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ABSTRACT 

Few-layer graphene (FLG) is grown on copper and nickel substrates at high rates using a novel 

flame synthesis method in open-atmosphere environments.  Transmittance and resistance 

properties of the transferred films are similar to those grown by other methods, but the 

concentration of oxygen, as assessed by XPS, is actually less than that for CVD-grown graphene 

under near vacuum conditions.  The method involves utilizing a multi-element inverse-diffusion-

flame burner, where post-flame species and temperatures are radially-uniform upon deposition at 

a substrate.  Advantages of the flame synthesis method are scalability for large-area surface 

coverage, increased growth rates, high purity and yield, continuous processing, and reduced costs 

due to efficient use of fuel as both heat source and reagent.  Additionally, by adjusting local 

growth conditions, other carbon nanostructures (i.e. nanotubes) are readily synthesized. 
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1. Introduction 

Graphene comprises a single layer of sp
2
-bonded carbon atoms with remarkable physical, 

photonic, and electronic properties [1,2].  Both single-layer and few-layer graphene possess 

unique properties that afford a wide range of applications, including high frequency transistors 

[3] and transparent electrodes [4].  Ultimately, the future of graphene-based devices lies in 

developing production methods that are highly scalable, reliable, efficient, and economical. 

Mechanical exfoliation enabled the isolation of graphene and the discovery of its extraordinary 

electronic properties; however, this method is limited to producing graphene flakes due to its 

lack of scalability.  Sublimation of Si from single-crystal silicon carbide (SiC) offers the 

advantage of direct synthesis of graphene on insulating surfaces [5,6].  Nevertheless, this method 

requires very-high temperatures, which has associated difficulties, and is presently constrained 

by high SiC wafer cost.  Chemical vapor deposition (CVD) of graphene on transition metals such 

as nickel (Ni) [7,8] and copper (Cu) [9,10] shows the most potential for large-volume production 

of graphene.  While still in its early stages, CVD-grown graphene has already demonstrated 

excellent device characteristics [11], including electron mobility of 7,350 cm
2
V

-1
s

-1
 [12].  

Nevertheless, growth of graphene over large areas remains challenging, due to the confinement 

necessary to operate at reduced pressures or suitable environments. 

Flame synthesis has a demonstrated history of scalability and offers the potential for 

high-volume continuous production at reduced costs [13].  In utilizing globally-rich combustion, 

a portion of the hydrocarbon gas provides the requisite elevated temperatures, with the remaining 

fuel serving as the hydrocarbon reagent for carbon-based nanostructure growth, thereby 

constituting an efficient source of energy and hydrocarbon reactant.  This aspect can be 
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especially advantageous as the operating costs for producing advanced materials, particularly in 

the semiconductor industry, end up far exceeding the initial capital equipment costs. 

Flame synthesis has been used successfully to grow various oxide nanostructures [14,15], 

single-wall [16] and multi-wall [17] carbon nanotubes (CNTs), sheet-like carbon particles [18], 

and amorphous carbon thin-films [19].  Recently, few-layer graphene has been synthesized with 

flames using alcohol as fuel on Ni substrates [20].  The process utilized two different burners, 

with the substrate situated within the interior region of the flame structure itself.  Although the 

viability of flame synthesis to grow graphene was demonstrated, the process resulted in the 

formation of amorphous carbon impurities along with the graphene.  Moreover, the configuration 

may not readily scalable for large-area graphene production.  Flame synthesis of graphene on Cu 

has yet to be reported. 

The unique synthesis configuration employed in this work is based on a multiple inverse-

diffusion (non-premixed) flame burner, where the post-flame species are directed at a substrate 

to grow graphene; see Fig. 1.  Each of the tiny diffusion flames is run in the inverse mode 

(“under-ventilated”), where for each flame, the oxidizer is in the center and fuel (e.g. methane) 

surrounds it.  The net effect is that post-flame gases are largely comprised of pyrolysis species 

that have not passed through the oxidation zone.  In fact, the reaction zone serves as a “getterer,” 

such that the oxygen mole fraction can be reduced to ~10
-8

 in the post-flame gases.  Carbon 

formation processes are effectively separated from oxidation processes in inverse diffusion 

flames, which also tend to soot less than normal diffusion flames [21].  No soot is observed in 

our multiple-inverse diffusion flame setup, for the conditions examined.  Moreover, the 

hydrocarbon species (rich in Cn and CO), which serve as reagents for graphene growth, are 

generated in much greater quantities than that achievable in stable, self-sustained premixed 
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flames.  By using diffusion flames (burning stoichiometrically in the reaction zone), flame speed, 

flashback, and cellular instabilities related to premixed flames are avoided.  Operation of a multi-

element non-premixed flame burner has no scaling problems by allowing for stability at all 

burner diameters, where the issuing flow velocity can be independent of the burner diameter.  

Moreover, since many small diffusion flames are utilized, overall radially-flat profiles of 

temperature and chemical species are established downstream of the burner, ensuring uniform 

growth.  Confinement in an inert environment or shielding with an inert co-flow or tube prevents 

an encompassing diffusion flame to develop.  Finally, this flame synthesis configuration is well 

suited for carbon-based nanomaterial synthesis in open-atmosphere environments, affording 

large-area growth (e.g. by translating the burner and rasterizing) at high rates. 

 

Figure 1. Multiple inverse-diffusion flames provide hydrogen and carbon-rich species 

suitable for growth of graphene and other carbon nanomaterials. 
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2. Experiment 

Few-layer graphene (FLG) films are grown on 25 µm thick Cu and Ni foils (Alfa Aesar), placed 

downstream of our novel burner.  A quartz cylinder encompasses the region of the multiple 

flames and substrate, preventing oxidizer permeation from the ambient and directing optimal 

gas-phase conditions (i.e. species and temperature) to the substrate.  Note that the setup is open 

to atmospheric conditions.  Prior to FLG film synthesis, the metal substrates are reduced in a 

hydrogen environment to remove any oxide layers.  This treatment is accomplished using the 

same multiple inverse-diffusion flame burner running only hydrogen as fuel at a globally-rich 

equivalence ratio for 10 minutes.  For FLG synthesis, CH4 is introduced into the fuel (with a 

global equivalence ratio of ~3) for 5 and 10 min, for Ni and Cu substrates, respectively.  A silica-

coated 125 µm Pt/Pt-10%Rh thermocouple (S-type) measures the substrate temperature to be 

~950
°
C.  The experiment is finalized by turning off the oxygen, which extinguishes the flame, 

while fuel and inert gases continue to flow, cooling the substrate to room temperature. 

The films grown on Cu are transferred onto SiO2/Si substrates for electrical and Raman 

analysis.  The transfer is done by first spin-coating poly-methyl methacrylate (PMMA) on the 

graphene covering the Cu substrate.  Since the thermofluid mechanics give rise to FLG being 

grown on both sides of the substrate, oxygen plasma is used to remove the graphene film from 

one side.  The PMMA-coated graphene on Cu substrate is then immersed in a ferric chloride 

(FeCl3) solution (23%wt) to etch away the copper.  The free-floating PMMA coated graphene is 

then carefully placed on the SiO2/Si substrate, and the PMMA is removed in hot acetone.  The 

final sample is rinsed with isopropanol, and dried with N2. 
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The FLG is characterized using Raman spectroscopy (Renishaw 1000, laser excitation 

514.5 nm), atomic force microscopy (AFM, Digital Instruments Nanoscope II), X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha), and transmission electron 

microscopy (TEM, JEOL 2010F).  The CNTs are examined using scanning electron microscopy 

(SEM, Zeiss Sigma 8100). 

 

3. Results and Discussion 

Synthesis of FLG has been demonstrated on a number of transition metals.  Due to their low cost 

and acceptability in the semiconductor industry, copper and nickel are promising substrates for 

the growth of graphene.  While a number of parameters such as pressure, temperature, and 

crystal structure influence the growth of graphene, the difference in carbon solubility of metals 

such Cu and Ni results in distinctive growth mechanisms [22].  From the binary phase diagram 

of Ni and C [23], at temperatures above 800
°
C, Ni and C form a metastable solid phase; upon 

cooling, the carbon diffuses out of the Ni to form graphene/graphite.  Due to this growth 

mechanism on Ni, the number of graphene layers across the substrate remains difficult to control.  

In contrast, graphene formation on Cu occurs only on the surface due to the extremely-low 

solubility of carbon in Cu.  Consequently, once the substrate is covered by graphene, the Cu 

surface is no longer accessible; and deposition of additional layers does not occur [9, 22].  

Hence, Cu has proven to be an excellent substrate for the growth of monolayered graphene; 

however, growing multiple layers has been found to be challenging. 

3. 1 Flame Synthesis of FLG on Cu 
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A photograph of a flame-synthesized FLG film that has been subsequently transferred onto a 

1cm × 1cm quartz substrate is shown in Fig. 2a.  In Fig. 2b, an optical image shows a graphene 

flake along with the corresponding atomic force microscopy (AFM) image.  The thickness of the 

graphene films on Cu is found typically to be on the order of 4nm from AFM height profiles, 

suggesting that the film consists of 8 to 10 monolayers of graphene. 

Raman spectroscopy enables the identification of single to few-layer graphene [24], along 

with its quality.  Typical Raman spectrum of FLG after transfer onto SiO2/Si is shown in Fig. 

2(c).  Three peaks are noticeably present in the spectrum: (i) the D peak at 1351 cm
-1

, which is 

due to the first-order zone boundary phonons and is used to determine the disorder present in the 

graphene; (ii) the G peak at 1580 cm
-1

, which is related to the bond stretching of sp
2
 bonded 

carbon atoms; and (iii) the 2D peak at ~2700 cm
-1

, which is caused by the second-order zone 

boundary phonons.  The ratio between the intensities of the G peak (IG) and the 2D peak (I2D) 

provides an estimate of the number of layers [8, 25], where, from Fig. 2(d), the values are found 

to range from 1.3 to 1.7.  For mono and bi-layer graphene, this ratio is less than 1.  If more than 2 

layers are present, ratios ranging from 1.3 to 2.4 have been reported for FLG.  Reina et al. [25] 

reported IG/I2d ratio of 1.3 for 3 layers of graphene on Ni; and Robertson et al. [26] reported 

values of 1.8 to 2.4 for 5 to 10 layers of graphene on Cu.  The full-width and half-maximum 

(FWHM) of our 2D peak is ~75 cm
-1

, which is consistent with FLG grown at atmospheric 

pressure [10].  The Raman data should be used in conjunction with other characterization and 

verification techniques to corroborate the properties of FLG.  Transmittance can be used to 

assess the number of graphene layers, where the opacity of monolayer graphene is estimated to 

be 2.3% [27].  From Fig. 3a, the transmittance of our FLG films at 550nm is 86%, which 

correlates to ~6 layers.  Combining our results from Raman, AFM, and transmittance, we 
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estimate that 5 to 8 layers of graphene are grown uniformly across the Cu substrate using our 

flame-synthesis technique. 

 
 

Figure 2.  Few-layer graphene (FLG) film grown by flame synthesis on Cu. (a) Photograph of 

a 1cm x 1cm film transferred onto quartz. (b) Optical microscope image of the FLG transferred 

onto a Si substrate with a 300nm oxide layer and the corresponding AFM image and height 

profile of the FLG transferred on SiO2/Si substrate. (c) Two-dimensional mapping of the Raman 

IG/I2D over a 12μm x 12 µm area. (d) Raman spectrum of the FLG on SiO2/Si. 

 

The ID/IG ratio observed in our sample is around ~0.35, which is comparable to 

measurements of FLG grown using other methods [10].  The measured disorder in our FLG 

likely arises from the sheets being composed of sub-micron domains.  Using the four probe 

method, the sheet resistance of the FLG is calculated to be 40kΩ/sq at 86% transmittance value, 

which is considerably higher than CVD-grown graphene.  Similarly, the high sheet resistance 

may be attributed to the small domain size of the graphene.  In CVD growth, the characteristic 

domain size of graphene has been increased by lowering the global flux of methane [28].  
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However, the fundamental mechanism for this trend is not clear, as there are many effects 

intertwined; and additional parameter dependencies need to be explored to isolate the controlling 

mechanism dictating domain size.  We are currently investigating the effect of methane flux, as 

well as other parameters, on enlarging domain size for flame-synthesized graphene on Cu. 

 

Figure 3. (a) UV-vis spectrum of the FLG transferred onto a quartz substrate.  (b) XPS C 1s 

spectrum of the FLG shows that the oxygen contamination is minimal and is comparable to CVD 

grown graphene. The inset shows the XPS spectra of the film.  

 

A product of hydrogen and hydrocarbon combustion with oxygen is H2O, which at high 

temperatures can result in oxygen doping of graphene.  However, with abundant H2 present in 
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reactions are minimized.  The X-ray photoelectron spectroscopy (XPS) spectrum of the C 1s 
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shown in Fig. 3b.  Less than 10% of oxygen incorporation (e.g. CO) is visible from the XPS 

figure.  Surprisingly, the amount of oxygen-bonded species in our open-ambient flame synthesis 

process is actually lower than that for CVD-grown graphene under near vacuum conditions [11].  

Consequently, the conditions for our flame synthesis, where H2O oxidation is minimized, O2 is 

“gettered” in the reaction zone, and open-atmosphere processing is afforded, are advantageous 

for scaled growth of graphene over large areas (e.g. over existing structures).  Note that the O 1s 

peak, as seen in the inset of Fig. 3b, is due to oxygen or water absorbed on the surface and is 

even present in pristine graphene [29]. 

The effects of CH4:H2 ratio and temperature are examined in the growth of FLG on Cu.  

For the standard case, the CH4:H2 ratio is kept at 1:10, and similar results are observed when this 

ratio is varied from 1:5 to 1:20.  However, when the ratio is below 1:40, no growth of FLG is 

observed on the substrate.  This result is contrary to that reported using atmospheric-pressure 

CVD [10], where at lower CH4:H2 ratios, monolayer graphene is synthesized.  In flame 

synthesis, temperature is a critical factor in the growth of uniform FLG.  At lower gas-phase 

temperatures, the typical Raman spectrum features resemble those of nanocrystalline graphite 

[30], where a much higher D-peak exists and the intensity ratio between the G peak and 2D peak 

increases, as shown in Fig. 4.  Upon further reducing the gas-phase temperature, the 2D peak 

disappears.  However, a G peak is still observed, indicating the presence of activated carbon-

based materials on the copper [31].  The reason for different carbon-based growth on Cu is 

perhaps due to the presence of other gaseous carbonaceous species, such as CO and Cn, in the 

post-flame environment.  These species can readily decompose at lower temperatures to form 

carbon materials that are stable at lower temperatures.  In another work [19] that attempts to 

grow graphene on copper using flames, a thin carbon film is synthesized with large amounts of 
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sp
3
 bonding.  This characteristic of the thin film was attributed to the low deposition 

temperatures of 550
°
C to 700

º
C. 

 

 
Figure 4. Analysis of the influence of temperature on the growth of FLG on Cu, showing 

variation in Raman I2D/IG as a function of gas phase temperature. The inset shows atypical 

Raman spectrum observed at lower temperatures. 
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may lead to smaller graphene domain size, and hence more measured disorder.  A HRTEM 

image and the corresponding diffraction pattern are shown in Fig. 5b.  The hexagonal symmetry 

of multiple graphene layers can be inferred from the diffraction pattern, although specific 

stacking order of the layers requires additional analysis.  A magnified image of the well-ordered 

graphitic lattice is shown in the inset of Fig. 5b. 

 
 

Figure 5.  Few-layer graphene film grown by flame synthesis on Ni.  a) Raman spectrum of 

the FLG on Ni. b) HRTEM image of the FLG. The bottom right inset shows the electron 

diffraction pattern of the graphene sheet, illustrating the well-defined crystalline structure. The 

top left inset shows resolution magnified image of the graphitic lattice.  
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Fig. 6a shows lighter regions corresponding to FLG; and the color contrast demonstrates that the 

growth of FLG on Ni is not uniform.  With increased temperature (i.e. 950ºC), Fig. 6b shows that 

the Ni foil becomes uniformly dark, indicating the presence of more than 10 layers of graphene.  

The dependence of graphene growth on the ratio of methane to hydrogen is shown in Fig. 6c.  

When this ratio is lowered to 1:20, the Raman position of the 2D peak (~2700 cm
-1

) indicates 

that fewer than 5 layers of graphene are grown.  Interestingly, such growth is similar to the 

850ºC temperature growth illustrated in Fig. 6a, where the growth is non-uniform across the 

substrate. 

 

 
 

Figure 6. Investigation of the temperature and methane concentration on the growth of FLG 

on Ni.  a) Temperature = 850°C, CH4:H2 = 1:10.  b) Temperature = 950°C, CH4:H2 = 1:10.  c) 

Raman spectra showing the 2D peak at a constant temperature of 950°C. 
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Ni, respectively, at a CH4:H2 ratio of 1:10, are compared in Fig. 7.  For Cu, methane is 

introduced for 10 minutes at a temperature of 950
°
C; while for Ni, methane is introduced for 5 

minutes at a temperature of 850
°
C.  In Fig. 7a, for Cu, the 2D peak is always at or below 2700 

cm
-1

, which is consistent with FLG.  On the other hand, in Fig. 7b, for Ni, the 2D peak reaches a 

value of 2727 cm
-1

, indicating the presence of more than 10 layers.  As such, the growth of 

graphene on Cu is self-limiting to few-layers for our flame synthesis system at atmospheric 

conditions. 

 

  

Figure 7. Raman mappings of the 2D peak over a 12 µm x 12 µm region at a constant CH4:H2 

ratio of 1:10.  a) Raman mapping for Cu, illustrating that the growth of graphene is self-limiting 

to a few layers.  b) Raman mapping for Ni, showing regions that correlate to more than 10 layers. 

 

3.3 Flame Synthesis of CNTs 

By adjusting the conditions (e.g. temperature), our multiple inverse diffusion flame burner can 
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for CNT growth, ethylene is used as the fuel source, with a Ni/Ti alloy substrate placed in the 

post-flame region.  Transition metals (e.g. Ni, Co, and Fe) and their alloys are well known to 

serve as catalysts for CNT growth.  Under the right conditions, catalyst nanoparticles are formed, 

and carbon-based precursor species readily undergo dissociative adsorption and diffuse through 

the catalyst nanoparticles and grow into CNTs.  Using our flame setup, no pretreatment of the 

substrate is needed; our single-step method induces catalyst nanoparticle formation [17, 33] 

along with subsequent CNT growth.  An SEM image of the as-grown CNTs is shown in Fig. 8.  

With the temperature and chemical species concentrations in the post-flame gases radially flat, 

uniform synthesis of CNTs is possible.  Additionally, for fundamental study, the axial gradients 

are moderate, so that flame conditions can be parametrically examined to establish, with 

precision control, local “universal” conditions (e.g. gas-phase temperature, substrate temperature, 

relevant species) that correlate with resultant CNT morphologies and growth rates.  The 

transition from graphene to CNT growth, with respect to local conditions as well as spatial 

interfaces, is currently being investigated. 

 

 

2 μm
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Figure 8.  SEM image of CNTs grown on a Ni/Ti substrate. 

 

4 Concluding Remarks 

Flame synthesis utilizing a multiple-inverse diffusion flame burner is demonstrated in this work 

to be well-suited for processing carbon-based nanostructures.  Under very rich fuel conditions, 

the configuration generates specific hydrocarbon species that can form graphene on a heated 

metal substrate.  On Cu, 5 to 8 layers of graphene are grown uniformly across the substrate.  Due 

to a different growth mechanism, Ni offers lower graphene disorder, but at a cost of more layers 

created.  Nonetheless, the growth conditions have not been optimized in this study, and on-going 

parametric refinement should result in higher quality and fewer layers of graphene produced.  

The configuration allows for detailed probing of the local gas-phase temperature and relevant 

chemical species such that the fundamental growth mechanisms of graphene on various 

substrates can be identified. 

The novel non-premixed flame synthesis process is expected to complement CVD-type 

processes in the growth of graphene and CNTs.  Elevated gas-phase temperatures and flame 

chemistry provide the precursors for growth, making hydrocarbon (as well as doping precursor) 

decomposition more independent of substrate temperature, offering an additional degree of 

freedom in tailoring film characteristics.  The encompassing quartz cylinder, which prevents 

oxidizer transport from the ambient, can also serve as a “reactor wall,” whose cooling/heating 

rate can be tuned to optimize gas-phase chemistry and temperature reaching the substrate for 

ideal carbon-based growth.  The present setup affords fast growth rates due to innately high flow 

rates of precursor species; control of temperature and reagent species profiles due to precise 
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heating at the flame-front, along with self-gettering of oxygen; and reduced costs due to efficient 

use of fuel as both heat source and reagent.  Growth is uniform because the configuration 

produces post-flame gases downstream that are quasi one-dimensional, i.e. radially-uniform in 

temperature and chemical species concentrations.  Finally, the method is scalable and capable of 

continuous operation in an open-ambient environment, presenting the possibility of large-area 

processing. 
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