372 -2.367
(0.335) (2.063) (0.227) (1.450)

Constant 1.749 0.0187
(1.373) (1.228)

Industry dummies Yes Yes Yes Yes
City dummies Yes Yes Yes Yes
lnalpha 1.377*** 1.203***

(0.0892) (0.0650)
Number of observations 551 551 824 824

Standard errors in parentheses: * p <0.10, ** p <0.05, *** p <0.01. Marginal effect for dummy variable is from 0
to 1. Column (1) Presents the coefficient from negative binomial regression (NB). Column (2) presents the marginal
effect of NB. Marginal effects are calculated at mean. Columns (3) and (4) are similar but for different dataset, Data
2002.

of competitors have negative and significant effects on the amount of new product

sales for product innovator and the probability of being a product innovator only in

Data 2003. We find that firm size has the two significant and positive effects only in

Data 2000.

Table 13 presents the results of new product counts regression. Column (1)
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Presents the coefficient from negative binomial regression (NB). Column (2) presents

the marginal effect of NB. Marginal effects are calculated at mean. Columns (3) and

(4) are similar but for different dataset, Data 2002. We also tried a zero-inflated neg-

ative binomial model and it has similar power of fitting, measured by the difference

between fitted value and actual value. Therefore, we only present negative binomial

and its marginal effect here. The dependent variable is number of new products. City

dummies and industry dummies are control for fixed effect.

Highly educated workers has a positive effect on new product counts in both

datasets and the effects are comparable, indicating that our results are robust. Specifi-

cally, other things equal, for an average firm, when number of highly educated workers

increases 100, the number of new products will increase 0.459 in Data 2000 and 0.623

in Data 2002. Also, this implies that the effect of skilled human capital on new

product counts are larger in small cities, less developed areas. General manager’s

tenure has a positive effect on number of new products introduced. When general

manager’s tenure increases 1 year, other things equal, for an average firm, its new

products introduced will increase 0.317 in Data 2000 and 0.183 in Data 2002. We

can see that general manger’s tenure has a larger effect in Data 2000, more developed

areas. Consistent with results using two other product innovation measures, general

manager’s postgraduate has a positive and significant effect both statistically and

economically only in Data 2002. Specifically, other things equal, for an average firm,

when its general manager has a postgraduate than not, its number of new products

will increase 3.653, a very large effect.

It is weird to find that management team’s average schooling in Data 2000 has

a negative and significant effect. Since we use the same set of explanatory as in

Table 11 and Table 12, it is very likely that the problem is caused by the dependent

variable, the number of new products. It might not be very appropriate to serve as a

product innovation measure since the value of new products can vary a lot. The same
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amount of new products can be introduced by a firm with management team with

high education level,or a firm with management team with low education level. But

the value of new products introduced by the first firm might be much higher than

that by the second firm. The idea is that value matters a lot. That’s also why all the

coefficients make sense in Table 11 and Table 12 where proportion measure (based on

value measure) and value measure are used. To further investigate the relationship

between number of new products introduced and average years of schooling, we plot

their relationship in these two datasets in Figure 10. We can see that the relationship

between number of new products introduced and management team’s average years

of schooling is almost concave in Data 2000 but it is monotonically increasing in Data

2002. Thus, the reason why we get negative sign in Data 2000 is that the relationship

between number of new products introduced and management team’s average years

of schooling is not monotonic. In fact, when we add a squared term of management

team’s average years of schooling into the regression, we find that the coefficient of

management team’s average years of schooling is positive and the coefficient of its

squared term is negative. Though both terms are insignificant but they are jointly

significant.

Similarly, we also find a positive and significant effect of R&D on new product

counts. More specifically, other things equal, for an average firm, when R&D increase

1 percent, the number of new products will increase 0.301 in Data 2000 and 0.496

in Data 2002. Moreover, we find that positive fixed effects of shareholding firms,

state-owned firms and foreign invested firms in Data 2000. In addition, the fixed

effect of foreign firms is largest, and then followed by shareholding firms and the fixed

effect of state-owned firms have the least fixed effects. Other things equal, for an

average firm, when it is foreign invested firm, its new product count will be 6.64 more

than a private domestic firm; when it is shareholding firm, its new product count will

be 4.836 more than a private domestic firm; when it is a state owned firm, its new
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Figure 10: Relationship between Number of New Products Introduced and Manage-
ment Team’s Education.

product count will be 2.619 more than a domestic private firm. This is consistent

with Hu (2001).

Table 14 presents the results of IV estimation. Columns (1)-(4)present the co-

efficients from zero-inflated beta model (ZIbeta), the zero-inflated part of ZIbeta,

Tobit model and negative binomial (NB) model respectively. Columns (5)-(8) are

similar but for different dataset, Data 2002. Endogenous variables are number of

highly educated workers, and general manager’s postgraduate degree dummy. Instru-

ments for number of highly educated workers are number of applicants for the skilled

positions, vacant weeks of skilled position before filled, city average and industry av-

erage both excluding firm itself. Note that for Data 2002, we have no information

on applicants and vacant weeks, so we only use city average and industry average

excluding firm itself. For general manager’s postgraduate degree dummy, we use city
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and industry average excluding firm itself as instruments. For all the models, we use

control function technique. Residual1 is the residual from the first stage of number of

highly educated workers, and residual2 is the residual from the first stage of general

manager’s postgraduate degree dummy. We can see that in columns (1)- (6), none

of the residuals are significant, indicating that we cannot reject that the suspected

endogenous variables, number of highly educated workers and general manager’s post-

graduate degree dummy, are exogenous. Thus, for them, the original model still hold.

For columns (7) and (8), residual1, the residual from first stage of number of highly

educated workers, is significant, indicating that we can reject that the suspected en-

dogenous variable is exogenous. Compared columns (7) and (8) with their original

model, we find that the main results still holds and the effect of human capital indi-

cators even has slightly larger effects. Therefore, even after we take endogeneity into

account, our results still hold.

4.6 Conclusion

In this chapter, we examine how product innovation is determined in a firm from

a human capital point of view. Three product innovation measures are used, new

product sales proportion, new product sales and new product count. For skilled

human capital, we find that it also tends to have a positive effect across the three

measures, though it is not significant in regression using new product proportion as

product innovation measure. When new product sales proportion and new product

sales are used as product innovation measures, we find that management team’s

average years of schooling has a positive effect in determining product innovation,

however, its effect in Data 2000 when new product count used as product innovation

measure is negative and significant. This indicates that though the results from the

three regressions are generally consistent, but they still differ. When compare the

results using different innovation measures, we should be very cautious. Another
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thing is that different from results in last chapter where R&D has a positive effect

only in Data 2003, less developed areas, we find that R&D has a very significant and

positive effect on product innovation no matter which product innovation measure is

used. This indicates that R&D is still important in promoting product innovation

and policies supporting investment in R&D is still important. Our results still hold

when endogeneity is considered. Notably, in all three models, we all find that general

manager’s postgraduate degree has a large and significant effect in less developed

areas but insignificant at all in more developed areas.

Why postgraduate has a large and positive effect only in Data 2002, less devel-

oped areas across all product innovation measures? One possibility is that there

are too less managers with postgraduate degree in less developed areas, but we can

see from descriptive statistics that the percentage of managers holding a postgrad-

uate degree is 16% in Data 2000 and 17% in Data 2002, even larger than in more

developed areas. Thus, this cannot be the reason. Another possibility is that the

market development in less developed areas is still low and in this situation, a general

manager with a postgraduate degree might have more insight in making decision.

The relationship between market environment and product innovation is discussed

in Li and Atuahene-Gima (2001). They explored how environmental factors (com-

petition, institutional support, and environmental turbulence) moderate the product

innovation-performance relationship in new technology ventures in China. They ar-

gued that environment factors are important to product innovation since resource

dependence theory suggested that managers interpret demands and dependencies in

their environment prior to making strategic choices and instituting adjustments to

organization strategies.
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CHAPTER V

FIRM-LEVEL HUMAN CAPITAL AND PRODUCTIVITY:

EVIDENCE FROM CHINA

5.1 Introduction

According to OECD, China was the second largest R&D spender in 2012, allocating

294 billion dollars compared to top-spending America at around 454 billion dollars

that year. In fact, China is forecast to over take the European Union and the United

States in R&D by 2019.At the same time, according to Li et al.(2009), China’s total

real human capital increased from 26.98 billion yuan in 1985 to 118.75 billion yuan in

2007 and the average annual growth rate is around 6.78%. Does this mean that China

has finished the transition from Made in China to Innovated in China? Probably not.

Despite success in some areas, notably high-speed rail, solar energy, supercomputing

and space explorations, China is still far from an innovation country. For example,

not a single Chinese company is on the list of 100 most innovative companies by

Thomson Reuters until 2013 and there’s only one Chinese company, Huawei, enters

in the list in 2014 while there are around 40 percent from America. Why it looks that

there’s still very few innovation in China? One possible reason is that China do a lot

of incremental innovation rather than radical innovation. If this is the case, then we

should see a positive relationship between R&D, human capital and productivity.

This paper is an attempt to understand the effects of R&D spending and firm-level

human capital on productivity and the most important determinants of productivity

in Chinese manufacturing firms. We first present estimates of production function

and TFP is the residual from production function. We then study the effects of R&D,

skilled human capital, management characteristics, firm characteristics on TFP. We
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find that the elasticity of skilled human capital across both datasets is much larger

than that of less skilled human capital. The number of skilled human capital and

R&D have a positive and significant effect on productivity. Firm age has a significant

and negative effect on TFP and the effects are almost the same across both datasets.

Other things equal, a state-owned firms will have a lower TFP. Finally, we find a

positive effect of foreign invested firms, indicating that foreign ownership means a

higher productivity.

The study on the R&D —productivity link is prevalent. Most of those studies were

based on the simplified specification in terms of total factor productivity and R&D.

For example, in Griliches (1980) knowledge capital enters into production function in

the same way as capital and labor do. Using a large sample of industrial firms, he

finds that R&D elasticity amounts to 0.07 for manufacturing as a whole. Similarly,

Hall and Mairesse (1995) use same production function but with corrections for R&D

double counting, that is, the number of researcher is subtracted from the total number

of employees and physical capital devoted to R&D laboratories from total physical

capital, they found a much more higher R&D elasticity. However, this is a deficient

method for innovation-productivity study since (1) innovation also involves other firm

resources, mainly a firm’s skilled human capital and (2) they ignore the non-R&D

innovation which is usually important to firm productivity.

Theoretically, pioneer work by Nelson and Phelps (1966) argued that human cap-

ital can promote TFP growth by facilitating technology spillover. Romer (1990) first

formally modeled how human capital can enhance productivity through technology

innovation. Empirically, a lot of studies find that human capital have a positive and

significant effect on TFP (Vandenbussche, Aghion, and Meghir, 2006).

Generally, there are three types of creative activities that do not require R&D

but very important to firm productivity. First, Kim and Nelson (2000) found that

many imitative activities, including reverse engineering, do not require R&D, and
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the imitation is mainly dependent on the firm’s technical personnel and engineers.

Second, firms can make minor modifications or incremental changes to products and

processes, relying on engineering human capital. Moreover, Hansen and Serin (1997)

noted that the innovation process in low-and medium-technology sectors is more re-

lated to adaptation and learning by doing, based on design and process optimization,

rather than from R&D. Third, firms can combine existing knowledge in new ways,

for example in industrial design and engineering projects (Grimpe and Sofka, 2009).

Due to the large share of firms that innovate without performing R&D, we can con-

clude that studies that only focus on R&D without including firm-level human capital

should not be enough to fully explain innovation differences across firms.

Moreover, we can regard R&D capital as a specific form of human capital associ-

ated with innovation (Benhabib and Spiegel,1994). In fact, research workers’ salaries

constitute a sizable percentage of total expenditures. Thus, in a firm to get produc-

tivity improved, R&D-oriented workers needs to work with other skilled workers. Like

R&D, a high level of human capital affects the ability of firms to learn and absorb

new information, and also allows tangible inputs to be used more effectively.

In addition, management team can have important effects on firm productiv-

ity. Penrose (2009) argues that although markets set prices that influence resources

allocation, those within the firms make decisions on what activities the firm will be

involved in, how those activities will be performed, what resources are required, which

resources are allocated to different activities and, ultimately, which resources are used.

As a consequence, internal processes and insights rather than external market prices

and cost signals will greatly influence a firm’s growth (Darroch, 2005). Though there’s

a lot of studies on management and innovation (Lin et al., 2011), there’s quite few

studies on management and productivity. Among them, Singell (1993) links man-

agerial skills and firm production directly by examining how the experience of major

league baseball managers affects both team and individual player performance. He
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shows that with team skills held constant, the probability of winning depends on the

baseball-specific human capital of the manager.

A constant problem for human capital study is how to measure it. Human capital

of a firm is defined as the knowledge and skills of its professionals that can be used

to produce professional services. In Romer model , skilled workers or human capital

is explicitly included in the model. Pennings, Lee and Witteloostuijn(1998) use firm

tenure, industry experience, and graduate education to capture firm-level human

capital. Ballot, Fakhfakh and Taymaz (2001) constructs measures of a firm’s human

capital stock based on firms’ past and present training expenditures to study its effect

on productivity.

In this paper, we use the number of highly educated workers (college or above,

mainly technical and engineering workers and managerial personnel) to measure firm-

level skilled human capital. We use the number of less educated workers (high school

or below, mainly production workers and auxiliary production workers) to measure

less skilled human capital. We use General Manager’s graduate degree dummy, tenure,

management team’s average age and schooling to study the effect of managerial hu-

man capital in a firm on productivity. In production function, skilled human capital

and less skilled human capital can enter directly. Moreover, we further study how

skilled human capital, R&D and managerial human capital influence TFP.

The chapter is organized as follows. Section 5.2 presents empirical strategy. Sec-

tion 5.3 introduces the data. In Section 5.4, we present our main results and interpret

the findings. Section 5.5 concludes.

5.2 Methodology

Total factor productivity (TFP) as an alternative to study output, has attracted

more and more attention (e.g., Romer, 1993; Prescott, 1998). The origins of total

factor productivity (TFP) can be traced back to Solow (1957) in aggregate study.
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Nowadays, the availability of firm-level data provides researchers an opportunity to

use TFP to study firm-level productivity. In those studies (for example, Griliches

and Regev,1995), output, usually measured as deflated sales or value added, to be a

function of the inputs the firm employs and its productivity. The measure of TFP is

then obtained as the residual in this functional relationship. The production function

is usually assumed of Cobb-Douglas form

Yit = AitK
βk
it L

βl
it (40)

where Yit if firm is output at time t; Output is typically measured as value added

per year, deflated for price changes in time-series studies. It can also, however, be

measured as physical units of output per year or gross value of output per year. Here,

following Fleisher et al.(2011), we use value-added. Ait is its productivity; Kit is its

capital input; Lit is its labor input; βk and βl are the elasticity of capital and labor

respectively. Ideally, inputs should be measured in terms of services of of the input

per unit of time, but such data are generally not available.

We can transform it into log form

yit = βkkit + βllit + ωit + εit (41)

where logAit = ωit + εit known to firm, but εit is not and it is assumed to be

random, and ωit is TFP, which is usually known to firms themselves but not to

economists. When firm has information about ωit and choose inputs, Kit and Lit,

then Kit and Lit are very likely to be correlated with ωit This is called simultaneity

(Mendershausen, 1938; Marschak and Andrews, 1944).

Studies which try to solve the simultaneity can be divided in four strands. First

is IV method. We need to find instruments which are correlated with inputs Kit

and Lit but uncorrelated with ωit + εit. Combining equation (40) with constraint

wL+ rK = I, where w is the wage for labor, r is interest rate and I is total budget,
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a profit-maximizing firm will get that

K =
Iβk

r(βk + βl)
(42)

and

L =
Iβl

w(βk + βl)
(43)

From the above two equations, we can see that each of the inputs of L and K is

a function of input price, w and r. Thus, natural instruments for L and K should be

input prices, which are likely to be uncorrelated with ωitif input market is competitive.

But in reality, they are usually unavailable.

Second, if we have panel data, we can consider fixed effects (FE). Suppose that

ωit = ηi + δt + ω∗it (44)

where ω∗it is assumed to be uncorrelated with Kit and Lit, and is assumed to be

not serially correlated and is strictly exogenous.

Plug equation (44) into equation (41),we then get that

yit = βkkit + βllit + ηi + δt + ω∗it + εit (45)

In equation (45), ηi can be easily got rid of using fixed effects method. If we

further assume that E(δt|kit, lit, ηi) = 0, t = 1, 2..., T , that is, strict exogeneity, we

then get that a consistent FE estimator. However, this is a too strong assumption.

The third strand is control function approach. Control function approach is very

similar to usual two-stage least square. We need to find a proxy variable, different

from instrument in IV method, proxy variable needs to be correlated with error term

as closely as possible. The different is that we have to put the residual from the first

stage into the second stage and then we regress on the residual from the first stage and
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all the other exogenous variables. The method proposed by Olley and Pakes (1996,

OP thereafter) and then extended by Levinsohn and Petrin (2003, LP thereafter)

is belong to this category. OP approach use investment as proxy variable. In our

datasets, there are more than one third of the firms have zero investment and thus

the investment proxy might not respond to the productivity shock very smoothly,

violating the consistency condition (Petrin, Poi and Levinsohn, 2004). Thus, LP

propose to use intermediate input or material, mit as proxy. LP can solve the corner

solution problem encountered by OP, but as Ackerberg, Caves and Frazer (2006, ACF)

pointed out that OP/LP approach may suffer from identification problem due to the

collinearity among inputs, and proposed an alternative estimator based on dynamic

panel, which is our preferred approach. Since ACF is based on LP, we will begin our

presentation from LP. The production function LP considered is

yit = βkkit + βllit + βmmit + ωit + εit (46)

where mit is an intermediate input such as electricity, fuel, or materials and ωit

is productivity, or TFP. When firms make its material input decision, it will depend

on productivity level, ωit, and state variable, kit. It is chosen at the time production

takes place, and ACF call it as “perfectly variable” input. Thus, LP assume the

following intermediate input demand function

mit = ft(ωit, kit) (47)

In equation (47), f is indexed by t to indicate that input prices to vary across time

but not across firm. Note that lit is not included in equation (47), and thus labor is

also a “perfectly variable” input, and it is chosen simultaneously with mit, implying

that the choice of lit will have no impact on the choice of mit.But ACF believe that

labor is ”less variable” than materials. Thus, a firm’s material input demand at time

t will now directly depend on the lit chosen prior to it, and thus
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mit = ft(ωit, kit, lit) (48)

Inverting equation (48) for ωit and substituting into the production function results

in a first stage equation

yit = βkkit + βllit + f−1t (mit, kit, lit) + εit (49)

Clearly, βl cannot be identified in the first stage, but we can obtain an estimate,

Φ̂it, of the composite term

Φt(mit, kit, lit) = βkkit + βllit + f−1t (mit, kit, lit) (50)

Equation (50) represents output net of the untransmitted shock, εit. They also assume

that εit evolves according to a first order Markov process between these subperiods

t− 1, t− b where 0 < b < 1, and t, i.e., p(ωit|Iit−b) = p(ωit|ωit−b) and p(ωit−b|Iit−1) =

p(ωit−b|ωit−1), where Iit−b is investment at t− b for firm i. Thus, we will have

ωit = E[ωit|Iit] + ξit = E[ωit|ωit−1] + ξit (51)

where ξit is mean independent of all information known at t − 1. Since kit was

decided at t− 1, then the second stage moment condition is

E[ξ|kit] = 0 (52)

Moreover, lit is also uncorrelated with ξit, thus the final second stage moment is

E[ξit|
kit

lit−1

] = 0 (53)

Thus,

E[ξit · (
kit

lit−1

)] = 0 (54)
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This is the moments condition we need to estimate to get the coefficients of βk

and βl.

To implement the whole procedure, we use STATA procedure proposed by Pro-

fessor Jagadeesh Sivadasan. We set number of bootstrap replications to 400. The

bootstrap samples do block bootstrapping, i.e., entire time series for each firm is

sampled in blocks, which allows the errors to be correlated within plants. Amoeba

optimization routine is used and the maximum number of iterative steps that should

be done is set to be 500.

After we get the TFP from the production function estimation, we can start to

study the determinants of TFP. We now specify the TFP determination equation as

log(TFPi) = α0 + α1 log(HCi) + α2 log(RDi) + α3Xi + εi (55)

Where TFPi is firm is total factor productivity (TFP) which we get from the

residual of the production function; HCi is the human capital measure, here we use

number of highly educated workers and managerial human capital; RDi is firm’s R&D

input of last period. Xi is other firm characteristics.

We use the information on the number of skilled (highly educated) workers,

whether General Manager has a postgraduate degree, General Manager’s tenure in

current firm, management team’s average age, and the average years of schooling of

management team as our human indicators. We expect that all the indicators have

positive effects on productivity except General Manager’s tenure and management

team’s average age.

Another important variable is R&D spending by the firm. We use the average

of lagged one and lagged two periods R&D (we only have three years in our data).

There are two rationales justify our R&D measure. First, R&D expenditure is a

long-term investment. Thus, only including contemporaneous R&D cannot capture

a firm’s real innovation efforts. In this point of view, an average R&D over years
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rather than R&D of a certain year is a better innovation input measure for the firm.

Second, contemporaneous R&D is very likely to be endogenous. That is, there is

a possible correlation between unobserved innovation productivity shocks and R&D

level. Thus, we exclude current R&D from the averages to lessen endogeneity. Though

there are many studies on productivity—R&D relationship but there are few on the

endogeneity of R&D. Among them, Jaffe (1986) treated firm R&D as endogenous and

used corresponding industry average as an instrument. Following their method, we

use both industry and city averages as instruments.

Firm size is measured by the log of total assets rather than the log of total sales

to lessen the correlation between firm size and other variables. Intuitively, firms with

large size might have economics of scale or/and scope. Generally, we expect a positive

effect of firm size and when human capital is considered. We use two approaches to

study the effect of market environment on innovation. First, we include market share

of each firm in our model to account for a firm’s market position. Second, we use two

datasets, one from metropolitan cities and the other from provincial middle cities, to

examine how productivity of firms in different markets, a more advanced one and a

less advanced one differs.

5.3 Data Description

The datasets are still the same. Here, we directly present statistics summary for

the full sample in Table 15 (Data 2000) and Table 16 (Data 2002). In Data 2000,

the average firm has around 915-945 workers, of which around 180 skilled workers

while in Data 2002, the mean value of total employment is around 735-745 workers of

which 160 skilled workers. The average sales in Data 2000 is around 255-335 Million

RMB while the mean of total sales in Data 2002 is around 200-270 Million RMB.

The average total net assets in Data 2000 is 102.8 Million RMB while it is 96.52 in

Data 2002. When it comes to the material cost, the mean in Data 2000 is around
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110-140 Million RMB while it is around 115-150 Million RMB. From here we can see

that firms in more developed area tends to be larger and have more skilled workers

and have more revenue. However, the differences are not so large so that the two

datasets are still comparable. We can see that there’s very large difference in R&D

between two datasets, with around 15-19 Million RMB in Data 2000 and around 2-4

Million RMB in Data 2002. In addition, there’s little difference in General Manager’s

education and experience and the firm’s age.

We use value added as the dependent variable and it is defined as total sale less

total material costs (including raw materials, energy and other). We can see that the

average of value added is larger in Data 2000 since cities in Data 2000 are metropolitan

cities and are much more developed. Capital is defined as net value of assets in that

year, including buildings, production machinery and equipment and other. Material is

defined as total material cost, including raw materials, energy and other. Our human

capital measures follow Fleisher et al.(2011). We use two measures, skilled human

capital and less skilled human capital. Skilled human capital is defined as the number

of skilled or highly educated workers. Skilled workers mainly consist of technical and

engineering workers and managerial personnel. Less skilled human capital is defined

as the number of less skilled workers. Less skilled workers mainly including basic

production workers and auxiliary production workers. On average, there are around

180 skilled workers in more developed cities and around 160 skilled workers in less

developed cities. We can see the difference is not so big. In both datasets, the number

of less skilled workers is much larger, around twice, than that of skilled workers. To

lessen endogeneity, we use lagged one period of R&D.

Finally, we divided all the firms into four ownership categories: shareholding

companies, state-owned companies, foreign invested firms and other firms. We can

see that there are 29% shareholding firms in Data 2002 while 16% shareholding firms in

Data 2000. The deepening economic revolution might account for this change. There
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Table 15: Descriptive Statistics for Productivity Study (Data 2000)

Year Observation # Mean Std. Dev. Min Max

Panel A: Outputs, Inputs and Human Capital Variables

Value added (Million RMB) 2000 580 83.021 267.80 0.50 2967.24
1999 579 67.49 213.37 0.47 3664.58
1998 573 55.27 163.04 0.11 2723.20

Number of highly educated workers in firm 2000 582 181 316 10 4133
1999 579 173 270 10 2496
1998 582 178 267 10 2731

Number of less educated workers in firm 2000 582 535 786 11 7166
1999 579 527 782 13 8298
1998 582 559 851 10 10109

Capital (Million RMB) 2000 583 128.63 333.00 0.33 3539.07
1999 583 121.20 309.59 0.32 3524.55
1998 581 110.80 287.65 0.31 3411.28

Material Cost (Million RMB) 2000 580 159.62 482.09 0.12 4965.79
1999 579 130.34 385.59 0.20 4398.96
1998 573 112.10 349.45 0.38 4296.90

Value of total sales (Million RMB) 2000 583 246.82 707.07 3.00 7545.01
1999 583 201.60 573.61 3.01 6439.07
1998 579 169.38 495.95 3.04 6303.52

Total number of employees 2000 583 904 1403 50 17098
1999 582 887 1385 50 18466
1998 581 918 1433 50 18059

Years of schooling of General Manager (GM) 2000 581 14.01 2.29 5.00 18
Years of GM holding the position 2000 582 5.78 4.51 1.00 30
GM’s postgraduate dummy (=1, postgraduate) 2000 581 0.15 0.36 0.00 1
Management team’s average age 2000 573 36.28 6.63 18.00 54
Management team’s average schooling 2000 574 11.86 1.49 8.00 18

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2000 563 9.64 55.95 0 830.29
1999 570 7.64 57.26 0 1035.00
1998 569 7.08 55.24 0 1041.21

Net value of total assets (Million RMB) 2000 582 81.17 201.27 0.20 2015.65
Firm age 2000 583 18.15 17.41 0.00 92
Shareholding firms dummy 2000 583 0.16 0.36 0.00 1
State-owed firms dummy 2000 583 0.24 0.43 0.00 1
Foreign invested firms dummy 2000 583 0.39 0.49 0.00 1

are 22% foreign invested firms in Data 2002 while there are 39% foreign invested

firms in Data 2000. We can see that compared to middle-sized provincial cities,

foreign investors prefer metropolitan cities in China.

5.4 Results

We first present production function estimation results in Table 17. From column

(1)-(4), they are estimated using OLS, FE, LP and ACF respectively for Data 2000.
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Table 16: Descriptive Statistics for Productivity Study (Data 2002)

Year Observation # Mean Std. Dev. Min Max

Panel A: Outputs, Inputs and Human Capital Variables

Value added (Million RMB) 2002 798 97.99 313.80 0.57 4293.94
2001 791 89.16 326.00 0.41 5811.52
2000 788 76.18 237.78 0.40 2846.78

Number of highly educated workers in firm 2002 879 153 277.46 10 4281
2001 877 154 300.35 10 5383
2000 874 155 314.63 10 6086

Number of less educated workers in firm 2002 879 474 942.05 14 14434
2001 877 474 937.26 11 12611
2000 874 472 955.22 14 14559

Capital (Million RMB) 2002 880 121.08 339.12 0.38 3791.49
2001 875 107.42 295.92 0.39 3307.45
2000 870 99.17 272.82 0.30 3157.44

Material cost (Million RMB) 2002 798 135.95 498.46 0.022 5220.85
2001 791 110.82 393.33 0.028 4546.09
2000 788 99.07 359.63 0.021 4233.15

Value of total sales (Million RMB) 2002 884 221.65 698.60 3.11 7458.79
2001 881 189.41 585.40 3.09 6033.07
2000 876 166.59 495.75 3.01 4972.78

Total number of employees 2002 884 713 1246.50 50 15500
2001 883 726 1307.88 50 19906
2000 879 720 1334.04 50 22044

Years of schooling of General Manager (GM) 2002 878 14.12 2.23 5 18
Years of GM holding the position 2002 877 5.90 4.48 1 23
GM’s postgraduate dummy (=1, postgraduate) 2002 878 0.16 0.37 0 1
Management team’s average age 2002 854 36.47 5.33 20 51
Management team’s average schooling 2002 858 12.11 1.51 8 18

Panel B: R&D and Firm Characteristics

R&D expenditure by firm (Million RMB) 2002 879 3.21 18.34 0 371.16
2001 868 2.79 19.67 0 438.07
2000 867 1.85 9.04 0 119.00

Firm age 2002 885 15.99 14.32 2 52
Shareholding firms dummy 2002 885 0.29 0.46 0 1
State-owned firms dummy 2002 885 0.26 0.44 0 1
Foreign invested firms dummy 2002 885 0.21 0.41 0 1

Similarly, we have column (5)-(8) for Data 2002. In production function, we use value

added as dependent variable. The number of skilled workers, the number of less skilled

workers, and capital are explanatory variables in production function. Material cost

is used as proxy variable in LP and ACF. Our preferred models are LP and ACF.

We can see that all factors in OLS and FE are significant and have positive effect

on value added across both datasets. Also, we notice that in LP, only the number of
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skilled workers and capital are significant and the number of less skilled workers has

a positive coefficient but not significant in both datasets. Though the coefficient of

the number of skilled human capital in the two datasets differs not so much, 0.233

versus 0.320, the coefficients of the number of less skilled workers and capital differ a

lot, with less skilled workers 0.0699 versus 0.0110 and capital 0.730 versus 0.479. The

coefficients differs even much more in ACF. The coefficient of the number of skilled

workers in Data 2002 is around two times as that of it in Data 2000. The coefficient of

the number of less skilled workers even has a negative coefficient though not significant

in Data 2000 and it is 0.245 and significant at 1% in Data 2002. The coefficient of

capital in Data 2000 is 0.762 and is 0.477 in Data 2002 and both are significant at

1%. From the results, we can see that LP and ACF produce very similar results in

both datasets and capital in Data 2000 has a much higher coefficient. Our results are

consistent with Fleisher et al.(2011) in that their estimates of the elasticity of skilled

human capital is also around 0.3, but they get a higher elasticity of less skilled human

capital.

Table 18 presents TFP regressions for Data 2000 and Data 2002 respectively. All

the models are estimated using OLS but using different TFP measure. Columns

(1) and (3) use TFP calculated from LP method. Columns (2) and (4) use TFP

calculated from ACF method. We can see that the number of skilled workers has

a positive coefficient across all models and both datasets and it is significant in all

models except column (4). The significant and positive effect of it in all models

indicates that skilled workers still have a productivity effect even when it has been

taken into account in production function. For example, skilled workers are important

to innovation and thus have very important effect on productivity.

We can get that R&D tends to have a positive effect on TFP across all models

and both datasets. The positive relationship of R&D is very easy to understand since

more R&D usually means higher absorptive capability as well as innovative ability
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Table 18: TFP Estimation Results

Year 2000(Data 2000) Year 2002(Data 2002)
LP ACF LP ACF

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers (Hundred) 0.0362*** 0.0380*** 0.0586*** 0.0109
(0.0116) (0.0117) (0.0215) (0.0147)

General Manager’s tenure (years) 0.00490 0.00485 -0.0133 -0.0133*
(0.00901) (0.00904) (0.00813) (0.00784)

General Manager’s postgraduate degree 0.208** 0.205* 0.0351 0.0609
dummy (=1 if has a postgraduate degree) (0.105) (0.106) (0.0935) (0.0893)
Management team’s average age -0.0159** -0.0162** -0.0151* -0.0131*

(0.00657) (0.00659) (0.00798) (0.00777)
Management team’s average schooling 0.0147 0.0167 0.0593** 0.0622**

(0.0323) (0.0325) (0.0271) (0.0264)

Panel B: R&D and Firm Characteristics

Log(average R&D in previous two years) 0.0149** 0.0150** 0.0195*** 0.0153**
(0.00716) (0.00718) (0.00611) (0.00592)

Market share 0.00272 0.00269 0.00573*** 0.00638***
(0.00250) (0.00252) (0.00203) (0.00196)

Firm size (Log(net value of total assets)) -0.0674** -0.131*** -0.0554* -0.171***
(0.0296) (0.0297) (0.0293) (0.0267)

Firm age (year) -0.00536* -0.00565* -0.00837** -0.0124***
(0.00290) (0.00291) (0.00336) (0.00328)

Shareholding firms dummy 0.474*** 0.477*** 0.0617 0.0433
(0.134) (0.135) (0.105) (0.103)

State-owned firms dummy -0.176 -0.172 -0.453*** -0.454***
(0.117) (0.118) (0.121) (0.119)

Foreign invested firms dummy 0.462*** 0.450*** 0.149 0.176
(0.124) (0.125) (0.111) (0.107)

Constant 3.624*** 3.528*** 3.763*** 2.898***
(0.582) (0.585) (0.545) (0.542)

City Dummies Yes Yes Yes Yes
Industry Dummies Yes Yes Yes Yes
Number of observations 527 527 732 732
Adjusted R2 0.261 0.263 0.220 0.277

Standard errors in parentheses: * p <0.10, ** p <0.05, *** p <0.01. Dependent variable in column (1)
is TFP from LP approach; dependent variable in column (2) is TFP from ACF. Columns (3) and (4) are
similar but for different dataset, Data 2002.
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and both are very important resources of firm productivity (Griffith et al., 2004). But

R&D is only significant in Data 2002 indicating that currently the change in R&D has

a much more important effect on productivity than in Data 2000. This is consistent

with what we find when use patent application to study innovation. The underlying

implication might be that in less developed area (Data 2002), R&D is still not enough

and it still constraints firm’s development. Thus, change in R&D can bring about

large changes in both patent application and firm’s productivity.

Also, we find a positive effect of General Manager’s tenure in current firms in

Data 2000 but a negative effect in Data 2002 and they are all not significant at

5%. This might suggest that in developed area, General Manager’s experience are

playing its role and is good for firm’s productivity since he then will know better

about the firm and this will help him to make better decisions. However, in less

developed area, General Manager’s (GM) tenure is bad for firm’s productivity since

being under the same General Manager’s leading for a long time might bring about

lack of flexibility for firms. Unexpectedly, we find a positive coefficient of General

Manager’s postgraduate degree dummy across all models and both datasets. This

indicates that General Manager with a postgraduate degree will promote a firm’s

productivity. More interesting, we find that the effect is significant in Data 2000 but

insignificant in Data 2002, and the effect in Data 2000 is much larger than that in

Data 2002.

Management team has a negative and significant effect on productivity across all

models and both datasets and the effects in two datasets differ very little. Our results

are consistent with our intuition and previous management studies. Older executives

tend to be more conservative (Hambrick and Mason, 1984) and empirical studies

have found that older top managers tend to be risk averse (Barker and Mueller, 2002)

and follow lower-growth strategies (Child, 1974). One reason is that older executives

have less of the physical and mental stamina needed to implement organizational
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Table 19: IV Estimation Results for TFP

Year 2000(Data 2000) Year 2002(Data 2002)
LP ACF LP ACF

Panel A: Human Capital Variables (1) (2) (3) (4)

Number of highly educated workers (Hundred) 0.0308*** 0.0326*** 0.0645*** 0.00952
(0.0111) (0.0112) (0.0211) (0.0154)

General Manager’s tenure (years) 0.00394 0.00449 -0.0136* -0.0135*
(0.0108) (0.0108) (0.00794) (0.00765)

General Manager’s postgraduate degree 0.163 0.159 -0.0310 -0.00667
dummy (=1 if has a postgraduate degree) (0.121) (0.122) (0.0998) (0.0946)
Management team’s average age -0.00653 -0.00673 -0.0153** -0.0131*

(0.00836) (0.00841) (0.00774) (0.00755)
Management team’s average schooling 0.0869** 0.0913** 0.0608** 0.0634**

(0.0407) (0.0408) (0.0263) (0.0256)

Panel B: R&D and Firm Characteristics

Log(average R&D in previous two years) 0.00836 0.00835 0.0195*** 0.0157***
(0.00822) (0.00824) (0.00597) (0.00580)

Market share 0.00243 0.00247 0.00583*** 0.00648***
(0.00295) (0.00297) (0.00198) (0.00191)

Firm size (log(net value of total assets)) -0.0477 -0.112*** -0.0590** -0.168***
(0.0330) (0.0333) (0.0282) (0.0260)

Firm age (year) -0.00322 -0.00369 -0.00822** -0.0123***
(0.00353) (0.00355) (0.00327) (0.00319)

Shareholding firms dummy 0.540*** 0.543*** 0.0634 0.0464
(0.160) (0.161) (0.102) (0.1000)

State-owned firms dummy -0.202 -0.198 -0.459*** -0.456***
(0.148) (0.149) (0.117) (0.115)

Foreign invested firms dummy 0.480*** 0.466*** 0.153 0.178*
(0.147) (0.148) (0.108) (0.104)

Constant 2.231*** 2.113*** 3.784*** 2.863***
(0.724) (0.731) (0.524) (0.524)

City Dummies Yes Yes Yes Yes
Industry Dummies Yes Yes Yes Yes
Number of observations 336 336 732 732
Adjusted R2 0.249 0.247 0.220 0.276
Tests of endogeneity (F test) 2.825* 2.724* 2.056 2.090
p-value (0.0608) (0.0672) (0.129) (0.125)
Overidentification test (Score chi2) 7.421 7.626 0.357 0.228
p-value (0.115) (0.106) (0.837) (0.892)

Standard errors in parentheses: * p <0.10, ** p <0.05, *** p <0.01.Dependent variable in column (1) is TFP
from LP approach; dependent variable in column (2) is TFP from ACF. Columns (3) and (4) are similar but
for different dataset, Data 2002. Endogenous variables are number of highly educated workers, and general
manager’s postgraduate degree dummy. Instruments for number of highly educated workers are number of
applicants for the skilled positions, vacant weeks of skilled position before filled, city average and industry
average both excluding firm itself. Note that for Data 2002, we have no information on applicants and
vacant weeks, so we only use city average and industry average excluding firm itself. For general manager’s
postgraduate degree dummy, we use city and industry average excluding firm itself as instruments. We use
two-stage least square (2SLS) to estimate all the models.
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changes (Child, 1974). Another reason is that older managers may have greater

difficulty grasping new ideas and learning new behaviors (Hambrick and Mason, 1984)

because some cognitive abilities seem to diminish with age, including learning ability,

reasoning, and memory. Finally, younger managers are likely to have received their

education more recently than older managers, so their technical knowledge should be

superior (Bantel and Jackson, 1989).

Management team’s schooling has a positive effect on productivity across all mod-

els and both datasets, implying that the higher education of management team, the

more innovation a firm can have. The importance of the top manager’s education

has been studied in a number of studies. Attained education level is always assumed

to be correlated with cognitive ability, and higher levels of education should be asso-

ciated with higher ability to generate (and implement) creative solutions to complex

problems. Hitt and Tyler (1991) found that more educated executives have greater

cognitive complexity and such cognitive complexity provides greater ability to ab-

sorb new ideas. But the effect in Data 2002 is much larger and significant (it is not

significant in Data 2000).

We find that firm age has a significant and negative effect on TFP and the effects

are almost the same across both datasets. State ownership has a negative effect on

TFP. This makes sense intuitively since state ownership often means bureaucracy and

is harm to productivity. Moreover, we find a positive effect of foreign invested firms,

indicating that foreign ownership means a higher productivity. This can be easily

understood since multinational firms are often firms with higher productivity. Table

4 presents IV estimation results when R&D is believed to be endogenous. All the

models are estimated using two-stage least square. We use city average and industry

average of corresponding R&D excluding firm’s own R&D as instruments. All the

first stages have very good performance. However, we don’t have enough evidence to

reject the tests of endogeneity. Thus, our basic regression results still hold.
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5.5 Conclusion

This paper tries to study the effects of R&D spending and firm-level human capital

on productivity in Chinese manufacturing firms to account for the effect of innovation

on productivity. Different from studies, we also include firm-level human capital. The

reasons why firm-level human capital is important are: (1) human capital provides

foundation for R&D to induce innovation. (2) human capital is complementary to

R&D. (3) skilled human capital itself can bring about innovation through learning

by doing. Using firm-level data in Chinese manufacturing firms, we find that firms

in more developed area operate under constant return to scale while firms in less

developed area operate under decreasing return to scale. An important conclusion

is that skilled human capital and R&D have a significant effect on productivity even

after skilled human capital is included in production function. We find that firm

age has a significant and negative effect on TFP and the effects are almost the same

across both datasets. State ownership has a negative effect on TFP. This makes sense

intuitively since state ownership often means bureaucracy and is harm to productivity.

Moreover, we find a positive effect of foreign invested firms, indicating that foreign

ownership means a higher productivity.

The different effects across the two datasets provide us more insights into firm’s

productivity. However, we still want to point out several limitations of our work.

First, the ideal dependent variable should be inventory adjusted output, but because

we don’t have the related material cost information, we still choose to use the unad-

justed one. This might bring about bias results. If inventory is very common for all

firms, then we tends to get a downward bias. Second, we only have average education

level in our datasets, but no information on education quality which might be very

important in human capital study. Third, we only have three years of data, which

might be not enough for us to study the TFP growth.
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CHAPTER VI

CONCLUSION AND OUTLOOK

This thesis studies firm innovation in China from a human capital perspective. There

are several reasons for us to study firm innovation in China from a human capital point

of view. First, R&D spending in China is also an objective pursued by government

and firm itself due to tax incentive or government procurement. Thus, innovation

studies using R&D as the main determinants might be biased. Second, in China,

learning technology introduced from advanced country is still important. Incremental

and informal innovation rather than formal R&D might be more important for a lot

of firms. Thus, rather than R&D, skilled human capital can better capture firm

innovation. Third, according to resource-based theory and upper echelon theory,

human capital is the most important thing in a firm and determines firm’s behavior.

The third chapter explores firm-level innovation from a human capital point of

view using patents as proxy for innovation. In the theoretical model, two firms

compete with each other in a three-stage Cournot, innovation stage and production

stage. Skilled human capital level can affect innovation success probability directly

and via R&D level indirectly. Managerial human capital can affect firm innovation

through their choice of projects and R&D level. We find that a firm’s innovation is

not only determined by its human capital level, firm characteristics, and its market

share, but also might be affected by market environment. In the empirical study,

we use two firm-level datasets from China, one from metropolitan cities and one

from provincial middle cites. Human capital indicators are skilled human capital

(number of highly educated workers), general manager’s education and experience,

and management team’s education and age. We find that a firm’s skilled human
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capital and managerial personnel’s education have significantly positive effects on

innovation while the management team’s age has a significantly negative effect on

innovation. The effect of R&D on patents is insignificant in large metropolitan cities

while it is positive and significant in provincial middle cities.

In the fourth chapter, we study the relationship between firm-level human capital

and product innovation. Three measures are used: new product sales proportion,

new product sales, and number of new products. We find that for skilled human

capital, we find that it also tends to have a positive effect across the three measures,

though it is not significant in regression using new product proportion as product

innovation measure. When new product sales proportion and new product sales are

used as product innovation measures, we find that management team’s average years

of schooling has a positive effect in determining product innovation, however, its

effect in Data 2000 when new product count used as product innovation measure

is negative and significant. This indicates that though the results from the three

regressions are generally consistent, but they still differ. When compare the results

using different innovation measures, we should be very cautious. Another thing is

that different from results in last chapter where R&D has a positive effect only in

Data 2003, less developed areas, we find that R&D has a very significant and positive

effect on product innovation no matter which product innovation measure is used.

This indicates that R&D is still important in promoting product innovation and

policies supporting investment in R&D is still important. Our results still hold when

endogeneity is considered. Notably, in all three models, we all find that general

manager’s postgraduate degree has a large and significant effect in less developed

areas but insignificant at all in more developed areas. The reason might be that in

less developed areas, market development is much more incomplete and thus general

manger’s education matters more. A higher education can enable a general manager

to make more insightful decision.
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In the fifth chapter, the relationship between firm-level human capital, R&D and

total factor productivity (TFP) is examined. Firstly, production function is estimated

using methods proposed by Levinsohn and Petrin (2003, LP, thereafter) and Acker-

berg, Caves and Frazer (2006, ACF) since inputs are very likely to be correlated with

productivity. We then use TFP from ACF method to examine the determinants of

TFP. We find that skilled human capital is important in determining TFP even when

it is already included in production function. Management team’s age has a negative

effect on TFP. Management team’s average schooling has a positive and significant

effect in less developed areas, but we fail to find a significant effect in more devel-

oped areas. Notably, R&D has a positive and significant effect across both datasets.

When the endogeneity of number of highly educated workers, and general manager’s

postgraduate degree is considered, our main results still hold.

Throughout the whole thesis, generally our results are very robust to two datasets

though there are also some differences: (1) postgraduate degree are found to have

a large and positive effect in Data 2002, less developed areas in patents estimation

and product innovation. But postgraduate degree is found to have a positive and

significant effect in Data 2002 rather than in Data 2003. I have no explanation for

this. (2) highly educated workers have a much larger effect on patents in Data 2002

when patents are estimated. The reason might be that in more developed area, there

are enough R&D, almost 5 times of R&D in less developed areas, and R&D can

facilitate human capital exert more effect on innovation. (4) we only find a positive

and significant effect of R&D in Data 2003 when patents are estimated. Since there’s

enough R&D in Data 2002, the effect of R&D on innovation has been absorbed by

the effect of human capital. Also, the significance of the effect of R&D in Data 2003

might indicate that there’s not enough of R&D in less developed areas. Thus, the

implication is that to promote innovation, we should invest more in human capital in

more developed areas while we need to invest more in R&D in less developed areas.
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Future work should focus on estimating production function in different industries.

In the current work, we find that the production function estimation results differ a

lot in more developed areas and less developed areas. One possible reason might be

market environment. Input prices are different in different market environment, and

thus the inputs will be different. Another important reason might be that industries

are not exactly the same for the two datasets and the distribution of firms in industries

are also different. When we only take observations within the same industries and

same firm distribution in industries, we will get more insight.

We can also enrich our work by examining how different innovation measures

influence TFP. More specifically, we can check how patents, new product sales, new

product proportion, and new product counts might play a role in firm’s productivity.

We can also try to deal with the measurement error of capital input in production

function estimation. For example, we have data on depreciation of building. On

the one hand, it is closely related to capital, but on the other hand, it is unlikely

to be correlated with productivity. Also, besides LP and ACF, we can try to use

GMM method proposed by Wooldridge (2009). Moreover, we can try to use firm’s

investment in machinery as proxy and use OP to estimate production function.

With our current datasets, there is also much more work to be done in the fu-

ture. For example, we can study R&D cooperation since our datasets provide us the

information on cooperation with local university, government research institution,

private research institution and private companies. This is a very interesting topic

to pursue since nowadays innovation are achieved both through in-house innovation

and also outside channel and cooperation. Thus, the R&D cooperation study will

largely enrich our work on firm innovation in China. Moreover, we can also study

how workers of different positions affect firm innovation since firm innovation is a way

of exchanging human capital.
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