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Charge transport through image charged stabilized states in a single molecule single

electron transistor device
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The present paper gives an elaborate theoretical description of a new molecular charge transport
mechanism applying to a single molecule trapped between two macroscopic electrodes in a solid
state device. It is shown by a Hubbard type model of the electronic and electrostatic interactions,
that the close proximity of metal electrodes may allow electrons to tunnel from the electrode directly
into a very localized image charge stabilized states on the molecule. Due to this mechanism, an
exceptionally large number of redox states may be visited within an energy scale which would
normally not allow the molecular HOMO-LUMO gap to be transversed. With a reasonable set of
parameters, a good fit to recent experimental values may be obtained. The theoretical model is
furthermore used to search for the physical boundaries of this effect, and it is found that a rather
narrow geometrical space is available for the new mechanism to be effective: In the specific case
of oligophenylenevinylene molecules recently explored in such devices several atoms in the terminal
benzene rings need to be at van der Waal’s distance to the electrode in order for the mechanism to be
effective. The model predicts, that chemisorption of the terminal benzene rings too gold electrodes
will impede the image charge effect very significantly because the molecule is pushed away from the
electrode by the covalent thiol-gold bond.

I. INTRODUCTION

Charge transfer processes of single electrons over
Ångström distances between well defined molecular
donor and acceptor moieties are ubiquitous in nature
and they are extensively studied1,2. Classical examples
include the photosynthetic reaction center, redox active
enzymes and Kreutz-Taube complexes1,2. For all of these
processes, the contact to a temperature bath, molecu-
lar vibrations (phonons) and the reorganization of the
molecular medium surrounding the CT process all play
significant roles as expressed by Marcus theory3,

k = A exp(−∆G∗/kBT ) (1)

where k is the rate of charge transfer and A denotes
the preexponential rate factor. The free energy, ∆G∗ =
(λ/4)(1 + ∆G0/λ)

2, where G0 denotes the thermody-
namic driving force of the reaction and λ the reorganiza-
tion energy introduced by Marcus. In typical cases the
reorganization energy will involve ions, and dipoles of the
surrounding solvent as well as internal reorganization of
the molecular CT-system.
By exchanging the donor or acceptor moiety with an

electrode, centuries of electrochemical studies have ad-
vanced the understanding of charge transfer between a
metal electrode and a redox active species in electrolyte
solutions4. Very recent experiments employing scan-
ning tunneling microscopes under electrochemical control
have further extended these studies to the single molecule
level5,6.
As an extension of this historical development this pa-

per also describes electron transfer processes on a sin-
gle molecule level, but in the absence of a solvent. The

experiment is based on a solid state devices in which
a single molecule has been trapped between two metal
electrodes in ultra high vacuum at 4 Kelvin7. Compared
to previous measurements, temperature effects are hence
suppressed and solvent and electrolyte effects are natu-
rally absent. The presence of two metal electrodes in
constant contact with the molecule, however, produces
significant new effects resulting in a charge transport
mechanism very different from that observed in classical
photoinduced or electrochemically driven charge transfer
systems. As described and analyzed in the following, we
claim to have discovered a new charge transport chan-
nel mediated by image charge stabilized states lying in
the band gap between the corresponding redox states in
solution. The present paper emphasizes and expands on
the theoretical treatment of this new phenomenon which
was introduced in a recent paper describing the experi-
mental possibility to visit several single molecule redox
states in such a solid state device7. Since two historically
rather segregated fields of science, “mesoscopic physics”
and “redox chemistry”, are now coming together at the
single molecule scale, we have chosen to describe the ex-
periment reported in Ref. 7 in some detail followed by a
introduction to the typical ”mesoscopic physics” descrip-
tion of the charge transport phenomena. Following this,
we describe the detailed theory for the image charged
states and finally make some prediction for how changes
in molecular structure and device geometry should affect
future experiments.

http://arxiv.org/abs/cond-mat/0503517v1
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FIG. 1: Schematic Single Electron Transistor. The three
leads, source, drain and gate are kept at constant potentials.
The central island (metallic grain or molecule) has a well de-
fined charge.

II. SINGLE MOLECULE - SINGLE ELECTRON

TRANSISTORS

A transistor is an electronic device with 3 leads, source,
drain and gate. The current from source to drain is con-
trolled by either the voltage or the current through the
gate. In the examples we shall consider in the present pa-
per it is the voltage on the gate that is used as a control
parameter. The concept is so broad that the electrochem-
ical cell also is covered. The current runs from working
electrode to the counter electrode and is controlled by the
reference electrode. Our main emphasis is on the solid
state device sketched in figure 1. Here an island of either
a small metallic particle or a single molecule — hence the
name “Single molecule transistor” — is placed between
the source and and drain electrodes. These electrodes are
typically made from gold. The construction is grown on
top of the third gate electrode with an insulating layer
in between to prevent any current to move through the
gate. The island and the leads are hence only capacitively
coupled to the gate.

The experiments we are going to consider here are car-
ried out at 4 Kelvin, so quantum effects need to be taken
into account. The most basic process is the transfer of
an electron from one of the leads to the central island.
At very low temperatures this is a quantum tunneling
process, which is characterized by a tunneling matrix
element. This corresponds to an energy, Γ, or via the
Heisenberg uncertainty principle to time scale τ = h̄/Γ.
The property of the transistor depends on Γ compared to
other energies of the problem. The most relevant other
energy scale is the change in electrostatic energy, ∆Ec,
as the electron is moved to the island. In the so-called

“strong coupling” limit, where Γ ≫ ∆Ec, the electron
will be delocalized and is described by a wavefunction,
which has weights in both leads and on the island. The
total charge on the island is simply not a good quantum
number. In this limit standard Hartree-Fock or LDA cal-
culations provide a good starting point for quantitative
determination of e.g. the conductivities of the transistor.
The other extreme, so-called “weak coupling”, is charac-
terized by Γ being the smallest relevant energy parameter
of the problem. The important states of the system has
the total charge of the island as a good quantum num-
ber. Electron transport is a very weak process, which
can be described in perturbation theory, with the above
tunneling processes as the perturbation. This is also the
typical regime encountered for molecular charge transfer
processes.

An important notion is that of “quantum coherence”.
In principle all degrees of freedom, electrons, phonons,
molecule position, etc., should be included when solv-
ing Schrödinger’s equation. In practice only a subsys-
tem, e.g. the electrons, are considered. This will often,
and certainly at low temperatures, be a good approxi-
mation, but after some characteristic time, τcoh the ap-
proximation breaks down and the effect of the environ-
ment (phonons, etc.) cannot be neglected. One way of
describing this is to say, that the environment make a
“measurement” on the electron system, and “collapses”
it into one of a set of states with a certain probability.
The Schrödinger equation for the electrons now takes
over, with the collapsed state as its new initial state.
The states to which the electrons collapses are partic-
ularly robust, and are the states which are relevant in
the classical limit, where intricate quantum interference
effects are suppressed. The nature of the coupling to
the environment is such that these “classical” states has
the total charge on the island as a good quantum num-
ber. The coherence time τcoh is strongly temperature
dependent, rapidly decreasing with increasing tempera-
ture, and at not to high temperatures a master equation
model, where one is only considering classical states and
rates of transfer between these, is very effective at giving
a good quantitative description.

The quantum states relevant for weak coupling are
in fact “classical” (with a definite number of electrons
on the central island), and the above mentioned master
equation description is adequate. The electrons are be-
ing transported through the transistor through a series of
”classical” states one at a time, hence the name “Single
Electron Transistor” (SET). Much of current research on
Single Molecule, Single Electron Transistors is concerned
with bridging the gap between the two limits of strong
and weak coupling. A simple rule of thumb says, that if
the conductivity of the device is much smaller than the
conductance quantum e2/h̄ then the transistor is in the
weak coupling limit, while for a device with a much larger
conductivity is in the strong coupling limit.

The experiments we are focussing on in this paper is
certainly in the weak coupling limit. We will hence be
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emphasizing the nature of the ”classical states”, which
are not as simple as one might at first think.
In each of the steps involved in the transport of an

electron from source to drain energy conservation need
to be satisfied. In the case where the central island is
in fact a metal droplet, the determination of the total
energy of a configuration is really an exercise in classical
electrostatics, which we shall briefly review below. When
the island becomes very small, like e.g. a single molecule,
the determination of the total energy is a full quantum
mechanical problem, where only part of the problem is
electrostatics. What is needed in this case is a combi-
nation of classical electrostatics and quantum chemistry,
and this will be the main result of this paper.

A. Orthodox SET theory

In the orthodox theory of Single Electron Transistors
(see e.g.11) all electrodes are considered to be classical
conductors which, when charged, are coupled via a num-
ber of capacitances. Typically there is a capacitance,
Cs, coupling island and the source electrode, and capaci-
tances , Cd and Cg, coupling the island the the drain and
gate electrodes respectively. Implicity in such a model is
the notion that a charge, Q on the island is split in three,
Qs, Qd and Qg, which are coupling only to their respec-
tive countercharges −Qs, −Qd and −Qg on the other
electrodes. In reality all charges are of course coupled,
and the more so in the relevant geometry of a very small
island, where e.g. Qs on the island and −Qs on the source
electrode are physically very close, and both will couple
to e.g. −Qg on the gate electrode. We hence set up a
general classical scheme, where all couplings are treated
on equal footing.
Assume now, that we have a set of conducting elec-

trodes with charges Qi. Each electrode is an equipoten-
tial with with electrical potential, Vi. Poisson’s equation
ensures, that there is a linear relation between charges
and potentials:

Vi =
∑

j

PijQj , (2)

where the coefficients, Pij are entirely determined by the
geometry of the system. The total electrostatic energy of
the system is in this case given by

U =
1

2

∑

ij

PijQiQj

In the actual physical system the charges on the source,
drain and gate electrodes are not given, rather it is the
electrical potentials on these that are given and main-
tained e.g. by attached batteries. The charge on the is-
land is still considered fixed, and the potential of the
island is a variable depending on the potentials of the
other electrodes and the charge on the island. Let us de-
note this charge, Q0, and use Greek letters to denote the

source, drain and gate electrodes. Regarding the poten-
tials Vα and the charge Q0 as independent variables we
can solve (2) with respect to the electrode charges and
the island potential. We get for the electrode charges

Qα =
∑

β

Cαβ(Vβ − Pβ0Q0), (3)

and for the island potential

V0 =
∑

α

fαVα +
Q0

C
. (4)

Here the capacitance matrix Cαβ is the inverse of Pαβ .
The dimensionless parameters fα, and the island capac-
itance C are given by

fα =
∑

β

P0βCβα

C = (P00 −
∑

αβ

P0αCαβPβ0)
−1. (5)

The total electrostatic energy is in terms of these vari-
ables

U =
1

2
CαβVαVβ +

Q2
0

2C
. (6)

Assume now, that the charge on the island is changed an
amount δQ0. Then according to (3), the charge on the
leads will change an amount

δQα = −
∑

β

CαβPβ0δQ0 = −fαδQ0. (7)

This gives a very simple interpretation of the three fα
parameters, as the fraction of counter charge on the elec-
trodes induced by the extra charge on the island.
For a current to flow from source to drain there are two

possible scenarios: a) first an electron moves from source
to island, and then from island to drain or b) first an
electron moves from island to drain and then an electron
moves from source to island. In general the battery work
involved in the first step of scenario a) will be

W
(a)
bat = eVS(1− fS)− eVDfD − eVGfG

= eV (1− fS + fD)/2− e(VGfG − VSD(1 − fS − fD)),(8)

where we have introduced the average of the source and
drain potentials, VSD, and their difference, V = VS−VD.
Likewise the work provided in the first step of b) where
an electron moves from island to drain is

W
(b)
bat = eV (1+fS−fD)/2+e(VGfG−VSD(1−fS−fD)).

(9)
The total battery work in both scenarios is the sum of

W
(a)
bat and W

(b)
bat , which is eV , so if eVS > eVD then the

overall process is energetically possible. The first step,
however, is not necessarily possible.
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FIG. 2: Coulomb blockade diamond. The single electron tran-
sistor is only transporting current in the shaded areas. The
horizontal axis is the gate potential; the vertical axis is the
source-drain potential difference.

Consider a situation where are n electrons on the is-
land, i.e. Q0 = ne, and where the average potential of
the source and drain potentials is equal to the ground
potential, i. e. zero. The change in electrostatic energy
in process a) will be

∆Ua =
e2

2C
((n+ 1)2 − n2) =

e2

2C
(2n+ 1). (10)

The battery work in the first step will be

W
(a)
bat = eV (1 + fS − fD)/2− fGeVG. (11)

If W
(a)
bat ≥ ∆Ua i.e. if

eV > 2
∆Ua + fGeVG
1 + fS − fD

(12)

then the process is possible, and current will flow. If

eVG < −∆Ua/fG = − e2

2CfG
(2n + 1) then the step will

happen even for eV = 0. This means that an extra
electron will move permanently to the island, and the
analysis should be repeated with Q0 = (n+ 1)e.
In the first step in the b) process electrostatic energy

will be

∆Ub =
e2

2C
((n− 1)2 − n2) = −

e2

2C
(2n− 1). (13)

The battery work will now be

W
(b)
bat = eV (1 + fS − fD)/2 + eVGfG. (14)

If W
(b)
bat > ∆Ub, i.e. if

eV > 2
∆Ub − fGeVG
1− fS + fD

(15)

we will have current flowing according to scenario b). For

eVG > ∆Ub/fG = − e2

2CfG
(2n − 1) then the first step of

moving an electron from island to drain will be perma-
nent, and we should replace Q0 by (n− 1)e.
The situation is summarized in the following figure.

The width of the white diamond is given by ∆eVG =
e2

fGC
, while the two slopes are given by α1 = 2fG

1+fS−fD
and

α2 = − 2fG
1−fS+fD

. From these parameters, which can be

determined experimentally, we can read of the following
electrostatic parameters:

fG =
α1α2

α1 − α2

fD − fS =
α1 + α2

α1 − α2

C =
e2

fG∆eVG
. (16)

It is easy to show, that fG is the ratio of the height of
the diamond to its width, which simplifies the determina-
tion of this important parameter if there is experimental
access to the full diamond.

B. Beyond orthodox SET. Single molecule

transistors

The orthodox theory of Single Electron Transistors is
based on a classical electrostatic conductor model of both
electrodes and the central island. In a Single Molecule
Transistors, the central island is replaced by a molecule,
who’s electronic structure and total energy is determined
by quantum mechanics. This e.g. means that the excess
energy in the gray areas of Fig. 2, cannot necessarily
be deposited in the molecule due to the discrete nature
of the molecular energy levels. Another problem, which
is particularly acute in the recent experiments on Sin-
gle Molecule Transistors where the molecule is OPV5.
Here the coupling between electrons on the molecule and
induced charges in the electrodes — the so-called im-
age charges — will significantly change the electronic
structure of the molecule, and hence affect the transport
through the transistor. These effects call for a general-
ization of the orthodox model, and this is the purpose of
the following discussion.
The charge density, ρM (~r), on the molecule will induce

charges in the electrodes and change potential of these.
In principle ρM (~r) is a quantum mechanical operator, but
in what follows we shall use the Hartree approximation
for this, since the effects we are after can indeed be cap-
tured in this approximation. The metallic electrodes are
still described as classical electrostatic conductors. For
good conductors with a high electron density this is cer-
tainly a good approximation, as discussed by Lang and
Kohn9.
The potential of electrode with label α (α still referring

to either source, drain or gate), now becomes

Vα =
∑

β

PαβQβ + VM
α , (17)

where the parameters Pαβ are characteristic for the ge-
ometry of the electrodes without the molecule. VM

α repre-
sent the coupling between the molecular charge density
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and the so-called canonical charge density, σ̃α(~r), of a
unit charge added to electrode α:

VM
α =

1

4πǫ0

∫

σ̃α(~r)ρM (~r′)

|~r − ~r′|
da dv′. (18)

The total electrostatic — or Coulomb energy — in this
case now becomes

U =
1

2

∑

αβ

PαβQαQβ +
∑

α

QαV
M
α

+
1

8πǫ0

∫

ρM (~r)ρM (~r′)

|~r − ~r′|
dv dv′

+
1

8πǫ0

∫

ρM (~r)σM (~r′)

|~r − ~r′|
dv da′, (19)

where σM (~r) is the charge density induced on the surfaces
of the electrodes. In contrast to the canonical charge
densities, this “image” charge density is quite localized
to a region on the electrodes close to the molecule. In
fact, σM (~r) is linearly related to ρM (~r), so we can write

σM (~r) = −

∫

K(~r, ~r′)ρM (~r′)dv′, (20)

where the kernel K(~r, ~r′) is given by the geometry of the
system. We use a minus in the definition, since σM (~r) is
describing an image charge. If we insert (20) into (19)
we get the final version of the total electrostatic energy

U =
1

2

∑

αβ

QαQβPαβ +
∑

α

QαV
M
α

+
1

8πǫ0

∫

ρM (~r)F (~r, ~r′)ρM (~r′)dvdv′, (21)

where the kernel F (~r, ~r′) is given by

F (~r, ~r′) =
1

|~r − ~r′|
−

∫

K(~r′′, ~r′)

|~r − ~r′′|
dv′′. (22)

So far we have considered the charge distributions as
given. They are determined by several factors. The total
charge on the molecule can be considered fixed and given,
but the actual distribution is determined in a fully quan-
tum mechanical calculation. The charge distribution on
the molecule is given in terms of the one-electron wave-
functions (e.g. the wavefunctions appearing in the Kohn-
Sham equations of the Density Functional Theory):

ρM (~r) = e
∑

n

ψ∗
n(~r)ψn(~r) + ρN (~r), (23)

where e is the electron charge and ρN (~r) is the charge
density of the nuclei. The potential energy term in
Schrödinger’s equation includes the potential from the
other charges in the problem and can be obtained as

VC(~r)ψn(~r) =
δU

δψ∗
n(~r)

=
∑

α

Qαe

4πǫ0

∫

σ̃α(~r
′)

|~r′ − ~r|
da′ψn(~r)

+
e

4πǫ0

∫

ρM (~r′)F (~r′, ~r)ψn(~r), (24)

where the first term is the interaction with the charges
on the electrodes, and the second is the Hartree term
of the molecule plus interaction with image charges. In
deriving this result we have assumed that the electron
system of the metal electrodes are very fast degrees of
freedom, which instantaneously respond to changes in
the electron distribution of the molecule.
The total energy of the molecule, i.e. the eigenvalue of

the many body Schrödinger equation will hence include

the two last terms of the total electrostatic energy from
equation (21). The total energy of the entire configura-
tion, i.e. including both electrostatic energy stored in the
charged electrodes and the total energy of the molecule
in this particular environment becomes

Utot =
1

2

∑

αβ

PαβQαQβ + Etot(n), (25)

where the last term is the total energy of the molecule,
including coupling to electrodes and image charges.
In the physical situation we have in mind, the elec-

trodes are kept at fixed potential — maintained by “bat-
teries”. This means that the charge distributions σα(~r)
are dependent variables, determined by the geometry, by
the fixed potentials Vα, and by the molecular charge,
ρ(~r). As in the orthodox theory we shall eliminate the
total charges Qα from the problem. We get

Qα =
∑

β

Cαβ(Vβ − VM
β ). (26)

The potentials VM
β depends on the actual charge distri-

bution on the molecule, which is not easily accessible. In
order to proceed further we need to make some simpli-
fying assumptions. If the electrodes are quite far from
the molecule, or if the electrodes have small potential
differences, then the electrical potential due to the elec-
trode charges will be almost constant in the region of the
molecule, and the contribution to the total electrostatic
energy from this potential is well approximated by

∑

α

QαV
M
α ≈

∑

α

QαPα0Q0, (27)

where Q0 is the total charge on the molecule, and

Pα0 =
1

4πǫ0

∫

σ̃α(~r)ρM (~r′)/Q0

|~r − ~r′|
dadv′, (28)

which is independent of Q0 in the approximation we use.
We shall write the total molecular energy as

Etot(n) = E
(0)
tot (n) +

∑

α

QαPα0Q0. (29)

Here E
(0)
tot (n) is the total molecular energy, obtained from

the quantum calculations, where the first term in Eq.
(24) is omitted. In the concrete cases we are consider-
ing in this paper, the gate electrode is reasonably far
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away and if the source and drain electrodes are kept at
the same or only small potential differences, then the ap-
proximation should be OK.
The rest of the analysis proceeds as in the orthodox

theory. The electrode charges, Qα, are eliminated and
we consider two processes a) and b) that can transfer an
electron from source to drain. The a) process is possible
if the electrode potentials satisfy the inequality

eV ≥ 2
∆Ua + fGeVG
1 + fS − fD

, (30)

where

∆Ua = E
(0)
tot (n+ 1)− E

(0)
tot (n)−

e2

2C′
(2n+ 1), (31)

with a different capacitance C′ however:

C′−1 =
∑

αβ

Pα0Pβ0Cαβ . (32)

The reason for this change in capacitance is, that
the large self interaction of the charge on the island,

P00Q0Q0, is in the molecular case contained in the E
(0)
tot

term via the through the electron-electron interaction
term (the last term of Eq. (21)). Likewise, the b) process
is possible if

eV ≥ 2
∆Ub − fGeVG
1− fS + fD

, (33)

with

∆Ub = E
(0)
tot (n− 1)− E

(0)
tot (n) +

e2

2C′
(2n− 1). (34)

Again we obtain a diamond structure like in Fig. 2, and
the fractional charge parameters are determined by the
slopes of the diamond. The width of the charge n dia-
mond is different. It will be given by

e∆VG = f−1
G

(

E
(0)
tot (n+ 1) + E

(0)
tot (n− 1)− 2E

(0)
tot (n)

)

−
e2

fGC′
.

(35)
This formula is the important end result of the general
analysis. To summarize the discussion so far, we can
say that the orthodox theory has a very wide domain
of applicability, which includes a situation, where image
charge effects are relevant. These image charges are not
to be considered part of the electrodes, but can be viewed
as extensions of the molecule, and be included in the
quantum calculation of the molecular electronic states.

III. OPV5

In the past few years there has been a drive to ex-
perimentally realize single molecule transistors. Several
strategies has been used, and in the literature now has
reports of many such transistors8. Here we shall focus on

FIG. 3: The Coulomb blockade diamonds from Ref. 7. Seen
are 9 redox states of the OPV5 molecule. The two insets in
the figure show the calculated charge densities of the n = −1
(charge Q = +e) and n = −2 states.

the work of Kubatkin et al.7 who very carefully has grown
two gold leads on top of a gate electrode spatially sepa-
rated from the rest of the system by an insulating Al2O3

layer. By in situ monitoring the source-drain conduc-
tance while depositing gold, it is in fact possible to obtain
a source-drain distance of approximately 2 nm. With this
electrode geometry the organic oligo-p-phenylenevinylene
derivative, OPV5, with 5 benzene rings in a chain, which
in each end is terminated by sulfur and a tertiary butyl
group. At somewhat elevated temperatures ( 50 Kelvin)
the molecule diffuse on the surface until a increase of
conductance is suddenly observed. This is interpreted as
the realization of an OPV5 forming an electronic bridge
between the source and drain electrodes. The length of
OPV5 is 3.2 nm, so this is physically possible. Temper-
ature is lowered to liquid Helium temperatures, and a
full electronic characterization of the transistor is made.
It shows a very beautiful set of no less than 7 or 8 full
SET diamonds. The conductance in the current carrying
modes is well below the conductance quantum, so the
theory of the previous section should apply.

The first thing to do is to establish the conversion fac-
tor, fG, between the gate voltage axis and energy. It
is obtained from the slopes of the diamonds trough Eq.
(16). The fact, that all observed slopes are identical gives
support to the theoretical picture presented. The analy-
sis gives fG = 0.189.

What is to be expected? First a comparison to elec-
trochemical experiments is made. These experiments are
quite analogous to the SET experiments. In electrochem-
istry we have electrons passing from working to counter
electrodes controlled by a third reference electrode. In
solution diffusing OPV5 molecules act as electrolyte and
electron shuttles, carrying electrons between electrodes.
The shuttle only works if a the molecule has an affinity
level aligned with the source electrode Fermi energy. By
changing the voltage on the reference electrode, the elec-
tronic chemical potential of the solution — including the
OPV5 molecules — the experiment can map electronic
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levels of the molecule. Two sets of redox states are found,
with a quite large gap, 2.5 eV, between them. This is also
the value of the HOMO-LUMO gap measured directly by
optical absorption

As a first attempt at calculating the width of the n = 0
diamond we will assume, that the charge on the molecule
is uniformly distributed over the carbon atoms. In this
case the width of the n = 0 is the HOMO-LUMO gap of
the unperturbed molecule. This is a more than a factor of
10 larger than the observed width, which is 220meV. We
therefore have to conclude, that severe relaxation effects
are taking place when electrons are added or subtracted
the OPV5 in the present geometry. A possible relaxation
mechanism is the structural deformation of the molecule
which takes place when adding an electron. This, how-
ever, only amounts to an energy of approximately 200
meV10, which has no chance of explaining the large ef-
fect observed.

We are thus led to consider the possibility of direct
electrostatic coupling to the nearby source and drain elec-
trodes. This in turn has forced us to reconsider the basic
electrostatics in a Single Electron Transistor with a very
small central island with quantized energy levels. This
is what was presented in the previous section. In or-
der to make a quantitative estimate of the size of image
charge effects we need a somewhat realistic model of the
molecule, where these effect can be included without to
much effort. We have chosen to describe OPV5 using the
Hubbard model. The important orbitals of the OPV5 are
the 38 pz-orbitals of the carbon atoms, and the coupling
between nearest neighbor atoms are given by a matrix el-
ement t (or β in the quantum chemistry literature). The
value of this is well established, and is t = 3.9eV. This
e.g. reproduce the optical HOMO-LUMO gap. We fur-
ther need a term which describe the Coulomb repulsion
among electrons on the molecule. The most important
term is here the intra atom repulsion, which is parame-
terized by the so-called Hubbard U . In the calculations
below, the value is taken to be U = 4.2eV. There is no
agreed upon value of U in the literature. It is an effective
parameter, which depends on the chemical environment
of the carbon atom in question.

It is not feasible to do exact calculations, even us-
ing the simplifications of the Hubbard model. We are
doing a mean field calculation, where the spin densi-
ties 〈ni↑〉 and 〈ni↓〉 (i being an atom index) are deter-
mined selfconsistently. In the neutral OPV5 molecule far
away from all electrodes, the spin densities are uniform,
〈ni↑〉 = 〈ni↓〉 = 0.5, resulting in the single electron spec-
trum shown in Fig. 4. We note the HOMO-LUMO gap of
2.5 eV. If an electron is removed from the molecule, the
new densities are still uniform, and the resulting spec-
trum is unchanged (except for a simple energy shift).
This is actually a non-trivial result. For larger U ’s one
finds non-uniform spin and charge densities, which is a
general feature of strongly correlated electron systems.
Calculations for values of U so large, that added (or re-
moved) electrons form a state with an inhomogeneous

n = 0

n = 1

FIG. 4: One-electron spectra for the n = 0 and n = 1 redox
states. The left panel is spin up states, the right is spin down
states. Occupied states are blue and unoccupied states are
red.

charge distribution, show that the calculated width of the
n = 0 diamond is still several electron volts (depending
on the exact value of U). We conclude, that a molecule
unperturbed by the electrodes — except for a constant
shift of the electrochemical potential — cannot account
for the observations.

The first attempt of including the effect of the metal-
lic electrodes, is to model an electrode as a half infinite
conducting plane — the standard geometry of undergrad-
uate electrostatics. We have carried out calculations for
the a molecule placed with varying distances and angles
with respect to the model electrode. For all realistic pa-
rameters (e.g. distances larger than 1.5 Å) we find no
inhomogeneous charge distributions, and hence no dras-
tic renormalization of the n = 0 diamond width. The
reason is, that only the carbon atom closest to the elec-
trode feel a potential image charge, and that reduces the
effect to negligible changes.

The actual electrodes are in fact heaps of gold atoms,
and in the final geometry we have considered, the ben-
zene rings at the ends of the molecule is lying flat on
the electrode (within approximately a van der Waals dis-
tance), so that a charge imbalance on any of the six car-
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FIG. 5: Likely geometries for the OPV5 based Single Molecule
Transistor. See text for explanation. Below is shown the
chemical structure of OPV5.

bon atoms of these rings will couple relatively strongly
to its image charge in the electrodes. Calculations now
show a strong perturbation of the electronic structure of
the molecule12. By varying only the distance between
molecule and electrode we are able to fit the three cen-
tral diamonds, which involves n = −2,−1, 0, 1, 2 redox
states of the molecule. The actual distance between the
benzene ring and the mirror plane of the gold electrodes
chosen to fit the data is 2.2 Å, which is quite realistic,
given the known van der Waals radius of benzene. In fig-
ure 3 we also show the electron densities of some of these
states. For the n = 1 state the charge pile up at the end
benzene ring of the molecule. The n = 2 state, which is
quite close in energy, the two charges occupy each end of
the molecule. There are two such states, but it turns out
that the singlet state (spin = 0) is approximately 70 meV
lower in energy, so we propose that this is the relevant
state to the experiment. The one electron energy spectra,
which enters the calculations, are shown in Fig. 4. We
see, that they are completely scrambled, and no intuition
is to be gained by only considering these spectra. Only
the total energies carry the relevant information.

IV. CONCLUSION

In conclusion we find, that the image charge effects can
be involved in the physics of Single Molecule Transistors.
It requires, however, a special geometry. By varying the
end groups of the molecule (and other molecules of the
OPV family) we expect a geometry change that will re-
move the strong perturbation due to image charges. If
e.g. the tertiary butyl group is removed so that the Sulfur
atom binds directly to the Gold electrodes the possibility
of having the end benzene ring couple electrostatically to
the electrode is severely impeded and the n = 0 diamond

should become approximately a factor of 10 greater cor-
responding to the unrenormalized HOMO-LUMO gap.
These different situations are summarized schematically
in Fig. 5, where Fig. 5A - B show a likely orientation of
the molecule in the device realized in the experiment by
Kubatkin et al. in which the terminal thiol capped ben-
zene ring is protected by a tertiary butyl group. Fig. 5B
illustrate the image charge as a blue shadow of the “red”
charges in the molecule. In this case all of the atoms in
the terminal benzene ring are affected by image charges
and calculations show a strong localization of the charge
on this ring, as also seen in Fig. 3. The van der Waal’s
nature of the contact between the physisorbed molecule
and the electrode, with the hydrogen atoms at the edge of
the benzene ring being the likely contact region, prevent
a strong electronic coupling between the electron system
and the electrode. In turn this results in a relatively
large tunneling barrier and Coulomb blockade behavior
as experimentally observed7. Shown as Fig. 5C is the
likely orientation of the same terminal benzene when it
is deprotected allowing the terminal thiol to form a chem-
ical bond to the gold electrode. In this case the benzene
ring is pushed away from the surface of the electrode by
the covalent thiol bond. Our calculations show that im-
age charge effects are seriously impeded in this case, and
we therefore predict that these effects will play a minor
role. Interestingly, the electronic coupling between the
electrode and the molecule, now mediated by a covalent
bond, is expected to be stronger then the coupling medi-
ated by the van der Waals contact discussed above.

Taken together the above analysis reveal an intricate
relation between the details of the molecule-electrode
contact and the resulting effective charge transfer chan-
nels. The relation resembles the competition between
charge delocalization and localization often discussed in
terms of the Hubbard parameters U and t. In our case,
however, the electron localization is driven by image
charge effects rather than electron-electron repulsion. In
the special case described in the present paper, it is shown
that image charges can influence this electronic instabil-
ity in direction of the localized regime very significantly.
The key parameter controlling the magnitude of this ef-
fect is the distance of the atoms in the molecule to the
electrode surface. This parameter is independent of the
degree of electronic overlap between the electrons in the
molecule and electrode, which tends to favor coherent
transport through delocalized states. A series of exper-
iments in which these two parameters are varied inde-
pendently are currently under investigation in our labo-
ratories, and we expect a series of new phenomena to be
reveled as we systematically map the properties of sin-
gle molecule devices in which both delocalized coherent
transport and sequential electron hopping between local-
ized states are active.
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