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Abstract 
In this review we provide an overview on the potentialities of synchrotron radiation techniques in the understanding of 

the structural and electronic properties of coordination compounds. Besides the largely employed multi-wavelength 

anomalous dispersion (MAD) and X-ray absorption spectroscopy (XAS), in both near (XANES) and post (EXAFS) 

edge regions, we also discuss the contribution arising from more specialized techniques that however started to 

become more widely used in the last years, such as the total scattering approach in the XRPD data analysis and the X-

ray emission spectroscopy (XES). Comparison with the commonly used laboratory techniques (XRD, UV-Vis, 

luminescence, NMR, EPR) is used to underline the plus value of synchrotron radiation techniques when applied to 

already well characterized samples. The fundamental role of DFT calculations in interpreting both diffraction and 

spectroscopic data to understand structural and electronic properties of coordination complexes is highlighted in 

several examples. A perspective summary is reported at the end of the manuscript. 

1 Introduction 
The aim of the present review is to provide to colleagues working in the field of synthesis [1-10], grafting [11-20], 

encapsulation [21-23], functionalization [8, 24, 25] of coordination compounds, the basic concepts of synchrotron 

radiation techniques and their potentialities in understanding the structural and electronic properties of such systems. 

Comparison with the commonly used laboratory techniques (XRD, UV-Vis, luminescence, NMR, EPR) is used to 

underline the plus value of synchrotron radiation techniques applied to already well characterized samples. The 

fundamental role of DFT calculations in interpreting diffraction and spectroscopic data [26-39] to understand 

structural and electronic properties of coordination complexes is highlighted in several examples reported in this 

review. 

It is a matter of fact that the progressively increased availability of synchrotron light sources made possible, starting 

from the late seventies, to perform experiments requiring a high X-ray flux in a continuous interval of energies (or 

wavelengths) [40-45]. Among them, X-ray absorption spectroscopy (XAS, also known as X-ray absorption fine-

structure, XAFS) [46-49] in both near (XANES) [50-53] and post (EXAFS) [54-56] edge regions, has become in the 

last four decades a powerful characterization technique in catalysis [57-76], coordination chemistry [65, 77-83], 

electrochemistry [84, 85], solid state physics and chemistry [86-91], physics and chemistry of liquids [92-94], 

nanomaterials [59, 90, 91], materials science [84, 86, 95-97], high pressure physics [87], earth science [98, 99], 

archaeometry [100-102], cultural heritage [102], biology [103-111] agronomy [112], and medicine [113, 114]. 

More recently, X-ray emission spectroscopy (XES) [115-127], in both resonant and non-resonant conditions, has 

significantly increased the information on the electronic structure of metal centres accessible to X-ray based 

spectroscopies. In addition, X-ray magnetic circular dichroism (XMCD) is a powerful synchrotron technique to 

understand the magnetic properties of open shell transition metal complexes [128-135]. 

Coming to scattering techniques, it is evident that multi-wavelength anomalous dispersion (MAD) [136-141] has taken 

great advantage from the development of third generation synchrotron radiation facilities [142]. The same holds for 

total scattering studies [143-146], requiring high photon fluxes at very short wavelength values. 

The peculiarities of third generation synchrotrons and of free electron lasers (FELs) make time [147-153] and space 

[154-156] resolved experiments possible at different scales which lower limits are progressively improved year after 

year. 

This review is structured in five main sections and one appendix. The present introduction is followed by Section 2, 

that reports a comparative overview on the available methods for structural characterization in coordination chemistry, 

in terms of advantages/disadvantages and type of the accessible structural information, with an emphasis on X-ray 

based techniques. In particular, we will devote a special attention to synchrotron-based approaches, clarifying the 

unique contribution of third generation synchrotron sources in the structural determination of coordination 

compounds. Structural characterization methods are classified into scattering techniques, X-ray absorption techniques 

and magnetic resonance techniques. Section 3 is devoted to a description of the main spectroscopies that provide 

insights into the electronic structure. When needed, in both Sections 2 and 3, the description of the discussed 

techniques is supported by examples relevant in coordination chemistry. Section 4, organized into three main 

subsections, reports an overview of applications pertinent to the fields of homogeneous catalysis, heterogeneous 

catalysis and photoactive coordination compounds. Finally, perspectives and conclusions are reported in Section 5. 

Along Sections 1-5 we decided to limit as much as possible the use of mathematical equations in order to make the 

text more fluent and to allow the reader to focus on the scientific issues rather than on the mathematical formalism that 

describes the interaction of X-rays with matter. To partially overcome this lack, a brief summary of the most relevant 

concepts and related equations is reported at the end of the text in the form of a short appendix (Section 6). 

2 Structural characterization of coordination compounds 
Scheme 1 reports a general-purpose classification of the several methods currently available in the coordination 

chemist’s toolbox for structural characterization. The principal techniques include elastic scattering/ diffraction 

methods (mainly using X-rays or neutron as probes), X-ray absorption spectroscopy (primarily EXAFS, but as we will 
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discuss in Section 2.5 also XANES) and magnetic resonance spectroscopies (basically NMR and EPR). The latter 

techniques are exclusively laboratory-based methods, whereas the use of third generation synchrotron sources is sorely 

needed to perform XAS experiments. With respect to XRD, the technique is widely applied using laboratory setup, but 

the use of synchrotron sources is advantageous in several cases, and often opens novel perspectives for the XRD 

applicability. 

 
Scheme 1. General classification of the principal methods currently available for structural characterization of coordination 

compounds. For each technique, the following abbreviations indicate where it is (preferentially) performed: L = lab-scale setups; 

S = synchrotron sources (mS = mainly synchrotron sources, for cases where most of the studies are performed at synchrotrons but 

also lab-based applications have been demonstrated); NS: neutron sources. 

In the present Section we propose a comparative overview focused on X-ray methods, in terms of 

advantages/disadvantages and type of the available structural information, with an emphasis on X-ray based 

characterization. In particular, we will devote special attention to synchrotron-based approaches, clarifying the unique 

contribution of third generation synchrotron sources in the structural determination of coordination compounds. 

2.1 Structural determination by elastic scattering: probe and interactions 
Most of the methods indicated in Scheme 1 definitely rely on an elastic scattering interaction between a suitable probe 

beam and the investigated sample. Here, the key ingredients for the structural determination are the interference 

between the wavefronts diffused by the atoms of the system of interest, and the possibility to relate via Fourier 

transform (FT) operation the interference pattern to the spatial arrangement of the scatterers, bridging the reciprocal 

space of exchanged momentum (q-space, where q is directly related to the scattering angle θ, q = 4π sinθ/λ) to the real 

space of distances (r-space). In the case of crystalline (long-range ordered) materials, characterized by a periodic 

arrangement of atoms inside the crystal lattice (crystallography), the elastic scattering process is commonly referred to 

as diffraction, and the scattered intensity is characterized by sharp, well-defined Bragg peaks [157-160]. In the case of 

X-rays, the elastic scattering geometry is represented in Scheme 6 and a brief mathematical description of the process 

is reported in the appendix (Section 6.2). The diffusion/interference mechanism is enabled by selecting the probe 

wavelength (or De Broglie wavelength D, for particle probes) to match the order of magnitude of the structural 

parameters to elucidate. Hence, to achieve atomic-level structural sensitivity, the best suited probes are hard X-rays 

photons (X-ray diffraction, XRD), neutrons (neutron diffraction, ND) or electrons with D in the Å range. Although 

the first diffraction experiments performed with electrons were carried out with D  1 Å [161-163], actually electrons 

diffraction experiments are carried out on transmission electron microscopes that work with a much shorter D in order 

to partially increase the intrinsically short penetration depth of the probe [164, 165]: for instance, in a TEM instrument 

working at 300 keV, D = 0.0197 Å. 

Although a common basic scheme and substantially equivalent mathematics can be adopted to describe X-ray, neutron 

and electron elastic scattering, the details of the interaction with matter are strictly probe-dependent. As a 

consequence, each of these probes shows attractive peculiarities, and a remarkable complementary is observed in 

some of the accessible structural features. In particular, X-rays are mainly scattered by electrons, thus providing 

information on the spatial distribution of the electron density in matter. Conversely, neutrons are primarily scattered 
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by atomic nuclei, which have a size of few fm and behave as point-scatterers. As a consequence, X-rays provide 

information on the electron density localized around the atomic nuclei, whereas neutrons provide information directly 

on nuclear density. Here, a good example is the discrepancy between the refined OH (or CH) distances commonly 

observed comparing XRD and ND experiments. In particular, ND provides the more reliable inter-nuclear distances, 

while the analysis of XRD data yields remarkably shorter distances, due to the preferential localization of the electron 

cloud next to the more electronegative O or C atom (see e.g. ref. [166] for the sucrose case). 

In addition, neutrons possess a magnetic moment, and are consequently subjected to magnetic coherent scattering 

interaction with any other magnetic moment in matter (mainly spin and orbital moments resulting from unpaired 

valence electrons). This kind of interaction allows the determination of the magnetic structure in coordination 

complexes and materials, using polarized neutron beams. A detailed discussion of the underlying physics and related 

applications is beyond the scope of the present work and can be found in the specialized literature, see e.g. refs [167-

171]. 

The nuclear scattering interaction is characterized by lower cross-sections with respect to X-ray scattering from 

electron clouds. Conversely, the direct charge-charge Coulomb interaction of electrons in matter yields scattering 

cross-sections of several orders of magnitude higher with respect to the X-rays case (~10
6
 barns for electrons at 200 

keV, D = 0.025 Å, to be compared with 1–10 barns for X-rays with  = 1.5 Å [172]), making electrons an ideal 

surface-sensitive probe. 

The reduced mean free path of electrons in matter (indicatively from several Å to a few nm [173]), despite its unique 

potential for the most challenging surface-science applications [174-176], severely limits the application of electron 

scattering techniques to coordination chemistry problems. Indeed, excluding gas-phase studies of simple compounds 

with sufficient volatility [177-180], bulk sensitivity is preferred for the most common solid-state and solution-phase 

applications of metal complexes. Furthermore, more extended supramolecular architectures as coordination polymers 

and MOFs are critically sensitive to electron-beam damaging, which hampers their characterization using electron 

diffraction methods, e.g. at TEM instruments, without using very advanced setups [181-183]. Consequently, only a 

limited number of examples can be found in the recent literature, see e.g. refs [183-188]. It is however worth 

anticipating that the XAS signal in the EXAFS region (Section 2.5) intimately relies on an electron elastic scattering 

interaction: as it will be discussed below, the limited photoelectron mean free path ensures an element-selective 

structural sensitivity, which is a crucial advantage of the technique. 

2.2 X-ray and Neutron diffraction: relevance and complementarity 
X-ray diffraction (XRD) is by far the most common method for structural determination, as well as the most explored 

within the coordination chemistry community. For a detailed discussion of XRD theory and experimental aspects we 

refer the reader to the broad specialized literature (see e.g. refs [158-160, 189-194] and the brief mathematical 

description reported in the appendix, Section 6.2.1), here we provide an overview on the technique features, and 

advantages/disadvantages in comparison with ND. 

Single crystal XRD is nowadays a mature and widespread technique and, although the use of synchrotron radiation is 

advantageous under several aspects (Section 2.3), high-quality chemical crystallography is routinely performed using 

laboratory diffractometers. XRD allows one to determine unit cell geometry and space group, to locate the atoms in 

the “asymmetric unit”, and to obtain the anisotropic displacement parameters, which principally describes the atomic 

vibrations along the three spatial directions but can also be influenced by structural disorder and crystalline 

imperfections [191]. This information allows a full reconstruction of the intra- and inter-molecular geometry, being a 

major driving force in de novo structural determination of coordination compounds of increasing complexity: a look to 

the most recent statistics (January 2013) released by the Cambridge Structural Database [195, 196] reveals that more 

than half of the total deposited structures (~ 54 %) contain transition metal atoms [197]. 

The standard uncertainty on the structural parameters derived from XRD refinement depends, in relation with the 

structural complexity of the analysed system, on the precision and accuracy of the collected data, on the quality of the 

structural model employed as starting point for the refinement and, critically, by the quality of the measured single 

crystal sample. Depending on the specific coordination compound investigated, the crystallization process can yield 

unsatisfactory results (poor crystallinity, multiple or twinned specimens, significant structural disorder, reduced 

dimensions), and in some unfortunate cases it is totally unsuccessful. In these conditions X-ray powder diffraction 

(XRPD) [194, 198, 199] can play a key-role. After the introduction of efficient refinement strategies based on 

matching observed and calculated XRD patterns (Rietveld refinement [200-203]) and the remarkable advances in the 

development of ab initio phasing strategies [204] this method has turned from the “ugly duckling” of crystallography 

into a well-established alternative to single-crystal XRD to tackle structural determination [205, 206]. Nevertheless, 

the collapse of a 3D single-crystal diffraction pattern into a 1D powder pattern unavoidably sets a limit on the size 

(number of atoms in the asymmetric unit) and structural complexity of systems that can be refined via XRPD [207-

210]. As it will be discussed in more details in Section 2.3, the use of X-rays from synchrotrons allows a great 

extension of the XRPD applicability with respect to laboratory setups, as demonstrated by the rapidly growing number 

of successful application of synchrotron-XRPD to large-unit cell coordination compounds such as MOFs [211, 212]. 

http://www.wordreference.com/enit/ugly%20duckling


6 

 

Despite its powerful and extensive use, also X-ray crystallography has its own Achilles’ heel. Firstly, the X-rays 

scattering factors (or atomic form factors) f(q) steeply decrease as the scattering wavenumber (or, equivalently, the 

scattering angle) increases (see Figure 1a). This behaviour directly derives from the interaction with the atomic 

electron clouds which are spatially extended in a region of comparable dimension with respect to the adopted X-ray 

beam wavelength. As a consequence, the phase differences between the waves scattered by different unit volumes of 

electron density increase at higher q-values, enhancing the destructive interference phenomena, which strike down the 

form factors (a detailed discussion can be found e.g. in ref. [213], whereas the key mathematical passages are reported 

in the appendix, Section 6.2). And, unfortunately, the high-q data are the most crucial to improve the resolution in 

structural determination by diffraction measurements. Indeed, the effective resolution achievable from a specific XRD 

dataset is inversely proportional to the maximum angle where a Bragg peak can be significantly detected. In particular, 

the geometry of a coordination compound is considered reliably solved when a resolution significantly lower than 

interatomic bond distances is achieved (a typical value of 0.8 Å is commonly demanded). The space resolution (dmin) 

of the electron density reconstructed from a diffraction experiment is given by dmin = /[2 sin (max)], being max the 

highest angle where a Bragg peak has been observed in that data collection [213] (see also the appendix, Section 

6.2.1). 

Moreover, as it clearly emerges from the curves reported in Figure 1a, f(q) values for X-rays are strongly dependent on 

the atomic number Z of the atoms involved in the scattering process, being equal to Ze
–
 for the perfect in-phase 

scattering condition at q = 0 Å
–1

. This implies (i) scarce sensitivity to light atoms (especially H, but also e.g. C, N and 

O) in particular in proximity of strongly scattering metal centres, which is a ubiquitous case in coordination chemistry 

and (ii) difficult discrimination between almost iso-electronic elements. 

 
Figure 1. (a) X-ray scattering factors f(q) for a selection of elements commonly found in coordination compounds, including light 

atoms often present in ligands (H, C, N, and O, see also magnified detail in the inset), and transition metals acting as coordination 

centres (Cu, Zn, Zr, and Hf). (b) Neutron coherent scattering lengths as a function of the atomic number Z, for 1< Z < 80, averaged 

on the different isotopes, weighting by their natural abundance. For H, the values for each isotope are also reported as full violet 

circles. The figure reports values from the tables by Sears [214]; the same data can be also found at the NIST web site 
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(http://www.ncnr.nist.gov/resources/n-lengths/). (c) Simulated XRPD and ND patterns for UiO-66 MOF (Section 2.5.1) in its 

desolvated form ( = 1.954 Å); the insets reports a magnification of the high-q region, evidencing the damping of XRPD 

intensities with respect to the ND ones, by courtesy of A. Piovano (ILL, Grenoble F). Adapted from ref. [213]. Unpublished 

Figure. 

All these difficulties are solved point by point by neutron diffraction (ND). Full description of ND principles and 

experimental setups is far beyond the scope of the present work and can be found elsewhere, see e.g. refs [215-222]. 

In brief, thermal neutrons employed in diffraction studies see atomic nuclei as point-like objects, showing q-

independent nuclear coherent scattering lengths bc. Hence ND is inherently superior to XRD in the collection of high-

quality data in the high-q region. Actually, the amplitude of the high 2 reflections is still dumped in ND experiment 

because of the thermal motion of the electron clouds, that drag along the atomic nuclei. Thus, they behave no more as 

point-scatterers [213]. Data collection at liquid He temperature significantly reduces this drawback. As an example, in 

Figure 1c the simulated XRPD and ND patterns for the desolvated UiO-66 MOF are reported, evidencing the damping 

of XRPD intensities with respect to the ND ones in the high-q region. In addition, the coherent nuclear scattering 

lengths are fully determined by the nature of the scattering nuclide. The values are thus Z-independent, swinging 

across the periodic table (see Figure 1b), and for several elements pronounced variations are observed for in 

correspondence of different isotopes. This greatly facilitates the location of light elements also in contexts where 

heavy atoms are presents, and the discrimination between elements with similar atomic numbers (e.g. O and N or Mn 

and Fe). The resounding case of WPMe3H2Cl2 [223], where ND contributed in tracking down the tendency to refine to 

a false minimum XRD data from complexes that crystallize in a polar space group, together with several similar 

examples in coordination chemistry, are concisely review e.g. in ref. [219]. 

However, these remarkable advantages of ND with respect to the X-ray based crystallography are balanced by a series 

of drawbacks. ND experiments are exclusively performed at large scale facilities (neutron reactors or spallation 

sources), with high running costs and users’ accessibility even more restricted than at synchrotron sources. 

Furthermore, either the high incoherent scattering cross sections bi of some isotopes (primarily 
1
H, with bc = –3.74 fm 

and bi = 25.27 fm), or their large neutron capture cross-sections (e.g. 
10

B, 
113

Cd, or 
155

Gd) severely limits the 

investigation of some systems. Samples prepared with isotopic substitutions (e.g. MOFs with deuterated ligands [224], 

being bc = 6.67 fm and bi = 4.04 fm for 
2
H, see also Figure 1b, violet full circles) can be used in these cases to increase 

the quality of the ND data, although further complicating the sample preparation procedure. It is however worth noting 

that employing the latest generation of high-flux neutron powder diffractometers, operating under optimized collection 

geometries, the structural determination of H-containing materials without any isotropic replacement is nowadays 

becoming more common [225]. The final and likely the worst complication, especially from the point of view of the 

chemical synthesis, is the huge amount of sample required for ND studies: single crystals volumes of several mm
3
 and 

up to grams of powder. In conclusion, X-ray and neutron diffraction are complementary, and their combination offer 

unique opportunities for the structural characterization of crystalline coordination compounds [226]. 

Finally, it is worth to remark how diffraction-based techniques are inherently not-element selective methods: the XRD 

or ND signal derives from the contributions of all the atoms included in the probed volume, weighted by their X-ray 

atomic form factors or neutron coherent scattering cross-sections. In the XRD case, this limitation can be elegantly 

bypassed moving to the synchrotron. Indeed, synchrotron sources uniquely allow the energy adjustment of the incident 

X-ray beam, enabling detailed analysis of the scattering process in proximity of selected absorption edges. Hence, 

exploiting the resonant (or anomalous) diffraction process, element-specific structural sensitivity can be obtained [138, 

227-231]. The relevance of these methods in chemical crystallography will be discussed in more detail in Section 2.7. 

2.3 Synchrotron chemical crystallography 
Notwithstanding the remarkable progresses done recently by laboratory instruments (see e.g. [232-238]), in 

conventional chemical crystallography, the use of X-rays from synchrotrons is advantageous with respect to laboratory 

sources due to two key factors: (i) the high flux and brilliance and (ii) the energy tunability. As it will be discussed 

hereinafter, these capabilities have been primarily employed to enable or facilitate conventional XRD analysis on 

challenging systems (small crystals or/and large unit cell compounds) and to successfully characterize via XRPD 

compounds which structural complexity hampered the refinement from laboratory data. 

Furthermore, these unique features have also allowed advanced XRD-based characterization with previously 

unexplored strategies; two of these specialized methods, i.e. charge density analysis and the resonant diffraction will 

be briefly introduced in the following Sections. 

Let us first discuss the impact of the high flux and brilliance from synchrotrons on XRD and XRPD techniques. In 

general, the use of high intensity X-ray sources is among the most important developments which interested the field 

throughout the last two decades. In conjunction with the boom in computational power and the widespread 

introduction of area detectors and efficient systems for low-temperature collection, the enhancement in the intensity of 

the incoming X-ray beam allowed a remarkable extension of the applicability of single-crystal XRD and XRPD 

analysis. With respect to lab-scale setups, the introduction of rotating-anode and micro-focusing [239] X-ray tubes 
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ensured an increase of about 1–2 orders of magnitude in intensity [240]. Conversely, with third generation 

synchrotrons the X-ray flux was boosted of several orders of magnitude. 

The enormous gain in flux is accompanied by the naturally high collimation of the synchrotron emission, due to its 

relativistic nature. In particular, undulators in third generation storage rings take to the highest level not only flux 

(measured in photons s
–1

), but also brilliance (measured in photons s
–1

 mm
–2

 mrad
–2

, thus considering also the spatial 

and angular radiation distribution) with their emission concentrated is in a narrow cone of half-aperture 1/[γ(nN)
1/2

] 

both in the horizontal and vertical direction, where γ = 1/(1–β)
1/2

 being β is the Lorentz factor for the oscillating 

electrons, n in the harmonic order and N the number of the magnet poles [43, 241-244]. For indication, brilliance 

values in the order of 10
21

–10
22

 photons s
–1

 mm
–2

 mrad
–2

 0.1% bandwidth
–1

 are obtained using undulator insertion 

devices, whereas that displayed by laboratory tubes range from 10
9
 photons s

–1
 mm

–2
 mrad

–2
 0.1% bandwidth

–1
 (for 

stationary anode tubes) up to 10
12

 photons s
–1

 mm
–2

 mrad
–2

 0.1% bandwidth
–1

 (for a rotating anode with micro-

focusing) [45]. 

As reviewed in details in the perspective article by Clegg [240], these properties perfectly meet the increasing demand 

coming from some of the growing areas of coordination chemistry, including microporous materials and 

supramolecular assemblies. With respect to single crystal XRD, it is interesting to note how diffraction intensities 

obtained at a given incident X-ray wavelength are (approximately) proportional to I0·λ
3
·[Vcrystal/Vcell

2
]·Σi fi 

2
, where I0 

and λ are the incident X-ray intensity and wavelength, Vcrystal and Vcell the volume of the probed crystal and of the 

crystallographic unit cell, respectively, and Σi fi 
2
 is the sum of the squared X-rays form factors extended to all the 

atoms in the unit cell. Then, reduced crystal dimensions and/or large unit cell cause weak diffraction spots, 

complicating the XRD analysis. Unfortunately, the research areas mentioned before are affected by both the 

criticalities. Coordination polymers, MOFs and many other fascinating supramolecular architectures are inherently 

large-unit-cell systems, often including disordered portions (crystallization solvent molecules, guest species [245], 

template molecules for cavities, …). Moreover, these coordination compounds are often difficult to crystallize in 

specimens of suitable size to be analysed with conventional laboratory diffractometers. As evident from the previously 

reported expression, the I0 values attainable at synchrotrons balance reduced values of Vcrystal and/or the increased 

values of Vcell. At synchrotrons, high-quality patterns can be obtained also from micrometric crystals, in particular 

when their unit cells contain high-Z atoms enhancing the scattering intensity thorough the Σi fi 
2
term. 

As anticipated, synchrotron radiation offers also specific advantages for XRPD analysis, such as the high 2 resolution 

[246-254], allowing to reduce overlap problems and to tackle high-complexity compounds which are difficult or 

impossible to crystallize with sufficiently large Vcrystal to allow single crystal data collection. With the outstanding X-

ray fluxes available at synchrotrons, a much more accurate wavelength selection can be afforded maintaining optimal 

acquisition statistics: wavelength resolution ∆λ/λ better than 2 x 10
–4

 is routinely employed. Such a spectral resolution 

for the incident X-ray probe drastically reduces the monotonous increase observed in the XRPD peak widths with 2θ. 

Furthermore, the high degree of collimation of synchrotron radiation, remarkably higher than the most performing lab-

scale setups, results in a substantial reduction of the low-2θ angular spread, commonly affecting laboratory XRPD 

patterns due to inaccurate focusing geometry at low diffraction angles. The combination of these two effects allows to 

greatly improve the angular resolution of the XRPD data. In addition, the high-incident flux ensures a better counting 

statistics and thus a better S/N ratio. The interested reader can find a technical discussion on this topics e.g. in the 

International Tables for Crystallography [255], and references therein. 

A major limitation of laboratory-scale diffractometers is the discrete character of the probe wavelength, which can be 

selected among a few possibilities, depending on the anode of the X-ray tube. The most used X-ray emission lines are 

Cu-Kα (λ = 1.54184 Å) and Mo-Kα (λ = 0.71073 Å), but Cr, Fe and Ag targets are also commercially available. 

Conversely, working with synchrotron radiation, the incident wavelength can be easily selected from a wide 

continuous spectral output, although with differences in the correspondent flux related to the features of the source and 

of the beamline monochromator and optics. 

This possibility has been a breakthrough in macromolecular crystallography for multi-wavelength anomalous 

dispersion (MAD) phasing and it is exploited in chemical crystallography for advanced anomalous (or resonant) 

experiments, aiming to make XRD an element-selective or even oxidation state-selective technique. We will discuss 

this kind of specialized methods in Section 2.7, whereas here we will summarize the advantages related to the energy 

tunability with respect to conventional XRD or XRPD applications. Depending on the nature of the probed structure, 

specific benefits can be achieved using longer or shorter wavelengths for the incident X-ray beam, as discussed in 

details e.g. in ref. [240]. In brief, samples with large unit cells generally give more intensity and a better angular 

resolution in their diffraction patterns when probed with longer-wavelength X-rays. Conversely, the use of a shorter 

wavelength helps to reduce absorption and extinction effects, which induce systematic errors in the collected patterns. 

Furthermore, when shorter-wavelengths X-rays are employed, the diffraction pattern is compressed in a smaller 

angular spread, allowing to increase the number of overlapped reflections in the angular resolution of the instrument. 

Oppositely to what is deliberately searched in anomalous experiments, the tunable wavelength enables to avoid the 

absorption edges of the elements included in the sample, thus reducing background fluorescence to improve the 
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peaks/background ratio in the diffraction patterns. This problem commonly affects laboratory diffraction patters 

collected with Cu-Kα radiation (~ 8027.84 eV) on Fe-rich samples (due to location of Fe K-edge at ~ 7112 eV). Using 

a synchrotron setup, the energy of the incident X-ray beam can be finely tuned just before the Fe K-edge, thus 

avoiding to excite X-ray fluorescence from Fe atoms. An equivalent strategy was for instance employed by Marra et 

al. [256] to collect high-quality XRPD patters on dehydrated Na-Rb-Y zeolite. Here, the use of synchrotron radiation 

(beamline BM16 at the ESRF) for XRD allowed the optimization of the incident X-ray wavelength, adjusted at 

0.84973(1) Å, just longer than that of the Rb K-edge (~ 0.816 Å). The remarkable data quality achieved with 

synchrotron XRPD allowed the localization of 2.9(6) Na
+
 cations very close to 22.4(6) Rb

+
 in the site SII of the 

faujasite framework, which would has likely escaped detection from the refinement of conventional laboratory data. 

2.3.1 X-ray charge density analysis: from geometry to valence electron density 

In conventional X-ray crystallography the target is the determination of the basic geometrical structure, under the 

assumption of element-specific spherical X-ray form factors. In this sense, diffraction is a purely structural technique, 

and has to be complemented by other methods if additional information on the electronic structure of the probed 

compound is required (see Section 3). However, a sophisticate analysis of high-resolution diffraction data can provide 

information on the valence electron density distribution, including both bonding and not bonding contributions (e.g. 

lone pairs). Such a method, commonly referred to as charge density analysis, yields detailed insights in the nature of 

chemical bonding, beyond the elucidation of the basic atomic connectivity. A detailed discussion of the principles and 

methodologies of experimental charge density analysis and of the related theoretical modelling strategies can be found 

in the broad specialized literature [245, 257-264]. Nonetheless, due to the increasing contribution of the method to the 

field of coordination chemistry, a brief discussion is deserved, with an emphasis on the advantages of synchrotron data 

collection. 

Qualitative information is firstly obtained by considering the so-called electron-density deformation maps, obtained 

calculating the difference between the experimental density and the model charge density calculated from a 

superimposition of spherical atoms, both determined by Fourier summation. A more sophisticated quantitative 

analysis consists in the fitting of experimental structure factors with core functions and an atom-centred expansion of 

multipolar (spherical harmonic) valence-density functions [265, 266]. In this approach, thermal effects are separately 

accounted by independent terms. From the fitting, it is possible to extract and plot the deformation density and also the 

static total model density, commonly employed in topological analysis to provide detailed information on chemical 

bonding. 

It is evident that a much larger number of parameters is needed to reliably model the valence electron density with 

respect to standard XRD refinements. In addition, particular attention has to be put in the deconvolution between 

valence contributions and non-spherical distributions of the thermal displacements for the atoms involved. On the 

experimental ground, to meet these requirements very low-temperature collection is mandatory and high-quality 

diffraction patters have to be collected up to q-values significantly higher than for conventional structural refinement, 

to enhance as far as possible the R-space resolution of the dataset, see Section 2.2. 

It is worth noting how high-Z metal centres, ubiquitously present in coordination chemistry, are intriguing but 

challenging targets for charge density analysis. Indeed, when high-Z atoms are involved, much more precise data have 

to be obtained. Indeed, for heavy atoms, the relative weight of the valence contribution to the total scattered intensity 

is significantly reduced with respect to that coming from core electrons. This experimental complication runs parallel 

to difficulties in theoretical modelling [261, 263], for instance due to the closely spaced energy levels in open-shell 

transition metal complexes, requiring a multi-configurational approach in the computation of the electronic structure. 

In addition, as evidenced by Macchi and Sironi [267] for a series of binuclear and polynuclear transition metal 

carbonyls complexes, metal–metal bonding and metal–ligand bonding in these systems are hardly interpreted by the 

sole one-electron density, and computation of two-electron density in conjunction with specific topological indicators 

is also required. 

On these bases, it can be easily envisaged how synchrotron data collection is particularly advantageous for charge 

density analysis applications on coordination compounds [240]. The method has been initially conceived and it is still 

applied using laboratory data. However, even using the shorter-wavelength sources (e.g. Mo-Kα or Ag-Kα) to 

compress the pattern, the sampled q-range is still limited and collection is very time consuming. With laboratory 

setups, the acquisition of a suitable dataset for the most demanding high-Z compounds can require up to several 

weeks, due to the limited incident flux and the damping of XRD signal in the high-q region. Short-wavelength and 

high-intensity X-ray beams from synchrotrons, coupled with efficient area detectors, can greatly speed up the 

measurements, and improve the data quality, reducing systematic errors from absorption and extinction effects. The 

use of synchrotron setups fostered the application of this advanced approach to several metal complexes, even 

containing very heavy atoms, such as Th [268]. Charge density analysis for instance employed to investigate agostic 

interaction in metallocenes [269] or chemical bonding of dioxygen metal complexes [270]. 

More complex molecular architectures, including polynuclear metal clusters and coordination polymers have been 

also investigated by charge density analysis of synchrotron XRD data; a thorough literature review focusing on 
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synchrotron applications up to 2005 has been provided by Coppens et al. [259]. As an example, Figure 2 reports some 

recent findings on Co-based coordination compounds of increasing structural complexity. Overgaard et al. for instance 

thoroughly investigated the alkyne-bridged dicobalt complex Co2(CO)6(HCCC6H10OH) [271], which is an excellent 

test cases for experimental electron density modelling due to its peculiar bounding properties (see Figure 2a). In 

addition, topological analysis of static deformation density maps obtained from multipole modelling of 16 K 

synchrotron XRD data on the Co3(C8H4O4)4(C4H12N)2(C5H11NO)3 coordination polymer (see Figure 2b) contributed to 

clarify its magnetic properties [272]. In particular, no direct metal–metal interaction was observed, thus suggesting 

that the magnetic ordering in this latter compound is most likely due to super-exchange phenomena. All the metal–

ligand bonds showed a closed-shell type, except the Co1–O1 and the Co–O11 bonds, which displayed evident 

covalent contributions, which could play a key-role as mediators of the magnetic ordering. 

 
Figure 2. Examples of recent findings on metal bonding in Co-based coordination compounds of increasing structural complexity 

from charge density analysis of synchrotron XRD data. (a) Charge density analysis of an alkyne-bridged dicobalt complex, 

namely Co2(CO)6(HCCC6H10OH) [271]. Left panel: structure of the complex based on the synchrotron XRD data. The thermal 

ellipsoids for non-hydrogen atoms are shown at the 90% probability level. Right panel: charge density in the four Co–C–C planes 

of the complex, obtained from 15 K synchrotron XRD data. The contour intervals are 0.1 e
–
 Å

–3
. Adapted with permission from 

ref. [271]. Copyright (2008) American Chemical Society. (b) Charge density analysis of the Co3(C8H4O4)4(C4H12N)2(C5H11NO)3 

coordination polymer. Left panel: coordination of three Co atoms in the chain and resulting structure of the coordination polymer 

viewed along the b-axis of the unit cell. The thermal ellipsoids are drawn at a 90% level, and the solvent molecules have been 

omitted for clarity. Right panel: static deformation density maps of in four planes containing the Co centres, obtained from 

multipole modelling of 16 K synchrotron X-ray diffraction. The contour interval is 0.1 e
–
 Å

–3
, with solid contours being positive 

and dashed contours negative. Adapted with permission from ref. [272]. Copyright (2008) American Chemical Society. 

2.3.2 Time-resolved diffraction studies with synchrotron beams 

For all classes of samples measurable by laboratory instruments, the much higher photon flux available at synchrotron 

radiation sources and the availability of new position-sensitive area detectors (with small pixel size, high area and fast 

read-out/erasing dead-times) permit a considerable expansion of the related research areas, making time-resolved 

diffraction studies possible, with a potential time resolution on the ms timescale in conventional (not pump-and-probe) 

schemes. This allows moderately slowly-evolving chemical reactions [64, 273-286], solid state phase transitions [247, 

287], in situ crystallization, re-crystallization processes [288-291], dynamics in biological systems [292] etc..., to be 

investigated with high accuracy XRPD. Some of the experimental setups employed for these studies were conceived 

for the simultaneous XRPD/XAS (Sections 2.5) data collection [274, 275, 277-279, 281-283, 293]. This combination 

allows the investigation of both the long and the short range order and the determination of the metal oxidation state 

by XANES analysis (Section 3.2.1), that escape detection in standard diffraction experiments. 
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Single crystal time-resolved studies require a different approach because the sample rotations needed to measure the 

Bragg reflections in all directions of the reciprocal space with a monochromatic beam would be excessively time 

consuming. In such cases, time resolution on the ms timescale can be achieved using the polychromatic Laue method 

[157, 294, 295], that is ideal for synchrotron radiation sources [220, 296] and can be applied with neutrons as well 

[220]. Typical applications of time-resolved Laue diffraction include photo-activated protein dynamics [297], 

conformational change in biological macromolecules [141, 220, 296, 298, 299] and determination of minority 

intermediate structures [296]. 

An alternative method using the intense white X-ray beam available at synchrotron sources is the energy-dispersive X-

ray diffraction (EDXRD) [300-304]. EDXRD works at fixed scattering angle; the d-spacings of the diggerent Bragg 

reflections are determined by measuring the energy (and thus the wavelength) of the diffracted photons with an 

energy-resolved solid state detector, similar to those used to collect EXAFS data in fluorescence mode (see Section 

2.5). The great advantage of the method is the high time resolution, that depends on the readout of the detector 

(typically in the ms range) allowing phase transitions to be investigated [300, 301, 305-307]. The EDXRD technique 

finds also interesting applications in the field of high-pressure experiments [302, 308, 309], because the q-interval 

available using standard “angle-dispersive” XRD setups is limited by the small 2θ opening available using diamond 

anvil cells. Conversely, the main drawback of the technique is a poor resolution in the d-spacing determination 

because the ΔE/E of the solid state detectors is not comparable with the Δθ/θ available in the standard “angle-

dispersive” XRD setups. 

2.4 Beyond crystallography: accessing short-range order in structural determination 
Conventional XRD is tailored to investigate crystalline structures, exhibiting long range order i.e. translational 

periodicity. Relatively small deviations from the perfect periodic arrangement of atoms in the crystal lattice can still 

be processed within the theoretical system of conventional crystallography, by enlarged Debye Waller factors or 

partial occupation of lattice sites. However, there is a number of high-impact fields which routinely deal with totally 

or partially disordered (or better, short-range-only ordered) systems [144, 310]. In many cases, the unperiodical and 

local structural features are exactly the characteristics which make the system appealing towards technological 

applications. 

Typically, coordination chemistry occurs in the solution-phase, involving e.g. homogeneous catalysis, bio-inorganic 

and medical applications. The structural parameters are influenced to different extents by the solvent-solute interplay 

[311] (employed solvent, solution concentration, presence of counter ions, …) and in several cases they significantly 

deviate from the solid-state case. Furthermore, a detailed speciation and structural investigation of ions and complexes 

in solution is fundamental to clarify their stability and reactivity, gaining a predictive knowledge for novel synthetic 

routes and applications [312]. 

Heterogeneous catalysis is another challenging field for structural determination, due to the necessity of isolated 

catalytic metal sites or nanoclusters well dispersed on high-surface area supports, to enhance the catalytic 

performances [76, 286, 313-315]. Although highly-crystalline microporous materials such as zeolites [256, 285, 316-

318], zeotypes [284, 318] and coordination polymers [318-323] have been developed, where the active sites are 

incorporated in a well ordered framework, by far most of the heterogeneous catalysts are intractable using traditional 

crystallographic tools [324]. 

In addition, more and more complex macromolecular architectures [77, 325-332], possibly self-assembling [333-339], 

are being synthesized, with a progressive fading of the borders between coordination chemistry and materials science. 

These systems demand a deep update of our portfolio of structural techniques to appreciate the hierarchic organization 

of the structural levels, bridging the atomic to the mesoscopic scale. 

Finally, the last decade has witnessed a sort of paradigm shift in structural analysis, making things more lively, 

although more complicated: “chemistry in action” is definitely the present state of the art in characterization. Words 

such as time-resolved, in situ, operando [340] are year after year proliferating in the literature. The direct structural 

tracking of slow, fast and ultrafast chemical and photochemical reactions, working catalysts, growth/synthesis 

processes or phase transitions, triggered by a fine control of external inputs (e.g. temperature, pressure, 

photoexcitation, reagents fluxes, electric and magnetic fields), is far beyond the conventional lab-based 

crystallography. Here, the boost in brilliance ensured using X-rays from third generation synchrotrons and the 

versatility of the related setups really made the difference [76, 286, 314, 341]. 

Obtaining detailed structural information also on short-range and partially ordered systems is today a key-target. In the 

following Sections we will mention the principal methods to access this kind of information, focusing on the X-ray 

based strategies more suitable for the investigation of coordination compounds, including XAS spectroscopy 

(principally EXAFS) and X-ray scattering (XRS) techniques (see Sections 2.5 and 2.6, respectively). We will 

highlight the key-role of synchrotron sources to fulfil this task, in comparison with laboratory-based strategy, when 

applicable. Finally, some strategies for in situ time-resolved characterization of coordination compounds will be 

discussed. Here, we will focus on the methods in which the source is employed a continuous fashion (time resolution 
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down to the ms scale), whereas a detailed discussion of synchrotron ultrafast characterization using pump and probe 

scheme can be found elsewhere (see e.g. refs [148-150, 153, 342-345]). 

2.5 EXAFS: a good reason to apply for beamtime 
The most obvious association between synchrotrons and structural characterization in coordination chemistry comes 

certainly from XAS technique, in particular in the EXAFS region. Since the pioneering works of Sayers, Lytle and 

Stern in the 70s [46, 47, 49], the technique progressively became a well-established alternative/complement to XRD, 

in particular for those cases where a local and element-selective structural probe is required, primarily amorphous 

solids, solution phase, liquids, catalytic and biochemical systems [346]. The necessity of a continuously tunable X-ray 

source with a very high incident flux to resolve the fine structure in the X-ray absorption spectrum makes EXAFS a 

synchrotron-only method. It is worth noting that for most EXAFS studies, hard X-rays are employed, indicatively 

from 2 keV onwards. This spectral region includes the K-edges (ejection of a 1s core electron) for elements up to the 

second row of the transition elements, and the L-edges (ejection of a 2s or 2p core electron) for the lanthanides and 

beyond, for which K-edge EXAFS collection would be unpractical (see Figure 3a for some examples). 

EXAFS analysis is currently the key-method to elucidate the local structure around the metal centres in solution [27, 

92, 93, 312, 347-357]. Analogously, the elemental selectivity of the technique is a remarkable advantage whenever 

one is interested in the closer coordination environment of dispersed catalytically- [65, 76, 358, 359] or biologically-

active [78, 107-109, 111, 360-367] sites. In general, EXAFS is a turning point for any system which in its as-

synthesized state or upon specific treatments shows site-specific short-range order, escaping structural determination 

via XRD. 

In the framework of this overview on the available methods for structural determination, we will introduce the 

technique principles, with an emphasis on the attainable structural information of interest for a coordination chemist. 

For the physics that is beneath, and for a detailed discussion on theoretical background, experimental setups, 

acquisition and analysis strategies we refer to the several dedicated textbooks [368-372], book chapters [213, 371, 

373-378] and recent literature reviews [54-56, 76, 78, 90] on the topic. A brief description of the most relevant 

concepts and related equations is reported in the appendix (Section 6). 

The technique consists in the collection and analysis of the X-ray absorption coefficient μ(E) as a function of the 

energy E of the incident X-ray photons, probing the region immediately after an absorption edge (at energy E0) of one 

of the elements contained in the sample, the “absorber” atom, typically up to 1000 eV after the edge. Here, if the 

absorber is surrounded by neighbours atoms, the spectrum is characterized by subtle oscillations, modulating the 

monotonically decreasing atomic-like background μ0(E) (see Figure 3d). 

Oversimplifying a sophisticate piece of quantum mechanics, the photoelectron, once it has been extracted from a core 

level of the absorber, diffuses as a spherical wave, which is back-scattered by the surrounding shells of neighbour 

atoms. In this picture, the fine structure in the μ(E) profile originates from the interference between the different back-

scattered wavefronts: the phenomenon can be substantially assimilated to the electron diffraction case. The EXAFS 

oscillations can be thus related to a specific spatial arrangement of the atoms in the local environment of the absorber, 

using the FT operation to bridge the photoelectron wavevector space (k-space, where k is directly proportional to the 

square root of the photoelectron kinetic energy, k = (1/ħ) [2me(E − E0)]
1/2

) to the r-space. The use of the keyword 

“local” is fully justified primarily by the short free-mean path of the photoelectron in matter and, in addition, by the 

damping effect of the core-hole lifetime: EXAFS sensitivity is limited in the most ordered cases to a sphere of 5−10 Å 

radius from the absorber [89, 379-387]. However, when the technique is applied to more disordered systems, it can 

result just in the determination of the first coordination shell [388-395]. 
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Figure 3. (a) X-ray absorption coefficient μ(E)/ (where  is the sample density) as a function of the incident X-ray energy E, in 

the 1–30 keV range, for a selection of elements commonly found in coordination compounds (μ(E)/ can be approximately 

expressed as: μ(E)/ ~ Z
4
/AE

3
, where Z the atomic number and A the atomic mass of the element of interest). In particular, μ(E)/  

is reported for three “light” atoms, i.e. H (Z = 1), O (Z = 8), and S (Z = 16) and three metals belonging to the 1
st
, 2

nd
 and 3

rd
 row of 

the transition metal series, i.e. Fe (Z = 26), Ru (Z = 44), and Os (Z = 76). The X-ray absorption edges encountered in the reported 

range are indicated for each element. Data obtained from NIST: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html. 

Note the logarithmic scale of the ordinate axis. (b) Schematic representation of a typical experimental setup for XAS 

measurements: I0, I1, and I2 are ionization chambers, If indicates a fluorescence detector. (c) Molecular model of the complex 

[Ru(bpy)2(AP)2]
2+

 (bpy = 2-2′-bipyridyne; AP = 4-amminopyridine). Atom colour code: Ru, pink; N, blue; C, grey; H, white. (d) 

Ru K-edge XAS spectrum (black thick line) for the [Ru(bpy)2(AP)2]
2+

 complex shown in part (c), in water solution (10 mM 

concentration), collected in transmission mode at the BM29 beamline of the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France) [396]. In the Figure are also reported: pre-edge (blue) and post-edge (green) lines (obtained by fitting the 

experimental data with two polynomial functions in suitable pre- and post-edge energy intervals) required to estimate the edge-

jump Δμ(E0) for normalization of the raw spectrum; atomic-like background μ0(E) (pink solid line), employed in the extraction of 

the EXAFS oscillations, see part (e). (e) Normalized XAS signal for [Ru(bpy)2(AP)2]
2+ 

obtained from the raw data reported in part 

(d). The inset shows the extracted k
2
-weighted k

2
χ(k) EXAFS function obtained by subtracting the absorption signal expected for 

an isolated atom, labelled as μ0(E) in part (d), and converting the E-values in k-values using the expression k = (1/ħ) [2me(E − 

E0)]
1/2

. (f) R-space EXAFS spectra obtained by calculating the FT of the k
2
χ(k) spectrum reported in the inset of part (e) in the 2–

16 Å
–1

 k-range; both modulus (top part) and imaginary part (bottom part) of the FT are reported. Unpublished Figure, reporting 

data published in ref. [396]. 

On the experimental ground, a schematic representation of the basic setup for XAS measurements is reported in 

Figure 3b. As discussed in more details elsewhere [76, 89-91], the most common detection schemes include 

transmission and fluorescence modes, although other alternative exists e.g. electron yield and optically-detected 

modes (see Scheme 6 in the appendix and Section 6.1 for a representation of these different products of the X-

rays/matter interaction). All these detection schemes, in their standard implementation, involve a point-by-point 

building of the XAS spectrum, repeating the following steps until all the required energy points have been probed: (i) 

a specific energy E is selected using a monochromator from the white spectrum extracted e.g. from a bending magnet; 

(ii) the X-ray absorption coefficient of the sample is measured at energy E; (iii) the energy is moved to the subsequent 

value E + ΔE. 

In transmission mode, the absorption coefficient at fixed energy E is obtained by measuring the intensity of the X-ray 

beam before the sample (I0) and that transmitted after the sample (I1), typically using two ionization chambers filled 

with a gas mixture tailored to the energy range of interest. Once I0 and I1 have been determined, μx(E), where x is the 

sample thickness, can be simply derived from the Lambert Beer law, being μx(E) = – ln(I1(E)/I0(E)) = ln(I0(E)/I1(E)). 

http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html
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Usually, a reference sample (e.g. a metal foil of the same element selected as the absorber in the XAS experiment) is 

positioned after the I1 ionization chamber, followed by a third ionization chamber along the beam path (labelled as I2 

in Figure 3b). In such a way it is possible to simultaneously acquire the XAS spectra for both the sample and the 

reference (using the I1 and I2 outputs) and employ the latter for an accurate energy calibration of the sample spectrum 

[76, 397]. 

Although the transmission mode is the most direct and accurate way to collect a XAS spectrum, it is not applicable in 

several cases, due for instance to an excessive dilution, or, conversely, to the necessity of measuring a thick or 

supported specimen. Here, fluorescence detection often represents a practical alternative. Working in fluorescence 

yield, the incident intensity is still detected by using the I0 ionization chamber, whereas a multi-element 

semiconductor detector (If in Figure 3b) is employed to collect the X-ray fluorescence photons emitted as a secondary 

effect of photoelectrical absorption, when the core hole is filled by one electron from the outer levels. Assuming a 

linear response of the fluorescence detector, μx(E) is proportional to the ratio If(E)/I0(E), from which the sample 

absorption coefficient is evaluated. 

Figure 3d reports as an example the Ru K-edge XAS spectrum in transmission mode for the [Ru(bpy)2(AP)2]
2+

 

complex, where AP = 4-amminopyridine (the complex structure is shown in Figure 3c), measured in water solution 

(10 mM concentration) at the BM29 beamline of the European Synchrotron Radiation Facility (ESRF, Grenoble, 

France) [396]. XAS spectra are routinely normalized to the edge jump Δμ(E0) (indicated in Figure 3d), to obtain data 

which are independent from specific experimental conditions such as sample thickness, absorber concentration, or 

detector/amplifiers settings (see Figure 3d). Normalized spectra can thus be easily compared to other data, regardless 

of the measurement conditions, or to theoretical simulations. 

The analysis of the EXAFS spectra is performed primarily in k-space, after “extraction” of the oscillatory part of μ(E) 

by subtraction of the atomic-like background μ0(E) from the normalized XAS spectrum, resulting in the determination 

of the EXAFS function χ(E). The latter is then simply converted in χ(k) using the above-mentioned relation k = (1/ħ) 

[2me(E − E0)]
1/2

 (see the inset of Figure 3e). Hence, the χ(k) function can be related via FT to a specific spatial 

arrangement of atomic neighbours in the local environment of the absorber, bridging k-space to r-space, where the 

different coordination shells are more easily visualized, e.g. as maxima in the modulus of the FT (see Figure 3f). 

Let us now focus our attention on the extraction of structural parameters from the EXAFS analysis. With this respect, 

a useful parametrization of χ(k) is provided by the so-called the EXAFS equation [46-49], which models the EXAFS 

function as a sum of sinusoidal waves where phases and amplitudes depend on the type of atoms and on their 

distribution around the absorber, and related to a series of valuable structural parameters (see Section 6 6.3). In brief, 

the fitting of the EXAFS spectra on the basis of a guess model structure allows, for each shell of neighbours included 

in the analysis, an accurate refinement of some parameters of key importance in structural coordination chemistry: (i) 

coordination number and kind of atomic neighbours; (ii) average bond distances, with typical uncertainty in the order 

of few hundredths of Å, slightly higher, but still competitive with XRD analysis (note however, than when particular 

experimental conditions are available, using the differential approach to analyze the data, the relative variation of the 

first shell distance can be determined with an accuracy as good as one fm, i.e. 10
2
 times more sensitive than that 

normally available [398, 399]); (iii) Debye-Waller (DW) factors accounting for thermal vibrations along the absorber 

atom – neighbour atom bond and static structural disorder. Having access to these pieces of information, with 

limitations remarkably less severe than for diffraction experiments on the sample features (solutions, powders, …) and 

dilution (a 5% wt of the absorber species can be indicatively assumed as the lower limit for satisfactory EXAFS 

quality in transmission mode, but concentration as low as a fraction of % can be measured in fluorescence mode), is 

definitely an excellent reason to apply for beamtime at synchrotron facilities, despite their limited accessibility. It is 

worth anticipating that the same spectrum contains, although in a different energy range (the XANES region, 

indicatively from few tens of eV before up to a hundred eV after the edge, see Figure 3e in this Section, and following 

Sections 3.1 and 3.2.1), also specific information on the absorber electronic structure, allowing combined 

structural/electronic determination in the same measure. 

Despite these appealing capabilities, also EXAFS has some weak spots. Similarly to the X-ray elastic scattering, the 

photoelectron back-scattering process occurs mainly via interaction with the surrounding electron clouds (see e.g. refs 

[400, 401] for a detailed discussion on the photoelectron back-scattering amplitudes and phase shifts as a function of 

the atomic number of the back-scattering atom). Therefore, EXAFS suffers of similar limitations as XRD in the 

location of light elements and in the discrimination of almost iso-electronic atomic neighbours. As in XRD 

experiments, the resolution in structural determination by EXAFS and the quality achievable in the data fitting 

procedure depend on the extension of the sampled k-space. Unfortunately, the EXAFS oscillations are progressively 

damped as k increases, due to the thermal effects modelled by DW factors, causing an intrinsic reduction of the S/N 

ratio. With this respect, ramping up of the acquisition time as k increases and k
n
-weighting (typically n = 2 or 3) to 

enhance the S/N ratio of the oscillatory structure in the high k-region are commonly applied in the EXAFS data 

collection and analysis. 
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In addition, the standard EXAFS equation [46, 47, 49] relies on the single-scattering (SS) approximation, i.e. only 

two-body scattering paths (absorber − shell of equivalent neighbours) are considered. This implies a 1D structural 

determination (bond distances, but not bond angles), carrying out the same level of information of radial PDF 

functions g(r), but in an element-selective way, i.e. including only the atomic pairs which contains the absorber 

species (Section 2.6). However, the photoelectron can be involved also in many-body multiple-scattering (MS) 

processes, which contribution to the total EXAFS signal decreases as either the photoelectron energy or the number of 

“legs” increases. The full MS regime hence dominates the energy region just after the edge, on the borderline between 

the XANES region and the low-k portion of the EXAFS spectrum (sometimes referred to as XAFS). Interestingly, MS 

amplitudes are strongly influenced by the angles formed by the involved atoms. For instance, for three-body paths, the 

higher contributions are observed in correspondence of collinear configurations, and rapidly fall down as the angle 

between the absorber and the two scatterers decrease below 140° [363]. Hence, high-quality EXAFS spectra, extracted 

paying special attention to the low-k signal, can be fitted including also MS contributions to obtain additional 

information on bond angles and, in some fortunate cases, to refine the full 3D structure of the first few coordination 

shells [363, 376, 402-404]. Nevertheless, the SS-approach remains very useful for a preliminary screening of possible 

alternative models, before a more sophisticated MS analysis, or in cases where the complexity in the coordination 

geometry is excessive to aim at 3D structural reconstruction. It is worth noting how the impressive developments in 

quantitative simulation of XANES region currently allow to fully exploit its enhanced angular sensitivity [53, 405-

409]. In this sense, also XANES, which is conventionally pictured as an electronic spectroscopy, can be regarded as a 

“structural” method: although more theoretically- and computationally-demanding with respect to EXAFS, XANES 

modelling can provide highly accurate 3D determination of the absorber coordination geometry. 

It is worth to note that EXAFS-like signals are also detected using other techniques, including for instance total 

scattering analysed using the pair distribution function (PDF) approach (Section 2.6). Alternatively, EXAFS-like 

spectra can be obtained using modern transmission electron microscopes (TEM) equipped with an electron energy-

loss spectrometer [410-415], with a technique usually referred to as extended energy-loss fine structure (EXELFS). 

Although this method allows to achieve the nm-spatial resolution typical of TEM instruments (2−3 order of magnitude 

better that what can be obtained with X-ray microscopies [90, 156, 416, 417], the necessity of working in ultra-high 

vacuum conditions and with sample thickness of few tens of nanometers limits its application to coordination 

chemistry. 

2.5.1 EXAFS and XRD: exploring structural features at short and long range scales 

In this Section we will add some considerations on the interplay between EXAFS and XRD/XRS methods, proposing 

a case-study dealing with MOFs characterization. In particular, the global/local nature of the information obtained by 

XRD and EXAFS is well exemplified by the structural characterization of UiO-66 MOF in its as-synthesized and 

desolvated forms, recently achieved by combining the two techniques. 

This MOF and its iso-structural analogues, UiO-67 and UiO-68, have attracted great research attention due to their 

exceptional stability at high temperature/pressure and in presence of different acid and basic solvents [418, 419], 

properties that make UiO-66-68 among the most promising materials for practical applications. The parent UiO-66 

compound has been obtained connecting Zr6O4(OH)4 inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) 

linker units. The inorganic cornerstones of the as synthesized material are perfect octahedra (see Figure 4a, left 

models), with 6 equivalent Zr at their vertexes, 12 equivalent Zr–Zr1 sides (RM1 bond distance) and 3 equivalent and 

Zr–Zr2 diagonals (RM2 bond distance). In the resulting framework, each Zr-octahedron is 12-fold connected to adjacent 

octahedra, thus ensuring an enhanced stability with respect to other MOFs (Figure 4b). During desolvation, each 

cornerstone of the UiO-66 MOF evolves from Zr6(OH)4O4 to Zr6O6 [419] with the release of two H2O molecules (see 

Figure 4a, right models), as also observed for other iso-structural compounds of the UiO-66-68 family [420-422]. 
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Figure 4. (a) Model of the effects of de-hydroxylation process on the UiO-66 Zr6O4(OH)4 cornerstone (perfect octahedron with 12 

equivalent RM1 sides and 3 equivalent RM2 diagonals), resulting in a distorted Zr6O6 cluster (squeezed octahedron, where both 

sides and diagonals split in two groups of equivalent distances, 12 RM1 → 8 RM1a + 4 RM1b and 3 RM2 → 2 RM2a + 1 RM2b). 

Magenta, blue and cyan colours refer to Zr, O and H atoms, respectively. In the top insets O and H atoms have been omitted for 

clarity. (b) Structure of the desolvated UiO-66 MOF, including one octahedral super-cage and two adjacent tetrahedral super-

cages. Zr, O, C, and H atoms are represented in magenta, blue, grey, and white, respectively. The squeezing direction randomly 

coincides with one of the three diagonals of each Zr6O6 octahedron, and it is indicated by yellow arrows (or yellow points 

representing arrows pointing out of the page). (c, d) Effect of desolvation on UiO-66 observed by XRD and EXAFS (as-

synthesized UiO-66, blue curves; desolvated UiO-66, at 300 K, in vacuo, magenta curves). (c): XRPD data collected with λ = 

1.5406 Å. The patterns in the 10–40° 2-region have been amplified by a factor 4. (d) k
3
-weighted k-space (top panel) and R-space 

(bottom panels, phase-uncorrected FT magnitude and imaginary part are reported in left and right part, respectively) EXAFS 

spectra. Adapted with permission from ref. [419]. Copyright (2011) American Chemical Society. 

Valenzano et al. [419] have investigated the structural modifications undergone by the UiO-66 MOF after the 

desolvation process, resulting in the de-hydroxylated compound. Both XRPD and EXAFS were applied, in 

combination with density functional theory (DFT). Figure 4c shows the XRPD patters collected before and after the 

activation process. The two patters are remarkably similar: except for a significant intensity increase of the basal 

reflections, related to the removal of the electron density inside the framework pores [284, 285, 423], the position and 

intensity of the Bragg peaks remain substantially unchanged. As represented in Figure 4d, EXAFS points out a 

remarkably different situation: although the first coordination shell (Zr–O SS paths) is only slightly perturbed, the 

second shell signal shows pronounced modifications, which suggest an important splitting on the RM1 distances 

corresponding to the sides of the octahedral units. On the quantitative ground, the EXAFS spectrum of the 

hydroxylated MOF was successfully fitted using as starting guess the structure determined from the Rietveld 

refinement of the corresponding XRPD patterns. Conversely, it was impossible to achieve a satisfactory fit of the 

EXAFS data collected for the desolvated UiO-66 using the XRPD-based guess structure, refined within the highly 

symmetric Fm-3m space group. 

This discrepancy between XRD and EXAFS response highlights how the de-hydroxylation process promotes a local 

structural distortion of the Zr-octaedral units, accompanied by a lowering in the coordination symmetry around the 

metal centres. In particular, EXAFS analysis assisted by period calculations performed with CRYSTAL code [424] at 

DFT level of theory, demonstrated a compression of the Zr6O6 octahedra in the desolvated MOF, occurring along a 

direction which randomly corresponds to one of the three diagonals. The squeezing results in the shortening of 8 of the 

12 sides and the elongation of the other 4 sides (indicated respectively as RM1a and RM1b distances in Figure 4a, right 

model), clearly reflected by the shortening and splitting of the second shell EXAFS signal. Although much less 

evident in the EXAFS data plotted in Figure 4d, the erosion of the weak signal at ca. 4.17 Å in the FT magnitude 

spectrum is consistent with the splitting of diagonal RM2 bonds in two longer RM2a and one shorter RM2b distances and 

was clearly quantified in the analysis of the data. The random character of the distortion, occurring for all cornerstone 

units but without preferential orientation, causes the failure in its detection by XRPD. Conversely, focusing on the 
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local Zr coordination environment, the same experimental EXAFS spectrum is detected independently on which, out 

of the three diagonals, corresponds to the squeezing direction. 

In conclusion, the example discussed so far highlights the high complementary character of structural information 

provided by EXAFS and XRD: a tight interplay between the two methods, possibly assisted by computational 

modelling, can be greatly helpful in to clarifying the structure of the most complex supramolecular architectures. 

2.5.2 Time resolved EXAFS for in situ characterization 

The conventional applications of XAS in the EXAFS region are related to steady-state characterization. For most of 

the chemically-relevant processes (those which reaction speed cannot be slowed down to the few-hours timescale 

[386, 387]) the standard acquisition schemes are not suitable to monitor the structural dynamics as the reaction 

proceeds in a controlled sample environment. Nevertheless, coupling the element-selectivity of EXAFS with a time-

resolution which enable to follow in situ the structural dynamics in the local coordination environment of the absorber 

is a very attractive opportunity, with profound implications e.g. in catalysis, chemical synthesis and materials growth. 

For this reason, specialized experimental schemes has been proposed which allow sub-second EXAFS collection. 

The standard experimental setup for EXAFS previously described (see Figure 3b for a schematic representation) 

works in step-scan mode, with acquisition times in the order of thousands of seconds. EXAFS spectra are collected by 

integrating for time interval t, adjustable to meet the specific experimental necessities, the counts on the detectors 

I0(E) and I1(E) (or If(E) if fluorescence detection mode is employed) while maintaining the monochromator at the 

fixed energy E. After t, the data collection is paused until the monochromator has moved to the next energy point (E 

+ E), where E is the programmed energy step. This sequential procedure is repeated for all the required energies, 

with dead times in the collection while adjusting the incident energy. The overall integration time required for a 

satisfactory S/N ratio up to high k-values ranges from few tens of minutes to some hours, depending on the sample 

properties and to the target resolution in structural determination. With this respect, the smallness of the amplitude of 

the EXAFS oscillations is a serious barrier, possibly requiring data with a S/N ratio in the order of 10
–4

: Conversely, 

XANES spectra of satisfactory quality (e.g. to monitor the edge position, Section 3.2.1) can be collected in less than 

one minute (as a S/N ratio of 10
–2

 is more than sufficient), using standard setups. 

As discussed in details in a number of recent reviews [76, 147, 425, 426], two principal strategies have been 

developed to perform time-resolved EXAFS experiments: quick EXAFS (QEXAFS) [427-429] and energy dispersive 

EXAFS [428, 430-432]. 

The QEXAFS approach is directly derived from the standard setup discussed before, but focuses on the optimization 

of the movements of the monochromator system. The monochromator is driven in a continuous motion across the 

desired energy range, by geared stepper motors or a dc motor with encoder [147]. In this way I0(E) and I1(E) (or IF(E)) 

are acquired “on the fly”, by reading, saving and resetting the integrated counts of each detector for each t time 

interval. The latter is defined by the requested energy resolution E and the rotation speed adopted by the 

monochromator. This acquisition mode ensures an accurate data normalization as in conventional experiments, with 

improved time resolution on the sub-second scale in the most recent implementations [433]. This value is an 

instrumental acquisition time and holds for concentrated samples only; for dilute samples a higher statistics is needed 

to obtain analyzable data, so that one should more realistically count for few tens of seconds for an EXAFS spectrum 

and few second for a XANES one. 

Conversely, the energy dispersive approach (see Figure 5) implies a radical modification of the acquisition strategy. 

Here, the stepwise progression along the energy windows of interest is elegantly bypassed by simultaneously 

illuminating the sample with a focused X-ray beam containing the whole spectrum of energies required for the 

EXAFS acquisition. This is achieved using a bent “polychromator” crystal [434-438], which disperses the energies of 

an incoming X-ray white beam from the synchrotron. In addition, the polychromator focuses the X-rays onto the 

sample, located in its focal spot, before then diverging at the detector position. The transmitted intensities 

corresponding to the different energies of interest are thus measured “in one shot” using a position sensitive detector 

(e.g. a 2D CCD detector). This scheme implies that the incident X-ray intensity and the intensity transmitted by the 

sample have to be collected separately. This is obtained by positioning at the polychromator focal point nothing or the 

sample respectively. An additional acquisition is required for the collection of the reference sample. Using a 

dispersive setup, the time-resolution in EXAFS collection is limited by the detector read-out time, typically in the 

order of hundreds of ms (e.g. ~ 100 ms using the fast-readout low-noise FReLoN CCD camera [439] developed at the 

ESRF), although resolutions on the s timescale have recently been demonstrated [440]. 

Improvements of the energy dispersive EXAFS setup, such as the Turbo-XAS one developed at ESRF ID24 [441], 

make possible to overcame the two major drawbacks of the technique, allowing the users to simultaneously measure 

I0(E), I1(E) and to collect spectra in fluorescence mode if needed. 

Besides the obvious benefit of a significant reduction in the acquisition time, energy dispersive EXAFS is 

characterized by the absence of any movement of the optics during the spectrum acquisition (guarantying a potentially 
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high beam stability) and by the extremely small and stable horizontal focal spot that allows this setup to be potentially 

used for space resolved experiments also [438, 442-444]. 

 
Figure 5. (a) Schematic representation of the experimental setup for energy dispersive EXAFS. (b) Example of time-resolved 

energy dispersive XAS spectra collected by Kong et al. [440] with 6 ms resolution while monotoring the thermolysis of 

(NH4)2[PtCl6]. The analysis of these data provided direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with 

detailed insights in the reaction dynamics. The same setup has demonstrated to be capable of resolution down to 60 s, faster than 

the evolution rate of the probed reaction. Part (b) reproduced with permission from ref. [440]. Copyright (2012) Nature Publishing 

Group (2012). 

Both QEXAFS and energy dispersive EXAFS methods have been successfully integrated in multi-technique setups for 

in situ and operando characterization [76, 147, 155, 341, 426, 445-460], where for instance EXAFS is combined to 

XRPD or XRS methods for a simultaneous long- and short-range structural determination [64, 155, 276, 461] (see also 

Section 2.6.1), or to a suite of non-X-ray spectroscopic techniques, including IR, UV-Vis and mass spectroscopies 

[283, 286, 426, 459-468]. 

2.6 X-ray scattering techniques applied to disordered and partially ordered systems 
The same fundamental physics and theoretical principles of XRD, that lead to the Bragg equation in crystalline solids, 

can be extended to the analysis of non-crystalline compounds and materials. Indeed, independently from the ordering 

level of the investigated system, the same link between the reciprocal and the real space (and vice versa) still holds, 

that is: the scattering amplitude is the FT of the electron density [213]. The related techniques are commonly referred 

to as X-ray scattering (XRS) methods [145, 146, 469, 470]. Indeed, a short-range ordered sample can be modelled as a 

statistical ensemble of randomly oriented sub-units, similarly to the micro-crystalline domains in a XRPD experiment. 

The correspondent signals are diffused in the entire reciprocal space (diffuse scattering): the 3D information is 

reduced to 1D and can be extracted (although not univocally) by theoretical modelling (and eventually fitting) of the 

isotropic scattering patterns [159, 471, 472]. 
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Figure 6. Scheme of the radial PDF g(r). The radial PDF quantifies the correlation between the particles within a given system. In 

particular, g(r) measures the average probability of finding a particle at a distance of r away from a given reference particle. The 

general algorithm to evaluate g(r) involves the determination of the number of particles within r and r+dr (circular yellow shell in 

the figure) from the reference particle (depicted in magenta). In a sample showing short-range order, the g(r) function shows a few 

oscillations before stabilizing at g(r) = 1, which correspond to local deviations from the isotropic condition, and are associated to 

the first coordination shells occurring at well-defined interatomic distances. Unpublished figure. 

These conditions are mathematically mirrored by the Debye equation [213, 473], which represents the theoretical basis 

for the analysis of XRS experiments involving non-crystalline samples and relates the diffused scattering signal to the 

spatial arrangement of atoms in the probed sample volume (see Section 6.2.2). Especially while dealing with many-

atoms systems (more than 500 atoms), the computation of the theoretical XRS curves can be speeded up by using the 

so-called radial pair distribution function (PDF) formalism [145, 474-479]. Partial radial PDFs for each kind of atomic 

pair present in the probed volume (constituted by elements i and j) are defined in such a way that the probability of 

finding a j-type atom at distance r from a i-type atom is equal to 4πr
2
gij(r), as schemed in Figure 6. Hence, the global 

radial PDF g(r) is obtained by summing over all kind of i, j atoms the partial gij(r). The FT of this sum, where each 

term gij(r) is weighed by the product of the X-ray form factors of the two elements considered, fi fj, is proportional to 

the experimentally determined X-ray scattered intensity (see Section 6.2.2). Simplifying, the radial PDF can be 

pictured as a frequency histogram of the interatomic distances in the investigated system, which tends to a continuous 

distribution due to the huge number of sampled atomic pairs [145]. 

The nature of structural information achievable from XRS characterization and the details of data analysis/modelling 

are directly related to the specific sample features and experimental conditions. In particular, depending on the probed 

q-range (defined by the sampled 2 angular interval and by the used ), the WAXS (Wide Angle X-ray Scattering, 

sometimes referred to also as Large Angle X-ray Scattering, LAXS, or as X-ray solution scattering, XSS, when 

performed on solution phase systems) [159, 477] and SAXS (Small Angle X-ray Scattering) [480-482] techniques can 

be distinguished. WAXS covers an extended angular range, equivalent to that probed in XRD studies, yielding 

information on interatomic/intramolecular correlations. Conversely, SAXS collection is typically limited to the 0.5 – 

50 mrad angular range (locating the detector at some meters from the sample and using an incident X-ray wavelength 

of ~ 1 Å) [482], hence providing information on inter-molecular correlations and inhomogeneities occurring on the 

nm-scale. 

The WAXS technique is foremost applied in polymer science, for instance to identify ordered and disordered 

structures and to determine degree of crystallinity and size of crystallites [470, 483-486]. WAXS was also extensively 

employed since the end of the 60s in the analysis of solvated metal ions and complexes [487, 488], in particular for 

compounds containing high-Z elements (e.g. lanthanoids and actinoids), which ensure high contrast to the solvent 

environment, maintaining practical concentration values [312]. It is worth noting that before the breakthrough of 

synchrotron radiation and, consequently, of XAS spectroscopy (see Section 2.5), direct atomic-level structural 

information in the solution phase could be almost exclusively accessed by WAXS. The widespread diffusion of the 

EXAFS technique since the 90s limited the use of WAXS methods. Nevertheless, few recent examples can be found 

[489-493], often combined with EXAFS analysis. 

In the SAXS region, the X-ray scattering signal is sensitive to shape and dimensions of macromolecules, typically 

between 1 and 100 nm in size [482] and to characteristic distances up to 150 nm [480] periodically repeating in 

partially ordered systems. These length-scales correspond for instance to the typical dimensions of biological 

macromolecules [494-499], of metallic nanoclusters [500-506] and of nanodomains in which synthetic polymeric 

chains self-organize [484, 486]. SAXS is therefore very appealing method for structural characterization of 

nanostructured systems, both in the solid state and in solution. The technique is perfectly suitable to monitor the 

synthesis of mesoscopic architectures, driven by the directional metal-ligands bonds and other weak intermolecular 

interactions involving the metal centres [325]. In this context, several SAXS studies recently appeared in the literature 

are focused on the characterization of MOFs, e.g. for the determination of the pores size distribution [507-511]. SAXS 

was also employed to characterize amino-acid-based metal assemblies [512] and other supramolecular coordination 

compounds [339]. 

Finally, let us introduce an advanced XRS characterization strategy, i.e. the pair distribution function (PDF) analysis 

(alternatively referred to as total scattering technique), referring the reader to the wide specialized literature on the 

topic for details [143-146, 310, 513-516]. This intriguing approach is increasingly contributing to the characterization 

of nano-crystalline and “structurally-challenged” [143] systems. PDF analysis is somehow the sum of XRPD and XRS 

methods, with something more than each of the addends. While the conventional XRPD approach is limited to the 

Bragg peaks analysis in the q-space, under the a priori assumption of long-range periodicity, the total scattering 

technique focuses on the signal coming from the crystalline components, i.e. Bragg peaks, but also on the diffuse 

scattering beneath the Bragg peaks, which carries out specific information on local deviations from the average 

structure (short-range correlations, which are the only ones contributing to the WAXS signal from e.g. amorphous 

solid or solutions). A proper data reduction of the row total scattering signal, including a careful removal of the 
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background due to extrinsic contributions and normalization [145, 517-519], allows the determination of the of total 

scattering structure function S(q). S(q) can be thus Fourier transformed into r-space to obtain the total PDF function 

G(r), which is conceptually equivalent to the g(r) function discussed before for case of systems only exhibiting short-

range order.  

It is worth noting how total scattering data treatment closely resembles that employed for the extraction of the EXAFS 

signal, introduced in Section 2.5. Beside the analogy in the extraction of the experimental signal, both the techniques 

allow the determination of the distribution of the interatomic distances, peaking at the R-positions where the most 

probable bond lengths are found, with no limitations for the application to disordered or partially-ordered systems. 

The interested reader can find a detailed comparison in the work by Filipponi et al. [520], where the inherent 

differences in the character of the (k) and S(q) signals obtained from EXAFS and PDF experiments on single-

component disordered systems are thoroughly discussed. In summary, three key points can be identified: (i) the PDF 

signal is not damped by the short photoelectron mean-free path and by the core hole life-time as the EXAFS one is: 

significant structural information is contained in the pair-correlations extending to much higher values of r (up to 

hundreds of Å, with high-resolution PDF analysis) than typically reachable by EXAFS (~ 5–8 Å); (ii) the total PDF 

function contains not atomically selective EXAFS-like information: G(r) simultaneously includes contributions arising 

from the local environments of all the atomic species present in the sample, and their deconvolution requires 

additional complication in the data analysis; (iii) PDF data inherently contains only SS-like signals, hence no 

sophisticate data modelling strategies are required to tackle the MS contributions, as in the more advanced EXAFS 

analyses. 

Concluding this overview on XRS methods, it is worth noting that for most of the techniques discussed in this Section, 

including WAXS, SAXS and total scattering, neutron-based variants exist, exploiting the specific advantages related 

to the use of neutrons (see Section 2.2), that are particularly suited for samples characterized by low-Z elements and in 

cases where high-q data collections are needed. 

2.6.1 Advantages of synchrotron X-ray scattering 

WAXS and SAXS experiments can be successfully performed using lab-scale setups based on high-performance X-

ray tubes. Nevertheless, the use of synchrotrons ensures specific advantages, mainly related to the increased X-ray 

flux and to the possibility of tuning the energy of the incident X-rays to tailor the experimental conditions on the 

investigated system. These factors ensure a more practical data collection and a higher data quality, allowing to tackle 

also cases which are difficultly tractable, or definitely not doable, with laboratory instrumentation. It is worth noting 

that the energy tunability of synchrotron sources uniquely enables anomalous WAXS/SAXS experiments [86, 227, 

313, 521], aiming to enhance the chemical contrast in the scattering signal (Section 2.7). 

For instance, both flux and energy tunability are critical factors to unravel structures in solution with X-ray scattering 

methods [86]. Here, the huge solvent background present at practical concentrations complicates the extraction of 

solute-related information. With this respect, synchrotron high-energy X-ray scattering (HEXS) [312, 522] is recently 

becoming a versatile alternative for the structural characterization of solvated metal complexes and solution-phase 

speciation, bypassing these difficulties. In particular, the high-energy X-ray photons from third generation 

synchrotrons (> 60 keV, typically 100 keV) ensure higher penetration through solutions and improved statistics, 

allowing to access longer correlation ranges in the solution phase. Analogously to what is observed in total scattering 

analysis (vide infra), the extended range of momentum transfer probed using high-energy X-rays provides improved 

resolution in the radial PDF obtained by Fourier transforming the HEXS signal. Several examples can be found in the 

recent literature where the HEXS technique is employed, often in combination with L-edge XAS spectroscopy [523], 

to elucidate metal ion complexation in solution, in particular for lanthanides [524, 525] and actinides [312, 526-534]. 

Here, the high scattering power of the metal centre facilitates the extraction of the related correlations, upon careful 

subtraction of the background signal (e.g. from sample holder) and of the HEXS signal of pure solvent, where no 

metal ions are present. In several of the above mentioned studies, the solution phase structures unravelled by HEXS 

are compared to that obtained for the solid-state analogues refined by XRD, often highlighting insightful peculiarities 

of the solution phase structural chemistry of lanthanides and actinides. 

In addition, as previously discussed for X-ray diffraction, the use of synchrotrons allows a drastic reduction of the 

acquisition time required to get structurally-significant XRS data. Nowadays, third generation sources allow 

acquisition time on the (sub)second scale, opening a brand-new range of possibilities for multi-scale time-resolved 

characterization. A variety of complex sample environments and in situ cells can be employed to “penetrate the black 

box” [76, 318, 535, 536] in which the reaction is evolving. Synchrotron SAXS setups developed for time-dependent 

studies [291, 537] allowed for instance to monitor crystallizations processes [288, 289, 291, 538] and self-assembly 

phenomena [539], and to determine transient intermediates in biomolecules folding [540]. Simultaneous 

SAXS/WAXS [288, 291, 537] and SAXS/WAXS/XAS are also worth to be mentioned, as well as experiments 

combining time-resolved X-ray scattering and thermal-analysis [541-543]. A scheme of the typical experimental setup 

allowing to simultaneously collect SAXS/WAXS/XAS data is reported in Figure 7. 
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Figure 7. Schematic representation of an experimental setup able to simultaneously collect XAS (XANES and EXAFS), WAXS 

and SAXS data. The intensity of the monochromatized beam (I0), coming from the optic hutch, is measured by the first ionization 

chamber. Then it interacts with the sample, typically hosted in a devoted cell, which allows to flux reagents and to heat the sample 

at the desired temperature, using adjustable heating ramps. Depending on the element concentration, the XAS spectrum can be 

obtained either measuring the transmitted beam (I0) or the fluorescence one (I0). The elastically scattered beam is collected in the 

high 2-region by the 2D WAXS detector located close to the sample and allowing to cover an angular interval up to 2  80 °. 

Conversely, the small-angle fraction of the elastically-scattered beam enters a length-tunable vacuum tube and is collected by the 

2D SAXS detector. The presence of a large vacuum tube of tunable length allows to reduce the 02min region obscured by the 

beamstop. The short reading/erasing deadtime of modern 2D detectors enable to perform time-resolved experiments with such an 

experimental setup. Such combined setup is available at a few beamlines worldwide, such as the BM26A DUBBLE beamline at 

the ESRF. 

PDF analysis is more closely, although not exclusively, related to the use of third generation synchrotron sources. 

Indeed, to achieve an adequate r-space resolution of the peaks in the G(r), it is crucial to extend the acquisition over a 

wide range of momentum transfer in q-space. In principle, all coherent scattering have to be acquired. In practice, data 

collection extended at least up to q-values such high as 20–30 Å
–1

 [143, 146] is desirable to satisfactorily limit FT 

truncation errors. Nevertheless, the required r-space extension and resolution of the PDF should be evaluated case by 

case, also considering the intrinsic width of the PDF peaks due to thermal vibrations, to optimize the q-range to probe 

and determine the instrumental q-space resolution needed [516].  

Being q = 4π sinθ/λ, and being the reachable max typically  70°, the maximum q-value experimentally accessible is 

limited by the wavelength of the incident X-ray beam, and short-wavelength X-rays (typically in the 0.27 – 0.12 Å 

range, i.e. from 45 to 100 keV in energy [143]) are sorely needed for high accuracy in real-space structural 

determination. These requirements can be satisfied using laboratory-scale Mo or Ag X-ray tubes, with acceptable 

results in term of r-space resolution. However, because of the inherent signal damping in the high-q region using X-

rays, the extra flux provided by synchrotrons is a compelling advantage, and the highest resolution measurements are 

mostly performed at dedicated synchrotron beamlines. The multi-range local/global sensitivity of PDF analysis makes 

the technique particularly suitable to monitor in situ order → disorder (and vice versa) transitions in complex materials 

and supramolecular assemblies, occurring as a response to specific external inputs. The intensity provided by 

synchrotrons enables, as previously discussed for SAXS and WAXS, a faster total scattering data collection, ensuring 

a time resolution on the few-minutes scale, which is enough for several applications of interest in coordination 

chemistry. 

2.7 Anomalous XRD and XRS in coordination chemistry: the charm of element- and site-selective 

structural characterization 
As discussed in the previous Section, one of the crucial advantages of XAS spectroscopy with respect to XRD is its 

element-selectivity. Hereinafter we will discuss an advanced synchrotron-based strategy to add element-selectivity 

also to XRD and XRS techniques, i.e. anomalous scattering. 

In Section 2.2 we have introduced the X-ray scattering factor (or atomic form factor) f(q), discussing its behaviour as a 

function of q and of the atomic number Z of the scattering atom. Here we are more specifically interested in the 

dependence of f on the wavelength λ of the incoming X-ray beam employed for XRD/XRS experiments. With this 

respect, the X-ray scattering factor f (λ) can be expressed as f (λ)= f0 + Δf (λ) = f0 + Δf’ (λ) + iΔf ” (λ), where the 

complex λ-dependent term Δf (λ) is referred to as anomalous scattering factor [477]. In conventional experiments, 

when working far from the X-ray absorption edges of the elements present in the sample, the anomalous contribution 

can be safely neglected: in these conditions f (λ) ~ f0, resulting in a substantially wavelength-independent X-ray 

scattering factor. However, if the incident wavelength approaches an X-ray absorption edge, the Δf’ (λ) contribution 
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significantly influences the scattering signal, modifying the magnitude of the overall scattering factor (Δf’ (λ) term) 

and imparting a phase shift to the elastically scattered X-ray photons (iΔf ” (λ) term). Tuning the incident wavelength 

in the closest proximities of the edge (resonant conditions), the incident X-ray photons can interact with the bound 

inner electrons of the correspondent atom, be absorbed, and give photoelectric effect. 

Importantly , the anomalous effects near an absorption edge for an atom contained in the sample, selectively enhance 

the contribution of that atom to the elastically scattered intensity [138, 228, 230, 544-546]. This phenomenon can be 

exploited in a variety of cases. The principal purely crystallographic application includes element-selective XRD/XRS 

experiments (contrast mode, more directly relevant to the field of coordination chemistry, vide infra) and efficient 

phasing (see the appendix, Section 6.2.1, for the definition of the phase problem in crystallography) in 

macromolecular crystallography (MAD method). Other intriguing approaches involve the hybridization of 

diffractometric and spectroscopic techniques. For instance, the diffraction signal for a specific atomic site or 

compound can be monitored by varying the wavelength of the incident X-ray beam across and absorption edge. 

Hence, the anomalous scattering contribution can be extracted, for instance to obtain a XAS-like signal resulting in 

site- and element-selective local structural information (Diffraction Anomalous Fine Structure, DAFS method). 

The necessity of tuning the incident wavelength in the proximities of (and eventually across, for DAFS) one or more 

absorption edges rules out the use of laboratory setups for anomalous XRD/XRS experiments: these methods are 

uniquely performed at synchrotrons. In addition, the anomalous scattering is a minor contribution to the global elastic 

scattering signal. Consequently, also the high intensity of synchrotron X-rays beams is an important requirement for 

this kind of experiments. With this respect, during the last two decades impressive instrumental developments have 

taken place, yielding easier and faster wavelength tuning, better stability, energy resolution and control of the beam 

polarization. Nowadays, sophisticated control systems allows energy scanning and simultaneous flux maximization, 

while maintaining the scattering geometry; current setups typically ensure an energy resolution ΔE/E in the 10
−5

 − 10
−4

 

range [230]. These improvements have recently enabled, for several favourable cases, applications of the technique 

also to powdered samples [229, 547, 548] and short-range ordered systems (e.g. anomalous SAXS, ASAXS [521, 549, 

550] and anomalous WAXS, AWAXS [313]). 

The idea of exploiting anomalous scattering (in particular the phase-shift term Δf ”) to elegantly solve the phase 

problem in crystallography, was firstly proposed by Bijvoet, in an article dating back to 1949 [551]. However, due to 

the availability of more practical approaches allowing successful phasing in small molecules (heavy atom methods, 

direct methods, Patterson methods), this possibility remained unexploited for more than three decades. The situation 

drastically changed since the 1980’s, when MAD phasing [136-138, 140, 141] at synchrotrons revolutionized the field 

of macromolecular crystallography. This synchrotron-based approach represented a turning point in biological 

structural sciences [220, 552-555], fostering the development of dedicated beamlines in the principal third generation 

facilities worldwide [142]. 

In chemical crystallography X-ray anomalous scattering is however mostly used to enhance the contrast between 

elements having similar atomic numbers, hence facilitating their discrimination in specific crystallographic positions 

[556-558] or, more in general, the solution of the structure for complex substituted compounds [559-562]. 

Alternatively, anomalous scattering is used to highlight the scattering of an element present in few % [563] or less, as 

is the case of metal centres in macromolecular structures [137]. 

Experimentally, anomalous studies in contrast mode involve the collection of at least one diffraction pattern with the 

incident X-ray wavelength tuned slightly below an absorption edge of the element of interest. The data collection has 

then to be repeated in the same condition but at a wavelength far below the selected edge. The differences in the 

intensities of these two patters are related to the variations in the Δf’ (λ) term of the selected “resonant scatterer”, and 

allow to highlight its specific contribution. It is worth noting that the data collected after the absorption edge are 

inherently characterized by a worse S/N ratio, due to fluorescence effect (see also Section 2.3): this limitation can be 

partially overcome by using advanced detection systems, e.g. crystal analysers with an enlarged mosaicity [229]. 

Applications span a variety of research areas in solid state chemistry [138, 228-230, 564], including the discrimination 

of Zn and Ga in microporous materials [565] or of Pb and Bi in minerals [566], the investigation of the distribution of 

cations in multi-cationic zeolites [229, 567, 568], substitution of Cu by Fe, Co, Ni, and Zn in high-critical-temperature 

superconductor cuprates [556]. 

A few recent applications of contrast-mode anomalous X-ray diffraction specifically deal with the structural 

determination of coordination compounds, including multinuclear metal complexes [569-571] and MOFs [572]. 

A representative example is the study of Co−Co and Fe−Co bonds in a series of coordination complexes with formally 

mixed-valent [M2]
3+

 cores (where M = Fe, Z= 26; Co, Z = 27), by Zall et al. [570]. With a renewed synthetic route, the 

authors isolated both dicobalt homobimetallic and an Fe−Co heterobimetallic moieties (see Figure 8a), which cores 

show high-spin ground states and short metal−metal bond distances of 2.29 Å for Co−Co and 2.18 Å for Fe−Co. 

Anomalous X-ray scattering measurements at the Chem-MatCARS 15-ID-B beamline at the Advanced Photon Source 

(Argonne National Laboratory) played a key role in assigning the positions of Co and Fe atoms and in detecting and 

quantifying Fe/Co mixing. To determine the compositions of Fe/Co at the two independent metal sites, Zall et al. 
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refined in a least-squares scheme four anomalous diffraction datasets, collected spanning the absorption K-edges of Fe 

and Co (see Figure 8b). The refinement demonstrated that only a minor amount of metal-site mixing occurs in the 

heteronuclear complex: this compound is precisely described by the structure formula 

(Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))LPh, where LPh = phenyl-substituted tris(amidinato)amine, as depicted by the pie charts 

in Figure 8a. 

 
Figure 8. Example of X-ray anomalous scattering in contrast mode application to mixed-valent metal complexes. (a) Solid-state 

structure of the Fe0.99Co1.01(LPh)4 complex investigated by Zall et al. [570], at 50% probability (colour code: Co: cyan; Fe, yellow, 

N, blue, C, light grey; H atoms are omitted for clarity). The pie charts depict the percentages of Fe and Co present at each metal 

binding site, as quantified by the analysis of X-ray anomalous scattering data. (b) Real Δf’ (λ) and imaginary Δf ” (λ) parts of the 

anomalous contribution Δf (λ) to the X-ray scattering factor for Fe (red lines) and Co (blue lines) as a function of the incident X-

ray wavelength. The four dotted vertical lines indicate the experimental wavelengths selected by Zall et al. for the anomalous 

experiments, spanning the Fe and Co absorption edges. Selected wavelengths are those that maximize the difference between the 

Δf’value of the two elements. The cross marks () indicate the Δf’ (λ) and Δf ” (λ) values for Fe and Co employed by the authors 

in the least-squares refinement to obtain the metal occupancies shown in the pie charts reported in part (a). Reproduced with 

permission from ref. [570]. Copyright (2013) American Chemical Society. 

In addition, anomalous X-ray scattering was for instance employed to elucidate the elemental composition at each of 

the three metal-binding sites in novel trinuclear complexes, synthesized by from dinuclear metal species (
tbs

LH2)M2 

(M = Fe (Z = 26), Mn (Z = 25); [
tbs

L]
6−

 = [1,3,5-C6H9(NC6H4-o-NSi-Me2tBu)3]
6−

 by Powers et al. [571]. Finally, a 

relevant example of the use of anomalous XRD in the structural characterization of MOFs is provided by Brozek et al. 

[572]. Here, the technique was applied to evaluate the relative cation occupation at two inequivalent metal sites in the 

Fe
2+

-, Cu
2+

-, and Zn
2+

-exchanged analogues (Z = 26, 29 and 30, respectively) of the MnMnBTT MOF (BTT = 1,3,5-

benzenetristetrazolate). Interestingly, the measurements on the whole series pointed out that the extent of cation 

exchange at Mn
2+

 sites is significantly influenced by the identity of the substituent metal. 

As anticipated, among the structural techniques based on anomalous scattering, we have DAFS [89, 546, 573, 574]. 

Although DAFS so far has been scarcely applied to coordination compounds, a brief discussion of this method is 

deserved, considering its foreseeable diffusion in the close future and its analogies with XAS. Similarly to XAS, in a 

DAFS spectrum the near-edge region (DANES) and the extended region, characterized by an oscillatory fine structure 

(EDAFS) can be individuated. From DANES, in some favourable cases, it can be possible to distinguish the presence 

of atoms of the same element in different oxidation states in a specific crystallographic site (valence-difference 

contrast method [557, 575-577]). In addition, EDAFS spectra combine long-range information from diffraction and 

elementally-selective local sensitivity equivalent to that provided by EXAFS, enabling site- and chemical-selective 

structural characterization [546, 573, 574]. 

On the experimental ground, EDAFS collection is very demanding. Indeed it requires in the experimental hutch the 

same setup needed for XRPD and in the optic hutch a monochromator able to select the energy E delivered (and thus 

) with the same accuracy and speed needed to acquire an EXAFS spectrum. The DAFS data collection consists in 

measuring the intensity of a Bragg reflection Ih,k,l(E) as a function of E for all values needed to obtain an EXAFS 

spectrum across one absorption edge of a selected element present in the sample. The result is an EXAFS-like 

spectrum that contains information of the local environment of the selected atom that contributes to the (h,k,l) 

reflection. To extract and quantitatively analyze the weak oscillations which modulate the total diffraction signal, an 

outstanding S/N ratio is required, implying the use of high-intensity incident X-ray beams, high-quality 
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diffractometers and very stable absorption-dedicated optics. It is worth noting that the EDAFS signal contains 

contributions from both the real, Δf’ (λ), and imaginary, Δf ” (λ), parts of the complex anomalous scattering factor, 

whereas EXAFS signal is proportional only to the imaginary part. Nevertheless, an EXAFS-like analysis procedure 

has been successfully applied to EDAFS spectra [546, 578]. The technique is commonly applied, also in combination 

with EXAFS, in the structural determination of complex nanostructural materials, where amorphous and crystalline 

phases coexist [579] (e.g. metal nanoclusters and low-dimensional semiconductor structures). 

2.8 Magnetic resonance techniques: NMR and EPR - The laboratory way 
The same principal concepts that are behind electron spin resonance (ESR) and nuclear magnetic resonance (NMR), 

but there are differences in the magnitude and signs of the magnetic interactions involved. Concerning NMR all nuclei 

having odd mass number possess the property of spin I which is an odd integral multiple of ½. Nuclei with even 

isotope number may have either spinless if the nuclear charge is even, or they can possess an integral I value of 1,2,3, 

etc. 

The nucleus having both spin and charge possess a magnetic a magnetic moment . A nuclear spin behaves as a 

magnetic dipole which tends to align with an applied magnetic field and to interact with neighbouring dipoles. 

Quantum theory tells us that allowable nuclear spin states are quantized and in a macroscopic assembly the spin will 

distribute over the possible sites according to the Boltzmann law. In order to induce transition among the different spin 

levels an oscillating electromagnetic field can be applied to the system. 

NMR spectroscopy [580-586] represents a powerful technique for structural investigation of metal complexes: the 

information provided by 1D spectra of NMR active metal nuclides as well as 
1
H, 

13
C, 

15
N, 

31
P data are well known to 

afford structural and electronic behaviour on inorganic and organometallic molecules [587, 588]. Furthermore 2D 

NMR techniques allows the detection of homo- (COSY, TOCSY) and heteronuclear (HMQC,HMBC) through-bond 

correlations [582, 585, 589]. All these methods represent an invaluable tool for structural assignment since they are 

very efficient for establishing connectivities. Other 2D experiments expressed designed for detecting homo- (NOESY, 

ROESY) and heteronuclear (HOESY) through-space interactions based on the nuclear Overhauser effect (nOe) 

provide information about the spatial structure of the metal complexes and the relative positions of the different atoms 

[590, 591]. The structural information are not only limited to a single molecule of the metal complex under 

investigation, since intermolecular NOE interactions are also present providing information about molecular 

environment. Intermolecular and interionic interactions as well as aggregation or encapsulation can be detected by 

Pulsed-field gradient spin-echo (PGSE) methodology [592]. 

NMR is a less sensitive method compared to synchrotron based techniques requiring much larger samples for analysis. 

Proton signals can be detect in modern high field NMR spectrometers higher than 400 MHz into the nanogram range 

(MW 300) allowing easily detection with the currently available cryoprobes. 

For solid samples different chemical environments of the nuclei with non-null spin are detected by Solid State NMR 

(SSNMR) allowing to get information on structure of the solid complexes under investigation. Among all NMR 

parameters chemical shift, chemical shielding tensors (obtained by the evaluation of the chemical shift principal 

values from spinning sideband manifolds in low spinning samples), dipolar interaction, spin diffusion, and nuclear 

quadrupole coupling are the most important. In particular dipolar interactions are of paramount importance to measure 

internuclear distances or to establish connectivities for structure elucidation and have been extensively applied for 

investigating the geometric and electronic structure of solid transition metal complexes. 

As was the case of EXAFS technique (Section 2.5), the local nature of the magnetic interaction probed by NMR 

allows to obtain structural information also on samples characterized by a low crystallinity, such as amorphous 

materials and nanomaterials, where single crystal diffraction methods fail. There are indeed several cases where NMR 

has been crucial in determining the crystal structure; the specialized literature often refers to such studies as to “NMR 

crystallography” [593-623]. 

Another important aspect of the study of transition metal complexes is related to the knowledge of molecular motions. 

Different spectroscopic and diffraction techniques involving elastic and inelasting scattering of particles like electrons, 

neutrons or photons have been used in order to provide information on a wide range of very fast processes that occur 

in nanoseconds down to very slow motions of the order of seconds. The great utility of solid state NMR lies in its 

intrinsic sensitivity to cover a wide timescale of a fluxional process (10
2
 to 10

–10
 s) [624]. 

In paramagnetic systems a large broadening of the NMR signals is observed mainly caused by the paramagnetic 

enhancement to nuclear transverse relaxation. Often the NMR signals are too broad to be detected for nuclei around 

the paramagnetic center with increasing broadening if the distance of the observed nuclei from the paramagnetic 

center is decreased. The effect depends also on the magnetogyric ratio, γ, of the observed nuclei and on the 

paramagnetic species present in the system. The broadening of the signals and spin diffusion phenomena introduce 

limitations to recovering distances via the usual SS-NMR experiments. Nevertheless a wealth of information can be 

extracted from the analysis of solid-state NMR signals of paramagnetic compounds, as the changes induced by the 

paramagnetic center depend in a well-defined way on the structure of the molecule. A large number of examples has 



25 

 

been reported where structural determination has been obtained from paramagnetic systems, mainly in biological 

fields [625] and references therein, [615, 626]. 

The technique has also been applied to characterize metal complexes. As an example, Groppo et al. [627] combined 

paramagnetic solid-state NMR, EXAFS, and Raman spectroscopies (supported by DFT calculations), to prove that the 

Cr center, in the cromocene (Cp2Cr) complex, undergoes a spin-flip transition (from 2S+1 = 3 to 2S+1 = 1) during the 

CO addition reaction: Cp2Cr + CO  Cp2Cr(CO) [628, 629]. 

In ESR the magnetic moment of electron is considered and, as before for NMR, the interaction of this magnetic 

moment with the applied external magnetic field produces electron spin states at different energies that be investigated 

by applying an oscillating electromagnetic field. Whereas NMR is able to investigate mainly diamagnetic compounds 

(all electrons are paired); the ESR is an important spectroscopic technique for the study of paramagnetic species 

(unpaired electrons) such as free radicals, metal complexes, or triplet excited states of diamagnetic molecules. 

However NMR “chemical shift” is analogous to the “g factor” in ESR and substantial changes of the g factor in metal 

complexes, can be used to give information about the electronic structure of the transition metal complexes. 

Furthermore NMR coupling constant (J), in ESR, corresponds to the hyperfine coupling (or hyperfine splitting) 

constant. For many transition metal complexes having unpaired electrons ESR represents the technique of choice for 

providing information on the electronic structure in systems lacking long-range order on length scales that are not 

easily accessible by other techniques [630]. Magnetic parameters such as g values, hyperfine couplings, and nuclear 

quadrupole interactions are directly related to the electronic wavefunction and the local environment of the 

paramagnetic center. They can be used also for measuring distances between the nuclei and the unpaired electron up to 

ca. 1 nm or for providing information on the bonding of nuclei through nuclear quadrupole interactions. Pulse ESR 

techniques are particularly useful for the characterization transition metals on disordered systems: in ENDOR 

(electron nuclear double-resonance) [631, 632], the signal arises from the excitation of EPR and NMR transitions by 

microwave and radiofrequency irradiation, respectively, whereas in the ESEEM (electron-spin-echo envelope-

modulation) [633] the nuclear transition frequencies are indirectly measured by the creation and detection of electron 

or nuclear coherences using only microwave pulses. ENDOR and ESEEM spectra often give complementary 

information. 

3 Electronic characterization of coordination compounds 
The knowledge of the electronic structure of a coordination compound is a fundamental step in understanding its 

structure (see Section 2) and in foreseeing its reactivity. Several spectroscopic techniques are available to shed light on 

the electronic structures of coordination complexes and related materials. In Section 3.1 we provide an overview on 

the most used spectroscopies, regardless of whether they are available at the laboratory scale or are synchrotron-based 

methods. Conversely, Section 3.2 is devoted to an in-depth discussion of synchrotron-specific spectroscopies. 

3.1 Overview on the available techniques to determine the electronic structure 
Scheme 2 reports a sketch of the electronic structure of a general transition metal atom embedded in a coordination 

compound. The 1s, 2s, 2p1/2 and 2p3/2 core levels are explicitly reported together with the ns, np, nd (n = 3 or 4) and 

molecular orbitals (MO) valence levels. They are represented as partially overlapped owing to the facts that 

hybridization of metal atomic orbitals (AO) occurs because of ligand effect and that MO are obtained by linear 

combination of metal and ligands AO. All electronic spectroscopies are aimed to gain information on occupied and/or 

on unoccupied electronic states [634-636], that are separated by the Fermi level, defined as (EF) in Scheme 2. The 

knowledge of occupied and unoccupied states allows to extract important information on the transition metal such as 

its oxidation state, its local geometry (tetrahedral, octahedral, square planar, etc… ) and the chemical nature of its 

neighbours [637]. 

Photoelectron spectroscopies [638-642] (PES) are named UPS (exciting with h0 in the UV) or XPS (exciting with h0 

in the X-rays) depending whether they probe valence or core occupied states. In some cases the acronym ESCA 

(electron spectroscopy for chemical analysis) is used instead of XPS. These experiments are performed using 

monochromatic photons of sufficiently high energy h0 to promote one electron to the continuum. Knowing h0 and 

measuring the electron kinetic energy T, according to the Einstein equation of the photoelectric effect [643], the 

electron binding energy BE can be obtained as: BE = h0  T. The intensity of the photoelectron peak will be 

proportional to the occupied electron density of states. With the exception of advanced synchrotron-based setups, 

available in a few beamlines worldwide (see Section 3.2.4), the measure of the kinetic energy of an electron requires 

ultra-high vacuum conditions in the experimental chamber. On the other hand, the reduced free mean path of electrons 

inside condensed matter implies that PES techniques are surface sensitive techniques: typically 20-100 Å depending 

on the experimental conditions (average Z of the sample, adopted X-rays energy (h0) and their incidence angle 

etc…). This characteristic provides to PES strong potentialities, as in most of the techniques the response of the 

surface is overshadowed by the response of the bulk. Hence PES can be greatly informative, especially if combined 

with bulk-sensitive techniques. 
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Scheme 2. Schematic representation of the core and valence electronic levels (ns, np, nd) of a nd-transition atom included in a 

generic coordination compound; valence levels are overlapped to the molecular orbitals obtained by linear combination of metal 

and ligand atomic orbitals. The Fermi energy (EF, dashed pink line) divides occupied from unoccupied states, while the 0-level of 

electron energy (dashed black line) divides bound from free electrons. The emission of an Auger electron is a three-level process 

alternative to XES and has been omitted in this scheme. For the specific case of X-rays/matter interaction, an alternative 

representation of the relevant processes is reported in Scheme 6, see appendix, Section 6.1 Unpublished figure inspired from 

[636]. 

UV-Vis and XAS (XANES region) spectroscopies promote into unoccupied states valence and core electrons, 

respectively. According to the Fermi Golden rule [644, 645], K- and L1-edge XANES, promoting an s-electron, probes 

mainly unoccupied p states, while L2- and L3-edge XANES, promoting a p-electron, probe mainly unoccupied s and d 

states. 

The processes UPS, XPS, UV-Vis (CT part) and XANES create a hole that is filled by an electron from the higher 

shells. The radiative decay of such processes can be followed by luminescence or X-ray emission spectroscopy (XES) 

depending weather we are dealing with valence or core holes. These spectroscopies are called de-excitation 

spectroscopies and are informative on the occupied states, as was the case for UPS and XPS. Due to the low efficiency 

of the process (particularly for valence to core transitions) and because of the high E/E requested (<10
–4

) the 

potentialities of XES spectroscopy can be fully exploited only at high brilliance beamlines hosted in III-generation 

synchrotrons. With these experimental setups, XES is combined to XANES (that create the core hole) so that the 

overall mechanism can be seen as a two-photons or photon in/photon out process. As an example, K-edge XANES 

creates a 1s core hole that can be filled by a 2p1/2 or 2p3/2 electron (core to core XES) or by a valence electron (valence 

to core XES). Having in mind the photon in/photon out scheme described so far, it becomes evident why XES has also 

been called inelastic X-ray scattering or Raman X-ray scattering. Core (valence) to core XES is able to obtain the 

same information as XPS (UPS) but using hard X-rays: this means that ultra-high vacuum conditions are not required 

and that information on the occupied electrons states can be obtained on materials in presence of solvent or in 

interaction with gas or liquid phases. Also the penetration depth of XES and PES are completely different. When 

comparison is made between valence to core XES and UV-Vis spectroscopies, the main differences are that UV-Vis 

has a better absolute energy resolution, while XES is able to detect d-d and charge transfer transitions also in an 

element selective way [37, 646] (see Section 3.2.2). 

The low efficiency of the vtc-XES phenomenon implies that XES spectroscopy needs high flux available at the 

insertion device beamlines of the third generation synchrotron sources. Conversely XAS (particularly the less phonon-

demanding XANES part) can, on concentrated samples, be performed also on laboratory instruments. Indeed, all the 

pioneering activity in XAS spectroscopy (1921-1971 period) has been carried out with X-ray tubes (see ref. [76] for an 

historical overview). Still in the age of synchrotrons, some laboratory instrumentation, mostly using a rotating anode 

as source, has been developed [647-650] and some interesting results have been obtained [651-657]. Obviously, the 
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investigated systems are limited to concentrated samples and long acquisition times are required, preventing time 

resolved studies to be done. 

Finally, as anticipated in Section 2.5, it is worth to note that the photoelectric effect on core electrons can be also 

induced by high-energy electrons in TEMs, resulting in XAS-like spectra. The resulting electron energy‐loss near edge 

structure (EELNES) spectra collected in the near edge region have, at least for low-Z edges, are competitive with 

those collected at synchrotron sources in terms of data quality. In this way, electronic information equivalent to that 

provided by XANES can be obtained at (sub)-nanometric spatial resolution, although suffering from the above-

mentioned limitations of the electron-based methods. 

3.2 The role of synchrotron characterization in the electronic determination of coordination compounds 
As introduced in the previous Section, the use of synchrotron radiation allows a remarkable extension of the 

information on the electronic structure of coordination compounds. Hereinafter we will discuss the basic principles of 

the most common and informative synchrotron-based methods, also through a selection of relevant examples. First of 

all, we will describe the two highly-complementary XANES and XES techniques, which are mostly performed at 

third-generation synchrotrons (the key mathematical results for XANES and XES analysis are reported in the 

appendix, in Sections 6.3 and 6.4, respectively). Subsequently, we will point out the advantages related to 

synchrotron-based PES methods with respect to the conventional laboratory setups, with an emphasis on coordination 

chemistry applications. 

3.2.1 XANES 

The region including few tens of eV before and after the edge is usually called XANES for hard X-rays or NEXAFS 

(Near Edge XAFS) for soft X-rays [51, 53, 68, 410, 658-660]. This part of the spectrum mainly reflects the 

unoccupied atomic levels of the absorbing species and can be divided in pre-edge, edge and post-edge parts. The 

quantitative analysis of an X-ray absorption spectrum in this energy range can require calculations which are very 

demanding from the computational point of view. Nevertheless, as anticipated in Section 2.5, the remarkable progress 

in computational capabilities currently allows in many cases accurate interpretation and modelling of XANES spectra 

[50, 52, 53, 56, 405-409, 586, 661-670]. The technique is very sensitive not only to the bond length, but also to 

symmetry of the coordinated atoms, the distribution of charges and the potential around the absorbing atom. This 

makes the direct fitting of the spectra very difficult; the common approach is to start from a hypothetical structure and 

calculate a simulated spectrum, then compare it with the experimental curve and change systematically some of the 

physical parameters or atomic positions to improve the agreement. 

The full MS approach is the only one possible to analyze XANES data, because the mean free path of the 

photoelectron near the edge is much greater. Several codes have been developed so far for the XANES simulation, as 

recently reviewed elsewhere [76, 90, 668]. Multiple scattering theories usually employ the muffin-tin approximation. 

Without entering into the theoretical details, it is worth mentioning that several computational methods haves been 

developed and successfully applied to avoid the restriction imposed by this approximation [52, 667, 671-673]. 

However, a qualitative interpretation of XANES spectra has been simultaneously developed during the years and it is 

commonly adopted as a first approximation. One of its more common uses is in fingerprinting, where the experimental 

spectrum measured on an unknown sample is compared to a selection of spectra obtained for reference compounds. 

As previously discussed with respect to EXAFS analysis (see Section 2.5), in order to compare different spectra it is 

first and foremost necessary to perform a proper normalization which requires an evaluation of the pre-edge and post 

edge trends and an estimation of the edge jump. Focusing on the XANES region, the most interesting features to be 

observed in this kind of analysis are pre-edge peaks, edge position and intensity of the top of the edge (known as 

“white line”) [76, 90, 359, 674-678]. 

It is worth noting that the initial state of the electron is a core level with well-defined angular momentum quantum 

numbers    . Because of the orthogonality of spherical harmonics, the transition matrix element that describes the 

intensity of the absorption spectrum in the XANES region projects out only part of the final state wavefunction 

depending on the geometry and on the decreasing contribution of multipolar terms in the photoelectric interaction [90] 

(see Section 6.3). Hence, selection rules can be defined to determine the allowed transitions. Bearing in mind that the 

dipolar term is the dominant contribution of the photoelectric interaction, transitions with Δl = ±1 will be favoured. So 

the final states of K- and L1-edges will contain p symmetry, while for L2- and L3-edges the final states will have an s 

or d character. Since d states are more localized then p states, usually L2- and L3-edges show a more pronounced white 

line. Thinking in terms of molecular orbitals, the atomic orbitals of the absorber will mix with the neighbours’ orbitals, 

and the pre-edge transition strength will depend also on the symmetry of the site since in an inversion-symmetric site 

orbitals of different parity do not mix in an eigenfunction. For instance, in the case of a K-edge, transitions to d-states 

should have a very low probability. Nevertheless, when the coordination is tetrahedral, the inversion symmetry is 

broken and a sharp and intense pre-edge peak appears [359, 674, 677-687], while it is of very weak intensity for 

octahedral sites [414, 687-690]. 
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To exemplify these concepts, the Ti K-edge XANES pre-edge features of Ti(IV) species hosted in microporous 

crystalline titanosilicates are reported in Figure 9a. Ti(IV) has 18 electrons, and its electronic configuration is 3s
2
 3p

6
 

3d
0
, consequently, in absence of a significant p-d mixing, the pre-edge XANES features of Ti(IV) are very weak in 

intensity. This is the case of anatase and rutile forms of TiO2 [687-690], where the local symmetry is Oh. Ti(IV) 

species hosted in TS-1 molecular sieve isomorphically substitute Si(IV) species and are consequently in a Td-like 

symmetry [674, 677, 680, 683], see Figure 9b. As a consequence the ligands field on the local symmetry, a strong p-d 

mixing occurs, and Ti(IV) species exhibit only a partial occupation of 3p level. Consequently, the pre-edge peak in 

TS-1 is as high as 0.8 in normalized x, see black curve in Figure 9a. Of interest is also the pre-edge peak measured 

by Prestipino et al. [691] on ETS-10 molecular sieve. Engelhard titanosilicate ETS-10 is a microporous crystalline 

material belonging to the family of Ti substituted silicates which framework is composed of corner-sharing [SiO4] 

tetrahedra and [TiO6] octahedra (see top of Figure 9c). [SiO4] and [TiO6] are linked through bridging oxygen atoms 

and form 12-membered rings [692, 693]. These rings give rise to two sets of perpendicular channels with an elliptical 

cross-section of 7.6 Å x 4.9 Å (Figure 9c, top). We notice that the [TiO6] octahedra form linear ...–Ti–O–Ti–O–Ti–... 

chains within the ETS-10 framework [694, 695] (Figure 9c, bottom). Now, the local symmetry of [TiO6] sites in ETS-

10 is Oh and consequently ETS-10 is expected to have a XANES spectrum characterized by a very low pre-edge 

intensity. This is not what was found by Prestipino et al. [691] (grey curve in Figure 9a). This apparent contradiction 

has been explained by the authors considering the presence of defects along the ...–Ti–O–Ti–O–Ti–... chains: the 

terminal Ti atoms of the chain are no longer in Oh symmetry, but characterized by a C4V-like environment. The 

experimental spectrum of ETS-10 (grey curve in Figure 9a) should then be the superimposition of the XANES spectra 

of regular and defective Ti sites, weighted by their abundance. Using FEFF8.2 code, Prestipino et al. computed the 

theoretical XANES spectra of octahedral and penta-coordnates sites of Ti(IV) hosted in ETS-4 titanosilicate (violet 

and red curves in Figure 9a, respectively) [691]. The local environments of such sites are similar to the regular and 

defective sites in ETS-10. The lack of an inversion center in the local environment of penta-coordinated Ti site (red 

curve in Figure 9a, C4V-like environment) implies that a strong pre-edge feature is expected from the calculations; as a 

consequence, a relatively small fraction of defective (terminal) Ti sites in ETS-10 can justify the observed 

experimental spectrum [691]. 

 
Figure 9. Effect of the local symmetry of Ti(IV) sites hosted in microporous titanosilicates on the intensity of the pre-edge peak 

of the Ti K-edge XANES spectra. Part (a): experimental Ti K-edge XANES spectra of thermally activated TS-1 (black line) and 

ETS-10 (grey line) titanosilicate molecular sieves. The red and the violet curves report respectively the theoretical spectra of 

pentacoorinated (C4v-like) and octahedral (Oh-like) Ti sites of ETS-4 molecular sieve, computed with the FEFF8.2 code [664]. 

Part (b): 3D representation of TS-1 molecular sieve (left); zoom on the local environment of Ti(IV) sites exhibiting Td-like 

symmetry. Part (c): 3D representation of ETS-10 molecular sieve (top); zoom on the local environment of Ti(IV) in the 

monoatomic –Ti–O–Ti–O–Ti– quantum wire showing the more abundant regular Oh-like sites and the defective C4V-like sites, 

representing the terminal Ti atoms of the chain. Unpublished figure reporting spectra published by Prestipino et al. [691]. 

Another important information that can be extracted from XANES data is the oxidation state of the absorber, which 

can be gathered from the edge position [68, 76]. In fact, a higher oxidation state will correspond to higher edge 

energy, because it is more energetically expensive for the photoelectron to leave a positively charged (oxidized) atom. 

Figure 10 reports some exemplificative cases of this empirical rule. The first example, reported in part (a), refers to the 

catalyst used in the ethylene oxychlorination, a key step in the industrial PVC production [446, 696-700]. The 
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hydrated CuCl2 phase, supported on -Al2O3 by the incipient wetness precipitation method, is reduced in situ by C2H4 

at 500 K, resulting in an highly dispersed CuCl phase [698]. The example reported in part (b) concerns the reduction 

undergone by Cu
2+

 cations hosted in zeolitic systems upon thermal activation in vacuo at 400 °C, resulting in low 

coordinated Cu
+
 cations [701, 702]. Part (c) highlights the differences in the position of the absorption edge of Mn2O3 

and MnO2 bulk oxides. In addition, the effect on the Mn K-edge of the progressive substitution of Mn
3+

 cations by 

Mg
2+

 cations in the LaMgxMn1–xO3 perovskite is reported in Figure 10d. These materials have been deeply 

investigated because of their magnetic properties [52, 703-707] and their use as high-temperature materials for 

catalytic combustion of methane [708-711]. In LaMnO3 perovskite the manganese cations have a formal oxidation 

state of +3. The substitution of a fraction of trivalent manganese cations by divalent magnesium ones forces the 

remaining ones to increase their average oxidation state to guarantee the charge neutrality of the LaMgxMn1–xO3 

system. The progressive oxidation of Mn cation in the LaMgxMn1–xO3 (x = 0.1, 0.2, 0.3 and 0.4) is clearly revealed by 

XANES analysis. Moreover, Figure 10e reports the XANES spectra collected in situ by Paulus et al. [386] on the 

SrCoO2.5 brownmillerite system during the electrochemical intercalation of oxygen resulting in the final SrCoO3.0 

perovskite. In the starting material, the oxidation state of cobalt is +2, but the progressive insertion of O
2–

 anions 

implies the progressive oxidation of cobalt up to the final Co
3+

 state. The same group reported similar spectra for the 

SrFeO2.5  SrFeO3.0 electrochemical oxidation in ref. [387]. Finally, Figure 10f reports the in situ reduction of the 

supported Pd(OH)2 phase resulting in Pd
0
 nanoparticles [712], of interest for the preparation of several hydrogenation 

catalysts, obtained by precipitation of the Pd(OH)2 phase on high surface area carbons [713, 714]. 

Summarizing, XANES spectra are sensitive to both the oxidation and the coordination state of the absorbing element, 

being so informative on the formal charge of the absorber, on the nature and on the geometrical arrangement of its 

ligands. Such information can be extracted either performing accurate DFT calculations or according to a qualitative 

comparison with XANES spectra of known model compounds. This technique is consequently ideal to monitor 

distortions of the local geometry [89, 384], to follow in real time in situ red-ox reactions [386, 387, 445, 446, 700, 

713, 714], to monitor the insertion of a ligand inside a coordination vacancy [379-381, 715-719], or a ligand 

displacement [720] and to monitor site reactivity [359, 676, 721, 722]. 
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Figure 10. Examples of edge shifts in the XANES spectra caused by a change in the formal oxidation state of the absorbing atom. 

Part (a): hydrated CuCl2 and anhydrous CuCl (formed upon in situ C2H4 reduction) hosted on high surface area -Al2O3 support 

[698]. Part (b): Hydrated Cu
2+

 and dehydrated Cu
+
 cations hosted in the channels of mordenite zeolite [702]. Part (c): Mn2O3 and 

MnO2 bulk oxides (by courtesy of F. Geobaldo Politecnico of Turin). Part (d): LaMgxMn1–xO3 perovskites (x = 0.1, 0.2, 0.3 and 

0.4 by courtesy of F. Geobaldo Politecnico of Turin). Part (e) evolution from SrCoO2.5 brownmillerite structure to SrCoO3.0 

perovskite structure upon in situ oxygen intercalation via electrochemical method [386]. Part (f): Highly dispersed Pd(OH)2 phase 

precipitated on active carbons and successive metal nanoparticles formed upon H2 reduction [712]. When pre-edge peaks are 

present, they have been magnified in the inset. Unpublished figure reporting spectra published in the quoted references. 

3.2.2 XES and resonant-XES 

The XANES process described in the previous paragraph implies the formation of a core hole in the metal center. 

Such exited state can undergo a radiative decay yielding X-rays emission of energy ħ: we refer to this process as X-

ray emission spectroscopy (XES). Frequently, the excited state is induced by the absorption of photons in the X-ray 

region of the electromagnetic spectrum, but other particles (i.e. protons induced X-ray emission PIXE spectroscopy) 

can also be used [723-728]. 

The complex XES spectra can be fully interpreted by quantum mechanics calculations [116, 117, 120, 121, 729], 

however a comprehensive theoretical discussion is behind the aim of the present work and here we provide a 

simplified description using a one electron picture. We consider the case of a 3d-transition metal system with a 1s hole 

created by the transition of the 1s electron to the continuum by an incident photon (energy ħ), see Figure 12. Such 

core hole can be filed by an electron from an upper level yielding the emission of a photon of energy ħ, that is 

measured during a XES experiment (see also Scheme 6 in the appendix, Section 6.1). The nomenclature of XES 
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spectroscopy is quite peculiar of the specialized literature and is hereafter briefly summarized. The transition of a 3p 

electron to a 1s hole (core-to-core or ctc-XES) gives rise to the Kβ main lines that are sensitive to the metal oxidation 

and spin state [730, 731], while the transition of a valence electron to the metal 1s hole gives rise to the valence-to-

core (vtc)-XES that provides insights on the type, distance and number of ligands as well as to the metal oxidation and 

spin-state [117, 120-122, 732, 733]. It has been shown that these vtc-XES spectra can be effectively interpreted using 

ground state DFT calculation adopting the one-electron approximation [36, 38, 733-739]. As an example, Figure 11a 

reports the valence MOs (both eigenfunctions and eighenvalues) of Ti(OH)4 and Ti(OH)6 clusters in perfect Td and Oh 

symmetry computed by Gallo et al. [38] at DFT level of theory using the ORCA 2008 ab initio/DFT code [670]. From 

such calculations, in the one electron approximation, the |<1s|O|vMOi>|
2
 matrix element provides the probability that 

the |1s> core hole is filled by an electron coming from the i-th valence MOs |vMOi>, being O the transition operator, 

usually the dipole or quadrupole one, depending on the approximation. Consequently, the term |<1s|O|vMOi>|
2
, 

properly weighted by the density of states of the valence MOs, provides the expected amplitude of the |vMOi>  |1s> 

transition (Figure 11b). Then, the assignment of a finite broadening to the computed transitions yields the computed 

spectra reported in Figure 11c. This simple example underlines the strong interplay existing between XES experiments 

and corresponding DFT calculations. Indeed, DFT directly provides both the MOs and the corresponding energy 

levels (eigenfunctions and eigenvalues of the Schrödinger equation, some of them reported in Figure 11a,b); from the 

knowledge of MOs it is immediate to calculate the |<1s|O|vMOi>|
2
 integrals, that provides the estimation of the 

intensity of the corresponding XES band, while from the difference of the eigenvalues, the theory predicts the 

expected ħi = EMOi,  E1s energy where the XES band is expected to be observed. 

Coming to the details of the selected examples, the vtc-XES of Ti(OH)6 consists of two main peaks that involve 4t1u 

and 5t1u molecular orbitals (MOs), having strong O(2s) and O(2p) atomic character, respectively (Figure 11a,b). It is 

worth noting that, in such an ideal system, MOs which have the correct ungerade symmetry (in Oh) but small (e.g. 

6t1u) or zero (e.g. 1t2u) Ti p-character (i.e. orbital moment l=1 with respect to Ti centre) do not significantly contribute 

to the spectra. The vtc-XES of the tetrahedral Ti(OH)4 cluster is composed of three peaks. Each peak is associated 

with MOs with t2-symmetry and thus Ti p-character. Note that, as already discussed for the XANES spectra (see 

Figure 9), the absence of inversion symmetry and thus possibility for pd-mixing in Td symmetry increases the number 

of observed transitions in the Kß2,5 region of vtc-XES. The interpretation of experimental XES spectra of Ti(IV) 

species Td- and Oh-like geometries, like those of dehydrated TS-1 and of CaTiO3 model compounds (Figure 11d), 

becomes straightforward once the previously described DFT study (Figure 11a−c) is taken into account. 

 

 
Figure 11. Part (a): calculated valence MOs for Ti(OH)4 and Ti(OH)6 clusters in perfect Td and Oh symmetry, respectively. Part 

(b): Intensities for the vtc transitions and significant MOs of Ti(OH)4 (bottom) and Ti(OH)6 (top). Part (c): From the transitions 
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computed in part (b), the calculated vtc-XES spectra of Ti(OH)4 (green line) and Ti(OH)6 (red line) are obtained by assigning a 

finite broadening to the transition lines. Part (d): experimental vtc-XES of TS-1/act (green line) and CaTiO3 (red line) used as 

model compounds for Ti(IV) in Td- and Oh-like geometries, respectively. Unpublished figure reporting spectra and schemes 

published by Gallo et al. [37]. 

If the 1s electron is excited into an unoccupied level just above the Fermi energy EF (see Figure 12c,d), the excitations 

are referred to as resonant (r). As before, we distinguish between decays of the intermediate state where the 1s hole is 

filled by a valence electron (rvtc-XES) or by another core electron (rctc-XES), see Figure 12 parts (c) and (d). In case 

of resonant excitation we define the energy transfer ħ(), which represents the energy that remains within the 

system [90, 740]. In this relatively young field of X-ray spectroscopy, the nomenclature is far to be univocal and 

resonant-XES is often also referred as resonant inelastic X-ray scattering (RIXS) or as resonant X-ray Raman. For 

rvtc-XES the net excitation can be as low as few eV, corresponding to the range of optical spectroscopy (charge 

transfer and d-d transitions), with the remarkable difference that rvtc-XES is element selective [37, 646, 741-744]. The 

Kramer-Heisemberg’s formula, employed to describe non-resonant and resonant XES processes, is reported and 

briefly described in the appendix, Section 6.4. 

An example of combined XAS/XES experiment is provided in Figure 12e. The techniques are able to follow the 

symmetry modification undergone by Ti(IV) atoms in Td-like geometry upon coordination a fifth ligand (an adsorbed 

water molecule in this case) [36, 38, 674, 677, 680, 718]. 

 
Figure 12. Parts (a-d): simplified representation, using a one electron picture, of: (a) the ground state |g> and the (b) vtc-XES; (c) 

rvtc-XES; and (d) rctc-XES processes. V
n
 indicates the number (n) of electrons in the valence molecular orbitals (V) just below 

the EF. U indicates the unoccupied molecular orbitals just above the Fermi energy (EF) and C the continuum excitations. The blue 

arrows represent the transition of the 1s electron due to the adsorption of an incoming photon of energy ħ to reach the 

intermediate state |i> (XAS or XANES spectra in part (e). The red arrow indicates the decay of an electron from a higher level to 

the core hole with final state |f>, accompanied by the emission of a photon of energy ħ (XES spectra in part e). The energy 

transfer ħ() is indicated with a dashed black arrow. Part (e): the combination of TFY-XAS (blue spectra) with vtc-XES (red 
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scattered spectra) allows the sampling of unoccupied and occupied molecular orbitals (MO) across EF. The reported example 

indicates how the change of local symmetry of Ti(IV) species in Td-like symmetry (dotted blue line and scattered full red spheres) 

to penta-coordination (solid blue line and scattered open red squares) upon adsorption of a water molecule is clearly visible by 

both XAS and XES spectroscopies. A detailed description of these spectra has been reported by Gallo et al. [36, 37]. The inset 

reports the corresponding rctc-XES map, where the dotted grey line shows the cut done to obtain the high-energy resolution 

fluorescence detected (HERFD) XANES spectrum (see Section 3.2.3). Reproduced with permission from [90], copyright IoP 

2013. 

Coming to the instrumentation needed to collect resonant XES spectra, besides the standard monochromator used to 

select the energy ħ of the incident X-ray beam (present in every XAS beamline), XES requires an additional X-ray 

spectrometer able to analyze the energy ħ of the fluorescence X-rays emitted by the sample in the de-excitation 

processes consequent to the creation of a core hole by the primary ħ beam. A description of the most used XES 

spectrometers can be found elsewhere [90, 123], here we just recall that they can be basically divided into (i) focusing 

Johansson-type monochromators in Rowland geometry, performing a scansion across the ħ spectral range of interest 

[745-753] and (ii) crystal analysers in von Hamos geometry, which uses a cylindrically curved crystal to produce a 

polychromatic line focus that disperses the X-rays with different energies onto a position sensitive detector [754-757, 

758, Hudson, 2007 #799, Hasegawa, 2007 #800, Szlachetko, 2007 #801, Maeo, 2009 #802, Mattern, 2012 #803, 

Alonso-Mori, 2012 #804, Szlachetko, 2012 #805, Szlachetko, 2013 #807]. In Johansson-type spectrometers, the XES 

spectrum is acquired point per point, whereas in von Hamos-based instruments it is acquired in a single shot, without 

any motion of the optics, see Figure 13a. The latter set up is consequently more suitable for time resolved studies. 

With this respect, an example is reported in Figure 13b; in this study Szlachetko et al. [759] followed by non resonant 

(nr)-ctc XES (left) and XAS (right) spectroscopies with a sub-second time resolution, the decomposition of platinum 

acetylacetonate (Pt(acac)2) in hydrogen induced by flash heating. The time resolved data reported in Figure 13b, 

clearly highlighted the presence of an intermediate reaction step (B) between the starting Pt(acac)2 complex (A) and 

the final Pd
0
 nanoparticles (C). 
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Figure 13. Part (a): Schematic representation of the von Hamos spectrometer available at the SuperXAS beamline of the SLS at 

the PSI. Part (b), top panel: In situ decomposition of Pt(acac)2 under 5% H2 in He at 150 °C followed by nr-ctc XES (left) and 

XAS (right) spectroscopies. Part (b), bottom panel: the data are reported in 2D plot with the time scale running from top to 

bottom. The corresponding 1D spectra from zones A, B and C are plotted in the lower panels. The suggested reaction path from 

Pt(acac)2 to Pd
0
 nanoparticles is drawn in the middle section of part (b). Adapted with permission from [759], copyright RSC 

2012. 

Summarizing, X-ray emission spectroscopy (XES) is a photon in/photon out process that probes the partially occupied 

density of electronic states of a material. In this regard it is, on one side, a complementary technique with respect to 

XANES (Section 3.2.1) which provides insights on the unoccupied states. The combination of XAS and XES is 

consequently highly informative in the characterization of the electronic, geometric and magnetic structure [36, 38, 39, 

116, 117, 121-123, 732, 735, 740, 741, 760-766]. 

On the other side, XES is somehow related with PES spectroscopy (Section 3.2.5), that also probes the occupied 

density of states. The main advances of XES with respect to PES is the fact that XES uses hard X-rays, so allowing 

measurements of liquid and gases or of heterogeneous catalysts under reaction conditions. The main disadvantage is 

the low accessibility, as third generation synchrotron radiation beamlines are required. 

3.2.3 High-energy resolution fluorescence detected (HERFD) XANES 

In a conventional XANES experiment, one among the following signals deriving from the X-ray-matter interaction 

(see Scheme 6 in the appendix, Section 6.1) can be detected: (i) the transmitted photons; (ii) the total fluorescence 

yield (TFY), integrated over all the de-excitations related to the excited atomic species; (iii) the total or partial electron 

(TEY or PEY) decay of the sample, while scanning the incident photon energy ħ across the edge. In such 

experiments, besides the limits of the X-ray optics, there is a lower limit in the FWHM of the observed features 

(ETFY), that is set by the life-time broadening of the core hole of the selected edge: ETFY  core  ħ/core, where core 

is the life time of the core hole created by the absorbed X-ray. With the experimental setups reported in Figure 13a, it 

is possible to follow the evolution of the fluorescence emission at a given ħ (corresponding to a particular 

fluorescence decay channel) upon scanning the incident photon energy ħ. In such a way, being the decay transition 

due to an electron coming from an higher level (HL), that has a core hole with a longer HL life-time (HL >> core), the 

resulting spectrum is characterized by and intrinsically lower broadening EHERFD  [(core)
2

 + (HL)
2

]
½

, where HL 

 ħ/HL, see dashed grey line in the inset of Figure 12e. This effectively leads to spectra with a higher energy 

resolution and sharper features [39, 76, 90, 122, 125, 767-770]. This life-time suppressed XANES is generally referred 

to as high-energy resolution fluorescence detected (HERFD) XANES and can be described as a partial fluorescence 

yields that should be treated in the framework of the Kramer-Heisenberg theory [121]. 

We conclude this section reminding that the HERFD mode allows also the collection of oxidation state-specific 

EXAFS spectra [117, 121]. This is possible in cases where the different oxidation states are characterized by slightly 

different florescence lines ħ, that can be selected with the analyser spectrometer (Figure 12e). With the same 

principle, also spin-selective EXAFS spectra can be recorded [771] because of the spin-sensitivity of the K’ 

fluorescence line. 

3.2.4 X-ray magnetic circular dichroism or magnetic coordination compounds 

The X-ray magnetic circular dichroism (XMCD) spectrum, XMCD(E), is defined as the normalized difference 

spectrum of two XAS spectra collected in a magnetic field, one acquired with left circularly polarized beam, and one 

with right circularly polarized beam: XMCD(E) = [L(E)  R(E)]/[L(E) + R(E)] [117]. To maximize the XMCD 

signal, the magnetization vector of the system is set either parallel or antiparallel to the polarization vector of the X-

ray beam. A non-zero XMCD signal is observed only in magnetic systems and it gives information on the magnetic 

properties, such as spin and orbital magnetic moment. Consequently, XMCD is a major characterization tool for 

ferromagnetic metals, oxides and their surfaces, as well as for paramagnetic sites in bio-inorganic chemistry and 

coordination compounds [772]. The technique was able to bring new insight in the investigation of transition metal 

supported catalysts [582, 773, 774] and in bio-catalysis [775]. Usually, the XMCD measurement are performed at 

cryogenic temperatures and the XMCD signals are followed either by varying the magnetic field at constant 

temperature or by varying the temperature at fixed magnetic field [776]. 

In the field of coordination compounds, XMCD has been widely used in the investigation of single-molecule magnets 

[128-135]. In this regard, Badia-Romano et al. [135] have recently investigated the intra-molecular exchange 

interactions within the single-molecule magnet "butterfly" molecule [Fe3Ln(µ3-O)2(CCl3COO)8(H2O)(thf)3], where Ln 

indicates a lanthanide atom (see Figure 14a for the structure of the Dy homologue), by combining XMCD, vibrating 

sample magnetometer (VSM) and ab initio simulations. Compounds with Ln = Gd and Dy, represent extreme cases 

where the rare earth center presents single-ion isotropic and uniaxial anisotropy. The Dy single-ion uniaxial anisotropy 

is estimated from ab initio calculations. Low-temperature (T ~ 2.5 K) hard X-ray XMCD at the Ln L2, L3 edges 

(Figure 14c,d) and VSM measurements as a function of the magnetic field indicate that the Ln moment dominates the 
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polarization of the molecule by the applied field. Within the {Fe3LnO2} cluster (Figure 14a, right part) the Ln-Fe3 sub-

cluster interaction (Figure 14b) is determined to be antiferromagnetic in both Dy and Gd compounds, with values JDy-

Fe3 = –0.4 K and JGd-Fe3 = –0.25 K, by fitting to spin Hamiltonian simulations that consider the competing effects of 

intra-cluster interactions and the external applied magnetic field. Authors found that in the uniaxial anisotropic 

{Fe3DyO2} case, a field-induced reorientation of the Fe3 and Dy spins from an antiparallel to a parallel orientation 

takes place at a threshold field (µ0H = 4 T). In contrast, in isotropic {Fe3GdO2} this reorientation was not observed 

[135]. Authors also measured the Fe K-edge XMCD signal, that however is very low, since Fe(III) has a quenched 

total orbital moment [135]. Indeed, for a d
5
 ion, Lz = 0 in the 3d states and, consequently, a very low signal from is 

expected for the 1s to 4p excitations. 

 

 
Figure 14. Part (a), left panel: structure of the [Fe3Dy(µ3-O)2(CCl3COO)8(H2O)(thf)3] complex; part (a), right panel: the 

{Fe3DyO2} magnetic core of the compound and the defined interatomic-exchange parameters. Part (b): scheme (i) represents the 

interaction Ln-Fe3 (double headed arrow) within the {Fe3LnO2} cluster (Ln = Gd or Dy). The Fe3 group (red triangle) is 

substituted by a single spin SFe3. Simplified magnetic situations in cases null or high applied magnetic fields are reported in 

schemes (ii) and (iii), respectively. Part (c): Dy L2- and L3-edges XANES spectra (top) and XMCD signal (bottom) of Fe3Dy(µ3-

O)2(CCl3COO)8(H2O)(thf)3] complex. Part (d): as part (c) for the Gd homologue. Adapted with permission from [135], copyright 

APS 2013. 

Wackerlin et al. [777] have provided combined XPS, XMCD experimental evidences, supported by DFT calculations, 

for an exchange-stabilized magnetic moment in a synthetically designed, non-planar and non-aromatic Co(II)-complex 

adsorbed on a ferromagnetic Ni substrate. Indirect magnetic coupling of Mg porphyrin to a ferromagnetic Co substrate 

was also investigated by the same group [778]. 

Furthermore, the electronic and magnetic properties of a star-shaped molecule exhibiting a (Mn
II

4O6) core have been 

reported by Khanra et al. [779]. The peculiarity of this compound is weak magnetic coupling constants compared to 

other similar polyoxo compounds. This leads to complicated low-lying magnetic states, in which the ground state is 

not well separated from the upper-lying states, yielding a high-spin molecule with a giant magnetic moment of up to 

20 µB/formula unit. Authors combined ab initio electronic band structure calculations with the study of local electronic 

structure around the Mn
2+

 ions with charge-transfer multiplet calculations, to fully interpret the multi-technique 

experimental data collected to characterize the compound, including XRD, magnetometry, XPS, XES and XMCD. 

A last example is the study of two paramagnetic high-spin molecules [Cr{(CN)Ni(tetraethylenepentamine)}6)(ClO4)9 

(intramolecular ferromagnetic coupling) and [Cr{(CN)Mn(N,N,N′-(tris(2-pyridylmethyl)-N′-methylethan)1,2-

diamine)}6](ClO4)9·3thf (intramolecular antiferromagnetic coupling) investigated by Arrio et al. [776] using XMCD. 

The X-ray absorption and dichroic spectra were calculated in the ligand field multiplet model to determine the crystal 

field parameters and the local orientation of the magnetic moments. The authors obtained the local magnetization 

curves at the Ni(II) and Mn(II) L2- and L3-edges for both molecules [776]. 
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3.2.5 Photoelectron spectroscopy: basic principles and synchrotron applications 

As introduced in Section 3.1, photoelectron spectroscopy (PES) detects the kinetic energy of the electrons escaped 

from the surface of the sample when soft X-ray (200-2000 eV) radiation or UV (10-45 eV) radiation are used (see 

Scheme 6 in the appendix, Section 6.1). In the first case the technique is usually called X-ray photoelectron 

spectroscopy (XPS) and allows the examination of core levels, whereas in the latter case we refer to ultraviolet 

photoelectron spectroscopy (UPS), able to obtain information on valence levels. PES has been successfully used to 

study the physical properties of transition metal complexes since in a typical experiment the electrons, emitted after 

excitation of the electronic states by photons of a specific energy, are sensitive to the atomic number of the emitting 

atom as well as to the principal quantum number of the bound electron, the angular momentum and the chemical 

environment. In addition, PES spectra afford information on electronic, magnetic and spatial structure of the transition 

metal complexes [640, 780-786]. 

UPS and XPS are sensitive methods which are widely used in catalyst investigations: if one considers XPS, the X-rays 

may penetrate deep into the sample, the ejected electrons have only a limited escape depth. With energies around 1400 

eV, ejected electrons from depths typically greater than 10 nm (depending on the specific experimental conditions 

such as average Z of the sample, adopted X-rays energy and their incidence angle) are not contributing to primary 

photoelectric peaks since they have a low probability of leaving the surface without undergoing an energy loss event. 

Most of the methods for the investigation on metal complexes on catalytic surfaces are bulk sensitive and not surface 

sensitive, while only several atomic layers with a specific structure, that is not necessarily the same as the bulk 

structure, are directly participating in the catalytic process. Conventionally this technique operates at ultra-high 

vacuum conditions, with the pressure in the 10
–10

 mbar range required to allow the photoelectrons to reach the 

detector. There are few synchrotron-based XPS facilities worldwide where a complex differential pumping system 

allows XPS spectra to be collected at pressure of few mbar in the close vicinity of the sample surface [787-790]. 

However, besides these remarkable facilities, standard XPS and UPS setups remain (and will likely remain in the 

future) ultra-high vacuum instrumentations. 

XPS (UPS) allows the investigation of almost all elements of the periodic table and it is able to detect core (and 

valence) bands affording considerable information about chemical structure. Furthermore the technique is giving 

information about absolute atomic concentration since the number of electrons recorded for a given transition is 

proportional to the number of atoms at the surface. In practice, however, an accuracy of 10% is typically quoted for 

routinely performed XPS atomic concentrations, because of the difficulty in quantifying readsorbtion processes. 

Nevertheless the precision of XPS makes the technique very powerful. The binding energy of a core-level electron 

depends also on the surroundings of atoms. Binding energy shift due to environment effects is usually named chemical 

shift. Non-equivalence of binding energies for an element in different chemical compounds can arise from various 

reasons such as difference in the formal oxidation and coordination states, different lattice parameters and so on. Then 

core level binding energies provide an accurate local probe of the electronic structure changes of an atom in different 

chemical environments and afford important information on surface reactivity changes. Core level XPS data also 

allow to probe the orbital mixing of the ligand and metal [791]. In principle, one can assume that the energies involved 

in a XPS experiment are well defined in terms of the binding energy of the electronic states of atoms, but the structure 

of 3s, 3p, and 2p XPS peaks of transition metals is additionally affected by a number of effects, among which the 

atomic multiplet splitting is the most important [120]. Secondarily, the XPS spectra are also influenced by several 

many-electron effects, such as the reduction of extension of the atomic multiplets due to the interaction of the states of 

the basic configuration with a lot of higher-lying excited configurations. To deal with this effect, we can assume that 

the multiplet structure is not violated, and consider the compression of multiplets by scaling the integrals of 

electrostatic interaction, with scaling factors typically in the 0.7 – 0.8 range [792]. 

In general, for the full interpretation of XPS spectra, DFT calculations are of paramount importance. For instance, 

DFT studies indicate that often final state contributions can be significant, in particular for noble metals like Cu and 

Ag, where the low density of states at the Fermi level yields a rather inefficient screening of the core hole [793, 794]. 

On the instrumental ground, for laboratory PES experiments, X-ray tubes (usually with Al or Mg cathode) and He gas-

discharge lamps are used in XPS and UPS instruments. Although conventional high intensity sources provide discrete 

incident photon energies at high resolution, affording detailed information from the photoionization cross sections, 

they cannot be used to probe the photon energy dependence of XPS spectra. 

Development of synchrotron radiation sources made available a continuous range of photon energies surpassing the 

intensity of conventional laboratory vacuum UV and X-ray tubes by several order of magnitudes. There are several 

advantages in the use of synchrotron light with respect to common laboratory X-ray sources, first of all the higher 

photon flux and the possibility of focusing of an X-ray beam into a small spot increase the spatial resolution. An 

additional benefit of the high photon flux is the possibility to increase the energy resolution E in the determination of 

the electron kinetic energy obtained by improving the monochromaticity of the exciting photons. Moreover, the high 

collimation of synchrotron radiation beams is a crucial point in increasing the k resolution in angle-resolved PES 

experiments. However, the high photon flux has an important drawback in PES experiments, consisting in a high 
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electrinc charging of the sample; this makes SR-PES experiments on purely conducting samples difficult, needing 

accurate charge compensation with an electron gun. The experimental difficulties are even more severe for insulating 

powdered materials because it is virtually impossible to exactly compensate for each sample grain the positive charge 

induced by the X-ray beam with the negative charge induced by the electron gun. As a consequence the observed PES 

components are subjected by an energy broadening that hampers the potential energy resolution available using a 

synchrotron source. Finally, synchrotron light has the property of excitation energy tunability, which allows changing 

the information depth and the photoelectron cross section. 

We report here some nice examples of the use of synchrotron XPS to address issues such as chemical bonding and 

structures in transition metal complexes. Hsin-Tien Chiu and coworkers found correlation between metal-ligand bond 

distance and XPS binding energies of the ligand in metal complexes. Specifically, they studied the variation of N 1s 

binding energy for several metal complexes such Ta(NEtMe)5, t-BuN=Ta(CH2Bu-t)3, t-BuN=Ta(NEtMe)3, t-

BuN=Ta(NEt2)3, (t-BuN=)2W(NHBu-t)2, and N Cr(OBu-t)3 [795]. 

 
Figure 15. Part (a): N 1s synchrotron XPS for Ta(NEtMe)5 (1), t-BuN=Ta(CH2Bu-t)3 (2), t-BuN=Ta(NEtMe)3 (3), t-

BuN=Ta(NEt2)3 (4), (t-BuN=)2W(NHBu-t)2 (5), and NCr(OBu-t)3 (6), adsorbed on Cu(111) surface at 300 K. Part (b): 

correlation of N 1s binding energies to  parameter for Ta(NEtMe)5 (1), t-BuN=Ta(CH2Bu-t)3 (2), t-BuN=Ta(NEtMe)3 (3), t-

BuN=Ta(NEt2)3 (4), (t-BuN=)2W(NHBu-t)2 (5), and NCr(OBu-t)3 (6). Adapted with permission from ref. [795]. Copyright 

(2003) American Chemical Society. 

The t-BuN=Ta(NEtMe)3 complex, exhibits two well resolved peaks at 398.0 and 396.8 eV with 3:1 integration (see 

curve (3) in Figure 15a), consistent with the stoichiometry ratio for two types of N atoms having three amido and one 

imido ligands. The shift toward higher binding energies of the W complex (curve (5) in Figure 15a) with respect to Ta 

complexes labelled as (3) and (4) is consistent with a larger Pauling electronegativity for W (2.36) than for Ta (1.5). 

The observed N 1s bonding energies values for various metal complexes follow the general trend: amido > imido > 

nitrido. The molecular orbital bonding picture indicates that the N atom of the ligands contributes more to the M–N 

bonding orbitals than the metal atom. The authors defined the parameter  as:  = (rM + rN) – RM–N, where rM and rN 

are the bonding radii of M and N and RM–N is the M–N bond distance calculated from the crystallographic data. 

describes how the M–N bond gets shortened relative to the sum of the free atom values as the M–N bond. 

The plotting of the N 1s binding energies as a function of the parameter is shown in Figure 15b. On the basis of XPS 

data it is possible to surmise that the observed N 1s binding energy values correlate better with the corresponding M–

N bond distance than with bond-order parameters. 

In 2003, Kobayashi and coworkers published the first report of XPS study by using as X-ray source a third generation 

synchrotron radiation facility [796]. In hard X-ray PES experiments (HXPES) using undulators, X-rays photon fluxes 

higher than 10
11

 photons/s can be obtained even after the reduction of bandwidths down to around 50 meV or less. In 

principle a total resolution of 60 meV can be achieved at 8 keV, but normally for practical purposes a total resolution 

of 200–250 meV is used [797]. HXPES has the advantage with respect to conventional photoemission spectroscopy to 

be a potentially bulk-sensitive technique measurements, due to the increased escape depth of the high-kinetic-energy 
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photoelectrons produced (typically > 5 nm [796]). The bulk-sensitivity of HXPES is realized by overcoming the 

problem of weak signal intensities due to the rapid decrease in photoionization cross section with increasing photon 

energy exploiting the enhanced incident photon flux from synchrotrons. Thus HXPES offers unique possibilities for 

detecting bulk electronic structures, and opens up the possibility of site-specific bulk-sensitive XPS [798, 799] when 

combined with the X-ray standing wave technique [800-802]. Such technique is widely used for the characterization 

of surfaces of materials, e.g. nanoscale advanced materials, electrodes of fuel cells, photocatalysts, etc [803], probing 

electronic structure, changes with ionization, and providing useful hints in the understanding of the physical properties 

and reactivity of such systems. The application on the study of metal complexes is much more limited, whereas 

HXPES characterization is mainly performed on thin films or heterogeneous catalysts. However this technique has 

been used also on metal complexes due to its ability to extract information on both initial and final state for systems 

involved in redox processes. Indeed, both the effect of electronic structure on redox processes and the changes in 

electronic structure that occur as a result of redox events can be extracted from this kind of XPS data [804]. 

In addition, the combined use of synchrotron-XPS and XANES can highlights subtle differences in the electronic 

structure and chemical bonding in closely-related coordination compounds. As an example, a combined gas phase 

synchrotron photoabsorption (XANES) and photoemission (XPS) experiment on ethyl-ferrocene, vinyl-ferrocene, and 

ethynyl-ferrocene, have been performed by Zanoni and coworkers. The closely related molecules differ only in the 

unsaturation degree of the C–C bond of the substituent group and the combination of the two techniques can afford 

information on the state of charge of the C atoms of the substituent group in the three molecules, and on the extent of 

conjugation of the C–C moiety with the cyclopentadienyl ring. XANES and XPS data are useful for investigating the 

preservation or loss of the unsaturation in the anchoring arm upon functionalization reaction of hydrocarbon-

monosubstituted ferrocenes on surfaces [805]. High resolution C 1s XPS spectra of the three ferrocene derivatives in 

gas phase are reported in Figure 16. 

 
Figure 16. C 1 s XPS of ethyl-ferrocene, vinyl-ferrocene, and ethynyl-ferrocene (circles) obtained at 320 eV photon energy, 

reported with the results of the fitting procedure (solid lines). Theoretical ionization energies are represented by vertical bars. The 

different components are labelled according to the capital letters from A to E, which identify the non-equivalent carbon atoms in 

the molecules sketched on the right hand side. Adapted with permission from ref. [805]. Copyright (2012), AIP Publishing LLC. 

The same carbon site in the different molecules shows different chemical shifts and distinctive trends of chemical 

shifts are observed for the A, B, and C atoms. The data have been rationalized in terms of initial and final state effects 

influencing the C 1s ionization energy value and related to the different mechanisms of electron conjugation between 

the ferrocene ring and the substituent, i.e. the σ/π hyperconjugation in ethyl-ferrocene and the π-conjugation in vinyl-

ferrocene, and ethynyl-ferrocene. 

4 Applications in catalysis 
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We will discuss separately applications in homogeneous catalysis (Section 3.1) and applications in heterogeneous 

catalysis (Section 3.2). Before entering in the discussion, we will present some concepts of general validity. 

The main goal of the present section is to describe the synchrotron radiation methodologies (mainly XAS and XES) 

that allow to understand, at the molecular level, the structure of the catalytic site and its modification along the whole 

cycle. The vast majority of the cases catalysts do not exhibit long range order. This is obviously the case for 

homogeneous catalysis, where reactants, products and catalysts are in the liquid phase. For heterogeneous catalysis, in 

which the reaction is confined to the interface between the catalyst (a solid phase) and the reactants that are either in 

the liquid or in the gaseous phases, the lack of long range order still holds in most of the cases. In fact in order to 

maximize such interface most of the solid supports are high surface area materials (10
2
10

3
 m

2
 g

–1
) with a very poor 

crystallinity (e.g. -Al2O3 [445, 696, 697, 806], active carbons [713, 807, 808] or polymers [809, 810]) or amorphous 

(e.g. silica [359, 811]). This implies that usually XRD [213] cannot be used to determine the structure of the catalytic 

active centres. This makes EXAFS the most suited characterization technique to understand the structure of the 

catalytic sites [62-64, 74, 76, 147, 460, 812], while XANES [67, 68, 76] and XES [76, 117, 122, 125, 324] are 

informative for its electronic structure. Exception to this statement is made for two main classes of crystalline 

microporous catalysts, where XRD has played a role: we are speaking about zeolites [285, 813-815] (that are 

industrially widely used) and metal-organic frameworks [816] (MOFs, which are of potential interest in the near future 

[817, 818]). However, also for zeolites and MOFs, when XRD data have been complemented by a XAS study, a better 

understanding of the material was achieved [64, 67, 79, 147]. 

The great benefit of XAS and XES spectroscopies applied to catalyst investigation is related to the high penetration 

depth of hard X-rays, allowing to measure catalysts under operation conditions, i.e. in presence of reactants and 

products from the gas or liquid phases. This is a mandatory step to understand all the intermediate steps. The strong 

connection between catalysis and XAS is testified by the large number of contributions related to catalysis (from 7 up 

to 19%) presented in the fifteen XAS conferences that have taken place in the last three decades (since 1981 in 

Daresbury, UK, to 2012 in Beijing, China) and by the number of contributions related to XAS (from 16 to 28%) that 

have been presented in the four conferences on operando spectroscopy (from 2003 in Lunteren, NL, to 2012 in 

Brookhaven US), see ref. [76] for a detailed statistic.  

Section 4.1 is devoted to discuss the characterization of homogeneous catalysts, while in section 4.2 we will treat the 

case of heterogeneous catalysts. For sake of brevity, the case of quasi-homogeneous catalysis [819-823] will not be 

discussed. 

4.1 Homogeneous catalysis 
The great advantage of homogeneous catalysis is that the structure of the precursor of the active species is perfectly 

known. It is the complex dissolved in the solution, often named as “precatalyst” [824], the structure of which can be 

determined in the solid phase by diffraction techniques and/or by solid state NMR. Once dissolved in the solution, the 

structure of the complex will undergo relaxation of bond lengths and angles that can be monitored by EXAFS and 

NMR. In case of paramagnetic species also EPR can be used. The entity of such distortion is solvent dependent as 

different solvent molecules (polar, apolar) interact differently with the complex. Accurate DFT studies, with a periodic 

approach for the solid state, and with a cluster approach (including the solvent effects), can validate the experimental 

findings. The critical point is that the precatalyst is converted to the true catalysts in the reaction medium (eventually 

with the use of an activator) and that its structure may in some cases significantly differ from that of the well-

characterized precatalyst. 

Homogeneous catalysts represent an ideal playground for XAS spectroscopies because the dilution of the active 

molecule inside a liquid medium implies a perfect homogeneous dispersion of the absorbing X-ray sites in the solvent. 

This implies that the optical thickness of the sample, µ(E)x, is uniform and that the quality of an EXAFS data 

collection will not be deteriorated by small fluctuation of the X-ray beam on the sample along the long energy scan 

needed to collect a full EXAFS spectrum. This is particularly true when the metal center of the coordination 

compound is a high Z-element, because its K-edge will occur in the hard X-ray region, where the molecules of the 

solvent are weakly absorbing X-rays. This fact allows to compensate the usually high dilution of the complex (usually 

few mM) by a large thickness of the samples, making in some cases possible a measure in transmission mode. This is 

the case of 10 mM [Ru(bpy)2(AP)2]
2+

 in water (see Figure 17). 
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Figure 17. Part (a) pre-edge subtracted Ru K-edge absorption spectra of 10 mM [Ru(bpy)2(AP)2]

2+
 in water collected in 

fluorescence and in transmission modes, red and blue curves, respectively. Fluorescence data have been normalized imposing the 

average pre-edge counts to unit; the contribution of Ru fluorescence is around 8% of the background. Transmission data have 

been plotted imposing the pre-edge µx absorption equal to 0.4, as expected by 0.6 cm of water at 22100 eV. The low edge jump of 

the spectrum collected in transmission mode is remarkable (µx = 0.03). Parts (b): k
2
-weighted (k) function obtained averaging 

along the three scans the fluorescence (red top curves) and the transmission (blue middle curves) EXAFS spectra. The bottom 

black curves report the k
2
(k) function obtained averaging the fluorescence and the transmission k

2
(k) functions. Part (a) 

unpublished, part (b) adapted with permission from [396], copyright (2009) IoP. 

At the Ru K-edge (22.1 keV) the X-ray absorption length in water is larger than 1.5 cm. This allowed Salassa et al. 

[396] to use a sufficiently thick sample holder to obtain in transmission mode and edge jump of (µx = 0.05). The 

fluorescence signal was also collected simultaneously. 

The quality of the k
2
(k) functions obtained from the spectra measured in transmission mode (blue curves in Figure 

17b) is impressive for a sample with so low edge jump, and it is due to the high homogeneity of the solution and to the 

high stability of beamline (BN29 at the ESRF). Authors performed the EXAFS data analysis on both the fluorescence 

and transmission data sets obtaining, within experimental errors, the same values for all the optimized parameters. 

This fact allowed them to average the fluorescence and transmission data sets, resulting in the black spectrum in 

Figure 17b. The same data analysis was then repeated for the final averaged data set, resulting in optimized parameters 

compatible with those obtained in the two previous analyses, but characterized by smaller error bars [396]. The same 

group has investigated with synchrotron techniques (using both X-ray absorption and X-ray scattering) the structure of 

several ruthenium complexes in solution such as [Ru(bpy)(AP)4]
2+

 [396], [Ru(bpy)2(AP)2]
2+

 [396] 

[Ru(bpy)2(AP)(H2O)]
2+

 [396], cis-[Ru(bpy)2(CO)Cl]
+
 [720], cis-[Ru(bpy)2(py)2]

2+
 [825-828] (AP = 4-aminopyridyne; 

py = pyridine; bpy = 2-2′-bipyridyne). 

In the following we will provide an overview on the recent studies that, exploiting synchrotron based techniques, 

contributed in improving the knowledge of catalysts working in homogeneous conditions for: polymerization reactions 

(section 4.1.1); oligomerization or cyclization reactions (section 4.1.2); isomerization reactions (section 4.1.3); and 

coupling reactions (section 4.1.4). 

4.1.1 Polymerization reactions 

Hu et al. [829] reported a complete study on the synthesis and characterization of Group IV metal complexes (Ti, Zr 

and Hf) that contain a tetradentate dianionic [OSSO]-carborane ligand [(HOC6H2tBu2-4,6)2(CH2)2S2C2-(B10)H10]. 

Reactions of TiCl4 and Ti(OiPr)4 with the [OSSO]-type ligand afforded a six-coordinated titanium complex 

[Ti(OC6H2)tBu2-4,6)2(CH2)2S2C2-(B10H10)Cl2] and a four-coordinated titanium complex [Ti(OC6H2tBu2-4,6)2-

(CH2)2S2C2(B10H10)(OiPr)2] , respectively. ZrCl4 and HfCl4 were treated with the [OSSO]-type ligand to give a six-

coordinated zirconium complex [Zr(OC6H2tBu2-4,6)2-(CH2)2S2C2(B10H10)Cl2(thf)2] and a six-coordinated hafnium 

complex [Hf(OC6H2tBu2-4,6)2(CH2)2S2C2-(B10H10)Cl2]. All the complexes were fully characterized by IR, 
1
H and 

13
C 

NMR spectroscopy, and elemental analysis. The authors also provided single crystal XRD studies on the titanium 

complexes, founding the expected different coordination geometry due to steric hindrance effects. The local atomic 

environment of the metal center in the zirconium and in the hafnium complexes was further confirmed by Zr K- and 

Hf L3-edge EXAFS analysis, respectively [829]. Corresponding XANES spectra confirmed the expected charge on the 

metal site. Authors demonstrated that the six-coordinated titanium complex shows a good activity toward ethylene 

polymerization as well as toward copolymerization of ethylene with 1-hexene in the presence of methylaluminoxane 

(MAO) as cocatalyst (up to 1060 kg[mol(Ti)]
–1

h
–1

 in the case of 10 atm of ethylene pressure). 



41 

 

4.1.2 Oligomerization and cyclization reactions 

The group of Brückner [830] combined operando EPR under elevated ethylene pressure and in situ XAS to 

discriminate between active and deactivating Cr species in the ethylene tetramerization reaction. Authors founded that, 

starting from Cr(III) in the Cr(acac)3 precursor, a (PNP)Cr(II)-(CH3)2 complex (PNP = bidentate diphosphinoamine) is 

formed upon adding bidentate diphosphinoamine and modified methylaluminoxane (MMAO), which is the active 

species that converts ethylene to 1-octene by passing a reversible redox cycle, while reduction to Cr(I) leads to 

deactivation. 

Miyoshi et al. [831] deeply investigated the aerobic intermolecular cyclization of acrylic acid with 1-octene to afford 

-methylene--butyrolactones, catalysed by the Pd(OCOCF3)2/Cu(OAc)2H2O system. They found that the 

accumulation of water generated from oxygen during the reaction causes deactivation of the Cu co-catalyst. This 

prevents regeneration of the active Pd catalyst and, thus, has a harmful influence on the progress of the cyclization 

reaction. They concluded that both the substrate conversion and product yield are efficiently improved by continuous 

removal of water from the reaction mixture. Authors provided also a convincing model explaining the cyclization 

mechanism. Pd K-edge EXAFS data agree with the existence of the intermediates bearing acrylate (PdO bond), 
3
-

C8H15 (PdC bond), or C11H19O2 (PdC bond) moieties on the Pd center as the resting-state compounds. Furthermore, 

Cu K-edge XANES data showed that not only Cu(II), but also Cu(I), species are present when the reaction proceeds 

efficiently. Authors concluded that the Cu(II) species is partially reduced to the Cu(I) species when the active Pd 

catalytic species are regenerated [831]. 

4.1.3 Isomerization reactions 

Jennerjahn et al. [832] investigated a selective iron-catalysed mono-isomerization of olefins, which allows for the 

selective generation of 2-olefins. In particular, the isomerization of 1-octene has been performed in diglyme solvent on 

a large library of iron complexes, [Fe3(CO)12], [Fe2(CO)9], [Fe(CO)5], [Fe(CO)4], Na2[Fe(CO)4], [Fe(BF4)2], 

[CpFe(CO)2]
–
 and Na2[Fe(CN)5NO] and in different basic or acidic environments. Using only iron carbonyl 

complexes without water and base resulted in a mixture of internal olefins. Conversely, yields in 2-octene higher than 

92% were obtained with [Fe3(CO)12] and Na2[Fe(CO)4] complexes; in both cases KOH was added to the reaction 

solution [832]. DFT calculations were used to define the reaction path, with the corresponding activation barriers for 

the different transition states, for the isomerization reaction of 1- to 2-butene catalysed by [Fe3(CO)12]. EXAFS spectra 

were collected on the [Fe3(CO)12] precatalyst (both in the solid state and in diglyme solution), proving the stability of 

the triiron dodecacarbonyl complex in solution. Then a third EXAFS spectrum was collected after 30 minutes of 1-

octene isomerization reaction in diglyme/KOH at room temperature. The stability of the Fe3 cluster under reaction 

condition was supported by the coordination number NFeFe = 1.7 ± 0.3 (NFeFe = 1.8 ± 0.3 before reaction; ideally 

NFeFe = 2 for an iron trimer). In the course of isomerization of 1-octene, authors found NFeC = 2,0 ± 0.5, a value that is 

in agreement with the two stable complexes computed by DFT with either 1-butene or 2-butene coordinated to the 

iron complex. 

4.1.4 Coupling and addition reactions 

According to the organic chemistry nomenclature [833, 834], addition reaction, takes place when two or more 

molecules combine to form a larger one. This implies that addition reactions require the presence of reactants having 

multiple bonds, such as alkenes (C=C), alkynes (CC) or molecules containing carbonyl (C=O) or imine (C=N) 

groups. Conversely, a coupling reaction concerns two hydrocarbon fragments that are coupled, usually with the aid of 

a metal catalyst [835]. 

In the themed issue of PCCP on “recent developments in X-ray absorption spectroscopy”, Bauer, and Gastl used as 

example the iron-catalysed Michael addition reaction to provide a complete survey over synchrotron radiation and 

laboratory methods in homogeneous catalysis [466]. The authors reported a thorough investigation of the catalytic 

cycle by combining conventional X-ray absorption spectroscopy (XANES and EXAFS), RIXS and multi-dimensional 

spectroscopy. The catalytically active compound formed in the first step of the Michael reaction of methyl vinyl 

ketone with 2-oxocyclopentanecarboxylate was elucidated in situ by RIXS spectroscopy. The reduced catalytic 

activity of FeCl36H2O compared to Fe(ClO4)39H2O was explained by the formation of a [Fe
III

Cl4
–
]3[Fe

III
(2-

oxocyclopentanecarboxylate-H)2(H2O)2
+
][H

+
]2 complex. Chloride was identified as catalyst poison with a combined 

XAS and UV-Vis study, which revealed that Cl

 binds quantitatively to the available iron centres that are deactivated 

by formation of [FeCl4

]. Operando studies in the course of the reaction of methyl vinyl ketone with 2-

oxocyclopentanecarboxylate by combined XAS-Raman spectroscopy allowed the exclusion of changes in the 

oxidation state and the octahedral geometry at the iron site; a reaction order of two with respect to methyl vinyl ketone 

and a rate constant of k = 1.413 min
–2

 were determined by analysis of the C=C and C=O vibration bands. In the same 

work, the authors also report the technical detail of a dedicated experimental set-up designed to perform a 

simultaneous three-dimensional spectroscopic study (XAS, UV-Vis and Raman) of homogeneous catalytic reactions 

under operando conditions. 
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Fiddy et al. [836] reported a Pd K-edge EXAFS study on the Mizoroki-Heck coupling [837] of selected aryl bromides 

with acrylates catalysed by a series of Pd complexes of bidentate pyridyl-, picolyl-, diphenylphosphinoethyl- and 

diphenylphosphinomethyl-functionalised N-heterocyclic carbene. Authors reported that the catalyst activity is 

dependent on the type of solvent and base used and the nature of the "classical" donors of the mixed-donor bidentate 

ligand and its bite angle. They reported a mechanistic model for the pyridine-functionalised N-heterocyclic carbene 

complexes based on an in situ EXAFS study under dilute catalyst conditions (2 mM). The model involves pre-

dissociation of the pyridine functionality and oxidative addition of aryl bromide in the early stages of the reaction, as 

well as formation of monomeric and dimeric Pd species at the time of substrate conversion. 

Among all the data reported by Fiddy et al. [836] we will focus here on the results obtained on the Pd bromine carbene 

system, scheme (2) in Figure 18c. Authors used the EXAFS spectra of the Pd bromine carbene precatalyst in the solid 

state (curves 1 in Figure 18a,b) to check phases and amplitude functions generated by EXCURV98 [838-840]. The 

molecule was then diluted in N-methylpyrrolidone at 2 mM and measured in fluorescence mode to check whether any 

significant structural changes occur in solution (curves 2 in Figure 18a,b). Authors were able to reproduce the EXAFS 

spectrum of the solid phase with a four shell fit resulting in two C atoms at 2.02 Å, one N atom at 2.21 Å and one Br 

at 2.48 Å, in excellent agreement with XRD data where the three distances were refined at 2.002, 2.168 and 2.489 Å, 

respectively [841]. Note that the Pd-O distance of 2.002 Å is actually the average of two independent distances at 

1.970 and 2.034 Å that cannot be resolved by EXAFS in a three shell fit. Comparable results were obtained from the 

fit of the sample in solution: resulting in two C atoms at 2.01 Å, one N atom at 2.20 Å and one Br at 2.48 Å. The Pt-O 

and the Pt-N contribution were obtained with Debye-Waller factors comparable with those obtained in the solid phase, 

while a much larger Debye-Waller factor was needed to reproduce the Pd-Br contribution in the liquid phase. Besides 

these technical aspects, authors concluded that the complex is stable in N-methylpyrrolidone solution at room 

temperature and that its first shells ligands remain bound even in a polar solvent [836].– 

 
Figure 18. Part (a): Pd K-edge k

3
-weighted EXAFS (phase-shift corrected for C back-scatterer atoms) of the Pd bromine carbene 

precatalyst, in the solid-state form (1) and in solution (2 mM in N-methylpyrrolidone) (2) and of the catalyst during the Mizoroki–

Heck conditions at different reaction times and temperatures: 5 min at 353 K (3): 5 min at 403 K (4) and 20 min at 403 K (5). 

Black and red lines represent the experimental and theoretical fits respectively, the latter derived from spherical wave analysis in 

EXCURV98 [838-840]. Reported times represent the total reaction time at the given temperature; after reaction, the solution was 

quenched to room temperature and six EXAFS scans have been collected. Part (b): as part (a) for the corresponding carbon phase-

shift-corrected FT. Spectrum (1) was measured in transmission mode, spectra (2)-(5) were collected in fluorescence mode. Part 

(c): Proposed mechanism for the Mizoroki–Heck reaction of bromoacetophenone with butyl acrylate (observed species 

characterized by EXAFS indicated by boxes labelled with the number referring to the corresponding spectrum; the remainder are 

all plausible transient species). Adapted with permission from [836], copyright Wiley (2007). 

Fiddy et al. [836] used EXAFS analysis to face the following open questions: (i) Are Pd nanoparticles formed during 

the reaction? (ii) Is there evidence for the generation of Pd
0
 by reductive elimination of 2-methylimidazolium salts 

from the starting precatalyst? (iii) Does the pyridine arm of the bidentate ligand detach from Pd during the catalysis? 

(iv) Is there any observable loss of bromide during the reaction that could offer an alternative possibility for alkene 

coordination? 

Hence, butyl acrylate and p-bromoacetophenone were injected into the cell containing the 2mM solution of the Pd 

bromine carbene precatalyst. The liquid was gradually heated at 10 K min
–1

 up to the reaction temperature (403 K). 
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During this process, at certain intervals, the cell was rapidly cooled to 263 K to quench the reaction, thereby providing 

a “snapshot” of the intermediate species present in solution. The progress of the reaction was monitored under the 

same temperature regime by taking aliquots and analysing quantitatively the reaction mixture by gas chromatography 

[836]. 

The catalytic solution at room temperature (curves 3 in Figure 18a,b), before heating provided a structure with almost 

identical parameters to those observed for the non-catalytic N-methylpyrrolidone solution (curves 2 in Figure 18a,b). 

A second measurement was made after the catalytic solution had reached 353 K for 5 min. (curves 4 in Figure 18a,b). 

After this first heating step, the Pd pre-catalyst remained basically intact: the EXAFS analysis resulted in: two C at 

2.03 Å, one N at 2.19 Å and one Br at 2.49 Å. However the fit was obtained with a relatively high Debye–Waller 

factor for the Pd-N shell [836]. Authors explained this observation either as the consequence of the weakening of the 

Pd–Npy bond or as the fact that some of the bidentate ligand acts as monodentate [836]. 

The EXAFS signal of the catalyst heated to 403 K for 5 min showed a significant change (curves 4 in Figure 18a,b). In 

this case the experimental EXAFS spectrum was reproduced using only two shells, namely: two C atoms at 2.01 Å 

and one Br atom at 2.48 Å. Any attempt to add a third Pd-N shell failed. This was interpreted as the break of the Pd–

Npy bond (scheme 4 in Figure 18c) and the consequent creation of a site coordination vacancy on Pd thus allowing the 

co-ordination of the olefin, reaction (ii), Figure 18c. Prolonging the reaction time at 403 K the EXAFS spectrum 

underwent an additional important modification (curves 5 in Figure 18a,b). The experimental spectrum was 

reconstructed using two C at 2.00 Å and two Br at 2.45 Å and one Pd at 2.74 Å, justifying the structural model of the 

Pd-dimeric complex reported in scheme 5 of Figure 1c. 

Summarizing, the EXAFS results reported in Figure 18a,b allowed the authors to suggest the catalytic cycle reported 

in Figure 18c, that is closely related to the mechanistic model already postulated by Evans et al. [842] in which a 

dimeric species acts as the starting catalyst. Note that the formation of a dimeric species is also consistent with the 

reaction profile and the model postulated by De Vries, in which the species involved in the actual catalytic cycle are 

monomeric and dimeric species and not soluble palladium colloids [843]. 

We finally close this section briefly mentioning the study of Benson et al. [844] who recently investigated the 

electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction combining Re L3-edge XAS (10.5 keV) with 

DFT calculations. Authors were able to explain the high selectivity of the [Re(bpy)(CO)3Cl] family of catalysts for the 

reduction of CO2 in the presence of significant concentrations of H
+
 sources. 

4.2 Heterogeneous catalysis 
Nowadays, XAS-based methods on heterogeneous catalysts have become very advanced [76]: time-resolved and in 

situ/operando measurements have become standard [147, 282, 445, 446, 812]and enhanced space resolution has 

become available[154, 155, 314, 845]. Furthermore,  X-ray emission spectroscopy (XES) is more frequently used: 

HERFD [122, 767, 846] and valence band RIXS [847, 848] yield the electronic structure of the filled and unfilled 

density of states that is relevant to the bonding of the catalytic center. A small fraction of studies on heterogeneous 

catalysts deals with supported organometallic complexes and most of these, although not exclusively, are 

heterogenized homogeneous complexes [65, 678, 686, 849-861]. In contrast to supported metals and oxides, which 

contain many different surface sites and defects, the structure of organometallic complexes is precisely defined and 

obtaining structure – performance relations is more accessible. In a recent review, Takakusagi and coworkers 

summarized the structural determination of complexes on single crystal surfaces using total reflection fluorescence 

XAS [862], illustrating how the well-defined nature of the complexes facilitates structural characterization and its 

relation to performance. In this paragraph we summarize a selected number of typical examples and, even though this 

section focuses on X-ray absorption, we propose a quick survey of the literature about determining structure – 

performance relations that highlights how a single method generally does not provide definite answers while 

combining different methods, including theory, yields the desired relations. In most if not all cases, the defined nature 

of the complex contributed to the understanding of the structure – performance relationships. 

4.2.1 Supported metathesis catalysts, an early example 

A very early example of a heterogeneous complex was investigated at the SRS Daresbury in the early nineties. In this 

study, Mosselmans and coworkers investigated an alumina-supported molybdenum olefin metathesis catalyst during 

pretreatment and under catalytically-relevant conditions [863]. To this end, the catalyst was exposed to propylene. The 

time resolution achieved during the experiment was in the range of minutes, and was sufficient to observe the 

structural changes during the pretreatment using the XANES. In olefin metathesis, a carbon – carbon double bond is 

broken and a new one is formed. This redistribution of fragments of olefins is commercially applied in the synthesis of 

higher olefins from α-olefins in the SHELL higher olefins process [864]. More modern applications are found in the 

pharmaceutical industry. Metathesis remains a very active field of research and heterogenization of the organometallic 

complex is a main goal that could be of great benefit for the industrial processes. The question addressed by 

Mosselmans and coworkers was: what is the structure of the molybdenum complex on the alumina support and can the 

structure of the adsorbed complex be determined during reaction? Fitting of the EXAFS data of the Mo2(CH3CO2)4-
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derived catalysts identified, after exposure to propylene, the presence of two carbon atoms at the short distance of 1.88 

Å and two oxygen atoms at 2.06 Å. The latter were attributed to oxygen atoms that tethered the complex to the 

surface. The former were assigned to the possible alkylidene, Mo=CxHy, which is the proposed intermediate in the 

Chauvin mechanism. In this mechanism, for which Chauvin was awarded the Nobel-prize together with Grubbs and 

Schrock, a [2+2] cycloaddition of an alkene double bond to a transition metal alkylidene forms a metallacyclobutane 

intermediate. The metallacyclobutane can revert to give either the original species or a new alkene and alkylidene. 

4.2.2 Tuning selectivity by supported rhodium complexes 

Over the years, Gates and co-workers have synthesized many metal complexes on various supports and determined 

their structure and catalytic performance [865-876]. They highlighted that the support has a strong and defining 

influence on the structure of the complex or particle and as a result on the catalytic performance [877]. A recent series 

of publications [873, 878, 879] nicely illustrates the power of X-ray absorption-based methods to determine the 

structure or supported organometallic complexes and to relate the structure to catalytic performance, in this case 

selectivity. Besides X-ray absorption, complementary methods (notably infrared spectroscopy and detailed kinetic 

analysis) were necessary to yield the catalyst structures and the structure – performance relations. Molecular rhodium 

catalysts on support were obtained from rhodium acetylacetonate (Rh(C2H4)2). The supports used were faujasite in 

proton and sodium form (zeolite HY and NaY) and magnesia (MgO). The different catalytic behaviour observed for 

the different supported Rh complexes was explained in terms of different electronic properties and different extent of 

the electron transfer to the ligands. When supported on HY, the mononuclear complex dimerized ethylene to butane 

with 76% selectivity. Hydrogenation occurred when the support was MgO, even in case of monomers, and NaY. 

Moreover, after reductive pretreatment, rhodium clusters active in hydrogenation were formed. Table 1 shows the 

fitted EXAFS parameters of the complex supported on HY and MgO. Scheme 3 illustrates the structure of rhodium 

complexes on zeolite and relates it to catalytic performance. After deposition on HY and MgO, a mononuclear 

complex was formed and in the case of HY it was selective to dimerization of ethylene. After reductive treatment 

(entry 2), part of the mononuclear clusters transformed into rhodium clusters that were active in hydrogenation, 

yielding mainly ethane. Dimers formed on MgO after reductive treatment (entry 5), and like the mononuclear specie 

on MgO yielded hydrogenation only. 

 
Table 1. Structure and selectivity of Rh complexes on different supports. The reaction selectivity of ethylene conversion is to 

dimerization or hydrogenation. 

Entry Rhodium 

nucleation 

Support Rh – Rh 

coordination 

number 

Rh – Rh 

bond length 

Selectivity to 

dimerization / 

hydrogenation 

1 (as synthesized) mononuclear HY undetected undetected 76 / 24 

2 (after reduction) mononuclear 

and clusters 

HY 1.9 2.70 8 / 89 

3 (during reaction) mononuclear HY undetected undetected --- 

4 (as synthesized) mononuclear MgO undetected undetected 0 / 100 

5 (after reduction) dimers MgO 1.0 2.71 0 / 100 

 

 
Scheme 3. Summary of structure and catalyst performance of rhodium complexes on support. Depending on support and on the 

conditions, the catalyst adopts a different structure, which either dimerizes or hydrogenates ethylene. Mononuclear Rh(C2H4)2 on 
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the aluminium sites in zeolite HY selectively and uniquely yields butenes; reduction yields clusters that primarily hydrogenate 

ethylene to ethane. Reproduced with permission from ref. [879]. Copyright (2008) Elsevier. 

Thus, the authors identified the roles of the zeolitic acid site and of adsorption of the Rh(C2H4)2 complex on the zeolite 

above aluminium sites. If such structure was not formed, dimerization did not occur. Also, as soon as rhodium-

rhodium bonds were formed, which is indicative of small clusters, ethylene primarily underwent hydrogenation, even 

in the case of HY as support. The authors stressed rightfully that the synthesis of well-defined structures was essential 

to relate the differing catalytic selectivity to structural changes in the supported complex at the molecular scale. The 

solid support functions as a ligand to the organometallic complex, thus affecting its structure and catalytic 

performance. 

4.2.3 Solid porous ligands for catalysis by gold on support 

Catalysis by gold is a very active field of research and gold catalysts have recently been added to the toolbox of 

organic synthesis [880-882]. The most promising applications are cyclo-isomerization and C – C coupling reactions. 

Most of these are homogeneous catalysts (see section 4.1.4). Gold (sub)nanometer particles on support is also active 

for many reactions, such as water gas shift, CO oxidation, and hydrogenation reactions [872, 883]. Gold becomes 

active as its size decreases to below one nm or if it is cationic, however the literature is not consensual about that. 

Homogeneous gold complexes are versatile and ligand modification affects their catalytic performance. Gold 

complexes on support are much less studied that those in the homogeneous phase, even though the advantage of using 

heterogeneous catalysts is obvious as product separation from catalyst and thus catalyst re-use becomes easy. 

Recently, Vaclavik et al. described a Au(I) catalyst on a support, that was called solid porous ligand [884]. The 

support was a MOF functionalized with a phosphine group, yielding a P-MOF [885-887]. In homogeneous catalysis 

phosphines are universal ligands to transition metals that find widespread application in catalysis. Having a 

heterogeneous porous material that contains phosphine functional groups combines the benefits of structural versatility 

of homogeneous catalysis with the separation of heterogeneous ones. Using as linker the 4,4′,4′′-

phosphinetriyltribenzoic acid (tcpp; Scheme 4) and zirconium as inorganic unit, the P-MOF called LSK-1 was 

synthesized, obtaining a partial crystalline material characterized by a BET surface area (or number) of 1025 m
2
/g. 

Such large numbers are indicative of the large microporous volume. Electron microscopy identified the presence of 

structural units of about 0.5 nm, which could be columns of the inorganic [Zr6O4(OH)4]
12+

 units, connected by the 

organic linkers and separated by the micropores. Post-synthetic modification of the P-ligand with 

chloro(tetrahydrothiophene)gold , yielded the catalyst-precursor (LSK-1)-Au-Cl. Removal of chlorine was achieved 

by forming a gold-alkyne complex, that was the active catalyst (LSK-1)-Au-PA. The catalyst was active in the 

hydration of phenylacetylene and could be re-used four times, showing a significant loss of activity only after the first 

use. Gold catalysts are excellent catalysts also for oxazole synthesis (Scheme 5). Very large activity of the Au-P-MOF 

was observed, even faster than comparable homogeneous catalysts from literature [888, 889]. No gold reduction was 

observed, which commonly occurs in homogeneous gold catalysts. Because of the promising catalytic results, this 

catalyst was extensively characterized, including diffraction and NMR on all relevant elements that are NMR active. 

However, the gold center could not be directly observed with any of the methods, thus L3 RIXS and HERFD XAS 

were used to determine the gold oxidation state. Gold has a nominal oxidation state of +1 in the complex. RIXS and 

HERFD XAS at the Au L3 edge yield the gold electronic structure, which relates to oxidation state. Figure 19 shows 

the L3 RIXS and the HERFD XAS of (LSK-1)-Au-Cl. The high resolution data enable precise identification of 

spectral features [122, 125, 767, 846]. The intermediate white line intensity in the catalyst unambiguously identified 

the oxidation state of +1 of the gold complex: a careful comparison of its white line intensity to that of reference 

compounds enabled making the identification. In agreement with the indirect evidence of electron microscopy and P 

NMR no evidence of gold reduction or black gold formation was observed. 

 

 
Scheme 4. Linker and inorganic unit used to synthesize the P-MOF called LSK-1. Further modification with gold precursors 

yields a Au(I) on support catalyst. 
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(LSK-1)-Au-PA

CH2Cl2, 40 °C, 90 minPh N
H

O
O

N
Ph  

Scheme 5. Oxazole synthesis is catalysed by Au(I) catalysts: Cyclization of a propargylcarboxamide to oxazole. 

 

 
 

Figure 19. RIXS map of (LSK-1)-Au-Cl. On top is the X-ray emission spectrum. On the right the high resolution XAS is given. 

The intermediate white line intensity is indicative of the presence of Au(I). Adapted with permission from ref. [884]. Copyright 

(2013) WILEY-VCH. 

4.2.4 Silica supported polymerization catalysts 

Reactions of silica surface with organometallic species are of fundamental importance in heterogeneous catalysis [14, 

17, 20, 359, 678, 686, 890, 891 Corker, 1996 #457, 892-904]. The large use of amorphous silica as support for many 

heterogeneous catalysts is due to its high surface area, thermal and mechanical stability. In most of the cases, the 

active phase is formed upon reaction of the well defined organometallic precursors with surface silanol groups, whose 

concentration and type can be tuned by changing the temperature of the pre-treatments[359, 905]. When the grafting 

procedure is performed on a highly dehydroxylated silica, the grafted metal species can assume a single-site character 

[17, 906]. Several heterogeneous catalysts for olefin polymerization are supported on amorphous silica; the silica 

types involved are porous, with high specific surface areas and potentially reactive surface hydroxyl groups almost 

entirely upon the pore walls [907]. The first developed polyolefin catalyst based on silica was the Phillips catalyst for 

ethylene polymerization, where the active sites are diluted chromium centres [359, 908-910]. In such a case it was 

demonstrated that silica does not only play the role of an inert support, but directly influences the properties of the 

grafted chromium species in terms of accessibility, coordination ability and flexibility [359, 890, 908-911]. Indeed, 

Weckhuysen et al first [912], and Groppo et al. [359, 678, 686] successively showed that, upon grafting of H2CrO4 on 

high surface area silica, tetrahedral Cr(VI) species are obtained (left structure in the scheme in Figure 20a). These 

species are characterized by the typical sharp 1s3pd electronic transition (red XANES spectrum in Figure 20a) 

typical of 3d transition elements in Td-like geometry (vide supra the discussion related to Figure 9). The corresponding 

FT of the EXAFS spectrum (see inset) is dominated by a component at very low R due to the Cr=O double bond, 

being the Cr–O single bond with the silica surface just an high-R shoulder of the main component. Upon reduction in 

CO at 623 K, Cr(II) species characterized by an high coordinative unsaturation are obtained (see scheme and related 

XANES spectrum, blue curve in Figure 20a). The high coordinative unsaturation of such Cr(II) species is testified by 

the ability to coordinate, at liquid nitrogen temperature, up to three CO ligands, see green spectrum in Figure 20b 

showing an intense second shell peak due to the strong multiple scattering contribution typical of linear metal 

carbonyls [715, 716, 858, 890, 913]. The direct structural proof that an important rearrangement of the local 

environment of the Cr(II) site at the silica surface occurs upon CO adsorption has been obtained by the experiment of 

Gianolio et al. [890], summarized in Figure 20b. The CrO distance of 1.86 ± 0.03 Å of the reduced Cr(II) species 

(blue spectrum) is stretched to 1.935 ± 0.007 Å upon formation of surface >Cr
II
(CO)3 adducts, being the CO 
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molecules located at 1.995 ± 0.008 Å [890]. This experimental evidence supported previous Raman study by Damin et 

al. [914]. 

 
Figure 20. Part (a) top: scheme of the reaction followed by XAS. Part (a) bottom: XANES spectra of the oxidized (red curve) and 

CO-reduced (blue curve) Cr/SiO2 systems. The inset reports the modulus and the imaginary part (full and doted curves, 

respectively) of the k
2
-weighted, phase-uncorrected, FT of the EXAFS signals collected together with the XANES spectra 

reported in the main part. Part (b) top: scheme of the reaction followed by XAS (Cr blue, O red, C grey, Si yellow). Part (b) 

bottom: k
3
-weighted, phase-uncorrected, FT of the EXAFS signals collected at 77 K on the reduced catalyst before (blue) and after 

(green) CO adsorption. Unpublished figure reporting experimental data from refs [359] and [890] for parts (a) and (b), 

respectively. 

Amorphous silica was successively employed as a support also for Ti-based Ziegler-Natta catalysts for ethylene 

polymerization [907, 915, 916]. The simple combination of titanium tetrachloride on silica yielded low-reactivity 

catalysts; however, the combination of a magnesium compound with a porous silica material, followed by reaction 

with titanium tetrachloride, resulted in a catalyst showing an enhanced reactivity and the excellent handling and 

polymer particle control characteristic of Phillips’ chromium catalysts [907, 915, 916]. In the frame of a wider work 

devoted to the physical–chemical characterization of silica-supported Ziegler-Natta catalysts based on 

tetrahydrofuranates of TiCl4 and MgCl2, Groppo et al. performed a detailed spectroscopic investigation on the 

reactivity of titanium chloride tetrahydrofuranates (TiCl4(thf)2 and TiCl3(thf)3) towards a polymer-grade silica and on 

the structure of the resulting Ti-grafted sites [811, 917]. 

The determination of the structure case of Ti chloride tetrahydrofuranate complexes grafted on silica discussed was 

very complex, for two main reasons. First, the starting complexes are six-folded coordinated and are less reactive with 

respect to the pure metal chlorides due to the presence of the thf ligands. Second, the employed silica was not highly 

dehydroxylated, therefore, the number of possible structures resulting from the grafting of the Ti complexes is 

theoretically much larger than those hypothesized for TiCl4 alone on highly dehydroxylated silica [918, 919]. While 

the occurrence of Ti grafting through surface ≡SiOH groups can be easily demonstrated by IR spectroscopy (by 

looking at the consumption of the IR absorption bands due to surface ≡SiOH groups in the (OH) stretching region 

[920, 921]), insight into the geometric and electronic structure of the grafted Ti sites was obtained by Groppo et al. 

combining UV-Vis, XANES, EXAFS and XES spectroscopies [811]. These techniques clearly evidenced a structural 

and electronic modification of the TiCl4(thf)2 precursor upon grafting on the SiO2 surface, see Figure 21a-d. 

To understand the potential complexity of the situation, we should imagine that, on a structural point of view, the 

grafting of TiCl4(thf)2 on the silica surface should occur through the loss of some ligand (Cl or thf) and the formation 

of new SiOTi bonds. Grafted Ti(IV) species should then be characterized by three different fist shell ligands: TiO 

bonds from thf, TiO bonds form the silica surface and TiCl bonds. Without any additional constraints from 

independent techniques the EXAFS fit was highly instable because of the too high correlation between bond distances, 

coordination numbers and Debye-Waller factors of the three contributions [811]. Authors first hypothesized that the 

number of new Si–O–Ti bonds substitutes all ligands that have been lost, in this case once end up with a six-fold 

coordinated Ti (s-models in the top part of Figure 21e). Authors optimized, at DFT level (using the ORCA 2008 code 

[670]), the structures obtained forming 1, 2, 3 or 4 SiOTi bonds with the silica surface resulting in eleven different 

cases (clusters s1-s11) depending whether each SiOTi bond resulted from the loss of a Cl or of a thf ligand. Then 

authors hypothesized that the TiCl4(thf)2 precursors form n SiOTi bonds with the surface (n= 1-4), losing n+1 
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(resulting in penta-coordinated Ti centres, p1-p11 clusters) or n+2 (resulting in tetra-coordinated Ti centres) ligands. 

From the structure of the optimized clusters authors computed the theoretical XES spectra and compared them to the 

experimental one (Figure 21e). Authors defined and agreement factor  between computed and experimental XES 

spectra and ranked the different simulations on the basis of . None of the tetra-coordinated cluster was able to 

satisfactory reproduce the experimental spectrum, the same holds for a dimeric species, proving the isolated nature of 

the grafted Ti species [811]. Among the 32 different simulated clusters those resulting in the best  values are reported 

in the top part of Figure 21e and the corresponding simulated XES spectra are reported in the bottom part. 

In the same work, Groppo et al. [811] also investigated the catalyst obtained by grafting TiCl3(thf)3 Ti(III) precursor. 

All the experimental data allowed the authors to conclude that both structural and electronic properties of silica-

supported samples are very similar, irrespective of the starting precursor, i.e. TiCl4(thf)2 or TiCl3(thf)3. In both cases, 

most of the chlorine ligands originally surrounding the Ti sites were substituted by oxygen ligands upon grafting on 

silica, as happens for the more reactive and geometrically different TiCl4 precursor [918, 919]. The electronic 

properties of silica-supported Ti sites are largely different from those of the corresponding precursors, and in both 

cases most of the grafted Ti sites have a formal oxidation state of +4. Besides the interest in Ziegler-Natta catalysis, 

the study of Groppo et al. [811] is of relevance in the field of organometallic chemistry and reactivity of metal-oxide 

surfaces towards organometallic compounds and demonstrated the key role of the synergic use of complementary 

experimental techniques to get insights into the properties of the grafted sites [922]. 

 
Figure 21. Part (a): Phase-uncorrected modulus (bold lines) and imaginary parts (lines) of the k

3
χ(k) EXAFS function for 

Ti
IV

/SiO2 grafted on silica (red) and of the TiCl4(thf)2 precursor (blue). Parts (b): as part (a) for the vtc-XES spectra. The Kβ” and 

Kβ2,5 regions are indicated with white and grey boxes, respectively. A and B features identify oxygen and chlorine ligands, 

respectively. Part (c): as part (a) for the UV-Vis spectra. Part (d): as part (a) for the XANES spectra. Part (e): experimental XES 

spectrum of Ti
IV

/SiO2 reported in part (b) (exp) and selection of spectra simulated by means of the minimal clusters p5, p4, s7, s3, 

and s6. The labells refer to the names of the clusters reported in the upper part. The spectra have been translated for clarity. In 

order to evaluate the agreement between the simulated and the experimental vtc-XES spectra the zero of the energy was shifted to 
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the maximum of the Kβ” characteristic of oxygen ligands. Unpublished figure reporting spectra and schemes published in ref. 

[811]. 

4.3 Photoactive coordination compounds 
Photoexcited states of coordination compound play key roles in luminescent materials and in processes and devices 

converting solar energy to fuels or electricity, such as photocatalysis and dye-sensitized solar cells (DSSCs). In this 

section we review the literature concerning the use of synchrotron radiation techniques to characterize photoactive 

coordination compounds applied in the fields of luminescence, photocatalysis and solar energy conversion. 

4.3.1 Luminescent coordination compounds 

Johansson and coworker [923] employed a combination of HXPES and XAS to map the electronic structure of the 

complexes [Fe(bpy)3]
2+

, [Ru(bpy)3]
2+

 and [Os(bpy)3]
2+

 (bpy = 2,2′-bipyridine). They compared experimental results 

and electronic structure calculations to explain the trends observed in oxidation potentials and absorption spectra of 

these coordination compounds, in terms of metal ligand interactions and spin orbit coupling. The HXPES 

measurements show that the C 1s peaks for the three complexes are quite similar, indicating a low contribution of the 

metal in the spectra. The main component largely contains two features separated by 1.0 eV and with an intensity ratio 

of about 2:3. The general structure may be expected from the pyridine structure with two out of the five carbons 

bonding to nitrogen. The N 1s peaks are also rather similar in term of peak width, but the binding energy varies. The 

shift was attributed to a different interaction between the N and the different metal centres, as confirmed by the N K-

edge XAS measurements. The spectra of the highest occupied electronic structure (see Figure 22) display a trend 

towards higher binding energy of the intensity maximum, passing from [Fe(bpy)3]
2+

 to [Ru(bpy)3]
2+

 and [Os(bpy)3]
2+

. 

However, a clear splitting is observed in the HXPES spectrum of [Os(bpy)3]
2+

. Being the lowest binding energy states 

(HOMO levels) closely connected to the redox potential, the authors related the fine structure in the HXPES spectrum 

of [Os(bpy)3]
2+

 to the abnormal trend in the oxidation potentials of the three complexes, which are 1.03, 1.20, and 0.81 

V vs SCE for [Fe(bpy)3]
2+

, [Ru(bpy)3]
2+

 and [Os(bpy)3]
2+

 (in acetonitrile), respectively. The HXPES spectrum of 

[Os(bpy)3]
2+

 displays an asymmetric structure that can be deconvoluted with two peaks having an intensity ratio of 

2:1. These transitions were modelled using relativistic CASSCF (complete active space self-consistent field) 

calculations including spin orbit coupling. The calculations showed that the fine structure in the HXPES spectrum of 

[Os(bpy)3]
2+

 is primarily due to a large spin orbit coupling in the final Os(d5) state, explaining the anomaly in the 

trend of oxidation potentials of the three complexes. The influence of the different metal ions on the state formed upon 

light absorption was investigated by N K-edge XAS. Comparing the N K-edge spectra for the three complexes, clear 

differences are observed. In particular, the third peak shows a strong energy shift. The first two peaks were attributed 

to π* resonances. The third resonance was related to a nitrogen σ* orbital directed toward the metal center and mixed 

with a metal d orbital. This explains the large shift in energy for the different complexes due to differences in 

interaction with the different metals. The difference between π* and σ* excitations increased for [Fe(bpy)3]
2+

 to 

[Ru(bpy)3]
2+

 and to [Os(bpy)3]
2+

. Finally, the energy difference between the energy of the highest occupied valence 

structure and the energy of the lowest N K-edge XAS resonance explains the trends observed in UV-Vis excitation 

spectra and specifically the decrease in excitation energy for [Os(bpy)3]
2+

 compared to [Ru(bpy)3]
2+

. 

 
Figure 22 HXPES spectra of the highest occupied valence electronic structure of the complexes measured at 2800 eV. 

Reproduced with permission from ref. [923]. Copyright (2010) AIP Publishing. 

In 2007, Pascu and coworkers presented a study concerning the synthesis and characterization of a new family of 

M(II) bis(thiosemicarbazonato) complexes (M = Ni, Cu and Zn) [924]. The authors aimed to obtain potentially 

biologically active metal complexes suitable as imaging probes and therapeutic agents. The Zn and Cu complexes 
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were found to be highly cytotoxic in MCF-7 cancer cell lines, the Zn complex is intrinsically fluorescent while the Cu 

complex could be of interest as a PET imaging reagent. The three complexes were characterized in solution by 

spectroscopic methods, while their solid state structures were determined by single crystal XRD. However, the 

crystals obtained for the Zn and Cu complexes were extremely small and weakly diffracting and a synchrotron 

radiation source was necessary to collect data suitable for structure solution and refinement. 

In the attempt of developing artificial photosynthetic systems, Takahashi and Kobuke prepared a zinc complex of 

bis(1-methylimidazolyl)-m-gable porphyrin, capable to self-assemble into macrocyclic porphyrin arrays by slipped-

cofacial dimer formation, through non-covalent bonds [925, 926]. The authors isolated two different assemblies that 

gave round-shaped particles on solid substrates, when analysed by atomic force and scanning tunneling microscopies. 

To determine the exact aggregation number, they investigated the system using synchrotron radiation SAXS. The plot 

of scattering intensity versus the square modulus of the scattering vector (Guinier analysis) provided radius of 

gyrations for the predominant component that are compatible with the radius of hexameric and pentameric 

macrorings. Interestingly, the porphyrin macrorings did not show any fluorescence quenching by assembly formation, 

suggesting that the macrorings of gable porphyrins represent a good model for an artificial light-harvesting complex. 

Recently, Martínez Casado and coworkers reported two luminescent MOFs based on Pb(II) complexes [927], having 

formulas [Pb2(btr)4(4,4′-bpy)(H2O)]n and [Pb2(btr)4(bpe)(H2O)]n (where btr = butyrate; 4,4′-bpy = 4,4′-bipyridine and 

bpe = 1,2-bis(4-pyridyl)ethane). The two materials present interesting optical properties. When excited by UV 

radiation they show intense fluorescence with structured emission bands, denoting a strong ligand-centred (LC) 

character. The emission lifetime values, in the nanosecond scale, indicate that despite the high atomic number, the 

intersystem crossing (ISC) is not efficient enough to promote the population of triplet states, likely due to the relative 

ionic character of the metal–ligand bond. Nevertheless, the large Stokes shifts reveal that ground and excited states are 

significantly distorted to each other. Both materials present very similar structures that where solved by synchrotron 

radiation single crystal XRD. The metal ions are organized in dinuclear units, where the Pb atoms are bonded through 

double -oxo-carboxylate from two btr ligands and one -aqua which are linked by means of four oxo-carboxylate 

bridges to two adjacent dinuclear entities, building a double metal-chain. The 4,4′-bpy and bpe act as bismonodentate 

ligands, linking two consecutive Pb(II) chains, to achieve the final 3D architecture. The btr tiles fill the interstitial 

voids among the double chains, avoiding the inclusion of crystallization water molecules in the structures. 

Recently, Stock and coworkers synthesized five new bismuth carboxylates based on pyromellitic, trimellitic and 

trimesic acids as linkers [928]. Their luminescence properties are dominated by a combination of short-lived linker 

fluorescence and long-lived Bi(III) phosphorescence, characteristic of Bi(III)-containing solids. Exceptionally long 

Bi(III) emission decay times of about 1 ms were observed at room temperature. The crystal structures of the new 

compounds were determined using laboratory single crystal XRD data. To get a better understanding of product 

formation, the authors monitored the crystallization processes by in situ energy-dispersive X-ray diffraction 

(EDXRD), see Section 2.3.2. EDXRD has widely been applied to follow the crystallization (extract kinetic 

parameters, detect crystalline intermediates and observe phase transformations). In EDXRD studies, intense white-

beam synchrotron radiation is employed to achieve high time resolution (< 1 min) while using conventional reaction 

vessels in the experiments. The white beam is sufficiently intense to penetrate steel or glass autoclaves, and thus 

reactions can be investigated without imposing an external influence on the reaction mixture provided no beam-

sensitive solvents are used. The in situ EDXRD experiments showed that bismuth carboxylates crystallize after very 

short reaction times and crystalline intermediates appear within minutes. In addition, the authors were able to isolate 

two intermediates by quenching of the reaction mixtures. Their crystal structures were resolved using laboratory and 

synchrotron XRPD data and allowed to establish a possible reaction pathway. Considering such results, the authors 

suggest that due to the long reaction times commonly used in the synthesis of bismuth carboxylates (usually days, up 

to a week), metastable intermediates may generally be overlooked and several systems should therefore be 

reinvestigated. 

Lanthanide complexes with organic ligands have photoluminescence properties that are favourable for a broad range 

of optical applications. However, they suffer of poor thermal stability and low mechanical strength. One solution is to 

immobilize the complexes in a stable rigid matrix. 

Carlos, Gonçalves and coworkers obtained an enhanced Eu(III) luminescence by immobilizing the complex 

Eu(NTA)3·2H2O (NTA = 1-(2-naphthoyl)-3,3,3-trifluoroacetonate) in the ordered mesoporous silica MCM-41 

functionalized with a chelating pyrazolylpyridine ligand covalently anchored to the support (MCM-41-L2) [929]. The 

supported material MCM-41-L2/Eu was characterized employing a combination of vibrational spectroscopy and ab 

initio calculations. Moreover, Eu L3-edge XAS spectra were measured in the solid state at room temperature for 

Eu(NTA)3·2H2O, MCM-41-L2/Eu, and for the model complex Eu(NTA)3L1 (L1 = ethyl[3-(2-pyridyl)-1-

pyrazolyl]acetate). The normalized XANES data reveal single, intense edge resonances at 6.981 keV, in agreement 

with the Eu(III) reference compound EuCl3·6H2O. The absence of any additional peaks to the low energy side of the 

Eu(III) resonance confirms that the samples do not contain any divalent or intermediate-valent Eu. For Eu(NTA)3L1 

and MCM-41-L2/Eu, the amplitude and frequency of the oscillations on the high energy side of the Eu(III) resonance 
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are identical, indicating very similar local Eu coordination environments. For the adduct Eu(NTA)3(1,10-

phenantroline), the Eu–O distance was found to be in agreement with the single crystal XRD data. The refined 

coordination numbers for the first shell indicate a contribution from the neutral ligands in addition to the six oxygen 

atoms of the NTA groups. The replacement of the H2O ligands in Eu(NTA)3·2H2O by bidentate pyrazolylpyridine 

ligands could not be confirmed by the EXAFS analysis alone, due to the similarity of the backscattering amplitudes 

and phases for O and N atoms. However, there is a visual match between the EXAFS spectrum of MCM-41-L2/Eu 

and the model complex Eu(NTA)3L1. The second shell fitted to the Eu L3-edge EXAFS of the three compounds 

corresponds mainly to the C atoms of the NTA CO groups. 

Hasegawa and coworker used molecular thin film techniques to obtain polarized electronic transition of lanthanide 

(III) complexes. In particular the authors report the first observation of a polarized ff-emission in a Tb(III) complex 

having 1,10-phenanthroline as a ligand, on a polyvinyl alcohol (PVA) film surface [930]. The emissive film was 

produced by spin-coating acetonitrile solutions of Tb(III) after treatment with 1,10-phenanthroline solutions on 

stretched PVA films. The electronic behaviour and the coordination between the ligand and metal ion are strongly 

correlated, thus Hasegawa and coworker performed XAFS measurements to get information on the local structure of 

Tb(III) on the PVA film. The EXAFS spectra at the Tb L3-edge of the Tb(III)-phenanthroline compound on the 

stretched and the unstretched PVA film show that the mean bond distances between Tb(III) and its nearest neighbour 

atoms of the 1,10-phenanthroline ligand on the film are close to those of the reference samples Tb(NO3)3H2O and 

[Tb(1,10-phenanthroline)2(NO3)3]. The FT of the EXAFS spectrum, in the first coordination shell region, shows that 

the mean atomic distances between Tb(III) and the coordinating atoms and the coordination number on the 

stretched/unstretched films are similar to those in the reference samples. However, at higher distances there are 

differences in the spectral features around 3–4 Å between the PVA film samples and [Tb(1,10-

phenanthroline)2(NO3)3]. This indicates that the Tb(III) compound on the PVA film has a slightly different 

coordination environment compared to that in [Tb(1,10-phenanthroline)2(NO3)3]. 

Rocha, Paz and coworkers investigated the use of rare-earth elements as metallic nodes in the construction of 

photoluminescent layered lanthanide MOFs. They obtained a series of coordination polymers with carboxylate- and 

phosphonate-based organic linkers, namely [Ln(H3NMP)]·1.5H2O (where Ln = La, Pr, Nd, Sm, Eu and H6NMP = 

bis(phosphonomethyl)aminomethylphosphonic acid) [931], [Ln(H2cmp)(H2O)] (where Ln = Y, La, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er and H5cmp = 2-(bis(phosphonomethyl)amino)acetic acid) [932] and [Ln(H2cmp)]·xH2O (where 

Ln = Nd, Eu, H5cmp = 2-(bis(phosphonomethyl)amino)acetic acid and x < 1) [933]. The authors reported the 

synthesis, structural characterization, catalytic activity, and photophysical properties of the new materials. Due to the 

small crystallite size and to the occurrence of connection mistakes during self-assembly of the organic ligands and 

rare-earth centres, materials could only be isolated as microcrystalline powders. Hence, the authors combined 

synchrotron radiation (micro-crystal and high-signal-to-noise powder diffraction) and high-resolution solid-state NMR 

techniques in order to unveil the structural details of these materials. XRPD data and information from solid-state 

NMR revealed layered materials built up from single crystallographically independent Ln(III) centres, in a highly 

distorted dodecahedral coordination environment. Connectivity through H3NMP
3–

 or H2cmp
3–

 anionic ligands leads to 

undulated tapes of Ln(III). Inter-tape connections are assured by the bridging deprotonated phosphonate groups, 

leading to the formation of a neutral two-dimensional network. Individual layers close pack, mediated by hydrogen 

bonding interactions. In the [Ln(H2cmp)(H2O)] system, the H2cmp
3–

 anion behaves as a heptadentate ligand and one 

water molecule is present in the first coordination sphere of the lanthanides. This coordinated water has an important 

impact on the photoluminescence properties, acting as a highly efficient non-radiative channel. On the contrary, water 

is not included in the first coordination sphere in the case of [Ln(H3NMP)]·1.5H2O and [Ln(H2cmp)]·xH2O, where 

uncoordinated water molecules of crystallization occupy the interlayer spaces. Variable-temperature XRPD reveals 

that the [Ln(H3NMP)]·1.5H2O system is structurally robust and removal of the water molecules leads to a new 

crystalline phase with a smaller interlayer space. 

The coordination complex tris(8-hydroxyquinolinato)aluminium (Alq3) is one of the most attractive 

electroluminescent compounds, successfully used as green emitter and electron transport material in several OLEDs. 

Despite this, there have been few studies using synchrotron techniques meant to characterize the electronic structure of 

Alq3 and to monitor the chemical processes that Alq3 may undergo during fabrication or degradation of light-emitting 

devices [934-937]. 

In 2008, DeMasi et al. reported an extensive experimental and theoretical investigation of the electronic structure of 

thin films of Alq3 using a combination of XAS, XES (and RIXS) and XPS, together with DFT calculations [938]. The 

C and N K-edge XAS spectra were in agreement with earlier XAS studies [934, 936]. The XPS measurements at the 

C, N and O 1s core levels were performed to probe the valence band electronic structure of Alq3. After aligning the 

main features, the valence band XPS results are in excellent agreement with the DFT calculated total density of states 

and with earlier studies [934, 939]. XPS measurements at both N and O 1s core levels display single peaks at binding 

energies of 400.1 and 531.6 eV, respectively. Conversely, XPS measurement of the C 1s reveals a broad peak centred 

at a binding energy of 285.3 eV, which can be deconvoluted into three components corresponding to C atoms in C–C, 
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C–H, and C–N/O environments. For what concern XES measurements, high resolution measurements using a 

Nordgren-type instrument with narrow entrance slits require a small photon spot with a high photon flux, and long 

collection times. These conditions lead to significant photon-induced beam damage in Alq3. The authors bypassed the 

beam damage problem by continuously translating the Alq3 films in front of the focused X-ray beam. Figure 23 

compares the C, N, and O K-edge XES spectra for both stationary and continuously translated Alq3 films, and 

illustrates clearly the effect of the X-ray photon beam. 

 
Figure 23. (a) carbon, (b) nitrogen, and (c) oxygen K-edge XES spectra from translated and stationary Alq3 films, collected with 

incident excitation energies of 293.2, 407.7, and 539.0 eV, respectively. The feature identified as Ω refers to the elastically 

scattered photons while the emission from the HOMO state is labelled with δ. Reproduced with permission from ref. [938]. 

Copyright (2008), AIP Publishing LLC. 

The N K-edge XES spectrum from the stationary film shows fewer spectral features and less definition than that from 

the translated film Figure 23b. This is expected since valence band features are particularly sensitive to any changes 

related to broken molecular bonds. The feature at 397.0 eV marked as δ can be identified as emission from the HOMO 

state. The absence of this feature in the spectra from the stationary films highlights how electronic structure 

information obtained from beam-damaged samples is problematic. The different results obtained from translated and 

stationary films are consistent with the conclusions from the XPS studies that Alq3 partly decomposes by ejecting 

nitrogen out of the molecule [935]. For the O K-edge XES spectra, a distinct change in the overall spectral shape is 

also noted. A significant broadening and energy shift of the emission from the HOMO state δ in the XES spectrum 

from the damaged film can be seen in Figure 23c. Less dramatic changes between the emission from translated and 

stationary films are observed in the C K-edge XES spectra. This is due to the broad range of binding energies 

exhibited by the C 1s states as a result of the different local bonding environments of the C atoms. RIXS 

measurements were performed to probe the C, N and O 2p partial densities of states. A good agreement was found 

with the results of DFT calculations. Furthermore, RIXS at the C K-edge is shown to be able to measure the partial 

density of states associated with individual C sites of the molecule. 

In a paper by Mao and coworkers [940], XAS and XES have been applied to investigate the effect of carbon nanotube 

(CNT) on the performance of OLEDs. The authors reported that the incorporation of a CNT layer, between the 

cathode and the organic layer, enhances the electron injection efficiency and the luminance characteristics of OLEDs, 

due to the increasing of the electric field. In addition, they examined the influence of CNT incorporation on the 

LUMO and HOMO levels of the organic material. XAS and XES measurements were performed at the C K-edge on 

OLEDs based on the complex Alq3. The XES spectra of Alq3, used to yield the HOMO level of molecule, do not show 

any significant change after incorporating CNTs. In contrast, the LUMO level as derived from the XAS spectra 

exhibits a reduction of approximately 0.3 eV after CNT incorporation. These results indicate that the incorporation of 

CNT could effectively decrease the barrier for electron injection, thus contributing to the improved OLED device 

performance. 

The degradation due to exposure to light of materials commonly used in OLEDs is the principal weakness of these 

devices. In a recent paper, Brito, Rocco and coworkers [941] monitored the degradation mechanisms caused by light 

exposure of Alq3 thin films. They monitored the UV photodegradation through XAS at the C, N, O K-edges and Al L-

edges and XPS at the C, N, O 1s core levels and Al at the 2s and 2p core levels. The light exposure was simulated 

using three UV irradiation wavelengths, namely 254, 365 and 307 nm. The unoccupied molecular orbitals (LUMOs) 

of Alq3 were probed using XANES in TEY mode. Attenuation of peak intensities was observed for all irradiations, 

although exposure at 254 and 365 nm caused larger degradation, as observed by results at the C and N K-edge. This 
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was attributed to changes in the chemical environment with damage of the π-system of the molecule with consequent 

loss of electroluminescence and electron transport properties, and formation of dark emissive zones. XPS 

measurements from non-irradiated and irradiated Alq3 thin films at 307 nm were also performed. While the Al peaks 

were less affected, changes in peak intensities and energy shifts for C, N and O were much more dramatic, this was 

related to the breakdown of charge conductivity. 

4.3.2 Photocatalysts 

A promising way to address the challenges of securing cheap and renewable energy sources is to design catalysts 

capable of promoting light-induced water-splitting into hydrogen and oxygen. The enzyme responsible for water 

oxidation in all oxygenic photosynthetic organisms (photosystem II, PS II) is characterized by a core containing a 

Mn4CaO4 cluster. The history of the structural research on the Mn4CaO4 cluster in photosystem II overlaps the history 

of the development of the experimental method of XAS, and the background of XAS studies on photosystem II has 

been reviewed in detail [942-945]. 

The Mn4CaO4 cluster has inspired the development of synthetic manganese catalysts for solar energy production 

[946]. An efficient manganese water-oxidation photocatalyst was prepared by doping a tetranuclear manganese cluster 

[Mn4O4L6]
+
 (L = diarylphosphinate), into a Nafion polymer matrix coated on a glassy carbon electrode [947-951]. 

This device was shown to sustain water oxidation catalysis for an extended period on illumination with visible light 

and application of a potential bias. However, the structure of this system was reanalysed by Hocking, Spiccia et al. by 

in situ Mn K-edge XAS studies, in order to elucidate the mechanism of catalysis [952, 953]. They found that the 

cluster embedded in Nafion dissociates during catalytic cycling, generating Mn(II) compounds which are then 

reoxidized to form dispersed nanoparticles of a disordered Mn(III/IV) oxide phase. The XANES spectrum following 

loading into Nafion (Figure 24, State 1) shows a significant shift in the XANES intensity to lower energy, which is 

consistent with the reduction of the Mn(III/IV) centres to mononuclear Mn(II) species. This peak is lost upon electro-

oxidation, the XANES becomes similar to that of the initial [Mn4O4L6]
+
 and typical of an oxidized Mn(III/IV) product 

(Figure 24, State 2). However, a careful analysis of the EXAFS reveals that the material formed upon electro-

oxidation is more ordered. Exposure of an electrode in State 2 to light releases O2 while regenerating the Mn(II) 

species (Figure 24, State 3). An electrode in State 3 could be immersed in electrolyte and oxidized electrochemically 

to State 4 giving XANES and EXAFS consistent with the disordered Mn(III/IV) oxide phase deposited on the original 

electrode (Figure 24). The existence of two clean isosbestic points in repeat experiments indicates a reproducible 

interconversion between reduced Mn(II) species and the oxidized Mn(III/IV) oxide phase. Finally, the water oxidation 

activity was found to be comparable to that obtained with other Mn(II) compounds in Nafion. This study demonstrated 

that the metal complex is essentially a precursor of water-oxidation catalysts, providing an accessible source of metal 

ions needed for the assembly of a high-surface-area material with high catalytic activity. The behaviour of Mn in 

Nafion therefore parallels its broader biogeochemistry, which is dominated by cycles where light sensitive Mn(III/IV) 

oxides are produced by bacteria, and then dissolve by photoreduction to Mn(II) and oxygen [953]. 

 
Figure 24. Mn K-edge XANES of a Nafion-coated [Mn4O4L6]

+
-loaded glassy carbon electrode measured in different “states” of 

photochemical cycling. State 1 = initial load; State 2 = State 1 + 1.0 V (versus Ag/AgCl) applied potential in electrolyte; State 3 = 

State 2 + 40 minutes of light excitation in electrolyte; State 4 = State 3 + 1.0 V applied potential in electrolyte; State 5 = State 4 + 

20 minutes of light excitation in electrolyte. Two clean isosbestic points can be observed indicating that repeated cycling between 

an oxidized birnessite-like state and a reduced Mn(II) state can be achieved. Adapted with permission from ref. [952]. Copyright 

(2011) Nature Publishing Group. 

Light-induced water-splitting to generate reactive species is only half of the goal of artificial photosynthesis. The long-

standing project is to mimic plants and other photosynthetic organisms to make high-energy chemicals, such as H2 or 

reduced forms of carbon. Many green algae and cyanobacteria contain an enzyme that can convert the released 
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protons into dihydrogen. An ideal solution would be if H2 could be produced by a direct photocatalytic water splitting 

reaction. 

The first real single-component bifunctional catalytic system was reported by Sakai et al. using the [Pt(tpy)Cl]Cl 

complex (tpy = 2,2′:6′,2′′-terpyridine), which acts both as a photosensitizer and H2-evolving catalyst in aqueous media 

under visible-light illumination [954]. The formation of the hydride-diplatinum(II, III) by cooperative action of 

adjacent Pt complexes was postulated to occur as intermediate species. However, evidence of the local structure and 

electronic transition during the photocatalytic processes was vague and some earlier studies suggest that the metallic 

Pt(0) is the main contributor to catalytic activity. Yamashita and coworkers investigated such system to gain direct 

information about the nature and coordination chemistry of active species, in particular to determine whether the 

active Pt species are in a monomeric or colloidal form. They performed in situ XAS measurements of the reaction 

mixtures under visible irradiation, to determine changes in the electronic structure and chemical environment of the 

[Pt(tpy)Cl]Cl during photocatalytic H2 evolution [955]. As evidenced by XANES and EXAFS results, there is no 

evidence of Pt(II) species being converted to colloidal platinum during H2 reaction, demonstrating that the Pt(II) 

monomeric species are the active catalyst. 

The integration of metal complexes with nanostructured porous inorganic materials having rigid structures has been 

intensively investigated in order to construct functional supramolecular materials. Recently, Yamashita and coworkers 

reported two new hybrid photocatalyst obtained by intercalation of [Pt(tpy)Cl]Cl into layered niobate (K4Nb6O17) or 

into mesoporous silica (MCM-48), with the aim of developing recyclable photocatalysts [956-958]. The exploitation 

of host−guest interactions within restricted spaces confers the new supramolecular materials unique 

photoluminescence and photocatalytic properties. Unlike the free Pt complex in solution, the intercalated Pt 

complexes in close proximity to each other exhibit photoluminescence emission due to the 
3
MMLCT (triplet metal–

metal-to-ligand charge-transfer transition), moreover H2 evolution in aqueous media in the presence of EDTA under 

visible-light irradiation is achieved. The photocatalytic activity significantly varies according to the amount of Pt 

loadings, in good accordance with the increasing intensity of the luminescence emission. XAS measurements were 

conducted to elucidate the electronic structure and chemical environment of the Pt complex in the supramolecular 

materials. Pt L3-edge XANES spectra show that anchored samples have slightly higher intensity peaks compared to 

free [Pt(tpy)Cl]Cl; suggesting that the intercalated Pt species are in a slightly electron-deficient state, because of the 

decrease in -donor electrons by replacement of chloride by a nitrogen (MCM-48) or an oxygen (K4Nb6O17) atom at 

the fourth coordination site. In the Pt L3-edge EXAFS spectra, all samples show a strong peak around 1.5 Å that can 

be ascribed to a Pt−N bond and a small second shell at ca. 2.4 Å, attributable to adjacent carbon atoms. This validates 

a tridentate binding structure for Pt(II). In the case of the [Pt(tpy)Cl]Cl complex, an additional peak due to the Pd−Cl 

bond is observed around 1.8 Å. This peak completely disappears after the intercalation step, suggesting that the 

intercalation is accompanied by the replacement of the fourth coordinated ligand from chloride to nitrogen (MCM-48) 

or oxygen (K4Nb6O17) atoms. The samples with high Pt loadings exhibit an additional peak at around 3.5 Å, ascribed 

to the short Pt···Pt interactions. The authors suggested that such intercalated complexes behave as a single-component 

bifunctional catalysts capable of visible-light photosensitization associated with the 
3
MMLCT excited states and 

hydrogenic activation to evolve H2. Moreover, the XAS spectrum of the recovered material after the photocatalytic 

reaction is identical to that of the fresh catalyst, indicating no changes in the electronic configuration and local 

structures. This was interpreted as clear evidence that the molecular species rather than a colloidal form are 

responsible for the catalysis. 

Recently, Rosseinsky and coworkers reported two porphyrin MOFs based on Al-carboxylate coordination chemistry: 

H2TCPP[AlOH]2 and ZnTCPP[AlOH]2, where TCPP = meso-tetra(4-carboxyphenyl)porphyrin [959]. The two 

compounds demonstrated to be active photosensitizer for visible-light-driven water-splitting, in a system using 

colloidal Pt as catalyst. The crystal structures of the new materials were solved and refined from synchrotron XRPD 

and confirmed by solid-state NMR spectroscopy. The linker consists of four benzoate groups around the central 

porphyrin core. Each porphyrin is coordinated to eight aluminium centres through the four carboxylate groups, each 

bridging two aluminium units. The aluminium coordination consists of four carboxylate-derived oxygen atoms in the 

equatorial plane and two 2 axial OH
–
 bridging adjacent Al(III) centres to form an infinite Al(OH)O4 chain. The Zn

2+
 

ion in ZnTCPP[AlOH]2 is at the center of the porphyrin ring, in square planar coordination. 

4.3.3 Dyes for solar energy conversion 

Dye-sensitized solar cells (DSSCs) based on nanostructured titanium dioxide (TiO2) have become an active field of 

research, because they are a promising low-cost alternative to conventional solid-state photovoltaic devices. 

Interactions between the dye and the semiconductor material play a key role in the efficiency of DSSCs because they 

influence the electron transfer process. Synchrotron-radiation techniques are perfect tools to study the interface 

properties of dye/semiconductor in DSSCs. As already highlighted by Lee et al. [960], several groups have studied the 

electron transfer mechanism occurring between dyes and TiO2 using XAS, XRD and XPS. 
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Ju and coworkers reported a XAS study at the Ti K-edge of a nanocomposite prepared by self-assembly of the Ru dye 

N3 (cis-diisothiocyanatobis(4,4′-dicarboxy-2,2′-bipyridine)ruthenium(II)) on the surface of 10–20 nm TiO2 anatase 

nanoparticles [961]. The parameters obtained by fitting the EXAFS data evidenced a change in the coordination 

numbers of Ti (from 4.0 to 2.7) and O (from 1.6 to 2.2) atoms in the nanocomposite respect to the free nanoparticles. 

This was interpreted as an effect of the reconstruction of the Ti local structure at the interface upon coordination of the 

metal complex on the TiO2 surface. 

Similarly, Shklover and coworkers characterized the Ru complexes N719 and black dye (respectively cis-

diisothiocyanatobis(4-carboxylic-4′-carboxylate-2,2′-bipyridine)ruthenium(II) and triisothiocyanato(4,4′,4′′-

tricarboxy-2,2′:6′,2′′-terpyridine)ruthenium(II)) supported on nanocristalline TiO2 anatase using Ti K-edge XAS in 

combination with out-of-plane XRD and XPS analysis [962]. The uniform enhancement of the pre-edge peaks in the 

XANES spectra was suggested to correspond to higher distortions of a local Ti coordination in the coated samples, as 

this is forbidden in the centrosymmetric octahedral environment. Moreover, the coordination numbers of Ti and O 

were drastically diminished if compared with those of the uncoated sample (Ti, from 4.6 to 2.8; O, from 2.7 to 1.4). 

Such results were ascribed to a strong distortion of the local environment of Ti atoms caused by the dye coating. 

However, it should be noted that both XAS spectra measured in transmission mode by Ju and coworkers and FY at Ti 

K-edge measured by Shklover and coworkers are mostly bulk techniques which are not surface-sensitive. 

XPS provides information concerning the energy matching between the orbitals of the dye and the metal oxide valence 

band and regarding the chemical transformation of the dye at the dye/metal oxide interface. 

In terms of XPS studies, the electronic and molecular structure of dyes adsorbed onto nanostructured TiO2 anatase, 

have been studied in a number of publications [963-966]. 

Rensmo and coworkers conducted XAS and XPS studies on a series of Ru-polypyridine complexes (including N3, 

N719 and black dye) for DSSC application [963, 964, 967, 968]. Their XPS measurements provided information 

concerning the energy matching between the orbitals of the dye and the TiO2 (anatase) valence and conduction bands. 

The position of the HOMO of the complex is shown to be correlated with the metal core levels (Ru 3d) and is 

basically related to the electrostatic potential at the metal site. Accordingly, negative ligands move the HOMO level 

toward lower binding energies. The lowest HOMO binding energy was obtained for complexes N3 and N719 which 

are the most efficient complexes found to date as sensitizers in the nanostructured solar cells. Concerning the bonding 

of the complexes to the TiO2 surface, the C 1s, O 1s, N 1s, and S 2p spectra support the general picture of bonding via 

the carboxyl groups of a single ligand of the complex. In the case of N3, N719 and black dye, a fraction of the 

isothiocyanate groups also interacts with the TiO2 surface through the sulfur atoms on the basis of their S 2p spectra. 

From the O 1s spectrum of N719, they deduced the oxydrilic units in carboxylic acid groups to be at a larger distance 

from the TiO2 surface than carboxylated oxygen, indicating that N719 is anchored to the TiO2 surface through 

carboxylated groups. Moreover, from the N 1s spectrum, the tetrabutylammonium counterions were found to be at the 

surface, although the amounts were clearly smaller than expected from the molecular formula. 

Similary, O’Shea and coworkers reported an XPS and XANES experimental study of the bonding geometry and 

electronic coupling of N3 adsorbed on TiO2 (rutile) [966]. They found that the carboxyl groups of a single ligand of 

the complex deprotonate so that its O atoms bond to Ti atoms of the substrate, and one of the isothiocyanate groups 

bonds via a S atom to an O atom of the substrate (see Figure 25). DFT calculations supported that this geometry is 

energetically more favourable than the bonding of one carboxylic group from each ligand. 

 
Figure 25. (a) N3 molecule adsorbed on TiO2, calculated at the DFT-GGA level (see ref. [966] for details), and (b) chemical 

structure of the N3 molecule. Reproduced with permission from ref. [966]. Copyright (2008), AIP Publishing LLC. 

Schwanitz and coworkers investigated the interaction of the Ru dye N3 on nanocrystalline films of anatase TiO2 [965], 

using highly surface sensitive synchrotron-induced photoelectron spectroscopy (both XPS and UPS). The HOMO of 

the adsorbed sensitizer N3 was found 1.6 eV above the TiO2 valence band, while the LUMO lies 0.17 eV above the 

Fermi level. Moreover, the authors evaluated the influence of the solvent on the alignment of the dye HOMO level 
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versus the substrate valence band, demonstrating that the HOMO position of the adsorbed dye changes in the presence 

of the solvent. In particular, the dye binding energy positions changes upon coadsorption of acetonitrile solvent 

molecules. A new induced dipole, or the modification of an existing surface dipole, shifts the HOMO by 150 meV and 

N 1s of the dye NCS group by approximately 200 meV to higher binding energies. 

Recently, Demopoulos and coworkers investigated the electronic properties of N719 adsorbed onto TiO2 (anatase) 

combining XAS (in TEY mode, to improve surface/interface sensitivity) and XPS [960]. 

The Ti 2p and O 1s XPS spectra showed that adsorption of the dye on TiO2 leads to a change of the surface dipole 

and/or a change in the Fermi level position in the band gap, which shifts all the core levels of TiO2. 

Conversely, even employing the surface-sensitive TEY mode, the Ti L- or K-edge XAS data did not show any 

structural changes in terms of crystal field modification after dye adsorption to the TiO2 surface, in contrast to what 

previously reported by Ju and coworkers and by Shklover and coworkers using transmission or FY mode. This was 

attributed to the fact that even with the surface-sensitive TEY mode (probing depth of 5-10 nm) most of the XANES 

signal comes from Ti and O atoms far from the dye-TiO2 interface and, as such, observing these changes was not 

feasible in transmission or FY mode. On the other hand, the C K-edge XANES spectral changes revealed that 

additional electronic states occur between N719 molecules and TiO2 surface. The authors proposed that electronic 

interactions do not only occur through the covalent bonding of the anchoring groups but also through the aromatic π 

electron density of the bipyridine rings and the d states found in TiO2. The N K-edge did not display additional 

electronic states, however, the orientation measurements in the N K-edge showed that the intensity for the N 1s → π* 

resonance peak increased at 30°, indicating that the sp2 conjugated π bond in the bipyridine groups is more aligned 

with the TiO2 substrate at 30° than 90° to the surface and further suggesting that this type of geometry favours 

electronic aromatic interaction between the TiO2 surface and the N719 molecules. This was further confirmed via XPS 

analysis by monitoring the bipyridine group whose N 1s XPS peak was found to shift to higher energy for dye-coated 

TiO2. Furthermore, in the N 1s and S 2p XPS spectra, the NCS peaks of dye-coated TiO2 are shifted toward higher 

energy, indicating that there exists an additional H-bonding interaction of the isothiocyanate ligand of the dye 

molecule with the TiO2 surface groups (OH/H2O). 

In order to shed light on the possible causes for the different behaviour of ZnO and TiO2 as materials in DSSCs, 

Rensmo and coworkers also investigated by XPS the interaction of N3 and nanostructured ZnO, comparing the results 

with those obtained for nanostructured TiO2 anatase [968]. Even for a low dye coverage of the ZnO surface, 

differences in the surface molecular structure were observed comparing the O 1s, N 1s, and S 2p signals. These 

differences in the XPS signals were interpreted as differences in molecular adsorption geometry or also as a 

consequence of dye aggregation. The energy matching between the dye and ZnO was found to be similar to that of the 

dye/TiO2 system. However, the electronic structure of the isothiocyanate ligand is found to be affected by the 

adsorption to the ZnO surface. This is interpreted as an effect of an interaction between the isothiocyanate sulfur and 

zinc sites on the surface or with dissolved zinc ions during dye sensitization. This interaction also has implications on 

the electronic structure of the dye valence levels, resulting in a broadening in the HOMO level structure. 

5 Conclusions and perspectives 
We have illustrated how synchrotron radiation based techniques (anomalous scattering, XAS, XES) have had 

considerable impact to understand the structural and electronic properties of coordination compounds. Insights on their 

reactivity can be obtained using in situ, operando, time-resolved techniques. Importantly, the use of complementary 

methods, such as laboratory techniques (XRD, SAXS, luminescence and UV-Vis) and DFT calculations, is greatly 

helpful in assisting the analysis of synchorotron data, reinforcing the robustness of the derived results. The advantages 

in the use of synchrotron radiation sources for X-ray based techniques usually performed at the laboratory scale (such 

as XRD, XRS and PES) have also been discussed. Finally, in this review we have presented a large number of 

significant examples, showing the importance of the synergic use of different complementary techniques in the 

structural and electronic characterization of coordination compounds. 

We foresee in the next future the following advances in the use of synchrotron radiation techniques in the 

characterization of coordination compounds: 

(i) Equipment to perform in situ and operando experiments will become more readily available at most of the XAS 

beamlines worldwide. 

(ii) Time resolved techniques, such as laser pump-X-ray probe and fast data recording methods (quick XAS and 

energy dispersive XAS) have shown a great development in the last decade and will further develop in the future, 

conjugating a faster response with a number of independent characterization techniques available on line and 

allowing e.g. parallel IR, UV-Vis, and Raman investigations. Hopefully, improved and readily available data-

analysis programs will be developed to take full advantage of the rapid data-taking. 

(iii) XES based techniques, nowadays still available only on very few beamlines worldwide, will allow a much deeper 

knowledge of the electronic structure of the metal center, being able to probe with hard X-rays both the density of 

both occupied and non-occupied states. These methods will allow to access XPS-like information on coordination 

complexes in interaction with gases and liquids.  
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(iv) High-energy resolution fluorescence detected XAS will allow oxidation state-specific EXAFS (separate EXAFS 

signals in samples containing the same element in different oxidation states) [117, 121] and spin-selective EXAFS 

spectra collection [771]. 

(v) Till now, in the large majority of the published papers, XANES has been used only as a qualitative support of the 

hypothesized structures, based on the evolution of edge, pre edge and post edge features. Quantitative results were 

extracted from XANES data mainly in comparison with the experimental XANES spectra of model compounds. 

Publications where hypothesized local structures are used to compute a XANES spectrum are still limited in 

number, but the remarkable progress made by XANES codes will change this situation. We foresee that the 

simulation of the XANES spectra will be used more and more frequently to confirm or discard local structures 

hypothesized from the refinement of EXAFS or diffraction data [717]. 

(vi) Total scattering (PDF) experiments, will be able to bridge the gap between EXAFS, dominating the 0–30 Å 

diameter interval, and XRPD, informative in the 80–bulk interval. 

(vii) X-ray magnetic circular dichroism (X-MCD), coupled with more conventional techniques, such as visible light 

MCD and EPR, will bring new insight in the investigation of transition metal coordination compounds. 

6 Appendix – X-ray-matter interactions and related techniques: a compendium of the key 

mathematical results 

6.1 X-ray-matter interactions 
As underlined in the introduction, we limited as much as possible the use of mathematical equations along the text in 

order to increase its readibillity and to allow the reader to focus on the scientific issues rather than on the complex 

mathematical formalism that describes the interaction of X-rays with matter. To partially overcome this lack, a brief 

summary of the most relevant concepts and related equations is reported in this brief appendix. For further details on 

the topics treated hereinafter, the reader is referred to the specialized literature quoted along the text. 

A simplified representation of the principal X-rays/matter interactions relevant to the structural and electronic 

characterization of coordination compounds is reported in Scheme 6. In summary, the incident X-ray beam is primary 

absorbed (according to Lambert-Bear law [166, 969, 970]) or elastically scattered (IS) by the sample. The radiation not 

absorbed nor scattered is transmitted through the sample (IT). At typical X-ray energies, the absorption of a photon 

generally promotes the expulsion of a core-electron (photoelectrical effect, with a kinetic energy T given by T = ħ  

EK, being ħ the energy of the incoming photon and EK the binding energy of the electron in the K-shell); the 

resulting core-hole is then filled by an electron from an outer shell. The excess energy can be released with the 

emission of characteristic X-rays (X-ray fluorescence, XRF, IF), which are X-ray photons with energy equal to the 

difference between the two electronic levels involved (ħKα = EK  ELi or ħKβ = EK  EMj, i = I, II or III; j = I, II, III, 

IV or V). Alternatively, the excess energy, instead of being released as a photon, can be transmitted to a second 

electron that is in turn extracted from the outer electronic levels (Auger electron), which kinetic energy does not 

depend on the the energy of the incoming photon (ħ) but on the binding energies of the three involved electronic 

levels: TAuger = EK  ELi  EMj. For both these decay channels, the probability of X-ray or electron emission is directly 

proportional to the X-ray absorption probability. In general, photoelectric absorption is dominant for high-atomic 

number (Z) elements, while the probability of the Auger effect increases with a decrease in the difference of the 

corresponding energy states. This means that: (i) for a hole crearted in a given shell (K or L) the Auger recombination 

increases by decreasing the atomic number Z (i.e. it is higher for the low-Z atoms); (ii) for a given atomic number Z, 

the Auger recombination increases by moving from a core hole generated in the K-, L- or M-shells [971]. 
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Scheme 6. (a) Schematic representation of the principal X-rays/matter interactions relevant to the structural and electronic 

characterization of coordination compounds. The scheme reports: the incident X-ray beam (intensity I0, energy E or ħ, 

wavevector k0); the transmitted X-ray beam (intensity IT = I0 exp(–x), where  is the X-ray absorption coefficient of the sample 

and x the sample thickness, energy E and wavevector k0); the elastically scattered X-ray beam (intensity IS, energy E, wavevector 

kf, with |kf|=|k0|), the scattering angle 2 and the scattering vector q =kf – k0 are also indicated; the emission of photoelectrons 

(kinetic energy T = E – E0, where E0 indicates the energy of the core level from which the photoelectron has been extracted: E0 = 

EK, or ELi, or EMj), Auger electrons and X-ray fluorescence photons (intensity IF and energy ħ). The inset reports schemes of (b) 

photoelectric effect, resulting in the creation of a core-hole, and two of its possible decay channels: (c) X-ray fluorescence and (d) 

Auger effect. 

Hereinafter we report a brief compendium of the key mathematical passages and results describing the principal X-

ray/matter interactions and the related characterization techniques discussed in the main text, focusing in particular on 

X-ray elastic scattering, X-ray absorption and X-ray emission. The interested reader can refer to the wide literature 

quoted in the Sections of the main text devoted to the related techniques (X-ray elastic scattering: Section 2.2 (XRD) 

and 2.6 (XRS); X-ray absorption: Section 2.5 (EXAFS) and 3.2.1 (XANES); X-ray emission: Section 3.2.2) for an 

extensive and systematic discussion of the matter. 

6.2 X-ray Elastic Scattering 

When a X-ray plane wave of wavevector k arrives at a generic sample having an electron density e(r), the amplitude 

of the elastically scattered X-ray wave A(q) is expressed by eq. (1). 

      ∫              (1) 

where the integration runs on the X-ray illuminated sample volume (typically, from several µm
3
 to few mm

3
), ρe(r) is 

the electron density of the sample and q = k – k0 is the wave vector proportional to the momentum transfer during the 

elastic scattering interaction (scattering vector), of modulus given by eq. (2). 

       
      

 
 (2) 

The X-ray scattering amplitude A(q) and the sample electron density ρe(r), expressed as a function of the 3D 

coordinate r, are linked by a Fourier transform operation, as evidenced in eq. (1). This relation is of key importance 

and highlights the structural sensitivity of the X-ray techniques based on elastic scattering. Experimentally, we are 

however limited to measure only the square modulus of the scattering amplitude A(q), that is the scattered intensity 

I(q), eq. (3). 

              |∫            |
 

 (3) 

This yield to the so-called “phase problem”, hampering the direct Fourier inversion of eq. (1) to reconstruct ρe(r) from 

a suitable set of X-ray scattering/diffraction data (see below). 

Eq. (1) can be further developed by expressing the global electron density ρe(r) as a superimposition of the individual 

atomic electron densities centred in the nuclear positions rn: 
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       ∑             

 

 ∑        

 

 (4) 

where ρn is the electron density of the n
th
 atom, the vector r describes a generic position from the origin of the 

reference system, the symbol   represents the convolution product and  is the Dirac delta-function. 

By combining eq. (1) and (4) it is possible to express the scattering amplitude A(q) in the reference system of the rn 

positions as follows: 

      ∑       
      

 

 (5) 

where the index n runs over all atoms included in the X-ray illuminated sample volume (typically in the order of Na ~ 

6 x 10
23

) and where fn(q) is the so-called atomic form factor (or X-ray scattering factor) for the n
th
 atom [159, 471], 

which is the Fourier transform of the atomic electron density, as evidenced in eq. (6): 

       ∫       
        (6) 

Eq. (6) is conceptually very differet from eq. (1) because here the integral runs in the volume where the atomic 

electron density ρn(r) is significantly different from zero, i.e. over few Å
3
. Under the assumption of spheric symmetry 

of the scattering atoms, fn(q) can be expressed as a function of the modulus of q, i.e. as fn(q). The scattered intensity 

can be therefore written as in eq. (7): 

      |∑       
      

 

|

 

 (7) 

As discussed in the main text (see Section 2.2), the atomic form factor describes the X-ray scattering properties of a 

specific atom, as determined by the shape of its electron density (spatial charge distribution in the atomic orbitals). 

Having spatially extended orbitals instead of point-charges (with respect to the wavelength of the incoming X-ray 

wave) causes a reduction in the coherently scattered intensity. This reduction will be more efficient the larger either q 

or r become, because the phase shift among the dr regions where the integral is performed is determined by the scalar 

product q∙r in the second term of eq. (6), resulting in the steep decrease in f(q) values as q increases [972]. 

It is also worth noting that, for some applications (see Section 2.7 in the main text), the anomalous scattering of X-rays 

has to be considered. Correspondingly, the definition of the atomic form factor is extended, including a complex 

anomalous scattering contribution [138], according to eq. (8): 

             Δ          Δ       Δ       (8) 

The Δf(E) contribution, dependent on the incident X-ray energy (or wavelength), is added to the atomic form factors f 

defined above, with its real and imaginary parts indicating a magnitude variation and a phase shift of the scattered 

wave, respectively. Nevertheless, working at energies far from any X-ray absorption edges of the elements present in 

the sample, anomalous scattering factors Δf’ and Δf’’ are negligible with comparison to f [973]. 

6.2.1 X-ray diffraction from long-range ordered systems 

The periodic arrangement of atoms in long-range ordered systems (crystals) allows further elaboration of the term 

|Σnexp(–iq∙rn)|
2
 in eq. (7). Here, the unit cell is periodically repeated in the three spatial dimensions. In particular, for a 

crystal lattice including N1, N2 and N3 atoms along x, y, and z respectively, the position rn of the n
th
 atom can be 

expressed as: 

                    (9) 

with (n1; n2; n3) integer numbers and (a; b; c) primitive vectors of the crystal lattice. Expressing rn as in eq.(9), the 

|Σnexp(–iq∙rn)|
2
 term in eq. (7) can be developed as follows: 
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 (10) 

It can be demonstrated that, under suitable conditions, each of the factors of general form |Σjexp[–iq∙(jl)]|
2
 (with j = n1, 

n2, n3 and l = a, b, c) in eq. (10) is zero unless the scalar product q∙l is equal to an integer multiple of 2π. This 

condition on q-values allowing constructive interference, and thus detectable scattered intensity, results in the Laue 

equations [157, 159, 974]: 

                              (11) 

where (h; k; l)  Z are also known as Miller indexes. 

The periodic order in crystalline systems allows to limit the structural analysis to the unit cell, greatly reducing the 

number of atoms to consider. With this respect, we can define the structure factor F(q) as: 
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      ∑       
      

 

 (12) 

where now the index n runs exclusively over the atoms within the unit cell and fn(q) is the atomic form factor of the n
th
 

atom in the unit cell. This is a very important point, because, comparing eq. (5) with eq. (12), the translational 

symmetry of a crystalline lattice allows to reduce the number of terms included in the sum from the whole number of 

atoms in the sample (a fraction of the Avogadro’s number) to a number that, depending on the complexity of the unit 

cell, can range from few units to some thousands. Having this fact in mind, it becomes clear that the quantitative 

extraction of structural data from non periodical short-range orderd systems (amorphous solids, liquids and gases) is 

much more demanding and less informative (see Section 6.2.2 in this appendix). 

By expressing the positions rn of the N atoms within the unit cell by their dimensionless fractional coordinates (xn, yn, 

zn), i.e. rn = xna + ynb + znc, and considering the Laue conditions, eq. (11), for a detectable reflection, the structure 

factor, now indexed using the Miller index (h, k, l), can be expressed as in eq. (13), commonly referred to as the 

structure factor equation: 

      ∑     
                 

 

   

        
          (13) 

The third-hand term in eq. (13) highlights how Fhkl is a complex quantity, that can be expressed in terms of amplitude 

and phase: in particular, (h,k,l) is the phase associated with the point in reciprocal space of coordinates (h, k, l). 

Exploiting, within the unit cell volume, the Fourier relation between atomic form factor and atomic electron density, 

eq. (6), we can rewrite eq. (13) as:  

      ∫                        

    

       (14) 

where ρ(x,y,z) represents the electron density value in the point of coordinates (x, y, z) within the unit cell volume, on 

which the integration is performed. 

Assuming that the structure factor Fhkl is fully determined, both in its amplitude and phase, it is possible to invert eq. 

(14) as follows: 
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               (15) 

where V is the unit cell volume, and the integral has been replaced by a summation over the discrete ensamble of 

collected (and indexed) hkl reflections. Consequently, what is obtained is a discrete approximation of the continuous 

ρ(x,y,z) function, evaluated on the finest possible grid of (x, y, z) points within the unit cell, exploiting in each point 

the whole diffraction dataset. 

Unfortunatelly, the direct inversion of the structure factor equation, eq. (14) and (15), is not straightforwardly 

practicable. Indeed, only |Fhkl|  (Ihkl)
1/2

 can be obtained from the experiment, while any information about the phase 

(h,k,l), which carries out a major part of the structural information, is unavoidably lost (“phase problem”). 

Nevertheless, several methods have been developed to tackle this problem, allowing to determine the (h,k,l) values in 

correspondence of increasingly complex structures [975-977]. The commonest phasing methods suitable in chemical 

crystallography (indicatively for units cells containing up to 10
3
 atoms) include Patterson methods [978-980] and ab 

initio or direct methods [204]. More sophisticate strategies allows to solve the phase problem in macromolecular 

crystallography, such as molecular replacement [980, 981], charge flipping methods [982] and the synchrotron-based 

methods exploiting anomalous X-ray diffraction [137, 138, 553, 983]. 

Finally, it is worth to note that the spatial resolution of the resulting electron density ρ(x,y,z), computed from eq. (15) 

after the determination of the phases, is generally quantified using the minimum appreciable distance, dmin. More 

specifically, a given diffraction dataset allows us to discriminate the electron densities between two points (x,y,z) and 

(x’,y’,z’) in the unit cell only if the distance between the two points is larger than dmin. The dmin value is related by the 

Bragg law to the maximim angle θmax (or maximum q-value |qmax|) at which a Bragg peak is detected above the noise 

level in that given dataset: 

      
 

        

 
  

      
 (16) 

Hence, to improve the resolution level, we can reduce the incident X-ray wavelength and collect high-quality data at 

higher q-values: as discussed in the main text (see Section 2.3), both these strategies are made much more effective by 

the use of synchrotron sources 

6.2.2 X-ray scattering from short-range ordered systems 

In short-range ordered systems, such as gases, liquids, solutions and amorphous materials, the probed volume is 

constituted by a statistical ensemble of randomly oriented structural units (e.g. molecules), exhibiting local 
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correlations, which result in local deviations from the average density of the sample. In these conditions, the general 

expression of the X-ray scattered intensity, eq. (7), after having explicitely developed the square modulus operation 

(|z|
2
 = z z

*
, z  C): 

      |∑      
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can be isotropically averaged on all possible orientations [159, 472, 477], yielding to the Debye equation [473]: 

 〈    〉       ∑∑          
           

     
 

  

 (18) 

where 〈 〉  indicates an average over the solid angle Ω, the indexes n, m run over all the system atoms, and rnm is the 

distance between n
th
 and m

th
 atom, which is now the only “radial” spatial coordinate employed in the expression of the 

scattered X-ray intensity I(q). 

On the contrary of what is achieved, after phasing, from XRD data on long-range ordered systems, here a univocal 

reconstruction of the three-dimensional electron density from the measured I(q) is impossible, due to the inherent 

reduction in the information level of one-dimensional XRS data. Nonetheless, eq. (18) can be employed to simulate 

and compare to experimental data the scattering signal from a series of candidate structures, obtained from a priori 

knowledge of the investigated system. A more practical (and computationally-friendly, for the sake of simulation) 

expression of the Debye equation can be obtained in terms of radial pair distribution functions (PDF) gαβ(r) [474-476]. 

As discussed in Section 2.6 of the main text, radial PDF are defined in such a way that the probability of finding a β-

type atom at distance r from an α-type atom (where α, β indicate a specific chemical element) is equal to 4πr
2
gαβ (r). 

Using the formalism of RDF, eq. (18) can be rewritten as follows [159]: 
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where the indexes α and β run over all the atomic species (elements) included in the sample, Nα and Nβ are the 

numbers of α-type and β-type atoms, respectively, and V the volume of the sample probed by X-rays. 

6.3 X-ray Absorption spectroscopy 
The physical principles yielding to the XAS signal (see Sections 2.5 and 3.2.1 in the main text for EXAFS and 

XANES, respectively) can be described in terms of scattering theory. In the framework of a simplified one-electron 

picture, in the non relativistic approximation, we can model the photoelectrical absorption process as a transition from 

an initial state ψi, including the incident X-ray photon of energy E = ℏ and a core-electron characterized by a binding 

energy E0, and a final state ψf, including the core-hole formed after photoionization, and the excited photoelectron. For 

E < E0 (i.e. in the XANES pre-edge region), the photoelectron is promoted to empty bound states near the Fermi level. 

Conversely, for E > E0 (edge, XANES post-edge and EXAFS regions), the electron is excited to the continuum. In 

these conditions, the free electron can be described as a spherical wave diffusing from the absorber atom [56, 91], 

which wavevector k is given by eq. (20): 

   
√    

ℏ
 

√    ℏ    

ℏ
 (20) 

where me is the electron mass, ℏ is the reduced Planck constant and T = ℏ – E0 is the kinetic energy of the diffusing 

photoelectron. When the absorber is surrounded by other atoms, the photoelectron is scattered by the electrons of the 

atomic neighbours, resulting in a modification of its wavefunction. The final state is thus constituted by a 

superimposition of the outgoing wave diffusing from the absorber and the waves backscattered by the neighbouring 

atoms, exhibiting a phase difference Δ = k(2d), with d indicating the interatomic distance between the absorber and 

its scattering atomic neighbour. 

More specifically, the transition rate Ti→f from an initial state |i> to a final state |f>, in presence of a time-dependent 

perturbation, is generally given by the Fermi’s golden rule [644, 645], eq. (21): 

      
  

ℏ
 ⟨      ⟩   

 
      

 
         (21) 

where i(occ) and f(unocc) indicate the density of the occupied initial states and of the unoccupied final states, 

respectively, and where H′ is the Hamiltonian describing the perturbation. 

In particular, for a transition induced by photoelectric absorption, the Fermi’s golden rule can be specified as in eq. 

(22), being the transition rate Ti→f  proportional to the X-ray absorption coefficient μ monitored in a XAS experiment: 

   |〈  | ̂            
〉|

 
         ℏ  (22) 

where  ̂ is the X-rays polarization versor, ℏk and ℏ are the photoelectron momentum and energy, respectively, Ei 

and Ef are the energies of the initial and final state, and  is the Dirac delta-function. 
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To quantitatively interpret the fine structure in the XAS spectrum, it is necessary to evaluate the matrix element 

〈  | ̂            
〉 in eq. (22). The expression can be simplified by expanding the exponential       as a series, i.e. 

 ̂           ̂             , where the first term indicates the dominant electrical dipole interaction, while the 

following are related to electrical quadrupole (weaker than the dipole interaction of a factor in the order of the fine 

structure constant α ~ 1/137 [122, 984]) and higher-order multipoles. Under these assumptions, several methods have 

been developed to perform the full calculation. The commonest strategy is the multiple scattering approach [985, 986], 

where the potential is modelled as a sum of separated atomic contributions. 

Exploiting the Green’s function [987], it is also possible to express the absorption coefficient μ as the sum of two 

terms, separately accounting for the contribution from the “isolated” absorber (μ0) and from the scattering effects 

related to the presence of atomic neighbours around the absorber (χ): 

           (23) 

The scattering term χ can be further expressed as a sum of contributions due to all possible scattering events. With this 

respect, Stern, Sayers and Lytle [46-49] derived a useful formula in single scattering approximation (EXAFS 

equation), expressing χ as a function of the photoelectron wavenumer k: 
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(24) 

The sum-index i in eq. (24) runs over the different “coordination shells” (group of atoms of the same chemical 

element, located at similar distances from the absorber); S0
2
 is the amplitude reduction factor [988], Ni is the number of 

atoms included in the i
th
 shell (coordination number), Ri is the average distance of the i

th
 shell, σi is the Debye-Waller 

factor depending on the mean square variation about the average of the individual atomic distances for the i
th
 shell and 

on the thermal vibrations along the bond axis for included atoms, |fi(k)| and arg[fi(k)] are the modulus and the phase of 

the complex electron scattering amplitude respectively, δ1(k) is a phase depending on the absorber, and    is the 

photoelectron mean free path. 

It is worth to note that the EXAFS equation can be successfully applied only for photoelectron energy sufficiently 

higher than E0 (EXAFS region), where single scattering events are dominant. Indeed, at relatively lower energies after 

the absorption edge, the path expansion could not converge, due to the higher scattering probability (full multiple 

scattering regime). In this region (commontly referred to as XANES post-edge region) more complex and 

computationally-demanding strategies have to be applied, inclusing e.g. the Haydock’s recursion method [989], the 

full matrix inversion [990] and the finite difference method [52, 690]. 

6.4 X-ray emission spectroscopy 
As discussed in the main text (see Section 3.2.2), after excitation with X-ray incident energy ℏΩ well above an 

absorption edge of the element of interest, the excited system can relax filling the photo-induced core-hole by 

radiative decay from a continuum state, resulting in a non-resonant X-ray emission or X-ray fluorescence line. The 

XES technique relies in the detection of these emitted photons as a function of their energy (ℏ) with an energy 

resolution at least of the same order of the core hole lifetime broadening. Alternatively, if the system is resonantly 

excited to a localized state (tuning the incident X-ray energy ℏΩ to an absorption feature in proximity of the Fermi 

level), and the subsequent radiative decay is monitored with lifetime energy resolution, the technique is referred to as 

resonant-XES (r-XES) or resonant inelastic X-ray scattering (RIXS). 

Both non-resonant XES and r-XES can be described in a common theoretical framework [122, 123, 125, 740, 991], 

modelling the underlying physics as a two-level photon scattering process via the Kramers-Heisenberg equation [116], 

eq. (25): 

   ℏ  ℏ  ∑|∑
〈      〉〈      〉
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|
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 (25) 

Eq. (25) expresses the scattered X-ray intensity F(ℏΩ, ℏ) as a function of the incident (ℏΩ) and emitted (ℏω) X-ray 

energy, and of the energies of the electronic configurations; g, n and f indicates the electron wavefunctions for the 

starting (ground) state, the intermediate and the final state, respectively. Corresponding energies are indicated as Eg, En 

and Ef. ΓINT and ΓFIN express the intermediate and final state lifetime broadenings (in term of FWHM); the operators T1 

and T2 describe the absorption and the emission of an X-ray photon, respectively. The energy difference ℏΩ – ℏω 

represents the energy transfer occurring during the inelastic scattering process. 
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8 Acronyms 
bpy  2,2′-bipyridine 

AO  Atomic Orbitals 

ASAXS Anomalous Small-Angle X-ray Scattering 

AWAXS Anomalous Wide Angle X-ray Scattering 

CT  Charge Transfer 

ctc-XES core-to-core XES 

DAFS  Diffraction Anomalous Fine Structure 

DANES Diffraction Anomalous Near-Edge Structure 

DFT  Density Functional Theory 

DSSC  Dye-Sensitized Solar Cell 

DW  Debye-Waller 

EDAFS  Extended Diffraction Anomalous Fine Structure 

EDXRD Energy-Dispersive X-ray Diffraction 

EELNES Electron Energy‐Loss Near Edge Structure 

EPR  Electron Paramagnetic Resonance 

ESCA  Electron Spectroscopy for Chemical Analysis 

EXAFS  Extended X-ray Absorption Fine Structure 

EXELFS EXtended Energy-Loss Fine Structure 

FT  Fourier Transform 

FY  Fuorescence Yield 

HERFD High-Energy Resolution Fluorescence Detected 

HEXS  High-Energy X-ray Scattering 

HXPES  Hard X-ray PES 

HOMO  Highest Occupied Molecular Orbital 

IR  InfraRed 

ISC  InterSystem Crossing 

LAXS  Large Angle X-ray Scattering 

LC  Ligand-Centred 

LUMO  Lowest Unoccupied Molecular Orbital 

MAD  Multi-wavelength Anomalous Dispersion 

MO  Molecular Orbital 

MOF  Metal-Organic Framework 

MS  Multiple-Scattering 

ND  Neutron Diffraction 

NEXAFS Near Edge XAFS 

NMR  Nuclear Magnetic Resonance 

OLEDs  Organic Light-Emitting Diodes. 

PEY  Partial Electron Yield 

PDF  Pair Distribution Function 

PES  PhotoElectron Spectroscopy 

XMCD  X-ray Magnetic Circular Dichroism 

QEXAFS Quick EXAFS 

RIXS  Resonant Inelastic X-ray Scattering 

rctc-XES resonant ctc-XES 

rvtc-XES resonant vtc-XES 

SAXS  Small-Angle X-ray Scattering 

SS  Single-Scattering 

TEM  Transmission Electron Microscopy 

TEY  Total Electron Yield 

TFY  Total Fluorescence Yield 

thf  tetrahydrofurane 

UPS  Ultraviolet Photoelectron Spectroscopy 

UV-Vis  UltraViolet–Visible 
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vtc-XES valence-to-core XES 

XAFS  X-ray Absorption Fine Structure 

XANES X-ray Absorption Near Edge Structure 

XAS  X-ray Absorption Spectroscopy 

XES  X-ray Emission Spectroscopy 

XPS  X-ray Photoelectron Spectroscopy 

XRD  X-ray Diffraction 

XRPD  X-ray Powder Diffraction 

XRS  X-ray Scattering 

XSS  X-ray Solution Scattering 

WAXS  Wide Angle X-ray Scattering 
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