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A B S T R A C T

Afforestation often causes direct habitat losses for farmland birds of conservation concern,

but it is uncertain whether negative effects also extend significantly into adjacent open

land. Information is thus required on how these species react to wooded edges, and how

their responses are affected by edge and landscape characteristics. These issues were

examined in Mediterranean arable farmland, using bird counts at 0, 100, 200, 300 and

>300 m from oak, pine and eucalyptus edges, embedded in landscapes with variable

amounts and spatial configurations of forest plantations. Bird diversity declined away from

edges, including that of woodland, farmland and ground-nesting birds. Positive edge

responses were also found for overall and woodland bird abundances, and for five of the

nine most widespread and abundant species (Galerida larks, stonechat, linnet, goldfinch

and corn bunting). Strong negative edge effects were only recorded for steppe birds, with

reduced abundances near edges of calandra larks and short-toed larks, but not of little bus-

tards and tawny pipits. Edge contrast affected the magnitude of edge effects, with a ten-

dency for stronger responses to old and tall eucalyptus plantations (hard edges) than to

young and short oak plantations (soft edges). There were also species-specific interactions

between edge and fragmentation effects, with positive edge responses tending to be stron-

gest in less fragmented landscapes, whereas steppe birds tended to increase faster away

from edges and to reach the highest species richness and abundances in large arable

patches. Results suggest that forest plantations may increase overall bird diversity and

abundance in adjacent farmland, at the expenses of steppe birds of conservation concern.
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Clustering forest plantations in a few large patches and thus reducing the density of

wooded edges at the landscape-scale might reduce such negative impacts.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Afforestation is a prominent conservation issue in many re-

gions worldwide, especially where forests replace open habi-

tats of conservation significance (Dı́az et al., 1998; Shochat

et al., 2001; Brennan and Kuvlesky, 2005). Forests are often

planted on grassland and shrubland to increase profits from

otherwise poorly productive soils, though there may also be

conservation objectives such as restoring forest ecosystems

in marginal or abandoned farmland (Madsen, 2002; Santos

et al., 2006; Lazdinis et al., 2005; Loyn et al., 2007). Climate

change has prompted much interest in large-scale afforesta-

tion to reduce atmospheric concentrations of carbon dioxide

(Potter et al., 2007), raising concerns about potential impacts

on biodiversity (Matthews et al., 2002; Caparrós and Jacque-

mont, 2003; Garcı́a-Quijano et al., 2007). Information is thus

increasingly required on the interrelationships between affor-

estation and biodiversity, to evaluate environmental costs

and benefits of afforestation policies, and to design afforesta-

tion programmes with minimal impacts on biodiversity.

The loss of open habitat is the most direct impact of affores-

tation, causing the replacement of open habitat species by for-

est species. Although this is positive where the latter are the

targets of conservation efforts (Loyn et al., 2007), plantations

are often used by generalist and widely distributed species,

occupying areas previously inhabited by grassland and shrub-

land species of conservation concern (Dı́az et al., 1998; Shochat

et al., 2001). Much less is known about the impacts of afforesta-

tion on adjacent open land, though theoretical and empirical

evidence suggests that effects may extend well beyond forest

boundaries (e.g., Ries et al., 2004; Ewers and Didham, 2006a).

These impacts arise due to habitat fragmentation, as continu-

ous patches of open habitat are broken into smaller, isolated

patches surrounded by a matrix of forested habitats, increas-

ingly influenced by the proliferation of habitat edges (Ries

et al., 2004).

Edge effects may play a critical role in determining impacts

of afforestation, mediating landscape-scale changes in species

richness, composition and abundances (Ries et al., 2004; Ewers

and Didham, 2007). Species characteristic of open habitats are

often absent or scarce near wooded boundaries (Coppedge

et al., 2004; Fletcher, 2005), and are expected to decline with

increasing edge density in smaller and more convoluted

patches (Ewers and Didham, 2007). At the same time, however,

edges are preferred by a number of other species, which tend to

increase in more fragmented landscapes (Söderström and Pärt,

2000; Coppedge et al., 2004). Indeed, habitat edges may actually

be richer in species than either of the adjacent habitats, though

increases in species richness with distance to edges have also

been reported (Ewers and Didham, 2006a). The impacts of

afforestation are thus conditional on assemblage composition

and on the conservation value of sets of species showing posi-

tive and negative responses to edge effects. The magnitude of
such impacts depends on the penetration of edge effects into

adjacent habitats, which may be greatly affected by changes

in edge and landscape features. Edge effects may penetrate

more where the contrast between edges and adjacent habitats

is high (Ries et al., 2004), and their strength may change with

landscape fragmentation, due to the cumulative effects of

multiple edges (Fletcher, 2005) and synergistic interactions be-

tween edge and patch area effects (Ewers et al., 2007). At pres-

ent, however, it is largely unknown how open habitat species

with different life histories and habitat requirements react to

forest plantation edges, and how these responses are affected

by edge and landscape characteristics.

We investigated these issues by examining the responses of

farmland birds to forest edges in Southern Portugal. In Medi-

terranean regions, afforestation of marginal agricultural land

has increased over the past decades, following a long-term

trend of rural depopulation and abandonment of poorly pro-

ductive soils (Van Doorn and Bakker, 2007). In the European

Union, this process accelerated following the implementation

of European regulation 2080/92, which provided financial sup-

port for afforestation, partly justified by the objective of restor-

ing ancient forest habitats and their associated biodiversity

(Robson, 1997). Planted forests, however, seem to be largely

inadequate for promoting rich forest bird communities (Dı́az

et al., 1998), though this depends on forest composition and

management (López and Moro, 1997; Santos et al., 2006). Con-

currently, plantations have negative impacts by excluding spe-

cies of high conservation value from the habitats they replace,

particularly birds strictly associated with open pastures and

dry cereal cropland (Bota et al., 2005). At least some of these

bird species avoid or occur at low density in landscapes frag-

mented by woody habitats (Brotons et al., 2005; Moreira et al.,

2005), suggesting that afforestation effects may be far greater

than those related to the lost area of open habitat. Here we test

this hypothesis by examining how bird assemblages vary with

distance to forest edges in terms of: (i) overall species richness

and abundance, (ii) richness and abundance of birds grouped

according to habitat requirements, and (iii) abundance of the

most common species. Subsequently, we investigate how edge

and landscape features modify bird responses to edges. This

information is then used to discuss the consequences of affor-

estation for bird conservation in adjacent farmland.

2. Methods

2.1. Study area

The study was conducted in Southern Portugal, in a farmland

landscape mostly included in the Special Protection Area

(SPA) of Castro Verde, designated under European Directive

79/409/EEC to protect steppe birds. The climate is Mediterra-

nean, with hot summers (averaging 24 �C [16–32�C] in July),

mild winters (9 �C [5–14 �C] in January), and >75% of annual
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rainfall (500–600 mm) concentrated in October–March. The

landscape is flat or gently undulating (100–300 m a.s.l.) and

dominated by an agricultural mosaic of cereal, fallow and

ploughed fields, created by rotational dry cereal cultivation.

Until recently, tree cover was largely restricted to some euca-

lyptus (Eucalyptus sp.) plantations (40–60 years old) and open

holm oak (Quercus rotundifolia) woodlands grazed by livestock.

Afforestation with umbrella pines (Pinus pinea) and holm and

cork oaks (Quercus suber) has increased since the early 1990s

due to EU subsidies, mainly in the periphery of the SPA. De-

tails of the study area are reported elsewhere (Moreira, 1999;

Delgado and Moreira, 2000; Moreira et al., 2005).

2.2. Sampling design

Sampling was carried out on farmland along 300 m transects

perpendicular to the edge of 52 forest patches, representative

of the three most common forest plantations in the region

(eucalyptus, pine and oak stands). Only fallow fields were

sampled, to reduce variation among sites unrelated to edge

and landscape features, and because they are particularly

important for steppe birds of conservation concern (Delgado

and Moreira, 2000). Transect length was limited by the size

of fallow fields and forest spatial distribution. To account for

the possibility of edge effects penetrating more than 300 m

into farmland habitats, sampling included 28 additional fields

at >300 m from any forest edge. The selection of sampling

sites was based on 1:25,000 land cover maps from 1990

(http://www.igeo.pt/IGEO/portugues/produtos/inf_cartografi-

ca.htm), updated through systematic field checking of new

forest stands planted up to the beginning of 2005. Degraded

and abandoned forest patches with low and irregular tree cov-

er were discarded, because they were not representative of

modern forest plantations. However, young plantations (<1

year old) were included to assess eventual variation in edge

responses with forest age. Each forest plantation was visited

and selected for sampling if it was adjacent to a fallow field

at least 600 m long and 300 m wide, to allow sampling of bird

assemblages at least 300 m from any forest edge. Only one fal-

low field was sampled per forest patch, independently of its

size, to avoid pseudo-replication. All sites meeting these

selection conditions were sampled, whereas the sites far from

forest edges were randomly selected.

2.3. Bird data

Bird sampling was conducted twice (April and May) in the

breeding season of 2005. In each of the 52 transects, birds were

counted at 0, 100, 200 and 300 m from the forest edge, using 10-

minute duration point counts (Bibby et al., 2000). Conversely,

only one point was counted in each of the 28 fallow fields at >

300 m (1531 ± 1201 m, 310–5000 m) from edges. At each point,

all individual birds and flocks of each species were identified

and recorded on maps, though records at >50 m from the obser-

ver were discarded from further analyses. When birds were

flushed, care was taken to check if they landed further ahead

to minimize double counting errors. Birds flying over but not

landing were not counted, except in the case of display flights

of territorial species. Due to difficulties in reliably identifying

every individual in the field, categorisation to the genus level
was made for crested and Thekla larks (Galerida cristata and G.

theklae) and for common and Spanish sparrows (Passer domesti-

cus and P. hispaniolensis). Birds were also categorized according

to their woodland or farmland affinities. Woodland birds

encompassed speciespotentially benefiting from forest planta-

tions, as they require wooded habitats such as forests, wood-

lots, orchards and shrubland (e.g., Dı́az et al., 1998), whereas

farmland birds included species regionally associatedwith ara-

ble agriculture and pastureland (Moreira, 1999; Delgado and

Moreira, 2000). Steppe birds included a subset of the farmland

species, corresponding to open grassland species of conserva-

tion concern that may be particularly sensitive to habitat frag-

mentation (Brotons et al., 2005; Moreira et al., 2005). A group of

ground-nesting birds was also considered, because increased

nest predation is often invoked to explain edge avoidance in

open habitat birds (Vickery et al., 1992; Burger et al., 1994).

2.4. Explanatory variables

Distance to the nearest forest edge was the main variable used

to investigate bird responses to edges. In addition, 16 variables

reflecting forest plantation characteristics, edge contrast and

landscape context (Table 1) were used to examine the influ-

ence of habitat variables on edge responses. Tree species and

plantation age and area characterized forest plantations. Edge

contrast (sensu Ries et al., 2004) was estimated from the height

and density of trees at the boundary of forest plantations,

assuming that taller and denser plantations reflect a higher

contrast between edges and adjacent agricultural land. These

variables were computed from digital photographs taken at

known distances (usually 70–90 m), perpendicularly to the for-

est edge. Presence of trees in the agricultural matrix was taken

to indicate softer forest-farmland transitions. Landscape con-

text was estimated in 1-km radius circles from each sampling

point located at the forest edge. This radius was set large en-

ough to encompass different land uses despite the relative

homogeneity of the landscape, while remaining within the

range of scales to which farmland birds are responsive (e.g.,

Söderström and Pärt, 2000; Best et al., 2001; Moreira et al.,

2005). The proportion of land occupied by open oak woodlands

and by pine, oak and eucalyptus plantations was quantified in

a Geographic Information System (GIS), from maps prepared

using aerial photography and field surveys. Landscape frag-

mentation was estimated from the mean size, edge density

and the area-weighted mean shape index (AWMSI) of open

arable patches. AWMSI is a measure of shape complexity,

which is the average perimeter-to-area ratio for a given class,

weighted by the size of its patches (Rempel and Carr, 2003).

The latter variable measures the extent to which patch shapes

deviates from circularity, reflecting increases in edge-affected

habitats with increasing patch complexity. Landscape metrics

were computed using the Patch Analyst extension (version 3.1)

of Arc View� GIS (Rempel and Carr, 2003).

2.5. Statistical analysis

Prior to statistical analysis, species richness and abundance

data, and habitat variables showing skewed distributions

were log-transformed to approach normality and to reduce

the influence of extreme values. The angular transformation

http://www.igeo.pt/IGEO/portugues/produtos/inf_cartografica.htm
http://www.igeo.pt/IGEO/portugues/produtos/inf_cartografica.htm


Table 1 – Description and summary statistics of variables used to examine the influence of habitat conditions on bird
responses to forest edges in southern Portugal.

Variable (unit) Description Transformation Mean S.D. Range

Forest plantation attributes

Eucalyptus plantations Binary variable coding plantations

dominated by eucalyptus

– 0.2 0.4 0–1

Pine plantations Binary variable coding plantations

dominated by umbrella pines

– 0.3 0.5 0–1

Oak plantations Binary variable coding plantations

dominated by cork or or holm oaks

– 0.5 0.5 0–1

Plantation age (years) Age of the forest stand – 14.4 13.6 1–60

Plantation area (ha) Area of the forest plantation Logarithmic 45.6 34.1 0.7–123.3

Edge contrast

Tree density (trees/m) Density of trees at plantation edges – 0.3 0.2 0–0.8

Tree height (m) Mean tree height at plantation edges Logarithmic 3.7 4.5 0–17.3

Farmland trees Binary variable coding the presence of

isolate trees in adjacent (<300 m) farmland

– 0.3 0.5 0–1

Landscape context

Eucalyptus plantations cover (%) Proportion of area within 1-km radius with

eucalyptus plantations

Angular 3.0 5.5 0–23.6

Pine plantations cover (%) Proportion of area within 1-km radius with

pine plantations

Angular 7.0 10.2 0–39.4

Oak plantations cover (%) Proportion of area within 1-km radius with

oak plantations

Angular 12.6 12.4 0–36.1

Total forest plantations cover (%) Proportion of area within 1-km radius with

forest plantations

Angular 22.5 11.8 0.4–51.9

Total agro-forestry cover (%) Proportion of area within 1-km radius with

open oak woodlands

Angular 7.7 11.1 0–45.7

Mean Patch Size (ha) Mean size of forest patches Logarithmic 134.3 88.1 7.7–304.1

Edge density (km/km2) Density of forest edges – 4.0 1.1 1.1–7.8

AWMSI Area-weighted mean shape index – 2.2 0.6 1.3–4.1
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) was used likewise for proportional habitat data,

overcoming problems associated with the unity sum con-

straint (Zar, 1996). A Principal Component Analysis (PCA) of

habitat variables was used to investigate multicollinearity

and to describe dominant gradients in forest, edge and land-

scape characteristics (Legendre and Legendre, 1998). A vari-

max normalized rotation was applied to the set of principal

components with eigenvalues >1, to obtain simpler and more

interpretable ecological gradients (Legendre and Legendre,

1998). PCA analyses were produced in STATISTICA 8.0 (Stat-

soft, 2008) under Multivariate Exploratory Techniques module

with factor analyses function.

Edge responses were analysed with linear mixed-effects

models (Pinheiro and Bates, 2000), thereby accounting for

the potential lack of independence among bird counts within

a transect at varying distances from a forest edge (e.g., Betts

et al., 2006). In the present design individual transects were

treated as random effects and all other explanatory variables

as fixed effects. All mixed models were fitted in R 2.7.2 (R

Development Core Team, 2008) software using the lme func-

tion of the nlme package (Pinheiro et al., 2007). The analysis

started by modelling variation in species richness and abun-

dances in relation to distance (d) to edge. In each case, three

different functions of distance were tested by specifying lin-

ear (td = d), logarithmic (td = log10 [d + 1]) and power (td = d2)

transformations of the predictor variable. Recent approaches

using more complex response curves (Ewers and Didham,

2006b) were not considered, because they are still inadequate
to deal with covariates and mixed-effects designs (Robert M.

Ewers, personal communication). The information-theoretic

approach was then used as a model selection procedure

(Burnham and Anderson, 2002), whereby the best fitting

model was that with the lowest value of the Akaike’s infor-

mation criterion (AIC). Uncertainty in model selection was

accounted for using Akaike weights (wi), which indicate the

strength of evidence for a particular model being the best

out of the set of candidate models (Burnham and Anderson,

2002). ANOVA tests comparing the best AIC models with the

models fitted to the intercept only (null models) were then

used to strengthen the support to inferences drawn from

the information-theoretic approach (Stephens et al., 2005;

but see Lukacs et al., 2007). The penetration of edge effects

beyond 300 m was assessed using one-way ANOVAs, compar-

ing bird counts at 300 m and at 300–5000 m from the nearest

wooded edge.

The second set of analyses examined whether bird re-

sponse to edges were affected by environmental gradients re-

flected in components extracted from the habitat PCA. These

analyses excluded species and functional groups lacking evi-

dence for edge responses, assuming that environmental mod-

ifiers of an edge response could only be clearly assessed when

there was evidence for an overall edge effect. For each species

or functional group, different hypothesis concerning the ef-

fects of each principal component (PCi) on the shape of the re-

sponses curves were assessed by fitting three alternative a

priori models (gi):



g1 = b0 + b1.td + b2.PCi (effects on the intercept,

reflecting variation in diversity

or abundance at the edge)

g2 = b0 + b1.td + b2.td.PCi (effects on slope, reflecting

variation in the rate of change

in diversity or abundance with

distance)

g3 = b0 + b1.td + b2.PCi + b3.td.PCi (effects on both intercept and

slope)
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where td is the transformation of distance yielding the best

AIC model in previous analysis. The strength of evidence for

each model was then estimated using Akaike weights (wi),

and the model with the highest wi was selected for each

PCi. This procedure follows the recommendation to retain

only the model with the lowest AIC from a set of nested can-

didate models (Richards, 2008). Comparison among the re-

duced subset of models, including the null model and one

model for each PCi, was then based on conditional Akaike

weights, estimated as the original wi normalized to sum to

1. The information-theoretic approach was complemented

with conventional statistical testing, using ANOVA to com-

pare the best AIC models to the models fitted only to the dis-

tance to edge variable (null models).

3. Results

3.1. Overall habitat patterns

Sampled edges represented a wide range of variability in

plantation, edge and landscape characteristics (Table 1). The

PCA extracted five axes with eigenvalues >1, together

accounting for 81% of variance in the original data (Table 2).

The varimax rotation revealed a major gradient (PC1) largely

reflecting dominant forest types, contrasting landscapes with

plantations dominated by either eucalyptus or oaks stands.
Table 2 – Loadings of habitat variables on the first five axes ex
the proportion of variance accounted for by each axis. For clar

Habitat variables PC1 PC2

Eucalyptus plantations 0.93

Pine plantations �0.8

Oak plantations �0.68 0.6

Plantation age 0.79

Plantation area �0.77

Tree density �0.6

Tree height 0.93

Farmland trees

Eucalyptus plantations cover 0.56

Pine plantations cover �0.8

Oak plantations cover �0.69 0.5

Total forest plantations cover �0.73

Total agro-forestry cover

Mean patch size

Edge density

AWMSI

Percentage of total variance 30.6 18.5
Eucalyptus plantations were generally older and taller,

whereas oak stands tended to be larger and located in land-

scapes with greater overall cover by forest plantations. The

type of forest plantation was also reflected in a secondary gra-

dient contrasting oak and pine stands (PC2), the latter show-

ing higher tree density. The third and fourth rotated PCA axes

were largely related to landscape fragmentation. PC3 repre-

sented primarily the concurrent increase of edge density

and shape complexity of open arable patches, whereas PC4

largely reflected variation in the mean size of open arable

patches, which was inversely related with eucalyptus and

overall plantation cover. PC5 represented the presence of

farmland trees, which were more prevalent in landscapes

with greater cover by agro-forestry systems.
3.2. Bird assemblage composition

Altogether, 47 bird species were recorded around (<300 m) for-

est plantations (Appendix), with an average 6.5 ± 2.5 species

and 15.8 ± 14.4 birds per transect. About half (51%) the species

were typical of arable farmland, of which 71% were ground-

nesters and 46% were steppe birds. In terms of abundance,

the assemblage was also dominated by arable farmland spe-

cies (59% of birds counted), most of which were ground-nest-

ers (87%) and about half of which were steppe birds (49%).

Only nine species were widespread (>25% of transects) and

abundant (>1 bird/10 ha), accounting for 55.7% of the birds

counted. This group was dominated by breeding species typ-

ical of arable farmland, including little bustards (Tetrax tetrax),

crested/Thekla larks (Galerida spp.), calandra larks (Melanoco-

rypha calandra), short-toed larks (Calandrella brachydactyla),

tawny pipits (Anthus campestris), stonechats (Saxicola torqua-

tus), and corn buntings (Emberiza calandra), though there were

also two species requiring woody vegetation during the

breeding season (goldfinch Carduelis carduelis) and linnets

(Carduelis cannabina).
tracted by a PCA, after a varimax normalized rotation, and
ity, only loadings >|0.40| were listed.

PC3 PC4 PC5

5

5

8

0.85

0.57

6

3

0.57

0.55

�0.83

0.93

0.93

11.9 10.7 9.4



Table 3 – Akaike weights (wi) for four alternative models describing variation in bird species richness and abundance with
distance from forest edges.

Null Linear Power Logarithmic

Richness

Overall <0.01 <0.01 <0.01 >0.99***

Farmland 0.10 0.04 0.05 0.81*

Steppe <0.01 0.75*** 0.25 <0.01

Ground-nesting 0.20 0.07 0.11 0.62*

Woodland <0.01 <0.01 <0.01 >0.99***

Abundance

Overall <0.01 <0.01 <0.01 0.99***

Farmland 0.22 0.10 0.39§ 0.29

Steppe <0.01 0.55*** 0.45 <0.01

Ground-nesting 0.22 0.13 0.47§ 0.17

Woodland <0.01 <0.01 <0.01 >0.99***

Species abundances

Little bustard 0.38 0.21 0.27 0.15

Galerida larks <0.01 0.19 0.04 0.77***

Short-toed lark <0.01 0.19 0.81*** <0.01

Calandra lark <0.01 0.86*** 0.14 <0.01

Tawny pipit 0.29 0.27 0.20 0.24

Stonechat <0.01 0.02 <0.01 0.97***

Linnet 0.19 0.29§ 0.24 0.28

Goldfinch 0.02 0.04 0.01 0.93**

Corn bunting <0.01 <0.01 <0.01 >0.99***

Linear, square-power and logarithmic transformations of distance were used to specify alternative edge response curves. Weights of models

with the greatest support are highlighted in bold type and statistical significances of comparisons with models fitted only to the intercept (null

models) are provided.

* P < 0.05.

** P < 0.01.

*** P < 0.001.

§ P < 0.10.
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3.3. Bird responses to edges

Akaike weights provided much stronger support to models

including distance to edge as a predictor of bird species rich-

ness (1.0 >Rwi > 0.80) than to the corresponding null models

of no edge effects (Table 3). There was considerable evidence

(wi > 0.95) for exponential decays in overall and woodland

species richness with increasing distance from plantation

edges, with comparable declines, albeit not as strong, for

the richness of farmland and ground-nesting species (Fig. 1).

Only the richness of steppe birds increased along with dis-

tance to edge (Fig. 1). There was strong evidence for the total

abundance of birds and that of woodland birds to decline

exponentially away from edges, whereas linear increases

were recorded in steppe bird abundance (Fig. 1). The best

AIC models for farmland and ground-nesting bird suggested

slight increases in abundance at greater distance from edges,

but these models were only marginally significant (P < 0.10)

and not clearly superior to the alternative models (Table 3).

Seven of the nine most abundant and widespread species

were affected by plantation edges, whereas little support for

edge effects was found for little bustards and tawny pipits

(Table 3). The abundance of five species declined with increas-

ing distance to edges, with strong support for exponential de-

cays (1.00 > wi > 0.77) in the case of Galerida larks, stonechats,

goldfinches and corn buntings, and a weak support for linear

declines for the linnet (Table 3; Fig. 1). The best AIC models for

short-toed lark and calandra lark reflected strongly negative
edge effects, with abundances steadily increasing away from

edges.

Penetration of edge effects beyond the maximum length of

the sampling transect was only apparent for woodland birds,

with significantly (F1,78 = 11.068, P < 0.001) more woodland

species per point count at 300 m (0.29 ± 0.46) than at >300 m

(no species recorded). The tendency for more steppe bird spe-

cies per point count at >300 m (1.46 ± 0.84) than at 300 m

(1.13 ± 0.79) was close to statistical significance (F1,78 = 3.024,

P < 0.086).

3.4. Interactions affecting edge responses

There was strong evidence for the composition of forest plan-

tations and the fragmentation of open arable habitats to af-

fect edge responses of bird functional groups (Table 4, Figs.

2 and 3). The environmental gradient represented in the first

PC axis (PC1) affected the richness (Fig. 2) and abundance

(Fig. 3) of the overall assemblage and that of woodland birds,

with more species and more birds near tall and old eucalyp-

tus plantations, than near recent oak plantations. Total spe-

cies richness remained consistently higher around

eucalyptus than oak plantations, irrespective of distance to

edges. Conversely, the decline in total bird abundance and

in the richness and abundance of woodland birds was sharper

away from eucalyptus edges, tending to converge to the oak

edge response curve. The number of steppe bird species was

higher near oak than near eucalyptus edges (PC1), but con-



Fig. 1 – Edge response curves describing variation in species

richness and abundance of bird functional groups, and in

the abundance of the most common species, as a function of

distance to forest plantation edges in southern Portugal.
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verged to similar, much higher values at about 300 m from the

edge (Fig. 2). The abundance of farmland and ground-nesting

birds increased away from eucalyptus edges, whereas there

was almost no response to oak edges (Fig. 3). The fragmenta-

tion gradient reflected in PC4 affected in a similar way the

overall species richness and that of farmland and ground-

nesting (graph not shown) birds, with similar number of spe-

cies near edges irrespective of landscape fragmentation, but

sharper declines away from edges in landscapes with smaller
arable patches (Figs. 2 and 3). The richness (Fig. 2) and abun-

dance (Fig. 3) of steppe birds was low near edges irrespective

of landscape fragmentation, increasing to much higher values

in landscapes with larger arable patches. The abundance of

ground-nesting birds was higher in less fragmented land-

scapes irrespective of distance from edges (Fig. 3).

Edge contrast and landscape fragmentation also affected

both positive and negative edge responses by individual spe-

cies (Table 4, Fig. 4). The edge type reflected in PC1 influenced

edge responses of Galerida larks, linnets, goldfinches, and corn

buntings. There were more linnets, goldfinches and corn bun-

tings near mature eucalyptus plantations than near recent oak

plantations, but their numbers declined with increasing dis-

tance from edges. The slope of the goldfinch edge response

curve was also affected by PC1, reflecting a convergence to

low abundances at about 300 m from all edges, albeit still high-

er around eucalyptus plantations. Galerida larks showed simi-

lar abundance near all edges, but there was a tendency for

weaker edge responses to eucalyptus plantations. However,

the AIC support for this model was weak and it was not statis-

tically significant, thereby requiring caution in its interpreta-

tion. The type of edge reflected in PC2 influenced edge

responses of linnets, stonechats and short-toed larks. Linnets

were more abundant near pine than oak edges, but their abun-

dances at 300 m from edges were very low irrespective of edge

type. Stonechats showed the opposite pattern, with higher

abundances near oak edges. Short-toed larks were scarce close

to all edge types, but they increased in abundance away from

edges more sharply around pine plantations. Edge density

(PC3) influenced edge responses of corn buntings and short-

toed larks. Corn bunting abundances were higher near edges

in landscapes with smaller edge density, but their numbers

tended to converge to small values away from edges irrespec-

tive of landscape fragmentation. More short-toed larks were

found near edges in more fragmented landscapes, but the

abundance of this species increased away from edges irrespec-

tive of landscape fragmentation. The mean size of arable

patches (PC4) influenced edge responses of stonechats and cal-

andra larks. Stonechat abundances varied little with distance

to edge in landscapes with smaller arable patches, whereas

they showed high abundances near edges and sharp declines

away from edges in landscapes with large arable patches. Cal-

andra larks were largely absent close edges irrespective of ara-

ble patch size, but their abundance away from edges increased

faster in landscapes with larger arable patches.

4. Discussion

4.1. Edge effects

Planted forests significantly influenced the bird assemblages

of adjacent open land, underlining the value of investigating

edge effects to understand the impacts of afforestation on

biodiversity. Contrary to expectations developed from the

observation that many open habitat birds avoid wooded

boundaries (Coppedge et al., 2004; Fletcher, 2005), however,

it was found that most birds in southern Portugal showed

either positive or neutral edge responses. Positive responses

were apparent for typical farmland birds such as Galerida

larks, stonechats, and corn buntings, which are frequently



Fig. 2 – Variation in edge response curves for the species richness of bird functional groups as a function of environmental

gradients (PCi) extracted from a Principal Components Analysis of habitat variables. Curves represented in each panel reflect

model fitted edge responses for the 1st (____), 5th (- - -) and 9th (. . .. . .) deciles of the distribution of sample scores in a PC axis.
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associated with open habitats (Moreira, 1999; Delgado and

Moreira, 2000). Only the steppe birds, a group including the

open grassland specialists, showed marked negative re-

sponses to wooded edges, in terms of both species richness

and abundances. The negative responses were very strong

in the case of the calandra lark and the short-toed lark, but

no evidence for edge avoidance was found for little bustards

and tawny pipits. Patterns for other open habitat species of

high conservation concern, such as great bustards (Otis tarda),

stone curlews (Burhinus oedicnemus) or black-bellied sand-
grouse (Pterocles orientalis) could not be obtained in this study,

because they were scarcely observed at point counts. Further-

more, these species are wide ranging and so probably operate

at large spatial scales, requiring a different sampling design to

assess their responses to wooded edges.

The increase in woodland birds near wooded edges proba-

bly occurs due to spill over from forest plantations, as these

species are largely absent from open farmland landscapes

(Moreira, 1999; Delgado and Moreira, 2000) and they benefit

from habitat conditions created through afforestation (Dı́az



Table 4 – Akaike weights (wi) for alternative models describing factors affecting bird response curves to forest edges in
southern Portugal.

Null PC1 PC2 PC3 PC4 PC5

g0 g1 g2 g3 g1 g2 g3 g1 g2 g3 g1 g2 g3 g1 g2 g3

Richness

Overall (a) 0.06 0.29 0.06 0.17 0.02 0.02 0.01 0.05 0.07 0.03 0.04 0.09 0.04 0.02 0.02 0.01

(b) 0.10 0.52* 0.04 0.12 0.17§ 0

Farmland (a) 0.08 0.03 0.07 0.10 0.04 0.03 0.02 0.06 0.05 0.02 0.10 0.25 0.10 0.03 0.03 0.01

(b) 0.14 0.17 0.07 0.11 0.46* 0.05

Steppe (a) 0.02 0.08 0.01 0.21 0.01 0.01 0.01 0.01 0.01 0.00 0.05 0.42 0.16 0.01 0.01 0.01

(b) 0.03 0.31* 0.01 0.01 0.62* 0.02

Ground-nesting (a) 0.06 0.02 0.04 0.06 0.03 0.02 0.01 0.04 0.03 0.02 0.15 0.34 0.13 0.02 0.02 0.01

(b) 0.11 0.10 0.05 0.08 0.62* 0.04

Woodland (a) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) 0.00 1.00*** 0.00 0.00 0.00 0.00

Abundance

Overall (a) 0.00 0.24 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) 0.00 0.99*** 0.00 0.00 0.01 0.00

Farmland (a) 0.01 0.00 0.36 0.56 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.01 0.00 0.00 0.00

(b) 0.01 0.93*** 0.00 0.01 0.03 0.00

Steppe (a) 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.66 0.26 0.00 0.00 0.00

(b) 0.01 0.03 0.00 0.00 0.95*** 0

Ground-nesting (a) 0.05 0.02 0.17 0.13 0.02 0.03 0.02 0.04 0.05 0.02 0.24 0.07 0.09 0.02 0.02 0.01

(b) 0.10 0.30* 0.05 0.09 0.43* 0.04

Woodland (a) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) 0.00 1.00*** 0.00 0.00 0.00 0.00

Species abundances

Galerida larks (a) 0.11 0.08 0.19 0.08 0.10 0.07 0.04 0.04 0.05 0.03 0.05 0.04 0.03 0.04 0.04 0.02

(b) 0.21 0.35§ 0.19 0.09 0.08 0.08

Short-toed lark (a) 0.06 0.02 0.03 0.01 0.03 0.09 0.04 0.32 0.07 0.12 0.03 0.06 0.03 0.04 0.03 0.02

(b) 0.10 0.04 0.15§ 0.53* 0.11 0.1

Calandra lark (a) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.28 0.00 0.00 0.00

(b) 0.00 0.00 0.00 0.00 1.00*** 0

Stonechat (a) 0.04 0.02 0.02 0.01 0.15 0.02 0.37 0.01 0.01 0.02 0.03 0.01 0.25 0.01 0.01 0.01

(b) 0.05 0.03 0.52* 0.02 0.36* 0

Linnet (a) 0.04 0.22 0.03 0.13 0.20 0.02 0.26 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

(b) 0.06 0.39* 0.47* 0.03 0.02 0.03

Goldfinch (a) 0.00 0.42 0.01 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

(b) 0.00 0.98*** 0.00 0.00 0.02 0.00

Corn bunting (a) 0.02 0.29 0.15 0.12 0.01 0.01 0.01 0.11 0.01 0.22 0.01 0.02 0.01 0.01 0.01 0.00

(b) 0.03 0.51** 0.02 0.39* 0.03 0.02

Comparisons included the null model (g0) and three alternative models (g1–g3) for each of five axes (PCn) extracted by a PCA of habitat variables

(Table 2): g0 = model fit to distance only; g1 = effects on the intercept; g2 = effects on the slope; g2 = effects on both the intercept and the slope.

The table includes Akaike weights based on the entire set of models (a) and conditional Akaike weights based on the set of models including

the null model and the best AIC model for each PC (b). Conditional weights of models with the greatest support are highlighted in bold type and

statistical significances of comparisons with the null model are provided.

* P < 0.05.

** P < 0.01.

*** P < 0.001.

§ P < 0.10.
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et al., 1998; López and Moro, 1997; Santos et al., 2006). Most

woodland birds occurred at <200 m from edges, suggesting

that they may be unable to use agricultural fields unless there

is a dense network of wooded habitats. This finding is consis-

tent with the results of gap crossing experiments which show

an increased reluctance for woodland birds to venture into

the open as the gaps between woodland fragments increase

(Creegan and Osborne, 2005). It is much less clear why farm-

land and ground-nesting bird species richness and the abun-

dance of many typical farmland species also tended to

decline away from edges. One possible reason may be the dif-

ference in the characteristics of edge and interior grassland
habitats, as forest plantations were fenced off from cattle

whereas nearby fields were regularly grazed (personal obser-

vation). Because of this, a strip of relatively tall grassland,

sometimes with small shrubs, often developed near forest

plantations, probably providing better breeding conditions

for many farmland birds than adjacent short swards (e.g.,

Yanes et al., 1996). This idea was supported by an experiment

of predation on quail (Coturnix coturnix) eggs placed in artifi-

cial nests, which showed lower predation rates in tall swards

near forest plantations (Reino et al., unpublished data). Taken

together, these results agree with the observation that the

richest bird assemblages in farmland landscapes are found



Fig. 3 – Variation in edge response curves for the abundance of bird functional groups as a function of environmental

gradients (PCi) extracted from a principal components analysis of habitat variables. Curves represented in each panel reflect

model fitted edge responses for the 1st (____), 5th (- - -) and 9th (. . .. . .) deciles of the distribution of sample scores in a PC axis.
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where agricultural habitats are interspersed with wooded

habitats such as woodlots and hedgerows (Freemark and Kirk,

2001; Moreira et al., 2005). The weak negative response to

edges of farmland and ground-nesting bird abundances was

likely a consequence of pooling species with contrasting edge

responses. Although these groups included species showing

marked positive edge responses, such as corn buntings and

Galerida larks, the overall negative edge effect was probably

driven by the influence of abundant steppe birds such as

the calandra lark and the short-toed lark.
The only species showing marked negative responses to

wooded edges were the true open habitat specialists, particu-

larly the calandra lark and the short-toed lark. The abun-

dance of both species steadily increased away from forest

plantations, only reaching densities similar to that of core

open habitats at about 300 m from edges. In contrast, two

other open habitat species, the little bustard and the tawny

pipit showed neutral responses to wooded edges. These pat-

terns are difficult to interpret, as edge avoidance in grassland

species may result from a combination of a variety of factors,



Fig. 4 – Variation in edge response curves for the most common bird species as a function of environmental gradients (PCi)

extracted from a principal components analysis of habitat variables. Curves represented in each panel reflect model fitted

edge responses for the 1st (____), 5th (- - -) and 9th (. . .. . .) deciles of the distribution of sample scores in a PC axis.
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from a learned response of poor reproductive success near

edges to a mere innate requirement for open habitat (Bollin-

ger and Gavin, 2004). Increased nest predation risk is often in-

voked to explain the avoidance of edges by grassland birds

(Vickery et al., 1992; Burger et al., 1994), but this was unlikely

to be very relevant here. This was supported by the observa-

tion that a range of ground-nesting farmland species ana-

lysed in this study showed positive or neutral response to

wooded edges and by the lack of increased predation on arti-

ficial nests near edges recorded in a parallel study (Reino

et al., unpublished data). It is possible that the avoidance of
edges may have a behavioural basis with no adaptive value

at present, resulting from the evolution of some grassland

birds in expansive prairies and steppes with no wooded struc-

tures, which resulted in a strong aversion to less familiar fea-

tures (Renfrew et al., 2005).

4.2. Interactions affecting edge responses

This study also supported the view that edge contrast affects

bird responses to edges (Ries et al., 2004), with stronger effects

recorded for eucalyptus (hard edges) than oak plantations
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(soft edges). In the study area, most eucalyptus plantations

are tall and old, presumably providing more colonization

opportunities for woodland birds than oak plantations, which

tended to be young and short. The spill over of woodland

birds into adjacent agricultural fields was thus stronger

around eucalyptus than oak plantations, explaining the ob-

served increase in overall species richness and abundance

near eucalyptus edges. This pattern was illustrated by the

goldfinch and the linnet, two species with woody require-

ments during the breeding season, which were relatively

abundant in agricultural fields surrounding eucalyptus plan-

tations and almost absent near young plantations. It is much

less clear why the positive responses by farmland species

such as the Galerida larks and the corn bunting were also

stronger for eucalyptus than for oak plantation edges. It is

possible that this was related to the older age of eucalyptus

edges, as edge quality may change with time and there may

be time lags in species responses (Ries et al., 2004). It is also

possible that the edges of oak plantations are perceived by

these birds as less stable, due to more frequent silvicultural

operations in recent stands. The edge avoidance response of

steppe birds was also stronger for eucalyptus than oak plan-

tation edges. This could possibly be related to the visual

obstruction effect of tall eucalyptus edges, which is likely to

elicit a much stronger aversion by open grassland birds than

the short oak plantations. The overall response of farmland

birds and ground-nesting birds, with a nearly neutral re-

sponse to oak edges and the increase with distance from

eucalyptus edges, probably reflected the cumulative effect of

contrasting responses by steppe and other farmland birds.

Difference in bird responses to pine and oak edges were rela-

tively small, though they tended to be stronger to the former.

Linnet abundance was highest near pine edges, probably be-

cause this species finds adequate breeding conditions in

young umbrella pine plantations (Khoury et al., 2009), which

may provide more concealment against predators than small

and sparse oak plantations. The reason for short-toed larks

increasing faster away from pine than oak edges was unclear.

The size of open arable patches and edge density also af-

fected edge responses by bird functional groups and individ-

ual species, underlining the presence of interactions

between edge effects and landscape fragmentation. The prev-

alence and magnitude of such interactions were relatively

unexpected, as fragmentation had the least effect on mea-

sured responses in a recent review of interactions affecting

edge effects (Ries et al., 2004). It should thus be evaluated

whether such interactions may be more widespread than pre-

viously realized, using for instance sampling designs and sta-

tistical approaches similar to those adopted herein. These

allowed the detection of complex interaction between edge

and fragmentation effects such as that of stonechats, which

showed strong positive responses to edges in landscapes

dominated by large arable patches, whereas virtually neutral

responses to smaller arable patches. This suggests that ston-

echats were largely confined to farmland fields near wooded

edges in open farmland, whereas in fragmented agricultural

landscapes they were more ubiquitous. A comparable pat-

tern, albeit not as strong, was evident for the corn bunting,

which showed the strongest edge responses in landscapes

with low edge density.
Landscape fragmentation also affected negative edge re-

sponses, with the overall richness and abundance of steppe

birds and the abundance of calandra larks increasing faster

away from edges in less fragmented landscapes. These results

agree with previous research carried out within the same

study area, showing that the calandra lark is extremely sensi-

tive to the fragmentation of grassland habitats, tending to oc-

cur at the highest densities in open grassland patches >100 ha

(Morgado et al., unpublished data). They are also akin to the

results of Fletcher (2005), who showed that negative edge ef-

fects on a North American grassland bird were intensified by

the joint influence of multiple edges. The processes that

underlie these patterns are unclear at present, but they may

be related to the exacerbated influence near multiple edges

of the mechanisms usually considered to affect bird responses

to edges, such as behavioural aversion, changes in habitat

structure, food availability and species interactions (Ries

et al., 2004; Fletcher, 2005). The overall pattern for the steppe

birds, however, was not evident for short-toed larks, which in-

creased faster away from edges in landscapes with higher

edge density, suggesting that although short-toed larks

avoided edges, they tended to be more abundant in more frag-

mented landscapes. We tentatively hypothesize that interspe-

cific competition may be involved in shaping such patterns,

with much larger calandra larks being restricted to large hab-

itat patches (Morgado et al., unpublished data; this study) and

relegating short-toed larks to more fragmented landscapes.

This hypothesis is based on the observation that competition

may be an important driving force in community assembly of

granivorous birds inhabiting simple environments (e.g., Grant

and Grant, 2006), that competition appears to be a significant

mechanism shaping the distribution patterns and habitat

selection of Calandrella larks (Suárez et al., 2002; Serrano and

Astrain, 2005), and that habitat segregation between calandra

and short-toed larks has been recorded within the study area

(Moreira, 1999; Delgado and Moreira, 2000).

4.3. Conservation

This study extends previous findings of the effects of affores-

tation in Mediterranean open farmland, showing that the

edge effects of forest plantations may contribute to increase

local bird diversity at the expense of negative effects for

steppe birds of European conservation concern (Burfield and

van Bommel, 2004). Although some farmland birds appeared

to thrive at forest plantation edges, they were generally of less

conservation concern than the open grassland specialists

(Suárez et al., 1997; Burfield and van Bommel, 2004; Bota

et al., 2005).

Recognizing the potential for significant negative edge ef-

fects has consequences for the impact assessment and plan-

ning of afforestation in Mediterranean farmland. In the first

place, it should be duly considered that the total area affected

by a forest plantation is larger than the surface actually

planted with trees. Assuming purely geometric effects, planta-

tions of, for instance 1, 10 and 100 ha, with a 200 m edge effect

and a circular shape, would cause reductions in habitat area

for steppe birds of about 21, 45 and 183 ha, respectively (e.g.,

Sisk and Haddad, 2002). The extent of such habitat reductions

may further increase with the proportion of the landscape con-
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verted into forest, as the strength of negative edge effects

tended to increase along with the edge density of unsuitable

habitats (Fletcher, 2005; Ewers and Didham, 2007; this study).

This implies that population declines of edge-avoiding species

should occur more rapidly than expected from simple loss of

habitat, and that such declines should be progressively faster

with increasing habitat fragmentation. This supports the rec-

ommendation that afforestation in Mediterranean farmland

should be avoided in areas occupied by steppe birds of conser-

vation concern (Dı́az et al., 1998).

Where afforestation is unavoidable due to political, social

or economic constraints, landscape planning should strive

to reduce fragmentation of adjacent agricultural habitats. A

spatial configuration of forest patches minimizing edge ef-

fects may be achieved by afforesting a small number of rela-

tively large patches, preferably those with little initial value

for species of conservation concern, instead of planting sev-

eral small forest patches scattered across the landscape

(e.g., Sisk and Haddad, 2002). This recommendation has the

double advantage of favouring the development of rich bird

assemblages within forest patches (Dı́az et al., 1998) and

reducing the impacts on edge-avoiding steppe birds. Enforc-

ing such recommendation in practice, however, has to meet

the challenges of managing multi-ownership landscapes,

where individual land-use decisions on private lands may

compromise global management goals (e.g., Spies et al.,

2002). Solving this problem probably requires a combination

of regulatory (e.g., laws and policies restricting or governing

the conversion of farmland into forest) and incentive-based

approaches (e.g., agri-environment schemes increasing the

economic return from agricultural land), aimed at reducing

the total area and promoting the aggregation of forest planta-
Common name Group %Occ

Calandra lark (Melanocorypha calandra) F,S,G 26.4

Corn bunting (Emberiza calandra) F,G 25.5

Crested/Thekla larks (Galerida spp.) F,G 23.6

Short-toed lark (Calandrella brachydactyla) F,S,G 17.8

Goldfinch (Carduelis carduelis) W 10.1

Tawny pipit (Anthus campestris) F,S,G 9.6

Stonechat (Saxicola torquatus) F,G 9.6

Linnet (Carduelis cannabina) W 7.7

Little bustard (Tetrax tetrax) F,S,G 7.6

Red-legged partridge (Alectoris rufa) F,G 5.8

Montagu’s harrier (Circus pygargus) F,S,G 5.3

White stork (Ciconia ciconia) F 4.3

Black-eared wheatear (Oenanthe hispanica) F,S,G 3.7

Common/Spanish sparrow (Passer spp.) W 3.4

Spotless starling (Sturnus unicolor) W 2.9

Black kite (Milvus migrans) W 2.9

Greenfinch (Carduelis chloris) W 2.9

Azure-winged magpie (Cyanopica cyanus) W 2.4

Carrion crow (Corvus corone) W 2.4

Southern-grey shrike (Lanius meridionalis) F 2.4

Woodchat shrike (Lanius senator) W 2.4

Sardinian warbler (Sylvia melanocephala) W 1.9

Blackbird (Turdus merula) W 1.9

Common buzzard (Buteo buteo) W 1.9

Hoopoe (Upupa epops) F 1.9

Kestrel (Falco tinnunculus) F 1.4

Serin (Serinus serinus) W 1.4
tions. Finding the best solution from the ecological perspec-

tive, however, calls for a better understanding of how

species-specific edge effects translate into population and

community responses at the landscape-scale, which is critical

for predicting the amount, size and spatial configuration of

suitable habitats required for the conservation of edge-sensi-

tive species (Sisk and Haddad, 2002; Ewers and Didham, 2007).
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Appendix A

Percentage occurrence in point counts, number per point

count, and mean (±SD) abundances (birds/10 ha) of birds re-

corded in farmland habitats around forest plantations

(<300 m) in southern Portugal. Species were classified in four

functional groups: F = Arable farmland birds; S = Steppe birds;

W = Woodland and shrubland birds; and G = Ground nesting

birds.
urrence (n = 208) Number of birds Mean ± SD

115 7.0 ± 14.3

78 4.8 ± 9.4

66 4.0 ± 8.3

53 3.2 ± 8.1

58 3.6 ± 20.4

21 1.3 ± 4.0

25 1.5 ± 5.2

22 1.3 ± 5.1

20 1.2 ± 4.7

15 0.9 ± 3.9

11 0.7 ± 2.9

25 1.5 ± 11.6

8 0.5 ± 2.8

158 9.7 ± 69.7

28 1.7 ± 18.0

7 0.4 ± 2.6

6 0.4 ± 2.1

11 0.7 ± 2.4

10 0.6 ± 4.1

5 0.3 ± 2.0

5 0.3 ± 2.0

4 0.2 ± 1.8

4 0.2 ± 1.8

7 0.4 ± 3.2

4 0.2 ± 1.8

3 0.2 ± 1.5

3 0.2 ± 1.5



Common name Group %Occurrence (n = 208) Number of birds Mean ± SD

Cattle egrett (Bubulcus ibis) F 1.0 21 1.3 ± 17.7

Woodlark (Lullula arborea) F,G 1.0 2 0.1 ± 1.2

Fan-tailed warbler (Cisticola juncidis) F,G 1.0 2 0.1 ± 1.2

Stone curlew (Burhinus oedicnemus) F,S,G 1.0 2 0.1 ± 1.2

Black-bellied sandgrouse (Pterocles orientalis) F,S,G 1.0 3 0.2 ± 2.0

Collared pranticole (Glareola pranticola) F,S,G 1.0 2 0.1 ± 1.2

Red kite (Milvus milvus) W 1.0 2 0.1 ± 1.2

Lesser kestrel (Falco naumanni) F,S 1.0 2 0.1 ± 1.2

Little owl (Athene noctua) F 1.0 1 0.2 ± 2.0

Booted eagle (Hieraaetus pennatus) W 0.5 1 0.1 ± 0.9

Quail (Coturnix coturnix) F,G 0.5 1 0.1 ± 0.9

Great bustard (Otis tarda) F,S,G 0.5 1 0.1 ± 0.9

Collared dove (Streptopelia decaocto) W 0.5 1 0.1 ± 0.9

Cuckoo (Cuculus canorus) W 0.5 1 0.1 ± 0.9

Green woodpecker (Picus viridis) W 0.5 1 0.1 ± 0.9

Blue tit (Cyanistes caeruleus) W 0.5 1 0.1 ± 0.9

Great tit (Parus major) W 0.5 1 0.1 ± 0.9

Short-toed treecreeper (Certhia brachydactyla) W 0.5 1 0.1 ± 0.9

Raven (Corvus corax) W 0.5 1 0.1 ± 0.9

Chaffinch (Fringilla coelebs) W 0.5 1 0.1 ± 0.9
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