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Abstract1 

This study reports a method that combines near-infrared (NIR) measurements with 

multivariate analysis to predict the saccharification efficiency of hydrothermally pretreated 

Eucalyptus globulus during ethanol conversion. Optimization of the NIR data with or without 

spectral treatment determined the best calibration model in the region 10000–4000 cm−1 of 

the original spectra, with an RMSEP of 2.08% and Rp
2 of 0.99. By investigating the 

regression coefficient to understand the key regions and chemical components, for original 

and multiplicative scatter correction (MSC)-treated spectra, the water absorption and higher 

wavenumber regions were important. For the second derivative spectra, the regression model 

was constructed based on the CH overtone vibrations (6050–5500 cm−1). The regression 

coefficient demonstrated that the removal of hemicellulose resulted in higher lignin content, 

which might affect the biomass properties in terms of water absorption and enhanced 

enzymatic hydrolysis evaluated by dinitrosalicylic acid (DNS) method. For a higher 

throughput system, aqueous sample analysis was performed using an immersion probe 

equipped with an InGaAs detector, which generated an acceptable calibration model having 

RMSEP of 4.25 % and Rp
2 of 0.94. These results show the great potential of NIR 

spectroscopy for achieving fast, accurate, and nondestructive analysis, and its highly 

adaptability for maintaining an ethanol bioconversion system.  
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1. Introduction 

The chemical composition and ultrastructure of plant cell walls greatly influence their 

enzymatic digestibility during ethanol conversion, a process which is of increasing interest 

due to energy shortages from the excessive consumption of non-renewable fuels. A line-

monitoring system, defined as a rapid and reproducible analytical method, is needed to 

support a stable conversion process; current monitoring uses conventional wet chemical 

analyses that involve many steps and employ additional reagents, increasing the 

environmental load, expense, and time requirements. Near-infrared spectroscopy is a fast, 

non-destructive, and powerful method for the characterization of organic materials. It 

provides information about the structure, chemical microenvironment of the constituent 

biomolecules, and their functional group distributions. Its combination with multivariate 

analysis, known as chemometrics, enables the simultaneous quantification of chemical 

components as well as assessment of the physical properties of plant materials [1–2]. 

 This quantitative method has been applied to biomass samples, as initially reported 

by Sanderson et al. [3], who demonstrated the establishment of a calibration model between 

NIR spectra acquired in the reflectance mode and chemical composition, such as individual 

carbohydrate, lignin, and ash contents. Later studies investigated calibration models for 

systems employing various NIR spectral pretreatments [4-5] alone or in combination with 

other multivariate analysis methods such as PCA [6] and SIMCA [7], or the interpretation of 

regression vectors or loading factors [8]. For chemically pretreated rice straw and Erianthus, 

we previously demonstrated a chemometric approach to the saccharification ratio, which is an 

important index for assessing pretreatment methods [9–10]. All of the NIR spectra conducive 

to the acceptable calibration model were measured from residues that had strongly NIR-light 

absorbing and scattering properties, with a few sample preparation steps such as drying or 

molding. Therefore, this NIR measurement was limited to “at-line monitoring” in terms of a 

manufacturing control system for ethanol conversion. On the other hand, liquid sample 

measurement would enable direct screening without dilution or extensive sample preparation, 

which promises higher throughput analysis corresponding to “in-line monitoring.” Needless 

to say, the use of NIR spectroscopy for aqueous analysis has been difficult because the 

signals of interest are obscured by strong and broad vibrational bands due to water [11]. 

However, this challenge has been overcome by tweaking measurement conditions or spectral 

instrumentation. In a successful example, Rodriguez-Saona et al. [12] constructed a 

calibration model using different sampling devices, ultimately finding that the transmittance 

mode achieved the rapid analysis of polysaccharides in fruit juices by NIR spectroscopy. 



Cozzolino et al. [13] also created an acceptable calibration model for the phenolic compounds 

in red wine fermentation by NIR spectroscopy in the transmittance mode. Liebmann and co-

workers [14–15] applied a fiber optic probe to successfully predict components such as 

glucose and ethanol in liquid samples during fermentation. 

 The present study initially reports the development of a high-throughput analysis 

using NIR spectroscopy to predict the digestibility of hydrothermally treated Eucalyptus 

globulus from hydrolyzed residues. The spectral pretreatment and region were optimized to 

construct a better regression model. Next, to more fully understand the relationships between 

the NIR spectra and enzymatic hydrolysis toward efficient ethanol conversion, a regression 

coefficient was calculated and interpreted in terms of chemical and structural components. 

Finally, for a higher throughput system for practical bioprocess monitoring, we tried to 

construct a liquid analysis method by using an immersion probe which could be directly 

inserted in a filtrate after pretreatment.  

 

2. Materials and Methods 

2.1. Sample preparation 

E. globulus wood chips, kindly provided by the Oji Paper Co., Ltd. (Tokyo Japan), were 

subjected to two-stage milling. Stage one involved rough milling using an Orient mill VM-16 

(Seishin Enterprise Corp., Tokyo, Japan), followed by a second milling with a Bantam mill 

AP-BL (Hosokawa Micron Corp., Osaka, Japan) to achieve particles that would pass through 

a 150-μm screen. The products were pretreated hydrothermally with a Biotage® Initiator™ 

Sixty (Japan) under different conditions of temperature (160–200°C) and reaction time (1–64 

min) in order to widely vary the saccharification ratio. The solid samples were repeatedly 

washed with distilled water for the subsequent enzymatic hydrolysis and NIR spectroscopic 

analysis. The filtrate was also collected for NIR spectral analysis.  

 

2.2. Enzymatic hydrolysis 

A commercial enzyme cocktail, Accellerase 1500 (Genencor, Danisco US, Inc., Rochester, 

NY), was used for saccharification throughout this study. Enzymatic saccharification was 

performed with the enzyme (40 FPU) in 100 mM acetate buffer (4 mL, pH 5.0) with a 5% 

(w/v) dry pretreated substrate loading at 50°C with 150 strokes/min for 24 h. The filter paper 

activity (FPA) was measured according to the standard procedure recommended by the NREL 

[16]. The amount of sugar released was measured as a reducing sugar by employing the 

dinitrosalicylic acid (DNS) method [17]. The saccharification ratio (%) was estimated by the 



following equation: 

Saccharification ratio (%) = [{Reducing sugar (mg/mL) × 4 (mL) × 0.9}/200 (mg)] × 100 

 

2.3. NIR data acquisition 

For a solid sample after hydrothermal pretreatment, a disk was cast using a hand press after 

collecting around 0.04 g sample, according to a published method [9]. NIR spectra were 

recorded on a PerkinElmer Spectrum 100N system equipped with an integrating sphere 

diffuse reflectance accessory (PerkinElmer) and a triglycine sulfate (TGS) detector. Two 

spectra were obtained from each sample placed directly onto this accessory and recorded at a 

resolution of 16 cm−1 with an acquisition of 32 scans. Liquid samples were analyzed with an 

immersion probe (Hellma Analytics) having a path length of 1 mm with an indium-gallium-

arsenide (InGaAs) detector. NIR spectra were recorded in triplicate when measuring using an 

immersion probe, which was inserted directly into the filtrate at 25°C for a few seconds, with 

a spectral resolution of 16 cm–1 and a scan acquisition number of 64. After each 

measurement, the immersion probe was washed several times with distilled water and 

cleaned using a blower. The original spectra were subjected to multiplicative scatter 

correction (MSC) or secondary differentiation using the 9-point Savitzky–Golay algorithm 

[18] before multivariate analysis.  

 

2.4. Chemometric analysis 

A total of 72 samples was divided into sets of 54 for calibration and 18 for prediction (Table 

1). The partial least squares (PLS) regression applied to construct the calibration model for 

the saccharification ratio was employed using commercial software (Unscrambler v. 9.8; 

CAMO Software, Inc., Woodbridge, NJ). The number of PLS factors was optimized by full 

cross-validation, where a single sample was kept out of the model and then predicted by the 

constructed model without the sample. This process was repeated for every individual sample 

in the calibration set. The coefficient of determination for calibration (Rc
2) and root-mean-

square error of calibration (RMSEC) were used to evaluate calibration performance. The 

models developed were assessed by the coefficient of determination for prediction (Rp
2), the 

root-mean-square error of prediction (RMSEP), and the ratio of performance to deviation 

(RPD). A larger value of RPD reflects the greater accuracy of the data fitted by the 

calibration; furthermore, an RPD that exceeds 2.5 is considered satisfactory for screening 

[19].   

 



3 Results and discussion 

 

3.1. Construction of PLS calibration model from solid samples 

Hydrothermal pretreatments were performed using the Biotage® Initiator™ Sixty 

system, which differs from an autoclave-type in that it can reach a preset temperature quickly 

because of its microwave heating system. The statistical summary of the saccharification ratio 

is given in Table 1, in which a wide variance is shown in both the calibration and prediction 

sets for randomly selected samples.  

The solid sample was initially examined for the construction of a calibration model. 

The disk was made from the residue after pretreatment because, for stable and repeatable data 

measurements via an integrating sphere diffuse reflectance accessory equipped with TGS 

detector, it is necessary to employ uniform particle sizes. The original spectra obtained (Fig. 

1a) were transformed by MSC (Fig. 1b) or by second differential processing (Fig. 1c), both of 

which are often employed for better regression modeling.  

To determine the optimal spectral region for constructing the PLS regression model 

with higher performance, the full-length NIR range of 10000–4000 cm–1, along with the 

different electromagnetic wave absorptions of the functional groups, was separated into four 

ranges based on the properties of the molecular vibrations: (i) 10000–7300 cm–1, in which the 

second and third overtones are present; (ii) 7300–6050 cm–1, in which mainly the OH 

overtone vibrations are detected; (iii) 6050–5500 cm–1, where CH vibrations and aromatic 

framework vibrations are detected; and (iv) 5500–4000 cm–1, which corresponds to several 

combinational vibrations. These respective regions and their combinations generated the PLS 

calibration models for the saccharification ratios summarized in Figure 2. At first, we 

investigated the construction of the regression model from the original spectra. Optimization 

of the NIR regions determined that the full length gave the best calibration performance with 

an RMSEP of 2.08%, Rp
2 of 0.99, and RPD of 8.55 (Figure 2a). When regression models 



were obtained from each single NIR region, 10000–7300 cm–1 showed good performance. 

Next, in the case of the MSC process, the PLS factor numbers were decreased in comparison 

with the original spectra (Table 2b), and the best model was also created based on the full 

length (Figure 2b). Interestingly, improvement of the regression model through the MSC 

process depended on the spectral region; the OH overtone vibration in the range of 7300–

6050 cm–1 clearly increased the regression performance. On the other hand, the regions of 

10000–7300 cm–1 and 5500–4000 cm–1 were nearly unaltered. Third, for the second 

derivative spectra, the regression performance became lower in the range of 10000–7300 cm–

1, wherein robust calibration models were obtained from the original and MSC-treated spectra 

(Table 2c). As shown in Figure 1c, the important signals in the 10000–7300 cm–1 region 

disappeared by the second derivative process, which might have decreased the predictive 

performance. Furthermore, different from the original and MSC-treated spectra, the best 

calibration model was given from the comparatively narrow region of 6050–5500 cm–1, 

wherein Rp
2 and RMSEP showed values of 0.98 and 2.23 (Figure 2c). In comparison with our 

previous papers [9–10], the obtained calibration model demonstrated quite reliable 

predictions, though this study focused on only hydrothermal treatment.    

 

3.2. Interpretation of calibration model from solid analysis for hydrothermal 

pretreatment 

 In order to investigate what is directly or indirectly a key factor for enzymatic 

hydrolysis and why the important NIR regions depend on the spectral process, we calculated 

the regression coefficient presented in Figure 3. For interpretation of the regression 

coefficient, the NIR bands were referenced to recent reports [20–23]. The patterns of the 

original spectra were similar to those of the MSC-treated spectra, in that the negative bands at 

7108 and 5224 cm−1 were intensified (Figure 3a and b). These bands were reported to be 

specific to water absorption, which indicated that the pretreatment with the lower amount of 



absorbed water resulted in higher digestibility. In addition, a stronger absorbance was seen at 

a higher wavenumber, approaching 10000 cm−1. In NIR spectroscopy, it is known that a dark 

sample absorbs higher wavenumber vibrations [24]. Therefore, this demonstrated that the 

dark colored sample became more highly digestible by cellulase. In the case of the second 

derivative spectra, small bands were seen in the region slightly above 7000 cm−1, which were 

consistent with the lower performance model obtained from the 10000–7300 cm−1 region 

(Table 2c). In the range of 6050–5500 cm−1, where the best calibration model was obtained, a 

noticeable positive band, characteristic of hemicellulose, was seen at 5810 cm−1. Moreover, a 

negative band at 5980 cm−1, attributable to aromatic framework vibrations, was detected, and 

the band relating to lignin at 6900 cm−1 also was negative. These results indicated that 

pretreatments that resulted in lower hemicellulose and higher lignin contents increased the 

saccharification ratio, which is consistent with a report published by our co-author  

Kobayashi [25]. These discussions on the regression coefficient can be summarized as 

follows: the hydrothermal treatment preferentially removes hemicellulose and results in 

higher lignin contents, as already reported [26–27], which leads to hydrophobic properties. 

Thus, the sample after this treatment tends to contain less absorbed water. In addition, the 

comparatively higher lignin contents results in a darker sample color derived by strongly 

hydrothermal treatment. Accordingly, the removal of hemicellulose is directly correlated with 

the saccharification ratio by increasing enzymatic accessibility to cellulose, whereas the 

lignin content, water absorption, and color change are indirect influences for the construction 

of a calibration model to predict digestibility.  

 

3.3. Construction of PLS calibration model from liquid samples 

 As mentioned, NIR spectroscopy can be applied to predict digestibility in a 

pretreated residue. However, in this protocol, sample preparation such as drying and tablet 

formation is needed. For a more rapid, simple, and practical line monitoring system, we 



examined the possibility of liquid spectral analysis. The sphere diffuse reflectance accessory 

coupled with the TGS detector was initially tested, using a glass cell for the filtrates 

recovered during the successful analysis of solid samples. However, all the calibration 

models resulted in poor performance even though various liquid quantities, NIR regions, and 

spectral pretreatments were evaluated (data not shown). Therefore, we applied a 

transmittance-type immersion probe equipped with an InGaAs detector suitable for liquid 

analysis because of its high sensitivity and low noise. Similarly to the solid analysis study, the 

original spectra and two pretreated spectra were investigated to create a better calibration 

model. As shown in Figures 1c–e, large vibrations relating to water were seen near 7000 and 

5000 cm−1; in the latter region, absorbance saturation occurred. Therefore, the NIR region 

5400–4900 cm−1 was omitted throughout the liquid analysis. Table 3 summarizes the 

calibration models based on the original, MSC, and second derivative spectra from the NIR 

regions used during the liquid sample analysis. For the original and MSC-treated spectra, the 

full length generated best regression model (Figure 4a and b), in common with the results of 

the solid analysis. The regression model from the original spectra over 10000–4000 cm–1 

provided values of Rp
2, RMSEP, and RPD of 0.94, 4.45, and 3.99, demonstrating great 

potential for the incorporation of the method into a manufacturing system as an in-line 

monitoring technique for better ethanol production. Liebmann et al. [15] successfully 

reported calibration models using a fiber optic probe to predict glucose, ethanol, glycerol, and 

other components, in which the values of Rp
2 were more than 0.94. The models developed in 

this study are comparable to the published achievements.  

Comparing Tables 3a and b, the MSC spectral processing has poor efficiency in 

improving the regression model compared to that based on the original spectra, which may be 

because the original immersion-based spectra showed higher reproducibility. In the case of 

the second derivative spectra, the best model performance was obtained in the region 7300–

5500 cm−1, as shown in Figure 4c. Similar to the MSC treatment, most of the region produced 



unaltered or worse calibration models than the original spectra (Table 3). Thus, these 

investigations demonstrate that it is unnecessary to use spectral treatments to construct a 

better regression model in this system.  

The calibration models obtained from the liquid analysis exhibited lower 

performance compared to those from the solid analysis. The potential of enzymatic 

hydrolysis was determined to be related to the quantities of individual chemical components 

and microstructures that form the polymer networks, macromolecule linkages, and cellulose 

crystalline structures in the pretreated biomass. The reason for the better performance of the 

solid analysis method compared to the liquid can be due to the chemical and structural 

information contained in the residue, whereas the NIR spectra from the liquid samples can 

explain only the quantitative chemical information of the residues by means of subtraction 

through use of the filtrate. Moreover, in comparison with solid analysis (Figure 2), calibration 

models using liquid samples showed the tendency of the loss of linear relationships between 

NIR spectroscopy and wet chemistry (Figure 4). It is unclear whether this phenomenon was 

attributed to the detection limit of immersion probe or other factors, and therefore research 

along this line is in progress and will be reported elsewhere. 

 

4. Conclusion 

NIR spectroscopy combined with multivariate analysis successfully predicted biomass 

properties for ethanol production using the residues as well as filtrates obtained after 

hydrothermal pretreatment of E. globulus. When stable and reproducible original spectra are 

collected, it is not necessary to employ spectral pretreatments to obtain a reliable calibration 

model. The methodology employing conventional solid samples is quite predictable, but 

requires sample preparation that translates to “at-line” monitoring in terms of the 

manufacturing process. On the other hand, liquid analysis can skip these time-consuming 

steps, and generate a calibration model with reliable predictive ability by using an immersion 



probe. This analysis enables the immediate detection of unsatisfactory pretreatments or 

undesirable contamination, such as that by bacteria, viruses, and certain chemicals, and 

corresponds to “in-line” monitoring within the manufacturing control system to support 

stable ethanol conversion. 
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Table 1. Statistical summary of the saccharification data for the calibration and prediction 

sets. 

 

 

 

  

Samples Max. (%) Min. (%) Mean (%) S. D. (%) Samples Max. (%) Min. (%) Mean (%) S. D. (%)

54 62.36 4.95 27.48 16.82 18 61.49 5.80 29.42 17.76
Saccharification

ratio (%)

Calibration set Prediction set



Table 2. Statistical summary of the calibration model obtained from solid disk sample and 

applied to the prediction set. The models were obtained by employing the original (a), MSC-

treated (b), and second-derivative (c) spectra. A schematic illustration has been included on the 

left for assistance in understanding each spectral region. 
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10000 - 4000 cm-1 2 0.97 2.96 0.99 2.08 8.54

7300 - 4000 cm-1 2 0.96 3.25 0.98 2.57 6.92

7300 - 5500 cm-1 2 0.97 2.85 0.99 2.15 8.26

6050 - 4000 cm-1 3 0.97 3.08 0.97 2.84 6.26

7300 - 6050
5500 - 4000 cm-1 2 0.97 2.94 0.98 2.31 7.70

10000 - 7300 cm-1 2 0.97 3.11 0.98 2.59 6.84

7300 - 6050 cm-1 2 0.97 2.89 0.99 2.14 8.30

6050 - 5500 cm-1 3 0.97 3.04 0.95 4.10 4.34

5500 - 4000 cm-1 3 0.96 3.21 0.97 3.23 5.49

Calibration set Predicition setPLS
factors

R2
c RMSEC(%) R2

p RMSEP(%) RPD

10000 - 4000 cm-1 2 0.95 3.67 0.96 3.45 5.15

7300 - 4000 cm-1 2 0.95 3.69 0.96 3.46 5.14

7300 - 5500 cm-1 2 0.97 3.07 0.98 2.62 6.77

6050 - 4000 cm-1 2 0.95 3.87 0.96 3.67 4.84

7300 - 6050
5500 - 4000 cm-1 2 0.95 3.79 0.96 3.58 4.96

10000 - 7300 cm-1 3 0.96 3.37 0.87 6.26 2.84

7300 - 6050 cm-1 3 0.98 2.50 0.96 3.42 5.20

6050 - 5500 cm-1 2 0.97 2.86 0.98 2.23 7.96

5500 - 4000 cm-1 2 0.94 3.99 0.95 3.82 4.65

Calibration set Predicition setPLS
factors

a

b

c

R2
c RMSEC(%) R2

p RMSEP(%) RPD

10000 - 4000 cm-1 4 0.97 3.07 0.99 2.08 8.55

7300 - 4000 cm-1 4 0.94 4.04 0.93 4.52 3.93

7300 - 5500 cm-1 3 0.96 3.42 0.98 2.57 6.91

6050 - 4000 cm-1 4 0.96 3.53 0.97 3.10 5.73

7300 - 6050
5500 - 4000 cm-1 4 0.94 4.18 0.93 4.64 3.83

10000 - 7300 cm-1 4 0.97 2.93 0.98 2.65 6.69

7300 - 6050 cm-1 3 0.92 4.71 0.97 3.28 5.42

6050 - 5500 cm-1 4 0.97 2.77 0.97 2.80 6.34

5500 - 4000 cm-1 4 0.96 3.52 0.97 3.23 5.50

PLS
factors

Predicition setCalibration set



Table 3 Statistics summary of the calibration model obtained from filtrate measured by 

immersion probe and applied to the prediction set. The models were obtained by employing 

the original (a), MSC-treated (b), and second-derivative (c) spectra. A schematic illustration 

has been included on the left for assistance in understanding each spectral region. 
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Figure legends 

 

Fig. 1 

NIR spectra obtained from solid samples by sphere diffuse reflectance (a–c) and from liquid 

samples by immersion probe (d–f) are shown. 

(a) and (d) are original, (b) and (d) are MSC-treated, and (e) and (f) are second-derivative 

spectra. The nine spectra were obtained from hydrothermal treatment at 190°C for various 

times (1–64 min). 

 

Fig. 2  

Relationships between the saccharification ratio measured by DNS method and predicted by 

NIR spectroscopy obtained from solid disk samples. Open circles are estimated form 

calibration set and filled those are from prediction set. The correlations were obtained from 

(a) original, (b) MSC-treated, and (c) second-derivative spectra. 

 

Fig. 3  

Regression coefficient for the calibration model of the solid analysis in the range 10000–4000 

cm−1. The lines at 7108 and 5224 cm−1 were assigned to absorbed water; at 6900 and 5980 

cm−1 to lignin; and at 5810 cm−1 to hemicelluloses. Regression coefficients were computed 

from (a) original, (b) MSC-treated, and (c) second-derivative spectra. 

 

Fig. 4 

Relationships between the saccharification ratio measured by DNS method and predicted by 

NIR spectroscopy obtained from the filtrates. Open circles are estimated form calibration set 

and filled those are from prediction set. The correlations were obtained from (a) original, (b) 

MSC-treated, and (c) second-derivative spectra. 
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Fig. 3 
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Figure 4 
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