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Abstract
 study concerns the preparation and initial characterisation of nov el calcium titanium phosphate-alginate (CTP-

alginate) and hydroxyapatite-alginate (HAp-alginate) microspheres, which are intended to be used as enzyme delivery matrices and 
bone regeneration templates. Microspheres were prepared using different concentrations of polymer solution (1% and 3% w/v) and 
different ceramic-to-polymer solution ratios (0.1, 0.2 and 0.4 w/w). Ceramic powders were characterised using X-ray diffraction, 
laser granulometry, Brunauer, Emmel and Teller (BET) method for the determination of surface area, zeta potential and Fourier 
transform infrared spectroscopy (FT-IR). Alginate was characterised using high performance size exclusion chromatography. The 
methodology followed in this investigation enabled the preparation of homogeneous microspheres with a uniform size. Studies on 
the immobilisation and release of the therapeutic enzyme glucocerebrosidase, employed in the treatment of Gaucher disease, were 
also performed. The enzyme was incorporated into the ceramic-alginate matrix before gel formation in two different ways: pre-
adsorbed onto the ceramic particles or dispersed in the polymeric matrix. The two strategies resulted in distinct release profiles. Slow 
release was obtained after adsorption of the enzyme to the ceramic powders, prior to preparation of the microspheres. An initial fast 
release was achiev ed when the enzyme and the ceramic particles were dispersed in the alginate solution before producing the 
microspheres. The latter profile is very similar to that of alginate microspheres. The different patterns of enzyme release increase the 
range of possible applications of the system investigated in this work.
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1. Introduction protein-drugs) can be locally released and potentially 
accelerate the process of bone regeneration.
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Osseous tumours, trauma and other debilitating 
diseases can create a need to fill defects in the skeleton. 
Most bone tissue engineering strategies rely on the use 
of temporary scaffolds that can be seeded with cells 
prior to implantation, or designed to induce the 
formation of bone from the surrounding tissue after 
implantation [1,2]. The effectiv eness of such materials 
can be highly improved if they can simultaneously act as 
drug deliv ery systems. Depending on the specificity of 
the illness, bioactive agents (e.g. growth factors or other
o
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In the past few years, increasing efforts hav e been 
ev oted to the dev elopment of improv ed injectable 
aterials aimed at providing an alternative for the filling 
f bone defects with less patient discomfort, as they can 
e applied through minimally inv asiv e surgical proce-
ures. Most injectable materials described in the 
iterature consist of pastes, gels or liquid precursors 
hat solidify in situ in response to some stimulus [3]. 
icro- or nano-particles hav e also been described, but 

hey must be suspended in either autologous blood or 
ther appropriate vehicle prior to injection.
A v ariety of injectable materials, both ceramic- and 
olymer-based, have been developed for use in multiple 
rthopaedic applications [4–20]. The combination of 
eramic particles with polymeric matrices has also been 
xtensiv ely inv estigated, in an attempt to mimic bone



tissue, which may itself be seen as a complex composite
material made of organic and inorganic components.
Different ceramic phases have been used, hydroxyapa-
tite and tricalcium phosphate being the most common
[4–9], as well as several polymeric matrices, both from
synthetic [10–14] or natural origin, the latter including
collagen, chitosan, gelatine and alginate, among others
[15–20].

This investigation describes the preparation and
initial characterization of novel calcium titanium
phosphate-alginate (CTP-alginate) and hydroxyapatite-
alginate (HAp-alginate) microspheres intended to be
used as injectable enzyme delivery matrices and bone
filling materials.

CTP is a bioactive ceramic currently under investiga-
tion in our laboratory [21]. Its properties, namely the
capacity of ion exchange and chemical adsorption [22],
and the ability to act as an immobilisation matrix for
several enzymes [23], suggest that it can successfully be
used in the biomedical field. Furthermore, recent in vivo
studies showed direct bone contact of implanted
cylinders containing calcium titanium phosphate as the
main phase [24]. HAp, which has long been recognised
for its bioactivity and osteoconductive properties and
has been extensively tested as matrix in drug delivery
applications [25,26], was also used in the present
investigation.

Alginate was chosen as the polymeric vehicle due to
its useful properties and versatility. Ultra-pure grade
alginates are considered biocompatible and biodegrad-
able and have been widely used in many biomedical
applications, not only as vehicles for biologically active
molecules [27] or cells, but also as scaffolds for tissue
engineering, either as porous structures [28] or modified
with RGD-containing peptide sequences [29]. Sodium
alginate and most other alginates from monovalent
metals are soluble in water, forming solutions of
considerable viscosity. Due to their suitable rheological
properties, alginates have long been used in the
pharmaceutical industry as thickening or gelling agents,
as colloidal stabilisers and as blood expanders [30].

CTP-alginate and HAp-alginate microspheres were
prepared using the droplet extrusion method. The
ceramic granules were mixed with alginate enabling
the preparation of spherical particles through instanta-
neous crosslinking in the presence of Ca2+ [30].
Compared to other methods of preparation of
ceramic-polymer microspheres [31–33], this process
presents the advantage of being simple and of
being carried out at room temperature and in the
absence of organic solvents, which makes it suitable for
enzyme entrapment purposes. Moreover, the spherical
particles can be easily recovered, without the need for
fastidious washing processes, and present a regular size
distribution even without subsequent fractionation by
sieving.
Analysis of the ability of these matrices to act as
carriers for the enzyme glucocerebrosidase (GCR) was
also undertaken. This enzyme is used in the treatment of
Gaucher disease (type I), which is characterised by a
number of severe disabling symptoms, including bone
pathologies [34]. GCR is highly unstable in solution
under physiological conditions [35]. Its immobilisation is
currently under investigation in our group to overcome
this problem.
2. Materials and methods

2.1. Materials

Calcium titanium phosphate (CTP) was synthesised
by solid state reaction as described elsewhere [21].
Commercial hydroxyapatite (HAp) powder (CAM
Implants) pre-heated at 1000�C was used as a reference.
Pharmaceutical-grade sodium alginate (Protanal 10/60
LS) with a high a-l-guluronic acid content (65–75%, as
specified by the manufacturer) was kindly donated by
Pronova Biopolymers and used without further purifi-
cation. Na-alginate solutions were prepared fresh as
needed, using bi-distilled deionised water. Purified
recombinant human glucocerebrosidase (GCR) was
purchased from Genzyme Corporation as a lyophilised
powder. Na125I and Sephadex columns were purchased
from Amersham Pharmacia Biotech. Additional chemi-
cals were purchased from Sigma.

2.2. Characterisation of CTP and HAp powders: X-ray

diffraction, specific surface area, granulometry and zeta

potential determination

The ceramic powders were analysed by X-ray diffrac-
tion (XRD, Philips PW 1710 diffractometer) and their
specific surface area was measured by gas adsorption
according to the Brunauer, Emmel and Teller (BET)
method. Granulometric analysis was performed using a
laser scanner particle size analyser (Coulter Electronics
Incorporation). Zeta potential (ZP) of CTP and HAp
powders was measured with a Coulter Delsa 440
instrument. ZP was calculated automatically by the
instrument based on the Smoluchowski formula:

z ¼ 4p
mZ
E
;

where z is the ZP (mV), m the electrophoretic mobility
(mmcm/V s), Z the viscosity of the fluid, and E the
dielectric constant of the fluid. The principle of
electrophoresis is that a particle will move in a liquid
under the influence of an applied electric field provided
its ZP is different from zero. The electrophoretic
mobility is proportional to the ZP as shown in the
equation above.



The ZP of CTP and HAp powders were determined at
several pH values. The powders were dispersed in 10mm

KCl and the pH was adjusted with 0.1m HCl and 0.1m
KOH.

2.3. Characterisation of alginate by HP-SEC

High performance size exclusion chromatography
(HP-SEC) was performed at room temperature using a
modular system, composed of an isocratic pump (K-
1001 Knaeur), a vacuum degasser (K-5002 Knaeur), a
viscometer/right angle laser light scattering (RALLS)
dual detector (T60 Viscotek), and a refractive index
detector (K-5002 Knaeur) operating at the same
wavelength as the RALLS detector (670 nm). Separa-
tions were performed in a set of PL aquagel-OH mixed
columns. The mobile phase consisted of 0.1m NaNO3

with 0.02% w/v NaN3 and the flow-rate was maintained
at 1.0ml/min. Samples were dissolved in the mobile
phase, filtered and injected through a manual injection
valve equipped with a 116 ml loop.

2.4. Preparation of CTP-alginate and HAp-alginate

microspheres

CTP or HAp powders were dispersed in a pre-filtered
(0.8 mm) Na-alginate solution under gentle stirring until
a homogeneous paste was obtained. Different concen-
trations of the polymer solution (1% and 3%w/v), and
different ceramic-to-polymer solution ratios (0.1, 0.2
and 0.4w/w) were tested. These will be designated as 10/
1, 20/1, 40/1 (ceramic-to-polymer solution ratios, using
the 1%w/v Na-alginate solution) and 10/3, 20/3, 40/3
(ceramic-to-polymer solution ratios, using the 3%w/v
Na-alginate solution). The pastes were extruded drop-
wise into a 0.1m CaCl2 crosslinking solution, where
spherical-shaped particles instantaneously formed and
were allowed to harden for 30min. The size was
controlled by regulating the extrusion flow rate using a
syringe pump (Cole-Parmer), and by applying a coaxial
air stream (Encapsulation Unit Var J1–Nisco). At
completion of the gelling period the microspheres were
recovered and rinsed in water in order to remove the
excess CaCl2. Finally, they were dried overnight in a
vacuum oven at 30�C. The diameter of the microspheres
was measured using an inverted plate microscope
(Olympus) equipped with an ocular micrometer with
an accuracy of 10 mm.

2.5. Characterisation of CTP-alginate and HAp-alginate

microspheres: SEM and FT-IR analysis

Morphological characterisation of the microspheres
(surface and transversal sections obtained by criofrac-
ture in liquid nitrogen) was carried out using scanning
electron microscopy (SEM). Samples were sputter
coated with gold using a JEOL JFC-100 fine coat ion
sputter device, and observed using a JEOL JSM-6301F
scanning microscope.

Physical chemical characterisation of the micro-
spheres and their components (CTP, HAp and Ca-
alginate) were analysed by Fourier transform infrared
spectroscopy (FT-IR) using a Perkin Elmer system 2000
spectrometer. The FT-IR spectrum of Na-alginate was
also obtained and used as a reference. Microspheres
were reduced to powder and were analysed as KBr
pellets.

2.6. Enzyme immobilisation in CTP-alginate and HAp-

alginate microspheres

The enzyme was incorporated into the ceramic-
alginate microspheres (formulation 20/3) before gel
formation in two different ways: pre-adsorbed onto
the ceramic particles before mixing with the alginate
solution, or dispersed in the polymeric-ceramic paste.
Microspheres were subsequently prepared as previously
described, without drying. In Fig. 1 a schematic
representation of the matrices tested is presented. The
matrices A and B were used as controls.

2.6.1. Pre-adsorption of the enzyme onto CTP and HAp

powders

A solution containing glucocerebrosidase (GCR) was
obtained by dissolving the enzyme in phosphate
buffered saline (PBS, pH 7.4) at a final concentration
of 0.2mg/ml and in the presence of 0.5mg/ml of bovine
serum albumin (BSA) as a stabiliser. The solution also
contained radiolabeled (125I) enzyme (Iodogen method)
as a tracer and 0.01m NaI to competitively reduce
binding by any free 125I species present. The specific
radioactivity of the solution was 6.5� 107 cpm/mg
GCR.

For the adsorption tests, CTP and HAp powders
(50mg) were incubated with 500 ml of the enzyme
solution. Samples were maintained at 4�C in an orbital
shaker at 250 rpm. At predefined time intervals, samples
were centrifuged (14,000 rpm, 5min) and the super-
natants collected for analysis. The powders were washed
twice with PBS and separated by centrifugation. The
powders and all the supernatants were counted for
radioactivity. The counts of each sample were averaged
and the surface concentration was calculated by the
equation:

GCR ðng=cm2Þ ¼
Counts ðcpmÞ

Asolution ðcpm=ngÞ � SA ðcm2Þ
;

where the counts represent the radioactivity of the
powders, the Asolution is the specific activity of the
protein solution and SA is the surface area of the
powders, which was calculated as described previously.



Fig. 1. Different enzyme immobilisation matrices tested: (A) enzyme adsorbed onto the ceramic powders, (B) enzyme dispersed in a pure alginate

matrix, (C) enzyme and ceramic powders individually dispersed in the alginate matrix and (D) ceramic powders with pre-adsorbed enzyme dispersed

in the alginate matrix. Matrices A and B were used as controls.
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2.7. Enzyme release studies

Enzyme release studies were performed in PBS.
Samples (n ¼ 3) were maintained at 3770.2�C in an
orbital shaker at 120 rpm. At predefined time intervals,
the supernatants were collected and counted for radio-
activity and fresh PBS was added. In the case of the
powder matrices (Fig. 1, matrix A) samples were
centrifuged (14,000 rpm, 5min) prior to collecting the
supernatants. At the end, the matrices were recovered,
washed twice with PBS and counted for residual
radioactivity.
(b)
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Fig. 2. Granulometric analysis of (a) CTP and (b) HAp powders.

Cumulative (dashed line) and non-cumulative (solid line) volume

percentage particle size distributions are plotted on the left and right

axis, respectively.
3. Results

3.1. Characterisation of CTP and HAp powders

3.1.1. X-ray diffraction and specific surface area

X-ray diffraction analysis of the ceramics indicated
the presence of mono phase crystalline compounds. The
specific surface areas obtained using the BET method
were 9.84 cm2/mg for the CTP powder and 76.00 cm2/mg
for the HAp.

3.1.2. Granulometric analysis

The granulometric analysis of HAp and CTP powders
is presented in Figs. 2a and b, respectively. The particle
size distribution curves of both ceramics are narrow. In
the case of the CTP powder 90% (in volume) of the
particles are smaller than 25.32 mm and have a volume
average diameter of 11.00 mm. In the HAp powder 90%
of the particles are smaller than 20.51 mm and the
volume average diameter is 7.96 mm.
3.1.3. Zeta potential measurements

ZP measurements of CTP and HAp powders as a
function of pH are presented in Fig. 3. As can be
observed, the isoelectric point of CTP occurs
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Fig. 3. Zeta Potential of CTP and HAp powders as a function of pH.

Fig. 4. Diameters of alginate, CTP-alginate and HAp-alginate micro-

spheres prepared using the 3%w/v alginate solution, before (wet state)

and after drying (dry state).
approximately at pH 3 whereas the isoelectric point of
HAp occurs approximately at pH 6. To the best of our
knowledge, the isoelectric point of CTP has not been
reported in the literature before. As far as the HAp is
concerned, the results obtained are in agreement with
those reported by other authors [36,37]. At physiological
pH both ceramics are negatively charged, the CTP
potential being more negative than that of HAp.

3.2. Characterisation of alginate by HP-SEC

The Na-alginate used in this study was characterised
by an average molecular weight (Mw) of 1.3� 105, a
polidispersity index of 1.9 and an intrinsic viscosity of
6.4 dl/g, as determined by HP-SEC.

3.3. Characterisation of CTP-alginate and HAp-alginate

microspheres

CTP-alginate and HAp-alginate microspheres were
prepared using different concentrations of the polymer
solution (1% and 3%w/v), and different ceramic-to-
polymer solution ratios (0.1, 0.2 and 0.4w/w). As soon
as the ceramic-polymer droplets contacted with the
crosslinking solution, spherical-shaped particles were
instantaneously formed when using the 3%w/v alginate
solution. An exception was observed for the HAp-
alginate 40/3 paste, which was too viscous to be
extruded in a reproducible manner. Particles obtained
using the 1%w/v alginate solution presented a disc-
shaped morphology and for that reason were not used in
the subsequent experiments.

The diameters of the microspheres obtained (before
and after drying) using the 3%w/v polymer solution and
the different ceramic-to-polymer ratios are presented in
Fig. 4. Before drying, microspheres of approximately
1000 mm were obtained when using pure alginate, CTP
with alginate, and HAp with alginate. Upon drying,
microspheres have undergone a volume contraction,
which was more significant for the lower ceramic-to-
polymer solution ratio (0.1w/w). Microspheres with
diameters of 541732, 606721, and 796739 mm were
obtained for the CTP 10/3, 20/3 and 40/3 formulations,
respectively. When using HAp, microspheres with
diameters of 512744 and 749722 mm were obtained
for the 10/3 and 20/3 formulations.

3.3.1. SEM analysis

SEM images of the microspheres (20/3 formulations)
are presented in Figs. 5 and 6. Upon drying, and
contrary to alginate microspheres that shrank to a great
extent and even collapsed (Fig. 5a), CTP-alginate (Fig.
5b) and HAp-alginate (Fig. 5c) microspheres maintained
their original shape, with no evidence of cracks. This
suggests that both fillers provided additional control of
shrinkage and avoided structural collapse. Different
surface roughnesses were obtained, those of the HAp-
alginate microspheres being smoother than those of
CTP-alginate.

The ceramic powders are homogenously distributed in
the alginate matrix (Fig. 6) with the granules densely
packed and well embedded in the polymer.

3.3.2. FT-IR analysis

FT-IR spectra of calcium and sodium alginate are
represented in Fig 7. Table 1 shows the possible
assignments for the FT-IR bands of the alginate salts
[38]. Both spectra are very similar and only slight
differences can be observed in the width and height of
the COO� bands.

Fig. 8 shows the FT-IR spectra of CTP powder, Ca-
alginate and CTP-alginate microspheres (formulations
10/3 and 40/3). The FT-IR spectra of HAp powder,
Ca-alginate and HAp-alginate microspheres (formula-
tions 10/3 and 40/3) are presented in Fig. 9. The
characteristic bands of both ceramics are maintained in



Fig. 5. SEM image of (a) Ca-alginate, (b) CTP-alginate and (c) HAp-alginate microspheres.

Fig. 6. Detail of a transversal section of CTP-alginate (a) and HAp-

alginate (b) microspheres, showing that the ceramic particles are well

embedded in the polymer matrix.
the microspheres indicating that the alginate did not
induce subsequent modifications in the ceramics struc-
ture. Additional bands can be observed, corresponding
to the presence of calcium alginate, namely at 3446 cm�1

(nOH), 1619 and 1428 cm�1 (nCOO�), and 820 cm�1,
identified in the literature as the combination of three
possible vibrational modes (tCO+dCCO+dCCH) [38].
The intensity of these bands increases as the ceramic-to-
polymer solution ratio decreases. Also, the n3PO4 region
(900–1200 cm�1) becomes broader in the spectra of the
microspheres, denoting the presence of the polymer.

3.4. Enzyme immobilisation in CTP-alginate and HAp-

alginate microspheres

3.4.1. Pre-adsorption of the enzyme onto CTP and HAp

powders

Fig. 10 shows typical adsorption time profiles of GCR
onto CTP and HAp powders. The adsorption process
was carried out at 4�C for different periods of time (10,
120 and 1440min). For both ceramics there is an initial
period of rapid adsorption followed by a slower
approach to a limiting value. After 1440min, CTP
adsorbed 41.28 ng GCR/cm2, a much higher amount of
enzyme per unit surface are than HAp (1.94 ng GCR/
cm2).

Fig. 11 represents the percentage of enzyme, with
respect to the total amount used, which becomes
adsorbed to the ceramic powders (21% in the case of
CTP and 10% in the case of HAp), as well as the
percentage of enzyme that remains in solution after
incubation. The percentage of enzyme removed from the
solids during washing (first and second washes) is also
represented. The percentages of 21% and 10% were
measured after washing, indicating that the enzyme
remained well adsorbed onto the powders.

3.5. Enzyme release studies

Fig. 12 shows the release profiles obtained for the
different matrices previously described using CTP as the
ceramic phase. The release profiles using HAp were
similar (results not shown). When the enzyme was
dispersed in the ceramic-alginate mixture before gel
formation (matrix C), the release profile seems to be
initially controlled by the diffusion of GCR from the
surface of the beads, with a burst of 33.673.3% of total
loading, followed by diffusion through the pores of the
gel matrix until reaching a plateau at 55.474.6%. The
overall release profile was not significantly different
from what was obtained using a pure alginate matrix
(matrix B). When the enzyme was pre-adsorbed onto the
ceramic powders prior to the preparation of the micro-
spheres (matrix D), the initial burst was significantly
reduced (9.471.4%) and a slower release profile was
obtained. The results obtained when using matrix A
were similar to those reported for matrix D.
4. Discussion

CTP-alginate and HAp-alginate microspheres were
prepared using the droplet extrusion method combined
with ionotropic gel formation in the presence of Ca2+

[27]. Polymer-ceramic mixtures of different composi-
tions were prepared and drop-wise extruded into a
crosslinking solution containing Ca2+. As soon as the
droplets contacted with the solution, spherical particles
were instantaneously formed, due to the rapid establish-
ment of calcium-mediated associations between poly
guluronic acid sequences on the polymer backbone [27].
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Fig. 7. FT-IR spectra of sodium and calcium alginate.

Table 1

Peak assignment of transmittance bands of Na-alginate and Ca-alginate spectra obtained by FT-IR

Na/Ca-alginate bands (cm�1) Peak Assignment [36] Na/Ca-alginate bands (cm�1) Peak Assignment [36]

3446 n(OH) hydrogen bonded 1126 n(CC), n(CO)

2929 n(CH) 1088/1094 t(CO), d(CCO), d(CC)
2354 — 1029/1032 t(CO), d(CCO), d(CC)
2161/2169 — 947/945 n(CO), d(CCH)

1619 n(COO�) 903/905 n(CO), d(CCH)

1420/1428 n(COO�) 809/820 t(CO), d(CCO), d(CCH)

1318/1320 n(COO�)
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Fig. 8. FT-IR spectra of Ca-alginate, CTP-alginate 10/3 and 40/3 microspheres, and CTP powder.
This resulted in the formation of an alginate hydrogel
network with entrapped ceramic particles.

The process was carried out at room temperature and
in the absence of organic solvents, which is ideal for the
envisaged applications of these materials as enzyme
carriers.

The described methodology enabled the preparation
of homogeneous microspheres presenting a regular size
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Fig. 11. Adsorption of glucocerebrosidase onto CTP and HAp

powders: percentage of radioactivity that becomes associated to the

powders after an incubation period of 10min (4�C). The percentages

of radioactivity that remain in the supernatant and are washed out

from the powders are also depicted.
distribution, even without being fractioned by sieving.
During the drying process and depending on their
composition, microspheres underwent volume contrac-
tions at different extents. Shrinkage is related to water
loss from the polymeric hydrogel phase, explaining why
formulations with high ceramic-to-polymer contents
underwent less contraction.

SEM observation of the microspheres showed that the
ceramic particles were well embedded and homoge-
neously distributed in the alginate matrix, suggesting a
good wettability of the ceramics by the polymer
solution. The surface morphology of the microspheres
was dependent on the type of ceramic used, the HAp-
alginate microspheres being smoother than the CTP-
alginate ones. Differences were essentially attributed to
the different mean particle sizes of the two ceramic
powders. Although the granulometric analysis revealed
that the particles of both powders were similar in size
(90% of CTP particles are smaller than 25.32 mm and
have an average diameter of 11.00 mm, while 90% of the
HAp particles are smaller than 20.51 mm and the average
diameter is 7.96), the surface area measurements
indicated that HAp particles have a much higher surface
area (76 cm2/mg) than CTP (9.8 cm2/mg).

Physico-chemical characterisation of CTP-alginate
and HAp-alginate was carried out by FT-IR spectro-
scopy. The spectra showed that the characteristic bands
of both ceramics are maintained in the microspheres,
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indicating that the alginate did not induce subsequent
modifications in the structure of the ceramics.

A preliminary analysis of the ability of CTP-alginate
and HAp-alginate microspheres to act as carriers for the
enzyme glucocerebrosidase (GCR), a therapeutic en-
zyme used in the treatment of Gaucher disease, was
carried out.

The possibility of exploiting the capacity of both
components to act as enzyme delivery systems was
investigated, since both may immobilise proteins [23–
27]. For this reason, the enzyme was incorporated into
the ceramic-alginate matrix before gel formation in two
different ways, as described before. Concerning GCR
loading capabilities of the ceramics used in this study,
results showed that CTP adsorbs 41.28 ng/cm2, a much
higher amount of enzyme per unit surface than HAp
(1.94 ng/cm2). This may be attributed to the presence of
BSA, used to stabilise the enzyme, as explained below.
At physiological pH, both ceramics are negatively
charged, the zeta potential of CTP being more negative
than that of HAp. At pH 7.4, the enzyme is in the
vicinity of its isoelectric point exhibiting a neutral net
charge. Under the conditions used, BSA presents a net
negative charge [39] and will probably bind to a
lesser extent to CTP than to HAp, due to increased
repulsive charge, thus leaving the surface more
available for GCR adsorption. Decreased adsorption
of HSA (human serum albumin) onto CTP than
onto HAp powders was observed by the authors
(unpublished data), supporting this hypothesis. Despite
being a very complex process, protein adsorption
generally reflects hydrophobic/hydrophilic or electro-
static interactions between the protein and the
surface. It seems that under the conditions used, the
electrostatic characteristics of CTP favours the immo-
bilisation of GCR.

Other authors, in studies concerning applications in
the biotechnology industry [22], demonstrated the
capacity of CTP to immobilise several enzymes. To the
best of our knowledge this is the first time that this
ceramic is used for the immobilisation of glucocerebro-
sidase.

Release studies were performed with different ma-
trices. When the enzyme was dispersed in the ceramic-
alginate mixture before gel formation (matrix C), the
release profile seemed to be initially controlled by the
diffusion of GCR from the surface of the beads, with a
significant burst, followed by diffusion through the
pores of the gel matrix until reaching a plateau. The
overall release profile was not significantly different
from what was obtained using a pure alginate matrix
(matrix B), suggesting that the enzyme does not interact,
to a great extent, with the embedded ceramic particles.
When the enzyme was pre-adsorbed onto the ceramic
powders prior to the preparation of the microspheres
(matrix D) the initial burst was significantly reduced and
a slower release rate was achieved. For matrix A
(powders) the results were similar, suggesting that the
alginate does not offer an additional resistance to
enzyme diffusion.

With the different matrices proposed, distinct release
kinetics can be obtained and suitable strategies can be
selected depending on the final application. Some
aspects remain, however, to be investigated, namely
the activity of the enzyme when released from the
matrices used in this work (ongoing studies). Although
protein immobilisation, either by entrapment or adsorp-
tion, often results in conformational alterations that
may render the protein inactive, several authors have
reported improved enzyme activity and/or stability in
immobilised preparations when compared to their free
forms [40].
5. Conclusions

This study describes the preparation and initial
characterisation of CTP- and HAp-alginate micro-
spheres, which are intended to be used as enzyme
delivery matrices and bone regeneration templates. The
proposed methodology enabled the preparation of
homogeneous microspheres with a uniform size, where
the bulk properties of the ceramics were maintained,
indicating that the alginate did not induce any
modifications in the structure of the ceramics. Prelimin-
ary studies on the immobilisation and release of the
therapeutic protein glucocerebrosidase were also per-
formed. The enzyme was incorporated into the ceramic-
alginate matrix before gel formation in two different
ways: pre-adsorbed onto the ceramic particles or



dispersed in the matrix. The two strategies resulted in
distinct release profiles, suggesting that, depending on
the application, the more suitable one can be selected.
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