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A SUBCELL-ENRICHED GALERKIN METHOD FOR ADVECTION PROBLEMS

ANDREAS RUPP, MORITZ HAUCK, AND VADYM AIZINGER

ABSTRACT. In this work, we introduce a generalization of the enriched Galerkin (EG) method. The key feature
of our scheme is an adaptive two-mesh approach that, in addition to the standard enrichment of a conforming
finite element discretization via discontinuous degrees of freedom, allows to subdivide selected (e.g. troubled)
mesh cells in a non-conforming fashion and to use further discontinuous enrichment on this finer submesh. We
prove stability and sharp a priori error estimates for a linear advection equation by using a specially tailored
projection and conducting some parts of a standard convergence analysis for both meshes. By allowing an
arbitrary degree of enrichment on both, the coarse and the fine mesh (also including the case of no enrichment),
our analysis technique is very general in the sense that our results cover the range from the standard continuous
finite element method to the standard discontinuous Galerkin (DG) method with (or without) local subcell
enrichment. Numerical experiments confirm our analytical results and indicate good robustness of the proposed
method.

1. INTRODUCTION

The main idea of the enriched Galerkin (EG) method is to extend the approximation space of the continuous
finite elements by including some element-local discontinuous functions and to utilize a solution procedure
similar to that of the discontinuous Galerkin (DG) method (Riemann solvers, edge fluxes, ...). The latter
feature makes the EG schemes fundamentally different from the XFEM methods that frequently also rely on
local approximation space enrichments. The resulting discretization is locally conservative and robust but, in
multidimensions, has substantially fewer degrees of freedom than a DG method of the same order.

In [31], the EG methods were re-cast as a generalization of the classical finite elements, i.e. continuous Galerkin
(CG) methods by considering the EG space as a combination of arbitrary continuous and discontinuous Galerkin
(DG) test and trial spaces. However, the original EG scheme proposed in [1] for the advection equation was
a combination of lowest order finite elements and finite volumes discretized using the DG framework. This
methodology was further developed and investigated by Wheeler, Lee, and coworkers, who also considered
higher order enriched CG methods and a wider range of applications [22, 32, 2, 23, 24, 25, 3, 16, 15]. The
analysis of EG method in [31] used a special EG-type projection and was limited to elliptic and parabolic
problems. Nonetheless, it paved the way to the analysis for hyperbolic equations in this work.

Similarly to CG approximations, EG methods for hyperbolic equations may develop spurious oscillations.
Kuzmin et al. [21] proposed several algebraic flux correction schemes to ensure the validity of local maximum
principles. Limiting techniques of this kind have also been successfully applied to CG [18, 27] and DG [10]
discretizations. The use of localized subcell limiters was found to be essential in extensions to high-order
Bernstein finite elements [12, 11, 19, 27]. An hp-adaptive approach to subcell limiting was introduced in
[20]. Using continuous blending functions, a high-order finite element approximation on a large macrocell was
combined with a bound-preserving piecewise (multi-)linear subcell approximation.
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Another well-known class of methods relying on subcell limiting to suppress spurious oscillations has been
introduced in [7] and generalized to unstructured meshes in [6]. These techniques are based on the ADER-DG
schemes proposed in [5] and possess a very attractive capability to detect high- and low-regularity solution
behavior. The underlying a posteriori limiting strategy was inspired by the Multi-dimensional Optimal Order
Detection (MOOD) approach originally developed for finite volumes. In the context of the ADER-DG methods,
physical and numerical admissibility conditions are enforced by, first, advancing the solution in time using
a high-order DG method on the coarse mesh, and, for troubled cells, repeating the last time step locally via
a low-order DG (i.e. finite volume) method on the submesh.

Our subcell EG method has the potential to further customize the local approximation space by supporting
the whole range of local polynomial orders on both, the coarse and the fine (subcell) mesh. This feature of our
approach makes it possible to combine popular p- and hp-adaptivity techniques with the two-mesh approach ,
while exploiting its intrinsic ability to assess the local solution regularity.

The main purpose of this work is to present a stability and a priori error analysis for the subcell-enriched
EG method for the linear advection equation and to demonstrate the performance of the new scheme using
some test problems. As in [31] this analysis is conducted in a unified framework that covers the CG, DG, and
EG (with and without subcell enrichment) discretizations. The implementation of the new numerical scheme
was carried out in our FESTUNG! framework [9, 28, 14, 29, 30] based on our EG scheme for the shallow-water
equations [13].

1.1. Model problem. We consider a non-stationary advection equation on a bounded Lipschitz domain Q C R¢
(with d < 3). The precise formulation of the linear hyperbolic problem to be solved is as follows:

u+ V- (a(t,x)u) = f(t,x) in (0,7) x Q, (1.1)

for a given velocity field a € L>(0,T; W1°(Q2)) and a right-hand side function f € L?((0,7) x Q). Additionally,
initial data uy € C(f) is prescribed, and we denote by vq the outward unit normal to 9Q. Furthermore, we
assume that the inflow boundary

. = {xe€d:a(t,x) vqg <0}

is independent of time and disjointly subdivided into Dirichlet I'p and flux I'r boundaries (this subdivision is
also assumed to be independent of time), i.e.

u=uponTp and |a-vglu=gronTg, upe L?0,T;HY*(p)), gre L*(0,T;HY?*TF)).

For the sake of simplicity, we assume that there exists 6 > 0 such that I'r C {x € T'_: a(t,x) - vq < —6}.

1.2. Structure of the manuscript. The remainder of this manuscript is structured as follows: In Section 2,
we introduce the enriched Galerkin method with local subcell enrichment for advection equations. Section 3
investigates the energy stability of the new scheme, while its a priori convergence is proved in Section 4 and
verified numerically in Section 5. A short conclusions section wraps up the article.

2. THE ENRICHED GALERKIN FINITE ELEMENT METHOD

2.1. Basic definitions and notations. In the following, (73 )ycrcr+ denotes a successively refined family of
T = Tu(Q) = {K; :i=1,...,Na} (Ng > 0 is the number of elements) of d-dimensional non-overlapping
partitions of Q (see [4, Def. 1.12]) that is assumed to be regular (in the sense of [4, Def. 1.38]) and geometrically
conformal (in the sense of [8, Def. 1.55]). For the sake of simplicity, we assume that T3 consists of simplices
and/or quadrilaterals/hexahedrons.

Furthermore, 745, denotes a mesh 73, of which some elements have been refined (Fig. 2.1 (middle)). The
mesh 73, can be geometrically non-conformal. By construction, 7, can be embedded into a regular and

Mhttps://github.com/FESTUNG
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conformal mesh 7;, (Fig. 2.1 (right)), which contains the elements added during the refinement process. Hence,
we can write T, as disjoint union

Tq.qh =Sy uS, with Sy C Ty, Sn C U ’Tb
h<p<H

denoting the subsets of unrefined and refined elements, respectively. Writing F(73) for the set of faces we
define the skeleton of Ty, as
Y= U F.

FeF(Tun)

We write hi for the diameter of IC; furthermore, parameter H refers to the maximum diameter of an element
of a mesh, i.e., H = max{hi : K € Ty }. If v without an index is evaluated on a face, a unit normal with respect
to the face is arbitrarily chosen.

FIGURE 2.1. Schematics of T3, (left), T3, (middle), and 7 (right) meshes.

The double mesh sequence (7 h)zféﬁ ner 18 called weakly quasi-uniform if there exists a constant p > 0 such
that for all H € Z, all h < H, h € Z, and all K € Ty \ Sy, we have

haug = max{hi : K € S, with K C K} < pmin{hx : K € S), with K C K}.
To simplify notation we set hH|l€ = hg for Ke Sy.

The test and trial spaces for our EG method utilize the broken polynomial spaces of order m on some
mesh M € {7, Tyn}. They are denoted by IP,,(M) and consist of element-wise polynomials of degree at
most m (simplices) or tensor-product polynomials of degree at most m in each spatial coordinate (quadrilater-
als/hexahedrons) without any continuity constraints. Thus,

Vit = (Pu(To) N C(Q) + Pe(Tot) + Pon(Toujn)

for =1 <m < ¢ <k, k> 0. Here, P_1(M) = {0}, and one can observe that Py(7%) N C(£) is the standard
continuous finite element space. Obviously P, (7y) C V/fm C Pu(Tn).-
In this work, we utilize several types of projection/interpolation operators denoted as follows:

e II, and Hg_’;"; are the L?-projections into the spaces P,.(T3;) and Py(T3) + Py (Tsn), respectively.

e I} is the standard interpolation operator for finite element space Py (73) N C(£2).
e 7 is the mapping used to project the initial data into me proposed in [31] and given by

™ L(Q)NCQ) = Vi, mu= L+ T30 (u— Tu). (2.1)
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2.2. Semi-discrete formulation. The semi-discrete EG formulation of the problem can be constructed by
using the standard DG bilinear and linear forms for the advection equation on Ty;,. The bilinear form uses the
notion of averages {[-]} and jumps [-], which for F 5 F C 9K~ N9KT with K~ # KT are defined as
1
{lolt = §(g|ch + 9glc+), [9] = glx-vic- + gl+vic+,
for a scalar g that is element-wise smooth enough to have traces. On 9€2, this definition is modified as follows:
{g =9,  l9] = gva,
Hence, the jump turns a scalar into a vector. Also note the following property of jumps used in our analysis
l9°] = 2{lg} [9]-
Given a velocity field a, we define the upwind value of g as

()=l a+ 2BV ),

where sign(+) is the standard signum function.
Using this notation, we can formulate our semi-discrete problem

a(U, %) = b(p)
with trial function U and test function ¢ from Vé’fm for almost every ¢ € (0,7) and U(0) = mug, where

a(U, p) ::/Q HUpdx — Z

/Ua-dex+/ (U)sa- [¢] do,
KeTx n K x

\T'_

b(p) ZZ/fcde+/ uD\a~uQ|godU+/ gry do.
Q I'p I'e

Note that a(-,-) is a standard DG bilinear form; its consistency implies that the EG bilinear form is also
consistent since Vl’fm C Px(Th).

3. STABILITY ANALYSIS

The stability of the method can be obtained exactly as the stability of the DG methods. Thus,
Theorem 3.1. The EG solution is L>(0,T; L*(Q)) stable.

Proof. We test aj, with ¢ = U, use the identity %(g’)2 = g¢’ and integrate by parts to obtain

1 1 1
LU + 7/(V~a)U2dx— f/ [[U2]]-ado—+/ (U),a- U] do
2 2 Ja 2 /s S\T_

=3 [y lawval[U]? do

:/fde+/ uD|a-l/Q|Uda+/ grU do
Q I'p T'r

1 1 2
< /fde—&-f/ [‘a'VQ|U2D+|a'VQ|HU]]2i| da—l—f/ [ Jr +|a- vol|[U]?| do,
Q 2 Jry 2 Jry la - vql

where the last inequality follows from the Young’s and Cauchy-Schwarz inequalities and uses the assumption
a(t,x) - vq < —6 on I'p. This directly implies the L>°(L?)-stability without exponential growth of constants if
f =0and V-a > 0 after integrating with respect to time. Otherwise Gronwall’s, Young’s, and Cauchy—Schwarz
inequalities give the result (after moving 3 [,(V - a)U? dx to the right-hand side). O
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4. ERROR ANALYSIS
For the error analysis, we need some auxiliary results:

Lemma 4.1. The operator m of (2.1) is an orthogonal projection into Py(Tz;) + P (Tpyn) with respect to the
L?%-inner product, i.e.,

/(ﬂ'u —u)pdx =0 Vo € Po(Tw) + Pou(Tn)- (4.1)
Q
Proof. Result follows directly from the fact that Iu —u € L?(£2) and the L?-orthogonality of Hf_ﬁ;. O

Lemma 4.2 (Best approximation property of Hi’ﬂ)- For all ¢ € Py(Tw) + Pu(Toyn), g € L*(Q), and all
K e Ty,

£,m
ITL31,9 — 9ll20c) < Il — gll 2 (4.2)
Proof. Follows directly from the L2-orthogonality of H%Tz and the possibility to localize the projection to all
KeTy. O

Lemma 4.3 (Inverse inequality). Let (T3 )nez be a regular mesh sequence. There exists a constant C > 0 such
that for all H € T, all ¢ € Pp(Tx), and all K € Ty

el < C hitlellz ). (4.3)
Proof. This is [4, Lem. 1.44]. O

Lemma 4.4 (Discrete trace inequality). Let (T3 )wnez be a regular mesh sequence. There exists a constant
C > 0 such that for all H € Z, allv € Pr(Ty), all K € Ty, and all F € F with F C 0K

lell2cey < C B2l L2 io)- (4.4)
Proof. This is [4, Lem. 1.46]. O

Lemma 4.5 (Continuous trace inequality). Let (T3 )wnez be a reqular mesh sequence. There exists a constant
C > 0 such that for all H € T, all K € Ty, allv € HY(K), and all F € F with F C 0K

[0ll72(my < C ([vlmoey + hic' vl z2g0) 0]l 2 k) - (4.5)
Proof. This is [4, Lem. 1.49]. O

Lemma 4.6 (Approximation property). Let (T )nez be a reqular mesh sequence. There exists a constant
C > 0 such that for allv € H**Y(Q), all H € T, and all K € Ty

|Hé€_L”U - U|Hm(K:) < C h,l%+1_m|v\Hk+1(,C) fOT ke NU {0}, (46)
‘[7]11} — 'Ule(IC) <C h,’%+1*m|v\Hk+1(,<) for k € N\ {0}. (4.7)
Proof. The first inequality is [17, Theo. 3.29]. The second inequality is [4, Lem. 1.58]. O

Lemma 4.7. Let (Ty)uez be a regular mesh sequence. There exists a constant C > 0 such that for all
veWL(Q), all H € Z, and all K € Ty

3,0l Lo ey < N0l Loe (k) (4.8)
TS0 — vl oo iy < hclolwos i) (4.9)

Proof. The first inequality is the observation that H%v is the element-wise mean of v which needs to be smaller
than or equal to its essential maximum. The second inequality is a simple combination of [17, Theo. 3.24 &
3.26]. O

Next, we formulate our main result.
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Theorem 4.8. Let (Ty) be a weakly quasi-uniform mesh (double) sequence, and let w € H*(0,T; H*1(Q)),
k € N\ {0}. Then, the EG approzimation U converges in L>(L?) to the analytical solution u, i.e., there exists
C independent of H and h such that

m 2(k—m
lu = U7 0.1:12(0)) < C Z h?{ucHrc( )‘uﬁ{l(o,T;HkJrl(lC))
KeTy

with m = m 4 1/2 for simplicial meshes and £ > k — 1 or general meshes and £ = k (i.e. in the case of DG).
Otherwise, m = m.

Proof. Defining
ewe =U—mu and 0, =mu—u,
we have due to the consistency and since e, € Vglfm that
a(ey + 0y, e,) =0 for almost every t € (0,T).

This can be rewritten as

1 1 1
§3t||eu||2L2(Q)+§/ la-v|e.] do = -3 / (V-a)e dx—/ (0u)ra - [eu] do —/ 010,e, dx
b Q Q

S\T'_
—_—— —

=E ==

+ > /(‘)u(afﬂg_[‘hafVeuder > /Gqu_Llha~Veudx.
KeTon 'K KeTn ' %

==y =:Es
We can immediately deduce that:

e [f V-a >0 then =; < 0 holds, and this term can be moved to the left hand side and integrated into
the energy norm. This is consistent with the continuous case, when the mass sinks lead to an increase
in the stability.

e If a is element-wise constant, then Z4 = 0.

e If the mesh is simplicial, and the globally continuous polynomials are from the space Py, then H%I R
Veu € Pr_1(Tw) + Pm—1(Ton). Using (4.1) yields Z5 = 0, provided that £ > k — 1.

e If the mesh is quadrilateral, and the globally continuous polynomials are from the space Qf, then
Hgﬂha -Vey € Pr(Tw) + Pr(Toyn). Using (4.1) yields 25 = 0 provided that ¢ = k, i.e., in the case of
DG.

Next, we estimate terms Z.:

1
B ||V-aHLoo(Q)||eu||%2(Q),

1
/ (ou)ﬁdwf/ la- v|[e]? do
S\T_ 4 /s
1 2
C / Gida—i—f/ a-vl|e,]" do
> [ ar+l [ e

KT |n

W
IN

IN

=23

IN

(4.5) - 1

4
K:ETH‘h
_ 1 )
< C Y hlbulingg + C Y h,C1||9u||2L2()<)+Z/ a - v|[ed]” do,
)CETH“L }CETHUL ¥
_ 1 1
=53] < B ||3t9uHL2(Q)+§ llewllz2 (@),
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Eal < > 18ullzogo)lla — T, all L o) I Veull L2 k)

KeTxn
(4.4),(4.9) _
S O Z ||0u||L2(K;)hfc|a|wl,oo(;c)hlclH6u||L2(;C)
K:ETHM
< laffpie o) Z 1611721y + C Z lewll72 gy
KT |n KeTxn
Zsl < )0 0ullz2go) 1Ty hall Lo o) [ Veull L2 k)
K:GTH”L
(4.4),(4.8) B
< C Z 10wl 2210y l1all e oy ic w22 ()
KETH”L
< lalie@ D, Pclbullizg +C Y leulfa-
’CETH‘}L KeT’H\h

This would give the desired result (after applying Gronwall’s inequality — if needed) provided that we could
find good estimates for the terms involving 6y, and [0, |x1 (k). Note that only the norm ||V - al| ) enters the
exponential term in the Gronwall estimate.

We consider the cases K € S, and K € Sy separately. In the first case, we can estimate

KeTa\Sn
S b lmu- g < Y Welru - ullg,
Spakck ReTn\Sxn
T l,m
= 3 el (e = w) — (u— Fyu) [, g
)%ET’H\S'H
(4.2) Z hr AHHm (u—]ku) _(u_lku)”Q N
HIKIHHA H H L2(K)
KeTwn\Sn
EGTH\SH
= 3 el = ) — (u = Hyu)[Fagx
Snakck
9 2m424r k|2
§ ¢ Z h'H\E |U - IHU|Hm+1(E)
EGTH\SH
(4.7)
m r k—2m
< CYD MR
KeTu\Sn

In the second case, we obtain for K € Sy using the same arguments

k
3 Hellmu —ulfage < €Y HET ul o)
KeSy KeSy

The estimate for |0,]g1 (k) is conducted analogously. Here, the projection w*u = IFu+ H%h(u — I5u) is
used to obtain

’%ET;{\SH (4.3) I/C\ET’H\SH

Z h,%|7ru—u\%p(,¢) < C Z (hk\ﬂ'*u—uﬁp(,c)+hr,{2||7ru—7r*u||%z(,c)),
SpaKck SpaKck
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which gives the needed estimate after inserting +wu into the second summand and redoing the aforementioned
arguments. Collecting all terms gives the result. U

Remark 4.9. This result is not optimal, since it uses high regularity of the temporal derivative. However, in the
case of DG, i.e. m = —1 and ¢ = k, the proof can be streamlined by replacing 7 (and 7*) by H’;{—this also
implies that the initial data is constructed using an orthogonal projection with respect to the L?-norm. Here,
also the distinction between simplices and quadrilaterals/hexahedrons becomes unnecessary, and the polynomial
approximation spaces may all be of Py, type. This results in Z3 = Z5 = 0 and yields the optimal estimate

m 2(k—m
||U—U||2Loo(o,T;L2(Q)) < Z hi“él%;é )|U|2L2(0,T;Hk+1(;c>) < CH2k+1|u|i2(0,T;Hk+1(Q))’
KeTxn

where u is only assumed to be an element of L2(0,T; H**1(Q)).

5. NUMERICAL RESULTS

5.1. Analytical convergence test. In order to verify the convergence of the numerical schemes, we use the
method of manufactured solution. On the domain 2 := (0,1) x (0,1) and the time interval J = (0,1/2), we
define the analytical solution u(t, z1, z2) and velocity filed a(t, 1, z2) by

u(t,x1,x2) = cos(Txy) cos(Txa) + exp(—t), a(t,xy,me) = (22;%2;3 J_r iig;) .
The right-hand side f of the problem is chosen so that « and a satisfy (1.1). We prescribe Dirichlet boundary
conditions on the inflow boundary, i.e., I'p :=T'_, and use up = Ul orery and ug = u,_,-

Let r and R denote the refinement levels for the meshes with element sizes h and H, respectively. The
initial mesh (R=r=1) consisting of four triangles is obtained by diagonally subdividing €; finer meshes are
produced by connecting the edge midpoints of every triangle. As temporal discretization, we use an explicit
SSP Runge-Kutta method with s = k£ + 1 stages.

We utilize the EG method with polynomial orders & and ¢ on the coarse grid (of refinement level R) enriched
by the DG method of order at most m on the fine grid (of refinement level r).

Our implementation currently supports the approximation orders up to two. This yields four possible com-
binations of k, £, and m. In Table 5.1, the (r, R)-th entry corresponds to the L2-error at time t = 1/2 using the
refinement levels r and R.

We observe that our analytical convergence rates are confirmed by the numerical tests; however, somewhat
better convergence (by an order of ca. 1/2) is apparent. This is a well-known phenomenon also experienced
in numerical experiments for the DG method on regular meshes. Moreover, the first subcell refinement step
has the tendency to show a deteriorated rate of convergence — presumably due to an increasing constant when
switching between the two branches in the proof of Theorem 4.8 (discriminating between locally refined and
not locally refined elements).

In Fig. 5.1, one can see the respective convergence plots for different local refinement strategies. Note that
the solutions for VOQ_’O and V12,0 are very similar, their error plots in Fig. 5.1 lie on top of each other. The error
plots for the local refinements with h = H/4 (dashed lines) and h = 2H? (solid lines) are shown in Fig. 5.1
(left). We observe that the slopes of the error plots match (or exceed by ca. 1/2) the convergence rates in
Theorem 4.8. In Fig. 5.1 (right), the convergence for fixed H = 1/2 and successively refined h is shown. In
line with Theorem 4.8, we observe order of convergence one for numerical methods with m = 0 and order of
convergence two for V.

5.2. Solid body rotation. As the next benchmark problem, we use solid body rotation test proposed by
LeVeque [26]. Tt consists of a slotted cylinder, a sharp cone, and a smooth hump (see Fig. 5.2 (right)) that are
placed in a square domain € = (0,1) x (0,1) and transported by a time-independent velocity field

0.5 —
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Space‘ k=1,4=0,m=0 k=2,{=0,m=0
N 1 2 3 4 5 1 2 3 4 5
1 |585E-01  — — — —  |448B-01 — — —
2 |5.42E-01 2.85E-01  — — —  |2.95E-01 7.50E-02  — — —
3 |2.95E-01 1.95E-01 7.24E-02  — —  |2.21E-01 7.39E-02 1.06E-02  — —
4 |1.60E-01 1.10E-01 7.37E-02 1.88E-02  — [1.23E-01 6.79E-02 9.67E-03 1.46E-03  —
5 |8.40E-02 5.78E-02 4.18E-02 1.99E-02 4.80E-03|6.46E-02 3.93E-02 8.73E-03 1.27E-03 2.07E-04
6 |4.33E-02 2.98E-02 2.21E-02 1.12E-02 5.16E-03|3.33E-02 2.10E-02 5.03E-03 1.17E-03 1.59E-04
7 |2.21E-02 1.53E-02 1.15E-02 5.90E-03 2.89E-03|1.70E-02 1.10E-02 2.68E-03 6.72E-04 1.49E-04
space‘ k=2,4=1,m=0 k=2,4=1,m=1
N 1 2 3 4 5 1 2 3 4 5
1 [447E-01  — — — —  |447E-01  — — — —
2 |2.95E-01 7.11E-02  — — — |LT2E-01 T.11E-02 — — —
3 |2.21E-01 7.34E-02 9.80E-03  — —  |6.62E-02 5.96E-02 9.80E-03 ~ — —
4 |1.23E-01 6.76E-02 9.59E-03 1.29E-03  — |1.76E-02 1.63E-02 7.57E-03 1.29E-03  —
5 |6.46E-02 3.91E-02 8.69E-03 1.26E-03 1.63E-04 |4.51E-03 4.24E-03 2.10E-03 1.00E-03 1.63E-04
6 |3.33E-02 2.09E-02 5.00E-03 1.17E-03 1.59E-04|1.15E-03 1.09E-03 5.41E-04 2.79E-04 1.27E-04
7 | L70E-02 1.09E-02 2.66E-03 6.70E-04 1.49E-04|3.29E-04 2.77E-04 1.37E-04 7.18E-05 3.56E-05

TABLE 5.1. Analytical convergence test: L2-errors for Vzlfm, 0<m</tl<k<2

in a counterclockwise rotation about J = (0,2). Using r = 0.0225 and G(x,%0) = 54z ||x — %02, we choose
the following initial data

1 if (21 —0.5)% 4 (22 —0.75)> <7 A (21 <0475V 21 > 0.525 V 29 > 0.85)
wo(x) = 1-G(x(55) if (z1—0.5)>4 (22 —0.25)* <r

3 (14 cos (7G (x, (06?55)))) if (21 —0.25)% + (x2—05)2<r

0 otherwise

At the inlet I'_, we prescribe the Dirichlet boundary condition w = 0. The right-hand side of the advection
equation is given by f = 0. In order to obtain a discrete initial condition preserving the bounds of the analytical
solution (0 < U},_, < 1), we define ug using the L2-projection into the space of piecewise constant functions
instead of our special EG projection operator Hﬁ_’[l';l.

The results presented in Figs. 5.3 and 5.4 illustrate the stabilizing effect of piecewise-constant (k = 1, [ =
m = 0) subcell enrichments on different mesh levels. The standard CG approximation would produce spurious
oscillations in the whole domain. The EG method localizes them to a small neighborhood of the slotted cylinder,
while producing well-resolved approximations of the smooth hump and sharp cone.

6. CONCLUSIONS

In this article, we introduced and investigated a generalization of the enriched Galerkin method that relies
on a two-mesh enrichment with discontinuous functions of arbitrary order. The method was shown to be stable
and to converge at the same rate as the discontinuous Galerkin method. Our numerical results demonstrated
good agreement with the a priori convergence analysis, although the experimental rates of convergence on
regular meshes exceeded those of the analysis by approximately 1/2 — in line with the well-known results for
the DG method. Our investigation suggests that using local subcell enrichment is an exceptionally flexible
discretization approach for representing solutions of locally highly varying regularity without incurring too
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FIGURE 5.1. Analytical convergence test: Log plot of L?-errors for ngm, 0<m<Il<k<2
and different refinement strategies.

FIGURE 5.2. Solid body rotation: Coarse mesh (left); initial condition projected on the space
of element-wise constant polynomials on mesh with R =7 (right).

much computational overhead. While global subcell enrichments do not offer the same savings in the number
of degrees of freedom as the classical EG method, local enrichment in selected cells is ideally suited for hp-
adaptivity purposes.
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a) R=4,r =4, L*err: 1.28E-01 b) R =4,r =5, L?-err: 1.15E-01

FIGURE 5.3. Solid body rotation: Final state after one rotation.
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FIGURE 5.4. Solid body rotation: Cross-sections at positions £=0.5 (top), y=0.75 (bottom).

In the future work, we plan to extend this methodology to more complicated applications (e.g. shallow—

water equations) and look into the possibility of using subcell enrichments in hp-adaptive bound-preserving
finite element schemes.
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