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Abstract 

This study intends to assess the cultivability of photo-treated Escherichia coli K-12 on 

media with different selectivity (PCA, LBA, T-7, T-7+TTC, VRBA and MAC) and to 

establish optimal conditions for bacterial recuperation. For these purposes, immediate 

and long-term bacterial recovery after SODIS and photo-Fenton are evaluated. 

Moreover, the use of catalase and sodium pyruvate supplements in the medium is 

studied. The non-selective medium PCA showed the highest counts for the untreated 

and treated cells due to its content in nutrients (e.g. glucose) and lack of inhibitors. On 
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the contrary, the selective media showed lower recovery, being the culture media 

effectiveness: PCA > LBA > T-7 > T-7+TTC > VRBA > MAC. The presence of 

inhibitors, such as heptadecyl sulfate in T-7 or bile salts in VRBA and MAC, reduced 

the cultivability of the treated cells. These compounds can probably diffuse into the 

cells more easily after SODIS and photo-Fenton as a consequence of the loss of the 

membrane integrity. In addition, the lack of yeast extract in MAC had a detrimental 

effect on E. coli recovery. Sodium pyruvate was tested as supplement to PCA, leading 

to slightly enhanced bacterial immediate recovery after SODIS, SODIS+H2O2 and 

photo-Fenton. The addition of catalase and sodium pyruvate to the bulk was studied as 

well, considerably increasing bacterial survival in the long-term due to their ability to 

neutralize residual H2O2. 

Graphical Abstract 

 

Highlights 

- Selective media noticeably reduced recovery of photo-treated Escherichia coli 

- PCA supported the growth of injured bacteria with possible membrane damage 

- Catalase and sodium pyruvate enhanced the recuperation of photo-treated E. coli 

- Photo-Fenton inflicted multi-level cellular damages more severely than SODIS 
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1. Introduction 

In an effort to address the issue of a proper and universal access to clean water and 

sanitation, many researchers have focused on solar-driven techniques as a good 

alternative for an effective, non-expensive and environmentally-friendly water 

disinfection treatment [1]. Solar Disinfection (SODIS) consists of placing the water in 

transparent containers and exposing them to sunlight for several hours. This simple 

technique achieves high pathogens inactivation by the combined effect UVA+UVB 

radiation (if the material permits the transmission) and thermal heating [2]. SODIS can 

be enhanced by the presence of certain substances, such as hydrogen peroxide and/or 

iron [3], which can be naturally present in the water, thus augmenting the photo-Fenton 

process [4, 5].  

Although it often becomes a matter of debate [6], and other techniques have been used 

to monitor bacteria [7], cultivability is the golden standard when it comes to assessing 

the efficiency of disinfection processes. Bacterial inactivation efficiency of these and 

other disinfection treatments is usually assessed by analyzing the cultivability of cells 

on growth media. Microbial cells are structurally complex so they require culture media 

that provide a balanced mixture of macronutrients (C, O, H, N, S, P, K+, Ca2+, Mg2+ and 

Fe2+/3+) and micronutrients (Mn, Zn, Co, Mo, Ni and Cu) [8]. For isolation and 

enumeration of certain families of microorganisms, many media also contain selective 

agents, such as toxic compounds and dyes, to inhibit the growth of the non-targeted 

microorganisms [9]. 

Escherichia coli is a Gram-negative bacterium used as indicator of fecal pollution in 

water. For simulation studies in the laboratory, E. coli K-12 is the most popular fecal 

indicator model, since it is non-pathogenic to humans and it is easily cultivated. When 

assessing the efficiency of a treatment under controlled laboratory conditions, where 

there is only E. coli in synthetic samples, non-selective media, such as Plate Count 



Agar or Luria Bertani Agar, are commonly used [10-12]. However, when treating real 

waters, in which there is a consortium of bacteria, selectivity is required and samples 

are plated on specific media [13-15]. For example, in drinking water E. coli presence is 

often analyzed using the selective agars Tergitol-7, MacConkey and Violet Red Bile 

Agar [9, 16]. The detection and enumeration of E. coli on these media is based on its 

ability to ferment lactose with acid production denoted by the pH indicators 

(bromothymol blue or neutral red) and on the inhibition of Gram-positive bacteria by 

other compounds (Tergitol-7, bile salts, crystal violet…). Unfortunately, one of the main 

disadvantages of selective media is that treated bacteria suffering sub-lethal damages 

are not properly detected [17]. 

Another drawback related to solar treatments is the risk of bacterial reactivation. Post-

irradiation events have been reported to be dependent on the applied UV dose [18] and 

storage conditions such as temperature and availability of nutrients [19]. In addition, 

regrowth is more likely to happen in the absence of residual H2O2 [12].  

For research purposes, it is common to add some substances to remove the remaining 

H2O2 in laboratory assays. For instance, catalase and sodium pyruvate have been 

used for years as H2O2 scavengers in samples incubated after SODIS [20-22]. 

Recently, the addition of catalase to neutralize H2O2 and study bacterial survival after 

Fenton processes is becoming more common [10, 12, 14, 15], while the same use for 

sodium pyruvate has not been found in literature. 

The aim of this study is to compare the immediate recovery and possible regrowth in 

several culture media with different composition and selectivity of Escherichia coli K-12 

submitted to different photo-treatments (SODIS, SODIS+H2O2 and photo-Fenton). 

Moreover, the addition of catalase and sodium pyruvate will be tested in the agar with 

the maximum recovery. This approach intends to have a double purpose: i) To assess 

the effect of the media selectivity on the recovery of photo-treated bacteria and ii) To 



establish optimal conditions in which maximum bacteria recuperation can be obtained, 

thus reducing the underestimation of bacteria (false negatives) in photo-treatments and 

the risks associated with it. Ultimately, SODIS and photo-treatment related studies 

either in lab or field conditions will have a reference of practice and selection of working 

cultivation media. 

 

2. Materials and Methods 

2.1. Chemicals 

Ferrous sulfate heptahydrate (FeSO4·7H2O) (Sigma-Aldrich); Hydrogen peroxide 

(H2O2) 30% w/w (Sigma-Aldrich); Catalase from bovine liver (3000 u/mg Sigma-

Aldrich); Sodium pyruvate (C3H3NaO3) (Sigma-Aldrich); Hydroxylamine Hydrochloride 

(NH2OH·HCl); Ferrozine (Sigma-Aldrich) and Titanium (IV) oxysulfate (TiOSO4) (Fluka) 

were purchased from Sigma-Aldrich, Switzerland. All chemicals were reagent grade. 

Glassware and reactors containing iron were acid soaked after every use to avoid 

cross-contamination (10% HNO3, 2 days). All samples and solutions were prepared 

with Milli-Q water (18.2 MΩ-cm). 

2.2. Bacterial strain 

Escherichia coli strain K-12 (MG1655) was used for all the experiments. The 

preparation of the bacteria inoculum was described elsewhere [23]. The resulting E. 

coli suspension has a concentration of 109 colony forming units per mL (CFU/mL) and 

the sample was prepared by diluting 1000 times the inoculum in Milli-Q water (i.e. 100 

µL E. coli suspension in 100 mL Milli-Q water), leading to an initial concentration of 

approximately 106 CFU/mL.  

2.3. Photo-inactivation experiments 



Transparent Pyrex glass reactors containing 100 mL sample were used for the 

experiments. The trials were performed in a Suntest solar simulator provided with a 

Xenon lamp emitting in the UVB, UVA and visible range (similar to solar spectrum) with 

a radiation intensity of 900 W/m2. The reactors, properly distributed in the solar 

simulator, were continuously stirred at 350 rpm during the experiments. Three systems 

were tested for their photo-inactivation effect on E. coli: i) SODIS (hv), ii) SODIS+H2O2 

(hv+H2O2) and iii) photo-Fenton (hv+H2O2+Fe2+). H2O2 and Fe2+ (added as 

FeSO4·7H2O) concentrations were 10 mg/L and 0.6 mg/L, respectively. These values 

were experimentally determined as optimal by Spuhler et al. [12]. pH, H2O2 and 

dissolved iron were concurrently monitored in an additional reactor placed in the solar 

simulator. 

2.4. Post-irradiation events 

For the post-irradiation monitoring of survival or regrowth of Escherichia coli, aliquots 

were withdrawn at different treatment times and stored in the dark at 29.5±0.5oC. The 

temperature was selected as representative of the room temperature in the developing 

countries where SODIS is applied and the treated water is kept in the settlements. 

Bacterial population was determined every 24 hours after the initial acquisition time for 

several days, depending on the applied photo-treatment.  

In addition, the roles of catalase and sodium pyruvate in post-irradiation events were 

separately assessed. Catalase or sodium pyruvate were immediately added to the 

samples prior to storage with concentrations of 900 u/L and 1 mM, respectively. 

2.5. Analytical methods 

Hydrogen peroxide (H2O2) was determined by the titanium oxysulfate method. 1 mL 

sample was mixed with 20 µL titanium (IV) oxysulfate and measured in a 

spectrophotometer at 410 nm. Dissolved iron (Fe2+ and Fe3+) was analyzed by the 

ferrozine method, as described elsewhere [12]. Briefly, for 1.6 mL sample, 0.2 mL 



hydroxylamine hydrochloride (10 % w/w), 0.5 mL acetate buffer (pH 4.65) and 0.2 mL 

ferrozine (4.9 mM) were added. After 20 minutes of reaction, the final coloration was 

measured at 562 nm in a spectrophotometer. pH was monitored with a pH-meter 

Metrohm 827. 

2.6. Microbiological methods 

2.6.1. Media 

The recovery of Escherichia coli K-12 was tested on different media: Plate Count Agar 

(PCA) (Merck); Luria Bertani Agar (LBA); MacConkey Agar (MAC) (Sigma-Aldrich); 

Violet Red Bile Agar (VRBA) (Sigma-Aldrich); Tergitol-7 Agar (T-7) (Fluka). LBA was 

prepared with the following composition [9]: 10 g tryptone (BD Bacto), 5 g yeast extract 

(Fluka), 10 g NaCl (Sigma-Aldrich) and 15 g agar (Panreac) were dissolved in 1 L 

deionized H2O. VRBA was made in two different ways: with and without autoclaving it, 

named as VRBA sterilized and VRBA unsterilized, respectively. As instructed by the 

manufacturer, unsterilized VRBA improves the recovery of the stressed 

microorganisms. Tergitol-7 Agar was tested with and without addition of 30 mg/L 

triphenyltetrazolium chloride (TTC) (Sigma-Aldrich). Table 1 summarizes the 

composition of the different media used for the recovery of E. coli in this work.  

In additional experiments, the effect of including sodium pyruvate, in concentrations of 

1 mM, 10 mM and 100 mM, as supplement to PCA medium after autoclaving and 

before solidification was studied. 

2.6.2. Plating 

Bacterial analysis was carried out according to the spread plate standard method 9215 

C. 1 mL of sample was taken from each reactor and treatment time, and decimal 

dilutions were made when necessary. For each sample, at least two dilutions were 



plated by duplicate onto each culture media. After 24 hours of incubation at 37oC, the 

colonies were counted. 

 

3. Results  

3.1. Immediate Escherichia coli recovery in different media 

3.1.1. Recovery of untreated E. coli  

Firstly, a preliminary experiment to assess Escherichia coli K-12 growth on the different 

tested media was conducted. Each untreated sample was plated onto seven culture 

media. Fig. 1 represents the percentage of recovery on each agar compared to PCA, 

considering the log values of the counting. PCA presented the highest numbers 

(3.5·106±7.2·105 CFU/mL), closely followed by LBA (3.3·106±6.9·105 CFU/mL), 

Tergitol-7 with TTC supplement (3.3·106±3.9·105 CFU/mL) and without it 

(3.2·106±6.1·105 CFU/mL) and VRBA unsterilized (3.1·106±7.3·105 CFU/mL) or 

sterilized (3.0·106±6.9·105 CFU/mL). The lowest E. coli enumeration (1.1·106±1.0·106 

CFU/mL) was observed in MacConkey agar. The initial tests confirmed that, except for 

MAC agar, the media can support sufficiently well the growth of healthy, non-treated 

microorganisms.  

3.1.2. Recovery of photo-treated E. coli 

Fig. 2 shows the immediate recovery of Escherichia coli spread onto different media 

after solar disinfection (Fig.2a) and photo-Fenton (Fig.2b). Important differences on E. 

coli inactivation were observed depending on the type of agar. Culture media 

effectiveness for treated bacteria recovery followed this order in both cases: PCA > 

LBA > Tergitol-7 > T-7+TTC > VRBA sterilized = VRBA unsterilized > MAC.  

The final pH was around pH 6 for SODIS tests and did not drop under 5 in the photo-

Fenton assays. Therefore, cell damage and consequent loss of cultivability were light-



induced. As expected, photo-Fenton produced much faster inactivation than SODIS. 

Taking into account the most favorable medium for E. coli recovery (i.e. PCA), total 

inactivation (6-log reduction) was achieved in 60 min during photo-Fenton, while only 4 

log units were removed in 180 min when applying artificial solar light alone. As it can be 

seen in Fig.2, LBA and Tergitol-7 Agar followed similar trends when the sample was 

exposed to light only, but differed during photo-Fenton, with LBA efficiency being very 

close to PCA for the first 30 minutes of treatment in the latter case. It can be also 

observed that at some points recovery on Tergitol-7+TTC led to counts slightly inferior 

than in Tergitol-7 alone. Regarding the performance of VRBA, poor E. coli growth took 

place and omitting sterilization of the medium did not enhance the recovery of stressed 

bacteria. MacConkey agar presented a singular behavior. Even initial recovery of 

untreated cells was lower (which is in agreement with results in Fig.1) and, whereas 

disinfection curves showed a kind of shoulder in all the other culture media, bacterial 

inactivation in MAC dropped by linear decay from the beginning.  

A growth restriction ratio, defined as the time to reach detection limit in PCA divided by 

the time needed to reach detection limit in the other media [Eq. (1)], will be used for 

further comparison. The higher the ratio is, the higher the inability of E. coli to grow in 

the medium is.  

                         
   
   

   
                                                                                     (1) 

As detection limit was not reached in SODIS when plating in some media (PCA, LBA, 

T-7+TTC and T-7), time for total inactivation has been calculated from disinfection 

kinetics (kPCA=0.030 min-1, kLBA=0.040 min-1, kT-7+TTC=0.043 min-1, kT-7= 0.047 min-1). 

The predicted values would be 269 min, 214 min, 188 min and 189 min, respectively. 

Consequently, the growth restriction ratios in SODIS were 1.3 for LBA, 1.4 for T-7 and 

T-7+TTC and 2.0 for VRBA (sterilized and unsterilized) and MAC. The growth 

restriction ratios in photo-Fenton (Fig.2b.) were 1.5 for LBA, T-7 and T-7+TTC and 2.0 



for VRBA and MAC; this means that E. coli actually remained in the sample for 2 or 1.5 

times longer than estimated by VRBA and MAC or by T-7 and LBA, respectively. The 

ratios, and consequently the inhibition, for T-7, T-7+TTC and LBA are comparable and 

so are for VRBA and MAC. In addition, the values of the ratios are quite alike for each 

agar in both systems, meaning that the selective media posed similar restrictions to 

growth regardless the applied treatment.  

Finally, it has to be mentioned that as treatment time increased, more significant 

differences in bacterial recuperation among the studied media were observed. Most 

probably, this effect is attributed to the greater number of injured cells which were 

unable to develop in the presence of the selective compounds. These results suggest 

that there is a synergistic-like phenomenon between cell damage and media 

composition, which involves an additional inhibitory effect, especially noticeable in 

VRBA and MAC agars. The presence of bile salts in these media, along with the lack of 

yeast extract in MAC, might reduce their capacity to support the growth of photo-

treated E. coli.    

3.2. Post-irradiation survival or regrowth of Escherichia coli 

Considering the similarities that some of the studied media presented, as showed in 

section 3.1., post-irradiation survival or regrowth of E. coli was only tested on PCA, 

Tergitol-7 agar, VRBA and MacConkey agar.  

3.2.1. Post-irradiation events after SODIS treatment 

Fig.3 (a-d) represents bacterial post-irradiation events after exposure of the sample to 

simulated solar light for different time periods (0, 30, 60, 90, 120 and 180 min). The 

withdrawn aliquots were stored in the dark at 29.5ºC and analyzed in four different 

media every 24 hours up to 96 h. Firstly, it has to be noticed that no regrowth occurred 

for any irradiation time. The treated cells might have been unable to experiment 

propagation because: i) the relatively high, and not intermittent, irradiation doses 



applied (considering that the light intensity was 900 W/m2) caused irreparable 

damages, ii) there was a lack of nutrients in the water matrix (i.e. Milli-Q water) and iii) 

cells suffered from osmotic stress.  

Secondly, as shown in Fig. 3 and in Table 2, bacteria photo-treated for longer periods 

presented faster a loss of long-term bacterial viability. In the aliquot irradiated for 30 

min E. coli survival was very similar to that of the untreated cells within 48 h when 

plated on the most favorable medium (i.e. PCA), so, in this case, immediate severe 

photo-damage was not induced. Subsequent inactivation (>48 h) might be related to 

minor injuries combined with starvation and osmotic stress. However, 60 min or longer 

exposures to SODIS caused direct mortality and prevented regrowth. Therefore, in all 

the media there is a correlation between the accumulated cellular photo-damage and 

the inability of E. coli to survive. 

Concerning bacterial long-term recovery on the different media, the presence of 

selective compounds had a detrimental effect. Aliquots spread onto PCA showed more 

than 96 h survival in the dark after 120 min or shorter exposure to SODIS and total 

decay only happened within 48 hours when the treatment lasted 180 minutes (Fig. 3a). 

However, when the same aliquots were plated on the other media, all of them 

containing substances which confer various degrees of selectivity, lower recovery was 

achieved. On Tergitol-7 (Fig. 3b), detection limit was reached after 48 h and 24 h if 

exposed to 90 min or 120 min SODIS, respectively and E. coli survived longer than 96 

h only when photo-treated for 30 min or 60 min. On VRBA and MAC agars (Figs. 3c 

and 3d), bacterial survival beyond 96 h only took place when plating the 30 min-treated 

aliquot.  

The fact that after a certain time of irradiation and subsequent storage in the dark, E. 

coli was able to grow on PCA, but limited or no recovery occurred in the other media 

suggests that there are sub-lethally injured cells whose cultivability strongly depends 



on media composition. Selective compounds impair the recuperation of cells which are 

damaged but still are cultivable in PCA. 

3.2.2. Post-irradiation events after photo-Fenton treatment 

Fig. 4 (a-d) illustrates the post-irradiation events in the dark in the presence of catalase 

after applying the photo-Fenton process for 0, 15, 30, 45 and 60 min. The stored 

samples were analyzed every 24 h.  

First thing to stand out is that no regrowth was observed during this experiment. 

Secondly, photo-Fenton clearly demonstrated a superior disinfection power than the 

artificial solar light alone. For instance, 30 min of photo-Fenton led to total inactivation 

(6 log reduction) after 24 h (in T-7, VRBA and MAC; Figs. 4b-d) or after 72 h (in PCA; 

Fig. 4a), whereas 30 min of SODIS reduced bacterial population less than 3 log within 

96 h in any of the culture media (Fig. 3). Even very short exposure to photo-Fenton (i.e. 

15 min) involved immediate irreparable cellular damage and long-term inability to 

survive (Fig. 4). Besides, for a certain number of surviving bacteria, total decay was 

sooner achieved in photo-Fenton than in SODIS (e.g. ~4·105 CFU/mL, Figs. 3b and 

4b). Despite the fact that H2O2 in the bulk was neutralized with catalase, the “residual” 

effect of photo-Fenton was more noticeable than that of solar disinfection; hence, 

bacterial injury was more pronounced in the former treatment, since solar light alone 

inactivation mode of action relies in a considerable percentage in damages that can be 

repaired, i.e. DNA mutations. Our results suggest that photo-Fenton mode of action 

inflicts multi-level damage internally and externally, and bacterial recovery potential is 

diminished. Combined with the selective agents in the different media, the cultivability 

is severely restricted.   

Moreover, E. coli survival in the dark after the photo-Fenton process was also studied 

without catalase addition (see Supplementary material Fig. S1). No recovery was 

observed after 24 hours in all the cases except for E. coli treated for 15 min and plated 



in PCA, which survived 48 h. In the absence of catalase, unreacted H2O2 might have 

continued bacterial inactivation in the dark, especially if the cells were already injured 

and their permeability had increased [24], thus contributing to cause internal cellular 

damage. 

Again, among the different media tested, only PCA detected viable cells for longer (Fig. 

4). Recovery on T-7, VRBA and MAC agars showed some similarities, with total 

inactivation achieved within 24 h for the 30 min-treated sample and within 72 h for the 

15 min-treated one. Nevertheless, analysis of those aliquots on PCA presented higher 

survival of E. coli (72 h and >72 h, respectively). Consequently, keeping in mind the 

purpose of this research, PCA was considered the best media for further studies 

involving supplement addition when laboratory, controlled conditions are involved. For 

natural bacterial consortia from field tests, T-7 without TTC would be recommended for 

minimum cultivability reduction. 

3.3. Enhanced immediate E. coli recovery and regrowth with sodium pyruvate 

This part of the research deals with the effect of using the supplement sodium pyruvate 

(SP) to provide optimal conditions for the recovery of photo-treated bacteria. Sodium 

pyruvate was added either during agar preparation or directly into the treated sample.  

3.3.1. Sodium pyruvate added to the culture plates 

Fig. 5 a-c shows the efficiency of PCA medium containing different concentrations of 

sodium pyruvate (0 mM, 1 mM, 10 mM and 100 mM SP) on the immediate recovery of 

E. coli after SODIS, SODIS+H2O2 and photo-Fenton. Results are expressed as 

percentage (considering the values in logarithmic scale) compared to recovery on PCA 

without sodium pyruvate. In general, the use of sodium pyruvate in the PCA plates 

enhanced bacterial recovery, especially as treatment time passed and damage was 

accumulating in the cells. Note that for 90 min of SODIS+H2O2, bacterial count in 

PCA+100 mM SP is the same than in PCA without SP because detection limit was 



reached on that experiment. Fig. 5 also shows that increasing amounts of sodium 

pyruvate progressively improved E. coli recuperation. If the different treatments are 

compared, SP permitted a maximum increase in growth of 6%, 14% and 30% for 

SODIS, SODIS+H2O2 and photo-Fenton, respectively. The presence of unreacted 

hydrogen peroxide remaining in the samples after SODIS+H2O2 and photo-Fenton (see 

Supplementary material Fig. S2) might have contributed to cause bacterial injuries 

even once plated, but the sodium pyruvate included in the agar could probably react 

with this excess of H2O2 and prevent further cell damages. During SODIS, no 

exogenous H2O2 was added; however its production and accumulation inside the cell 

must have been neutralized by SP.  

3.3.2. Sodium pyruvate added to the bacterial suspension  

Sodium pyruvate was added to the photo-treated aliquots with a final concentration of 1 

mM. The samples were stored in the dark and the post-irradiation events were studied, 

using PCA as the culture medium.  

Fig. 6 illustrates the bacterial survival in the dark after the different photo-treatments 

when the aliquots were stored in the absence or presence of 1 mM SP.  

When applying SODIS (Fig. 6 a and b), immediate recovery was not affected by 

sodium pyruvate (see Supplementary material Fig. S3a), possibly because of its 

presence in the employed low concentration (1 mM SP), which had also low impact 

when inserted in the medium (Fig. 5). Addition of SP to the bulk enhanced bacterial 

survival in the long-term, although no regrowth occurred. The most remarkable fact in 

Figs. 6a and 6b is that when bacteria were exposed for 120 min of light, posterior 

survival was noticeably enhanced in the presence of SP (>72 h), while total inactivation 

occurred within 24 hours when no supplement was added. In addition, for longer 

treatment times, higher enhancing effect of sodium pyruvate on recovery was 

observed. This is further proof of the intracellular H2O2 accumulation during SODIS, 



able to affect the post-irradiation survival events. After 48 hours of storage, inactivation 

started to be noticeable even in the untreated sample (0 min, blue line), so, from that 

time on, starvation and osmotic stress might have been important facts for the loss of 

cultivability.  

Survival in the dark with SP addition to the sample after photo-Fenton is showed in 

Figs. 6e and f. Photo-Fenton was the most aggressive treatment and only bacteria 

shortly exposed (≤30min) could survive for more than 1 day. SP clearly increased 

bacterial survival in 1 log and 3 log for 15 min and 30 min-treated cells, respectively, 

after 24 h.  

 

4. Discussion 

4.1. Mode of action of SODIS (hv), SODIS+ H2O2 (hv+H2O2) and photo-Fenton 

(hv+H2O2+Fe2+). 

Bacteria undergoing SODIS are mainly inactivated by the exposure to wavelengths 

UVA (320-400 nm) and UVB (280-320 nm) present in solar light [1]. Despite the fact 

that only small quantities of UVB reach the earth surface, its contribution to solar 

disinfection can be significant, if the reactor material does not filter it out [25]. Radiation 

in the UVB can be absorbed by cellular DNA components causing important lesions in 

pyrimidine and purine bases [26-28] which finally lead to cellular mutations or even cell 

death [25]. Direct DNA damage can also occur in the presence of UVA light, but to a 

lower extent that with UVB [4]. In fact, the predominant UVA damage is attributed to the 

absorption of UVA photons by endogenous photosensitizers inducing photo-oxidation 

reactions type I and II which involve the formation of reactive oxygen species (ROS) 

[28, 29]. Moreover, an internal Fenton process can happen during UVA exposure if 

H2O2 produced via cellular respiration (along with O2
-) [30] or by activation of 

flavoenzymes [31] reacts with free iron released from ferritins [32] or from oxidation of 



iron-sulfur clusters [30] or enterobactin proteins [33]. As a result, the ROS generated in 

photo-oxidation and Fenton reactions, including the highly reactive *OH, attack DNA, 

RNA, lipids and proteins, thus initiating complex chain reactions that end up in loss of 

cell functions, mutations and DNA replication block [34]. More precisely, Berney et al. 

[24] observed that as UVA light dose increase, E. coli experiments reduction of efflux 

pump activity and ATP synthesis, loss of membrane potential, glucose uptake activity 

and cultivability and, finally, permeabilization of the cytoplasmic membrane. 

In the presence of 10 mg/L H2O2 the bacterial photo-inactivation was considerably 

enhanced (Figs. 6c and 6d). There are several possible pathways that explain this 

improvement in Milli-Q water [4, 12, 30]: i) direct membrane attack by H2O2 and its 

derived oxygen species, ii) diffusion of external H2O2 into the cell, iii) increase of free 

iron release by H2O2-assisted oxidation of the sulfur clusters and iv) damage by UVA 

light of the ROS- regulating enzymes (i.e. catalase, peroxidase and superoxide 

dismutase). The combination of these mechanisms leads to an enhanced intracellular 

Fenton that causes ROS accumulation and consequent oxidative stress. The observed 

hydrogen peroxide consumption when combined with artificial solar light (see 

Supplementary material Fig. S2a) implies its increased intracellular reaction and the 

formation of ROS, subsequently inactivating E. coli cells. 

When the photo-Fenton system (hv/H2O2/Fe2+) was implemented, disinfection was 

faster with shorter delay on initial bacterial inactivation (Fig. 2b). Iron was added as 

FeSO4 to have available ferrous ions (Fe2+), but the fast drop in total dissolved iron 

concentration (see Supplementary material Fig. S2b) suggest that, in the presence of 

H2O2 and at near neutral pH (~5), Fe2+ was rapidly oxidized to Fe3+, thus forming iron 

species such as oxides and hydroxides (e.g. Fe(OH)2+), which are insoluble [35]. 

However, Fe3+ irradiated with UV light undergoes photochemical reduction to Fe2+ 

completing the redox cycle of iron [36]. Consequently, reactive oxygen species are 

expected to be generated according to the following reactions (Eqs. (2)-(4)): 



Fe2+ + H2O2  Fe3+ + *OH + OH-                                                                                  (2) 

Fe3+ + H2O2  Fe2+ + HO2
* + H+                                                                                    (3) 

Fe(OH)2+ + hv  Fe2+ + *OH                                                                                       (4) 

The existence of H2O2 and iron species in the water implies more efficient bacterial 

removal for several reasons. External hydrogen peroxide may increase permeability of 

the membrane, so Fe2+ can more easily diffuse into the cell contributing to the internal 

formation of ROS by the (photo)-Fenton process [12]. Additionally, exogenous ROS 

generated by external photo-Fenton reactions might attack the membrane, eventually 

causing cellular dysfunction by oxidative stress [35]. 

4.2. Cell repair possibilities  

Experimental results showed no regrowth in the dark after the photo-treatments (Figs. 

3, 4, 6-8) and, in general, E. coli post-irradiation survival was observed only for low UV 

doses (i.e. shorter treatment times) while for higher doses (i.e. longer exposure) 

detection limit was reached during the photo-treatment. Therefore, cells probably 

experienced immediate sub-lethal and lethal photo-damages, along with starvation and 

osmotic stress on the long term.  

In principle, organisms are provided with repair mechanisms to counteract the lethal 

effects of DNA lesions. For instance, photo reactivation, controlled by the photolyase 

enzyme, is one of the simplest reparation mechanisms [25]. Nevertheless, the storage 

of the pre-treated samples was carried in the dark; hence, other restoration pathways 

like base excision repair, Pol V polymerase, lesion bypass or recombinational repair 

took place. Small colony variants, considered as mutations resulting from DNA damage 

by UV radiation and/or subsequent repair [37], were observed especially after SODIS 

(see Supplementary material Fig. S4). 



On the other hand, oxidative stress can in turn induce the response of superoxide 

dismutases (FeSOD and MnSOD), glutathione reductase, peroxidases and catalases, 

which are enzymes that scavenge the intracellular ROS, thus preventing their 

accumulation [38]. Oxidized iron-sulfur clusters can also be repaired to the reduced 

form, but the mechanisms remain unclear [39]. Moreover, proteins, which are a target 

of ROS as well, especially through Fenton chemistry when iron is bound to 

polypeptides, might have their structure recovered by reduction of oxidized disulfide 

bonds [34]. 

Establishing to which extent each of the different destruction and repair mechanisms 

took place is complex and would require numerous analyses. However, it could be said 

that the repair mechanisms were not enough to cope with all the inflicted damage, 

since no reactivation was observed. It was also evident that photo-Fenton caused more 

severe, irreparable injuries than SODIS and reduced bacterial survival opportunities. 

Besides, the possible presence of H2O2 and the absence of nutrients and of osmotic 

balance caused by the Milli-Q water have to be considered. Storage of photo-damaged 

bacteria under unfavorable conditions reduces dehydrogenase activity, membrane 

potential and membrane integrity [40] and eventually contributes to the decay of the E. 

coli concentration [19].  

4.3. Culture media composition affecting cultivability of untreated cells 

Culture media are continuously evolving to faster provide more accurate results. Some 

of the most desired characteristics of the media are sensitivity and specificity [41]. 

Unfortunately, selective media are not always able to detect all the targeted 

microorganisms because of the growth inhibition caused by the selective agents [17]. 

Consequently, general or non-selective agars containing only nutrients, such as PCA 

and LBA, are expected to have higher recovery rates.  



Counts of untreated E. coli were only slightly superior on PCA than in the other agars 

(Fig. 1). Regarding the selective media tested, Tergitol-7 agar, which contains sodium 

heptadecyl sulfate (Tergitol-7) and bromothymol blue acting as inhibitors of gram-

positive bacteria, allowed high Escherichia coli recuperation [42, 43]. VRBA and 

MacConkey agar include bile salts, crystal violet and neutral red as inhibitors of gram-

positive microorganisms and/or dyes for differentiation. Despite the high tolerance of E. 

coli to bile salts, the outer membrane barrier can only retard the influx of this 

component [44], which, in addition, might increase cellular permeability [45]. Moreover, 

Berstein et al. [46] reported that bile salts induced expression of specific stress 

response genes related to membrane perturbation, oxidative stress and DNA damage. 

Crystal violet presents bacteriostatic and bactericidal actions against several bacteria 

[47]. In E. coli these effects are less significant because of the high isoelectric point and 

lower acidic content which leads to an slower combination of the dye and this gram-

negative microorganism [48]. Neutral red has also demonstrated to cause loss of 

viability of E. coli and it might induce SOD response [49]. Yet, under normal conditions, 

untreated E. coli is apparently able to cope with these substances in VRBA (Fig. 1).  

On the contrary, low counts were obtained in MacConkey agar when plating 

undamaged cells. While PCA, LBA, T-7 and VRBA can provide all short of nutrients to 

the cells, MAC agar lacks yeast extract, which is an excellent source of vitamins from 

group B. Vitamins conduct essential functions in the cell; therefore, they are necessary, 

even in very small quantities, to promote microbial growth [8]. Since some strains of E. 

coli are unable to synthetize certain vitamins, such as vitamin B12 [50], they need to 

obtain them from the environment. Deficiency of vitamins B in this medium could mean 

failure of some cellular functions such as the transport of methyl groups, electrons or 

hydrogen atoms [8], thus limiting E. coli growth. 

4.4. Cultivability of photo-treated cells in different media 



The experimental results showed a synergy between photo-damage in bacteria and 

their ability to grow on different media. The highest recovery of light-exposed cells was 

achieved in the general medium PCA, in which, unlike the other tested media, glucose 

was available (Table 1). During solar disinfection cellular glucose uptake activity drops, 

meaning that the PEP-PTS system, which is in charge of the transport of external 

sugars into the cell, is compromised [24]. When spread onto PCA the cells might still 

be able to use some glucose as source of energy for their growth, even if the PEP-PTS 

system is not fully operating. This extra nutrient and the absence of inhibitors may also 

benefit the recovery of the starved photo-treated bacteria. 

T-7 agar intermediate effectiveness in the short and in the long term recovery might be 

related to the adverse effects of sodium heptadecyl sulfate and bromothymol blue. 

Reduction on the recovery of injured coliform bacteria in the presence of Tergitol-7 has 

been previously observed [51] and it may be the result of increased sensitivity to 

detergents [52], such as Tergitol-7, caused by lipid peroxidation in membranes of ROS-

attacked cells [34]. Besides, the bromothymol blue dye is able to inhibit the growth of 

some strains of E. coli under specific conditions [53]. The additive TTC also led to 

smaller counts on Tergitol-7, since TTC reacts with dehydrogenases and this affects 

the respiratory chain of the cell [54]. 

The diminished growth on VRBA and MAC agar was noticeably impaired by the 

selective components. The influx of bile salts through a compromised membrane 

eventually produces growth inhibition [44] and crystal violet can reach the cytoplasm of 

E. coli cells whose outer membrane has been altered, being their survival inversely 

correlated to the accumulation of the dye [55, 56]. Moreover, growth inhibition of 

treated or stressed E. coli in the presence of neutral red and NaCl has also been 

reported [17]. 



Considering these facts, although the internal processes are of outmost importance for 

the viability of the cell, it is possible that membrane integrity is a determining factor on 

the cultivability of photo-treated bacteria. As treatment time increases, membrane 

damage is greater and cellular accumulation of toxic inhibitory substances from the 

media is more likely to happen. It might be possible that E. coli presenting unimportant 

or no damage in the cell wall are able to grow in VRBA and MAC, while in Tergitol-7 

and especially in PCA more harmed cells can be recovered.  

4.5. Enhanced recovery with supplements  

After light exposure, the unreacted H2O2 has a residual effect because it is able to 

promote dark Fenton reactions, thus impairing cell survival [12]. Consequently, if H2O2 

is removed from the system, further oxidative cellular damage by ROS should not be 

expected, although inactivation can continue to happen due to irreparable cellular 

damages and starvation, along with the adverse effects caused when plating on 

selective media. Some substances can be added to scavenge hydrogen peroxide, such 

as catalase or sodium pyruvate. Catalase, which is an enzyme produced endogenously 

by the cells, is able to catalyze H2O2 decomposition (Eq. (5)) [39], while sodium 

pyruvate reacts with H2O2 producing decarboxylation of the molecule (Eq. (6)) [57]: 

H2O2 + H2O2 → O2 + 2H2O                                                                                            (5) 

CH3COCOONa + H2O2 → CH3COOH + CO2 + Na+ + OH-                                            (6) 

Catalase is commonly applied over the prepared medium to stop the residual effect of 

H2O2 after SODIS, SODIS+H2O2 and photo-Fenton [12, 21], while sodium pyruvate is 

usually incorporated to the medium before autoclaving and incubation is carried out 

under anaerobiosis to provide optimal recovery conditions [22, 24, 58]. Moreover, no 

use of sodium pyruvate to enhance photo-Fenton-treated bacteria recuperation has 

been found in literature.  



In this study, sodium pyruvate slightly enhanced the immediate recovery of photo-

treated cells (especially when added in the medium) and, in the long term, both 

supplements added to the bulk noticeably increased E. coli survival after photo-Fenton. 

SP was successful in increasing bacterial recovery after SODIS and SODIS+H2O2, as 

well. Therefore, the excess of H2O2 that remained in the samples was effectively 

removed by any of these compounds. Although incubation in anaerobic conditions 

might have improved the recovery, 48 h would have been necessary to obtain colonies 

big enough to be count [22] while 24 h were sufficient in the aerobic conditions 

performed in this research. 

Kapuscinski et al. [20] consider that the use of catalase might be more recommendable 

because it is more specific than SP, which could interact with media components. On 

the other hand, Giandomenico et al. [59], propose that sodium pyruvate generates no 

toxic products (only acetate and carbon dioxide), whereas with catalase high local 

oxygen concentrations and peroxidation of other substrates can occur. However, 

similar bacterial recovery efficiencies after exposure to solar disinfection have been 

reported either with catalase or with sodium pyruvate [20-22]. A practical issue pointed 

out by Kehoe et al. [21] is that SP is more stable than catalase at room temperature 

and, therefore, its action can be more predictable. 

 

5. Conclusions 

Water treatments based on solar light could efficiently inactivate the bacteria 

Escherichia coli and prevented its posterior reactivation under the studied conditions 

(Milli-Q H2O, 900 W/m2). The addition of 10 mg/L H2O2 produced faster disinfection and 

when combined with iron (0.6 mg/L Fe2+) the effect of internal and external photo-

Fenton was augmented, inducing higher ROS production and consequent increase in 

bacterial inactivation.  



During the photo-treatments the bacteria experienced different levels of damage, which 

accumulated as time passed. If the injuries extensively affected DNA and/or vital 

functions, the cells might have lost their cultivability. When the treated E. coli were 

plated on the different agars, PCA showed higher counts in all the cases, while the 

other media (T-7, VRBA, MAC), all of them containing selective substances, inhibited 

recovery in the short and in the long-term. The results suggest that there is a loss of 

membrane integrity caused by the photo-treatments and thus, the selective agents 

might easily be absorbed by the cells, leading to high intracellular concentrations and 

eventually inactivating the bacteria. However, when spread onto PCA, the presence of 

nutrients and absence of inhibitors could support the growth of intensively wounded E. 

coli. In addition, the presence of glucose in PCA might benefit the recovery of bacteria 

whose PEP-PTS system is damaged. So, in general, as selectivity of the media 

increased bacterial recovery diminished. Moreover, cultivability in selective media was 

lost before cells were actually inactivated. Therefore, selective media underestimate 

the real concentration of the targeted bacteria submitted to solar treatments. 

Further enhancement of cells recovery was tested by addition of catalase or sodium 

pyruvate in PCA. Both supplements clearly increased the long-term recovery when 

added to the bulk, especially after the treatments where extracellular H2O2 was present 

(i.e. photo-Fenton and SODIS+H2O2). In addition, the enhanced immediate and long-

term E. coli recovery in the presence of SP proves the production and accumulation of 

intracellular H2O2 during SODIS, able to reduce post-irradiation survival.  

Considering the results obtained in this study, it would be advisable to use PCA 

containing 100 mM SP for assessing the disinfection effectiveness of photo-treatments 

under controlled laboratory conditions in which only a specific bacterium (e.g. E. coli) is 

present in the sample. However, when facing a real case with natural waters, where a 

consortium of bacteria and other microorganisms is always present, Tergitol 7 agar 



without TTC would provide good selectivity while minimizing the risks related to the 

underestimation of Escherichia coli cultivable cells.    
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Table 1. Culture media composition 

 
PCA LBA Tergitol-7 VRBA MAC 

Tryptone (g/L) - 10 - - - 
Peptone from caseine (g/L) 5 - - - - 

Peptone (g/L) - - 5 - 17 
Peptone from gelatin (g/L) - - - 7 - 

Proteose peptone (g/L) - - - - 3 
Yeast extract (g/L) 2.5 5 3 3 - 

NaCl (g/L) - 10 - 5 5 
Agar (g/L) 14 15 15 12 13.5 

D(+)-Glucose (g/L) 1 - - - - 
Lactose (g/L) - - 10 10 10 

Tergitol- 7 (g/L) - - 0.1 - - 
Bromothymol blue (g/L) - - 0.025 - - 

Bile salts (g/L) - - - 1.5 1.5 
Crystal violet (g/L) - - - 0.002 0.001 

Neutral red (g/L) - - - 0.03 0.03 
TTC (g/L) - - 0.03* - - 

*Tergitol-7 Agar was tested with and without TTC supplement 
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Table 2. Summary of estimated inactivation rate constants (kt [min-1]) in the different media assuming first 
order kinetics during post-SODIS survival in the dark. 

Treatment time (min) PCA T-7 VRBA MAC 
0 0.003 0.002 0.011 0.005 

30 0.009 0.020 0.028 0.007 
60 0.027 0.044 0.048 - 
90 0.028 0.078 0.076 - 

120 0.033 0.105 - - 
180 0.033 - - - 

 

 

Table 2
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Fig.1. Percent recovery of Escherichia coli in untreated Milli-Q water in different media compared to PCA. 

Figure 1 caption
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Fig. 2. E. coli immediate recovery in different media after a) Solar Disinfection and b) photo-Fenton. Values included 
in the figures correspond to the growth restriction ratio of each medium.  

Figure 2 caption
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Fig. 3. Post-SODIS survival of E.coli stored in the dark at 29.5±0.5oC and plated on different media: a) 
PCA; b) Tergitol-7 Agar; c) VRBA; d) MacConkey Agar.  

Figure 3
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Fig. 4. Post-photo-Fenton survival of E.coli stored with catalase addition in the dark at 29.5±0.5oC and 
plated on different media: a) PCA; b) Tergitol-7 Agar; c) VRBA; d) MacConkey Agar.  

Figure 4_caption
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Fig. 5. E. coli immediate recovery in PCA supplemented with different concentrations of sodium pyruvate 
after a) SODIS, b) SODIS+H2O2 and c) photo-Fenton. 

Figure 5 caption
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Fig. 6. Survival of E.coli stored in the dark at 29.5±0.5oC and plated on PCA after: a) SODIS (0 mM SP), b) 
SODIS and addition of sodium pyruvate (1 mM SP), c) SODIS+H2O2 (0 mM SP), d) SODIS+H2O2 and 
addition of sodium pyruvate (1 mM SP), e) photo-Fenton (0 mM SP), f) photo-Fenton and addition of 

sodium pyruvate (1 mM SP). 
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