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Abstract
A primary goal of metabonomics research is biomarker discovery for human diseases based on
differences in metabolic profiles between healthy and diseased patient populations. One of the
most significant challenges in biomarker discovery is validation, which implicitly depends on the
coefficient of variation (CV) associated with the measurement technique. This paper investigates
how the CV of metabolite resonances measured by nuclear magnetic resonance spectroscopy
(NMR) depends on signal-to-noise ratio (SNR) and normalization method. CVs were calculated
for NMR resonance peaks in a series of NMR spectra of five synthetic urine samples collected
over an eight-month period. An inverse correlation was detected between SNR and CV for all
normalization methods. Small peaks with SNR<15 tended to have larger CVs (15–30%) compared
to peaks with the highest SNR>150, which typically had smaller CVs (5–10%). The inverse
relationship between CV and SNR roughly obeyed a log10 dependence. Quotient normalization
(QN) tended to produce smaller CVs for smaller peaks, but larger CVs for the strongest peaks in
the data, compared to no normalization, normalization to total intensity (NTI) or normalization to
an internal standard (NIS). Consequently, quotient normalization appears optimal for validating
low concentration metabolites. NTI or NIS appear superior to QN for samples that have very small
variation in total signal intensity. While the inverse relationship between CV and log10(SNR) did
not strictly hold for all metabolites, weaker concentration metabolites will likely require more
rigorous validation as potential biomarkers since they tend to have poorer reproducibility.
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1. Introduction
Nuclear magnetic resonance spectroscopy (NMR)-based metabonomics research aimed at
biomarker discovery for human diseases has increased significantly over the last decade [1–
3]. The increase in popularity is due to the promise that metabonomics research could
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contribute to personalized health care, non-invasive diagnosis of diseases, earlier diagnosis
of diseases that have high fatality rates, and potential biomarker discovery for diseases that
currently are difficult to diagnose [4, 5]. The potential importance of biomarkers discovered
using a metabonomics approach are discussed in a recent review [6].

Metabonomics has shown great promise in identifying potential biomarkers for human
diseases, specifically in human cancers [7], and metabonomics in oncology has recently
been reviewed [8, 9]. One area of metabonomics research that could benefit from further
study is biomarker validation. Currently there are very few papers available that address this
issue. Serkova et al. has written the most comprehensive review on biomarker validation
relating to metabonomics research [10]. Most of the work with biomarker validation has
been studied in epidimeology. Reliability models have been used to help with biomarker
validation [11]. Puntmann has recently written a review that outlines biomarker terminology
and validation as well as giving examples related to cardiovascular disease [12]. These
examples do not pertain to metabonomics studies but the principles involved should be
considered when developing a biomarker that has been discovered through metabonomics
research.

One of the first things that must be considered for validation of NMR-based biomarkers is
analytical reproducibility. Keun et al. has determined that the analytical reproducibility of
NMR measurements appeared to be very good when data gathered on common samples at
different sites were compared [13]. Ebbels et al. analyzed spectral variation between rat
strains using a range of statistics including standard deviation, skewness, and kurtosis [14].
A few papers have used coefficient of variation (CV), also referred to as relative standard
deviation (RSD), to look at the reproducibility of various NMR-based metabonomics data
sets. Teahan et al. showed mean unedited CPMG spectra colored with CVs at each point
after 10 repeated measurements over three hours. Based on these spectra, it was determined
that the unedited spectrum contained no more than 1% deviation and most points in the
CPMG spectra contained < 5% variation [15]. Another paper determined the reproducibility
of NMR data by looking at urinary spectra over a period of seven months and the CV of
each point was plotted vs. the chemical shift to obtain a “spectrum” that showed where the
highest and lowest CV was present in the original spectra. In this case the authors
determined that the areas with a high CV contained the noise region of the spectra and that
the CV of relevant metabolite signals had a CV in the range of 0 – 10% [16]. Sysi-Aho et al.
looked at the CV distribution as it related to the type of spectral normalization applied in a
UPLC/MS application of metabolomics. They tested three different types of normalization,
NOMIS, 3STD, and L2N, and compared it to the raw data. It was determined that the
NOMIS normalization method, which stands for normalization using optimal selection of
multiple internal standards, produced the lowest median CV [17]. In 3STD, three internal
standards with different retention times were used and the internal standard used for
normalization depended on the peak retention time [18]. L2N is based on normalization to
sum of squares of peak intensities [19] with some adjustments [17]. Finally, Parsons et al.
looked at the CV focusing on bucketed NMR spectra by normalizing the data to unity, also
known as total intensity. They looked at various NMR data sets and used boxplots to show
the inter- and intra-individual metabolic variation between the different types of samples.
They concluded that it was important to use CVs to assess the quality of metabonomics
datasets and recommended creating a database of CV values for other researchers to consult
[20].

All of the previous studies that have looked at the CV of NMR data for metabonomic studies
have used either human or animal samples. Even though several papers have shown that
freeze-thaw and long-term storage do not contribute to sample degradation when evaluated
by principal component analysis (PCA), some degradation can still take place over time
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[21–24]. Such degradation could cause an increase in CVs due to the possibility of changing
peak intensities. In this paper we looked at five synthetic urine samples starting with
Surine™ (Dyna-Tek Industries, Lenexa, KS, USA) and adding various small molecules that
could be present in urine. These samples allowed CV analysis strictly focused on
instrumental and analytical reproducibility with minimal expected sample changes over
time. CV analysis was performed after using quotient normalization (QN) [25],
normalization to total intensity (NTI), normalization to an internal standard (NIS), and no
normalization (NN). Peaks were grouped into distinct SNR groups and CV analysis was
evaluated to determine how the CV depended on the metabolite concentrations.

2. Experimental
2.1 Materials

Synthetic Urine Samples. Five different synthetic urine samples were prepared by adding
specified amounts of a number of compounds to 50 mL of Surine™ (Dyna-Tek Industries,
Lenexa, KS, USA). The five resulting synthetic urine samples contained anywhere from 9 to
17 added components (Table 1). The components in synthetic urines were chosen by their
NMR spectroscopic characteristics which included range of resonant frequencies, relaxation
times, peaks overlap and splittings. 500 µL of each mixture was transferred to an eppendorf
tube and 200 µL of buffer (0.3 mM KH2PO4, pH 7.2) added to the mixture. The samples
were then centrifuged for 5 min. 540 µL of each sample was then transferred into a 5 mm
NMR tube and 60 µL of a 10% trimethylsilyl propionate (TSP)/D2O solution was added.
The solution was then mixed and sealed in a glass-sealed NMR tube to prevent degradation.
Five different synthetic urine samples were prepared in this manner. Some samples shared
common components, but the five samples had unique overall compositions. The
concentrations of the components, which ranged from 63 µM to 1.1 mM, were chosen to
span a typical concentration range of majority human urine metabolites [26].

2.2 Data Collection
NMR Data Collection. 1H NMR spectra were acquired at 298K on a Bruker US2 Avance™
III 850 MHz spectrometer operating at 850.10 MHz equipped with a 5 mm TXI triple
resonance probe with inverse detection and controlled by TopSpin 2.1.4 (Bruker, Germany).
All data were collected using a spectral width of 20.0 ppm. Two 1H NMR experiments
optimized by Bruker (Bruker BioSpin, Billerica, MA) for metabonomics studies were run on
all samples: a standard 1D pulse and acquire pulse sequence employing water-suppression
using pre-saturation (zgpr) and the one-dimensional first increment of a nuclear Overhauser
effect spectroscopy (NOESY) experiment with pre-saturation (noesygppr1d). All
experiments included on-resonance presaturation of water achieved by irradiation during a
recycle delay of 4.5 s with pulse power levels of 49.02 dB and 54.89 dB for the zgpr, and 1D
NOESY, respectively. The 90° pulse width was determined for every sample using the
automatic pulse calculation feature in TopSpin [27]. All pulse widths were 15 ± 0.5 µs. The
zgpr experiment was used to screen samples and assure that presaturation and shimming
were sufficient to collect reliable data. Quality of shimming was determined by measuring
the full width at half height (FWHH) of the TSP peak, which was deemed acceptable when
the FWHH was 1.0 ±0.5 Hz. One-dimensional zgpr 1H spectra were acquired using 2
transients and 2 dummy scans, with 65 K points per spectrum. This resulted in an acquisition
time of 1.92 s. Once the spectrum was determined to be of acceptable quality the 1D
NOESY experiment was collected. The one-dimensional first increment of the NOESY
experiment was collected using 4 transients with 4 dummy scans. 65K points per spectrum
were collected which resulted in an acquisition time of 1.92 s, and the mixing time was 0.01
s. All NMR spectra were processed using the AU program apk0.noe. This AU automatically
phase corrected, baseline corrected, and corrected for chemical shift registration relative to
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TSP, which was set to 0 ppm in TopSpin 2.1.4. Manual phase correction was applied to
achieve optimal phase correction after automatic phase correction. This process was
repeated on the same samples over an eight-month period to mimic a longitudinal NMR-
based metabonomic study of animal or human biofluid samples.

2.3 Data Analysis
After processing, spectra were imported into AMIX 3.9.11 (Bruker Biospin, Billerica, MA,
USA) and in this software, bucket tables were created using a manual pattern for each
synthetic urine sample. Each bucket width was matched to a peak in the overlaid spectra.
Bucket tables were exported into Excel (Microsoft Office 2010) to enable further
calculations. The different types of normalization, including normalization to total intensity
(NTI), normalization to an internal 0.1 mM TSP standard (NIS), quotient normalization
(QN) and no normalization (NN), were performed in Excel. NTI was calculated by dividing
each bucket intensity by the sum of all bucket intensities in the spectrum, and NIS was
calculated by dividing each bucket by the intensity of the TSP peak. QN was calculated after
NTI as reported in the literature using the spectrum of the first measurement as a reference
[25]. CVs for each bucket were calculated in Excel by taking the standard deviation of the
bucket computed over the 12 spectra for each mixture and dividing by the mean bucket
intensity. Signal-to-noise ratios (SNR) were calculated for each bucket from the five
synthetic urine mixtures. The un-normalized bucket table was used to calculate the average
SNR using the standard deviation of the noise for each spectrum in the chemical shift range
between 9.5 – 10 ppm. After the standard deviation was calculated, the bucket intensity was
divided by the calculated noise to determine the SNR of that bucket for that spectrum. This
resulted in 12 different SNR being calculated for each bucket for each synthetic urine
sample. The average of these 12 SNRs was calculated to determine the average SNR of that
bucket across the 12 different spectra. The CVs of all buckets were evaluated for the four
different types of spectral normalization (including NN) and assessed with regard to
averaged bucket SNR. The un-normalized bucket table was used in SNR calculations since
this ratio was independent of the normalization technique applied to the data.

3. Results And Discussion
3.1 Sample degradation test

For each sample, the first and last measured spectra were examined to study the sample
aging. In this test, NTI was applied since it is commonly used in urine data analysis. First,
the ratio of the last spectra and first spectra was calculated, and all buckets were included in
the analysis. To study the variation of the ratios, standard deviations and CVs were both
calculated and listed in Table S1. The results indicated that all the samples had very low
standard deviations and CVs except Sample 3, which had slightly higher values. The
correlation coefficients of the two measurements were also studied for all five samples.
Similar to the CVs results, all the samples had very high R2 (>0.99) including Sample 3
which indicated the peaks were highly correlated (Table S1). These analyses indicated that
sample degradation could be neglected with the possible exception Sample 3.

3.2 Internal Standard Variation Associated with Normalization Method
The performance of PCA, Partial Least Squares - Discriminant Analysis (PLS-DA) and
statistical tests of significance, like a Student’s t-test, when applied to NMR data sets, can
depend on the data normalization technique applied to the data [28]. This raises the question
as to what degree the choice of spectral normalization technique affects the analytical
reproducibility of the measured spectral intensities, i.e. the CVs? One way to address this
question is to compute the CV for the internal standard, in our case, TSP, over multiple
measurements. Since the concentration of the internal TSP standard was controlled to be
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identical in every sample, one can assess the peak intensity variability introduced by the
normalization technique by comparing the TSP peak CVs. The optimal normalization
technique should produce the smallest standard deviation in the peak intensity across the
entire set of measurements. A normalization technique would be considered inferior if it
introduced systematic error into the normalized peak intensities, as measured by a larger
TSP peak CV.

Table 2 shows the CVs for the TSP peak for three different normalization techniques applied
to the five different synthetic urine datasets. All three normalization methods produced small
TSP CVs (<6%). However, NTI, by far, produces the smallest average CV (1.31) compared
to NN (2.41), and QN (3.24). Interestingly, calculation of the CV of the CVs for each of the
three different normalization methods further highlighted the differences between the
normalization techniques, illustrating that NTI not only produced that smallest average CV,
but also the smallest variation in CV across the three normalization techniques. For example,
the CVs of the TSP peak in the five synthetic urines for NN ranged from 0.96 to 5.71, and
the CV of these CVs was relatively high (79%). By contrast, after NTI or QN, the CV of
CVs was much lower, 31% and 25% for QN and NTI, respectively, indicating that NTI
performed better than QN or NN. Finally, all CVs for QN were larger than NTI. QN is
intended to be used when the total intensity of each spectrum in a comparison group
experiences significant variation. However, in this study, the higher CV of CVs, as well as
the higher CVs indicated that NTI was superior to QN in cases where variation in the overall
intensity of the spectra was not large.

3.3 Coefficient of Variation Relationship to Signal-to-Noise Ratio
The influence of normalization method on the CV of all peaks was examined to determine
whether or not a correlation existed between CV and SNR. Anywhere from 100 to 250
peaks were identified in the five different synthetic urine samples. The peak CVs were
grouped into five categories based on SNR as follows: > 150, 150 – 50, 50 – 30, 30 – 15,
and <15 (Table 3). Figure 1 shows the average CV in each SNR range for the four different
normalization methods for each of the five synthetic urine samples. There were different
numbers of buckets in each S/N category, but more than 15 peaks represented most groups.
Figures 1A through 1E show the results for synthetic urine samples 1–5, respectively. The
CV was below 15% for most peaks, except for peaks with a SNR<15, which had a
significantly higher average CV compared to other categories, ranging from 15–30%. In
general, an inverse relationship was observed between CV and SNR for all normalization
methods (Figure 2). All peaks with SNR > 30 tended to have relatively small CVs (<10%).
As a consequence, plots of CV versus SNR were relatively insensitive for illustrating an
inverse relationship between CV and SNR for peaks in this category. A plot of 1/CV vs the
log10(SNR) (Figure 3) for all peaks confirmed an inverse correlation between CV and SNR
even for peaks in the highest SNR categories. Although there was some scatter about the
best-fit straight line defined by the log10 relationship between CV and SNR, the trend was
clear as supported by the correlation coefficients (R2) indicated in the plots. The CV was
observed to decrease more slowly as the peaks became stronger. In other words, the CV of
the strong peaks was influenced less by SNR than weak peaks.

The data also indicated small differences in CV depending on the normalization method
applied. For small peaks (SNR<30), NN produced the largest CV, QN produced the smallest
CV, and the other two methods had intermediate CV values. However, in majority cases,
peaks with SNR > 50, and especially peaks with a SNR>150, the NTI and NIS normalization
methods produced lower CVs than the other two methods. In other words, QN tended to
produce smaller CVs for smaller peaks but larger CVs for larger peaks. Hence, QN tended to
balance the relationship between CV and SNR, which was supported by the R2 values
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reported in Figure 3 and Table 4, where QN tended to produce smaller correlation
coefficients compared to the other methods. Since large peaks tended to have smaller CVs,
the slight increase in CV introduced by QN should not have a large effect on validation for
peaks in this category, and therefore QN appears to be a good choice when low
concentration peaks are of great interest.

3.4 A Strict Inverse SNR and CV Relationship is Not Always Observed
Though a log10 relationship between CV and SNR was supported by the R2 values, the fit of
the CVs to log10 (SNR) indicate significant scatter. For example, if we consider one peak, or
a small sample of peaks, in each SNR category, this inverse trend may not hold. To illustrate
this point, the 12 spectra from synthetic urine sample #2 were overlaid and selected peaks
with similar CVs in each SNR category shown in Figure 4. These peaks, labeled 1 – 5 in
Figure 4, had SNRs ranging from 12/1 to 677/1. The CVs of the peaks, however, were quite
similar, with values of 14.82%, 16.03%, 14.85%, 14.35%, and 16.06% for peaks 1 – 5,
respectively. The insets in Figure 4 show that even though these peaks had significantly
different SNRs, they all experienced about the same magnitude of intensity variance. These
data illustrate that despite the general trend of an inverse relationship between CV and log10
(SNR), peaks corresponding to metabolites at high concentrations will not necessarily
exhibit better analytical reproducibility, i.e. CV, compared to peaks associated with
metabolites at weak concentrations.

4. Conclusions
Validation of potential disease biomarkers from NMR-based metabonomics studies is still
far from routine. Currently, many potential metabolic biomarkers have been discovered from
academic metabonomics research efforts for several cancers and other diseases, but at this
time, virtually none are used for clinical diagnosis due to the difficulty associated with
biomarker validation. In order for a biomarker to be validated, the analytical reproducibility,
or CV, must be smaller than the effect size for diagnosis, i.e. the CV must be smaller than
the smallest significant change in metabolite concentration associated with the detection of
the disease. Otherwise, analytical reproducibility is a limiting factor in the ability to make a
disease diagnosis. Several investigations have used CV analysis to determine the analytical
reproducibility of NMR data used in metabonomic studies. Those papers have shown that
good data typically contains CVs in the range of 0 – 10% and a high degree of
reproducibility has been observed for several different types of samples.

In this paper we characterized the CVs of peaks from five synthetic urines that contained a
variety of small molecules found in urine using replicated data collected over an 8-month
period. Peak CVs ranged from less than 1% to greater than 60%. However, the majority of
the CVs for the peaks fell in the range of 1 – 15%. Our data indicates that CV and SNR have
a weak but clear inverse relationship and a log10 fit can be applied to represent the trend.
The CV for peaks with small SNRs generally had larger CV values. Accordingly,
metabolites at higher concentrations in solution tended to have smaller CVs, and generally
should be easier to validate in terms of concentration changes associated with disease. On
the other hand, small peaks (SNR<15) will generally require larger effect sizes in order for
validation [30].

Finally, we explored how spectral normalization affected the magnitude and distribution of
CVs. Our results indicated that QN produced higher average CVs in the large SNR range but
produced smaller CVs in the small SNR range compared to NN. If lower concentration
metabolites (small peaks) are putative biomarkers being considered for validation, QN is a
good choice since it should have minimal influence on the CVs of strong peaks in the
dataset but tends to increase the reproducibility of small peaks. CVs for large peaks were
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still in the 15% range after QN. In the study of the CVs of the TSP peaks, NTI had better
performance than QN. Hence, NTI appears superior to QN for samples that have very small
variation in total signal intensity, such as cell line study comparisons. For NTI and NIS,
similar performance was observed, and they were both better than NN data in almost all
categories. NTI or NIS is useful in reducing systematic errors during validation of potential
disease biomarker. Urine concentrations can vary from sample to sample based on diet,
water in-take, and diurnal variation among other things [29] which will make NTI less
powerful. In such cases, QN will likely produce the best results for validation. While the
various normalization techniques exhibit different performance depending on SNR, one can
always tailor the acquisition conditions to obtain better SNR as required for the analysis.
Collectively, these observations have important consequences for validation of NMR-based
biomarkers of human disease, since the data suggests that it will be essential to characterize
the CV of any given putative biomarker, notwithstanding its typical concentration in control
patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
MAK acknowledges support by a grant from the NIH/NCI (1R15CA152985). The instrumentation used in this
work was obtained with the support of Miami University and the Ohio Board of Regents with funds used to
establish the Ohio Eminent Scholar Laboratory where the work was performed. We would also like to acknowledge
support from Bruker Biospin, Inc that enabled development of the statistical significance analysis software used in
the analysis of the data reported in this paper. The data collection was conducted at the Ohio Biomedicine Center of
Excellence in Structural Biology and Metabonomics at Miami University. The authors acknowledge Lindsey
Romick-Rosendale for providing some of the raw NMR data used for the demonstration exercises. We
acknowledge Dr. Donald Stec at Vanderbilt University for supplying the recipes for the various synthetic urine
samples.

References
1. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for

early disease diagnostics. Expert Rev Mol Diagn. 2008; 8:617–633. [PubMed: 18785810]

2. Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and
their applications in physiological monitoring, drug safety assessment and disease diagnosis.
Biomarkers. 2004; 9:1–31. [PubMed: 15204308]

3. Wilson ID. The practice of NMR spectroscopy in drug metabolism studies. Drugs and the
Pharmaceutical Sciences. 2009; 186:373.

4. NordströM A, Lewensohn R. Metabolomics: Moving to the clinic. J Neuroimmune Pharmacol.
2010; 5:4–17. [PubMed: 19399626]

5. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;
134:714–717. [PubMed: 18775301]

6. Kell DB. Metabolomic biomarkers: Search, discovery and validation. Expert Rev Mol Diagn. 2007;
7:329–333. [PubMed: 17620040]

7. Griffin JL, Kauppinen RA. Tumour metabolomics in animal models of human cancer. Journal of
Proteome Research. 2007; 6:498–505. [PubMed: 17269706]

8. Serkova NJ, Glunde K. Metabolomics of cancer. Methods Mol Biol. 2009; 520:273–295. [PubMed:
19381962]

9. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: A
review. Clin Cancer Res. 2009; 15:431–440. [PubMed: 19147747]

10. Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1h-
NMR-based metabolomics. Expert Rev Mol Diagn. 2006; 6:717–731. [PubMed: 17009906]

Wang et al. Page 7

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



11. Taioli E, Kinney P, Zhitkovich A, Fulton H, Voitkun V, Cosma G, Frenkel K, Toniolo P, Garte S,
Costa M. Application of reliability models to studies of biomarker validation. Environ Health
Perspect. 1994; 102:306–309. [PubMed: 8033872]

12. Puntmann VO. How-to guide on biomarkers: Biomarker definitions, validation and applications
with examples from cardiovascular disease. Postgrad Med J. 2009; 85:538–545. [PubMed:
19789193]

13. Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O, Schlotterbeck G, Senn H, Niederhauser
U, Holmes E, Lindon JC, Nicholson JK. Analytical reproducibility in (1)H NMR-based
metabonomic urinalysis. Chem Res Toxicol. 2002; 15:1380–1386. [PubMed: 12437328]

14. Ebbels TM, Holmes E, Lindon JC, Nicholson JK. Evaluation of metabolic variation in normal rat
strains from a statistical analysis of 1H NMR spectra of urine. J Pharm Biomed Anal. 2004;
36:823–833. [PubMed: 15533676]

15. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC. Impact of
analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem. 2006;
78:4307–4318. [PubMed: 16808437]

16. Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler J,
Elliott P, Chan Q, Holmes E. Assessment of analytical reproducibility of 1h NMR spectroscopy
based metabonomics for large-scale epidemiological research: The intermap study. Anal Chem.
2006; 78:2199–2208. [PubMed: 16579598]

17. Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M. Normalization method for metabolomics data
using optimal selection of multiple internal standards. BMC Bioinformatics. 2007; 8:93. [PubMed:
17362505]

18. Bijlsma S, Bobeldijk L, Verheij E, Ramaker R, Kochhar S, Macdonald I, Van Ommen B, Smilde
A. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation.
Analytical Chemistry. 2006; 78:567–574. [PubMed: 16408941]

19. Crawford L, Morrison J. Computer methods in analytical mass spectrometry - identification of an
unknown compound in a catalog. Analytical Chemistry. 1968; 40:1464.

20. Parsons HM, Ekman DR, Collette TW, Viant MR. Spectral relative standard deviation: A practical
benchmark in metabolomics. Analyst. 2009; 134:478–485. [PubMed: 19238283]

21. Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in 1H NMR-
based metabonomics: Recommendations for sample preparation and storage. Anal Chem. 2007;
79:1181–1186. [PubMed: 17263352]

22. Saude E, Adamko D, Rowe B, Marrie T, Sykes B. Variation of metabolites in normal human urine.
Metabolomics. 2007:439–451.

23. Gika HG, Theodoridis GA, Wilson ID. Liquid chromatography and ultra-performance liquid
chromatography-mass spectrometry fingerprinting of human urine: Sample stability under
different handling and storage conditions for metabonomics studies. J Chromatogr A. 2008;
1189:314–322. [PubMed: 18096175]

24. Maher AD, Zirah SF, Holmes E, Nicholson JK. Experimental and analytical variation in human
urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem. 2007; 79:5204–
5211. [PubMed: 17555297]

25. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust
method to account for dilution of complex biological mixtures. Application in H-1 NMR
metabonomics. Analytical Chemistry. 2006; 78:4281–4290. [PubMed: 16808434]

26. Saude E, Adamko D, Rowe B, Marrie T, Sykes B. Variation of metabolites in normal human urine.
Metabolomics. 2007; 3:439–451.

27. Wu P, Otting G. Rapid pulse length determination in high-resolution NMR. Journal of Magnetic
Resonance. 2005; 176:115–119. [PubMed: 15972263]

28. Warrack B, Hnatyshyn S, Ott K, Reily M, Sanders M, Zhang H, Drexler D. Normalization
strategies for metabonomic analysis of urine samples. Journal of Chromatography B-Analytical
Technologies in the Biomedical and Life Sciences. 2009; 877:547–552.

29. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ,
Shah S, Greiner R, Sykes BD, Marrie TJ. Investigations of the effects of gender, diurnal variation,

Wang et al. Page 8

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and age in human urinary metabolomic profiles. Analytical Chemistry. 2007; 79:6995–7004.
[PubMed: 17702530]

30. Goodpaster A, Romick-Rosendale L, Kennedy M. Statistical significance analysis of nuclear
magnetic resonance-based metabonomics data. Analytical Biochemistry. 2010; 401:134–143.
[PubMed: 20159006]

Wang et al. Page 9

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• We examine how signal-to-noise ratio is correlated with coefficient of variance
for NMR resonances

• We explore how data normalization affects coefficient of variance for NMR
resonances

• We assess how coefficient of variance should be considered for validation of
biomarkers in NMR based metabonomics studies
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Figure 1.
Graph showing the average CVs for the five SNR ranges for the five different synthetic
urine samples that were investigated. Samples 1 – 5 are A – E, respectively. Error bars show
the confidence intervals (CI) of the CV contained in that SNR range. CI was calculated by
xm ± 1.96×sm, and xm is the mean of the data and sm is mean standard deviation.
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Figure 2.
Graph showing the average reciprocal CVs for the five SNR ranges for the five synthetic
urine samples. Samples 1 – 5 are A – E, respectively. Error bars show the confidence
intervals (CI) of the CV contained in that SNR range. CI was calculated by xm ± 1.96×sm,
and xm is the mean of the data and sm is mean standard deviation.
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Figure 3.
Scatter plots of reciprocal of CV versus SNR of synthetic urine #1. The plots show A) no
normalization, B) quotient normalization, C) Normalized to total intensity and D)
normalized to TSP. The SNR was plotted using a log10 scale. All plots were fit using a log10
model.
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Figure 4.
Overlay of all 12 spectra of synthetic urine sample #2 with the peaks marked 1–5 containing
a peak from approximately each S/N range shown in Figure 1. The insets show a zoomed in
look of each peak to illustrate magnitude of the variation occurring in each peak. The inset
table shows the SNR of each peak and its corresponding CV.
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Table 2

The CVs of the internal standard, TSP, for three different normalization techniques. The last row is CV of the
CVs for the five different samples computed for each of the three normalization techniques. The CV values
are reported in %.

Synthetic urine
sample NN NTI QN

1 2.13 1.47 3.49

2 2.09 1.04 2.46

3 5.71 1.79 4.86

4 0.96 1.00 2.97

5 1.19 1.24 2.42

Average (Standard deviation) 2.42 (1.91) 1.31 (0.33) 3.24 (1.01)

CV of CVs 79.1 25.0 31.0
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Table 4

R2 for the log10 fit of the five synthetic urine samples for four different data normalization methods.

Synthetic
urine

sample NN QN NTI NIS

1 0.62 0.38 0.64 0.62

2 0.63 0.41 0.57 0.60

3 0.57 0.16 0.56 0.61

4 0.67 0.37 0.61 0.64

5 0.68 0.43 0.62 0.66
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