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Abbreviations 19 

SS: silica sol; 20 

OA: octadecanoic acid;  21 

HDFS: heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane;  22 

HTS: hexadecyltriethoxysilane;  23 

TEOS: Tetraethoxysilica;  24 

HMDS: hexamethyldisilazane;  25 

HPW: High purity water;  26 

SEM: scanning electron microscope;  27 

AFM: atomic force microscope;  28 

EDS: Energy dispersion spectroscopy;  29 

XPS: X-ray photoelectron spectroscopy;  30 

SCA: static contact angle;  31 

SA: slide angle. 32 

 33 

Abstract: Various surface modification technologies have been used to develop superhydrophobic 34 

surface, however their durability has been recognized as the major obstacle for the real applications. 35 

Here a quantitative investigation was conducted to evaluate the effects of different surface 36 

modification methods on the surfaces’ mechanical durability. The superhydrophobic surfaces were 37 

prepared by the combination of two surface roughing methods (etching and sandblasting) with 38 

chemical modifications with four low surface energy materials: silica sol (SS), octadecanoic acid 39 

(OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and hexadecyltriethoxysilane 40 

(HTS). XPS was used to analyze the elements composition and AFM was used to measure the 41 

roughness of the surfaces. The durability of these surfaces was tested by a sandpaper abrasion 42 

experiment. The collective results showed that the low surface energy materials had significant effects 43 

on the surface roughness, which would then play an important role in the durability of these rough 44 

surfaces. The SS modified rough surfaces possessed higher roughness and better durability than the 45 
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surfaces modified by other three low surface energy materials. SS modified rough surfaces could bear 1 

60 cycles of abrasion with 10 g weights on 1500 CW sandpaper. 2 

 3 

Keywords: superhydrophobic; surface roughness; low surface energy material; durability; abrasion; 4 

sandblast 5 

 6 

1. Introduction 7 

 8 

As a crucial aspect of interface chemistry, the wettability of a surface shows huge value in 9 

fundamental and industrial applications. Since lotus leaves have been found possessing 10 

superhydrophobic property, more and more researchers are motivated to study the superhydrophobic 11 

phenomenon. When a water droplet can stay on the surface with a static contact angle larger than 150° 12 

and a slide angle less than 10°, the surface is called superhydrophobic surface. These characteristics 13 

make the surface achieve certain applicative properties in various fields, including antifogging [1-3], 14 

self-cleaning [4, 5], anti-smudge [6, 7], corrosion resistance [8, 9] and anti-frost [10, 11]. In order to 15 

achieve superhydrophobic surfaces where the droplets are in Cassie-Baxter state [12], great efforts 16 

have been made. Milionis et al. [13] summarized the progress on fabrication, design and 17 

understanding of mechanically durable superhydrophobic surfaces. Xue et al. [14] reviewed the 18 

recent advances in developing mechanically durable, corrosion-resistant, self-healing and easily 19 

repairable superhydrophobic surfaces, which would enable prolonged lifetime of 20 

superhydrophobicity for practical applications in the future. The methods prepared superhydrophobic 21 

surfaces can be represented by two steps: surface roughing and the subsequent chemical modification 22 

by low surface energy materials. They are successful in the fabrication of superhydrophobic surfaces. 23 

However, these surfaces are severely restricted by their poor mechanical durability in industrial and 24 

practical uses. To enhance their mechanical properties, researchers have done a lot of work. Peng et 25 

al. [15] fabricated a rough aluminum surface via a one-step anodization process and a subsequent 26 

modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA). They 27 

optimized the preparation parameters to fabricate the best rough morphology for the mechanical 28 

durability. Zhang et al. [16] introduced micro/nano-pores in PTFE films in order to prepare more 29 

durable superhydrophobic surface. To improve durability, Cho et al. [17] proposed a fabrication 30 

process in which the dual-scale structures were prepared by combining sandblasting with surface 31 

hydroxidion. Further, the roles of the low surface energy materials were studied. Scarratt et al. [18] 32 

reported the effects of Teflon AF film wrinkles on the durability, but only one single low surface 33 

energy material was considered. Vengatesh et al. [19] investigated the impact of long chain fatty acid, 34 

perfluorinated fatty acid and perfluorosulfonicacid-polytetrafluoroethylene copolymer on the 35 

superhydrophobicity of anodized aluminum surfaces, but the durability was not mentioned. These 36 

studies indicate that a more quantitative analysis is necessary to study the effects of surface 37 

modification technologies on the durability, which is the crux for practical applications.   38 

In this paper, the effects of surface modification technologies on durability were quantitatively 39 

studied. We used two methods to prepare different roughness surfaces: etching and sandblasting. For 40 

the etching method to make rough surface, the micro-bumps and nano-flowers were both acquired by 41 

chemical etching. For the sandblasting method to build rough surface, the sandblasting method was 42 

used to form micro-bumps followed by chemical etching to form nano-flowers on the micro-bumps. 43 
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We also used four low surface energy materials to subsequently modify the rough surfaces: silica sol 1 

(SS), octadecanoic acid (OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and 2 

hexadecyltriethoxysilane (HTS). They were used to coat the rough surfaces through simple solution 3 

immersion method. Through combining the two roughing surfaces with the four low surface energy 4 

materials, eight kinds of superhydrophobic aluminum surfaces were fabricated. Then through 5 

sandpaper abrasion experiments, the effects of the eight modification technologies on the durability 6 

were investigated. Meanwhile a pencil hardness test was performed to evaluate the mechanical 7 

robustness of the superhydrophobic surfaces like [20]. Long-term exposed test at ambient temperature 8 

for 7 months was conducted to estimate the durability of the thin films. 9 

 10 

2. Experimental  11 

 12 

2.1 Materials 13 

 14 

Pure aluminum plates [(50×30×0.8mm), 99.99% of purity] were purchased from Guangzhou 15 

HengTai Materials Co., China. Tetraethoxysilica (TEOS), octadecanoic acid (OA) and 16 

hexamethyldisilazane (HMDS) were obtained from Guangzhou QianHui Co., China. They were all 17 

analytical reagents. Hexadecyltriethoxysilane (HTS) and heptadecafluoro-1,1,2,2-tetrahydrodecy -18 

trichlorosilane (HDFS) were bought from Aladdin, ShangHai, China. Methanol, ethanol and acetone 19 

were also analytical grade and they were used without any further purification. High purity water 20 

(HPW) was prepared by a Purescience water purification system.  21 

 22 

2.2 Modification of Al surfaces  23 

 24 

2.2.1 Procedure to prepare rough surfaces of Al  25 

 26 

First method for rough surfaces (Method-etching):  27 

Al plates were cleaned by ultrasonic bath with acetone, ethanol, and HPW for 5 min respectively 28 

in sequence. Then they were dried by an air blower. The microstructures of the cleaned Al plates were 29 

prepared by chemical etching in NaClO solution with a volume concentration 1:1 (NaClO: HPW). 30 

The reaction was kept in 30 °C for 15 min [21]. After that, the plates were fished out and cleaned by 31 

HPW 2~3 times. 0.2 g NaOH solid was put in a beaker with 100 ml HPW to form a solution. It was 32 

then heated at 80 °C. The Al plates with microstructures were dipped in NaOH solution for 10 min at 33 

80 °C to obtain nano-flower structures. In the end the plates were cleaned 3 times by HPW, and then 34 

dried by the air blower for subsequent use. 35 

 36 

Second method for rough surfaces (Method-sandblasting): 37 

For obtaining micro-bumps structures, Al plates were sprayed by sandblast device with sand 38 

particles at a pressure of 6 kgf cm2. The sizes of the sand particles were 500 mesh [17]. Then the sand 39 

blasted Al plates were cleaned by ultrasonic bath with acetone, ethanol, and HPW for 5 min in 40 

sequence before building nanostructures. Then they were dried by air blower. The method same as 41 

the first one is used to prepare nano-structures. 42 

 43 
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2.2.2 Procedure for the preparation of superhydrophobic modifiers   1 

 2 

Hydrophobic silica sol (SS) was prepared as follows [22]. 30 ml ethanol was added in a beaker. 3 

2.1 ml TEOS was dripped into the ethanol and mixed by vigorously stirring for 10 min. Then 2 ml 4 

HMDS was added to the solution slowly. After 30 min mechanical stirring, 3 ml HPW was dropped 5 

into the mixture. After 2 h constant stirring, the mixture formed a transparent sol. The transparent sol 6 

solution was placed at least 2 days for aging to form hydrophobic silica sol (SS). SS and ethanol were 7 

mixed with a volume concentration of 1:5 for the subsequent use. 8 

Octadecanoic acid (OA) solution was obtained through adding 2 g octadecanoic acid solid particles 9 

into 100 ml ethanol with mechanical stirring at 50 °C till the solid particles were completely dissolved 10 

[23]. Hexadecyltriethoxysilane (HTS) (0.6 g) was dropped into 100 ml methanol [20] to form solution. 11 

And heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) (0.5 ml) was dripped into 100 12 

ml ethanol to form solution[24]. 13 

 14 

2.2.3 Procedure for prepared superhydrophobic surfaces 15 

 16 

The nanostructures were prepared by the same means, but the microstructures were made by 17 

different means. For convenience, the first method making rough surface was called “etching” for 18 

short and the second was called “sandblasting” for short. The samples were defined as “N-M”, where 19 

N represented the method to build microstructures and M meant the modification materials. For 20 

example, the sample etching-SS meant that the rough structures were made by the first method and 21 

they were then chemically modified by SS. In this paper, 8 kinds of modified superhydrophobic 22 

surfaces were made: etching-SS, etching-OA, etching-HTS, etching-HDFS, sandblasting-SS, 23 

sandblasting-OA, sandblasting-HTS, and sandblasting-HDFS, respectively. 24 

Etching-SS and sandblasting-SS were made through putting etching and sandblasting into SS for 25 

18 h at ambient temperature. Their performances were researched after they were taken out and dried. 26 

etching-OA and sandblasting-OA were obtained by soaking etching and sandblasting into OA 27 

solution for 24 h at 30 °C. Then the samples were washed by ethanol and HPW for 2~3 times, 28 

respectively. After this, the samples were dried in an oven at 80 °C for 1 h. etching-HDFS and 29 

sandblasting-HDFS were prepared through adding etching and sandblasting to HDFS solution for 30 30 

min at 25 °C followed by keeping them at 140 °C in an oven for 1 h. etching-HTS and sandblasting-31 

HTS were achieved by soaking etching and sandblasting in HTS solution for 1 h at ambient, and then 32 

heating at 130 °C for 0.5 h in a oven.  33 

 34 

2.3 Characterization 35 

  The wettability of these samples was measured by a JC2000C1 contact angle system (Shanghai, 36 

China) at ambient temperature with a 4 µl water droplet. The slide angles were measured by a drop 37 

of water released onto the inclined substrate from a defined height. The minimum angle of the inclined 38 

surface at which the drop completely rolling off the surface was recorded and that was the sliding 39 

angle [25]. Each kind of sample was measured 3 times on different positions and the average value 40 

was used. The morphological structures of the samples were observed using scanning electron 41 

microscope (SEM, Merlin, LEO1530VP, Germany). Platinum was sprayed onto the samples before 42 

observing the morphology in order to enhance the conductivity. The surface topography was captured 43 



5 

 

using atomic force microscope (AFM, XE-100, Park, Korea) with a scan size of 5 µm × 5 µm. The 1 

operating mode of AFM was contacting mode. Energy dispersion spectroscopy (EDS, Inca400, 2 

Oxford, England) and X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD, Krato, England) 3 

techniques were used to obtain the chemical compositions of the modified samples. The samples were 4 

magnified 1000× in EDS measurements. XPS Spectra were recorded using an X-ray source of Al Kα 5 

radiation with a scan range of 0~1100 eV binding energy and referenced with respect to adventitious 6 

carbon (C 1s: 284.6 eV). The chamber pressure was about 5 × 10−9 Torr.  7 

2.4 Durability test 8 

 9 

The mechanical durability of the obtained samples was evaluated via a sandpaper-abrasion method 10 

[26] illustrated in Fig. 1. The treated surfaces were placed face-down to the sandpaper (1500 CW). 11 

Adding 10 g weights on the sample, the surface was moved along with a ruler by a force at a speed 12 

of 5 mm/s. The static contact angles was measured after the abrasion test. The test was finished when 13 

the contact angle was less than 150 °.  14 

 15 

 16 

Fig.1. The schematic of sandpaper-abrasion test. 17 

The mechanical robustness of the superhydrophobic surfaces was evaluated through a pencil 18 

hardness test on the surfaces before and after exposed at ambient temperature for 7 months. The 19 

durability of the thin films in the open air was estimated after exposed the surfaces outside for 7 20 

months.  21 

 22 

3. Results and discussion 23 

 24 

3.1 Formation of hierarchically structures 25 

 26 

The rough structures were created on the cleaned aluminum surfaces through two methods, namely, 27 

two-step chemical etching (etching) and sandblasting combined with wet chemical etching 28 
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(sandblasting). The purpose was to achieve different micro-structures of rough surfaces. The SEM 1 

images of bare aluminum and the prepared rough aluminum were provided in Fig. 2. 2 

 3 

 4 

Fig.2. SEM images of (a): bare Al; (b): microstructural Al obtained by sandblasting; (c): 5 

microstructural Al obtained by NaClO etching; (d): hierarchical structure obtained by sandblasting 6 

combined with wet chemical etching (the amplified picture was inserted into the upper right corner); 7 

(e): hierarchical structure obtained by two-step chemical etching (the nanostructures were depicted 8 

in the upper right corner). 9 

 10 

From the SEM images, it could be seen that the bare Al surface was almost smooth without any 11 

rough structures. When it was sandblasted by sand as showed in Fig. 2 (b), the surface morphology 12 

changed significantly and it had micro-scale unevenness. Compared to sandblasted surface, when the 13 

surface was etched by NaClO solution as depicted in Fig. 2 (c), small particles appeared on the surface. 14 

They were Al2O3 particles [21], which changed the surface morphology. These two structures of 15 

rough surfaces created different roughness. The values of roughness were discussed in AFM 16 

measurement. As revealed in Fig. 2 (d), after etched by sodium hydroxide solution, nano-flake 17 

structures were formed on the micro-scale structures. Fig. 2 (e) showed similar nano-flake structures 18 

as Fig. 2 (d). Two surfaces of different roughness were clearly showed from SEM images. For the 19 

surfaces modified by the same low surface energy material, the roughness influenced the durability, 20 

which would be discussed in the section of durability test. 21 

 22 

3.2 Surface elemental composition 23 

 24 

The elemental compositions of the fabricated surface samples were analyzed using EDS 25 

spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. In Table 1, the elements 26 

acquired on the surfaces could confirm that the surfaces were covered by the low surface energy 27 

materials. In order to qualitatively analyze the elemental compositions, XPS was utilized. This 28 

spectroscopy was one of the surface sensitive techniques used to provide information on the changes 29 

in surface chemistry. XPS survey spectra were displayed in Fig. 3. It could be seen that the rough Al 30 

surfaces without low surface energy materials showed only C 1s, O 1s, Al 2p peaks in Fig. 3 (a). 31 

However, the C 1s peak was possibly caused by contaminant carbon [27]. In Fig. 3 (b), it showed the 32 
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peak of Si 2p which was attributed to SS. The almost completely disappeared Al 2p peak indicated 1 

that SS coated almost all areas of the rough surfaces, so that very little Al could be detected. When 2 

the surface suffered physical wears, the SS became the first substance to be abrased and the rough 3 

surfaces could be therefore protected. The surface morphology after SS coating could be seen in SEM 4 

images in the following section. The intensity of C 1s peak in Fig. 3 (c) was obviously increased, 5 

which confirmed that OA covered on the rough surfaces. The peaks of Si 2p, Cl 2p and F 1s seen in 6 

Fig. 3 (d) indicated that HDFS was grafted on the surfaces. And the nearly disappeared Cl 2p peak 7 

showed that HDFS hydrolyzed in the ethanol. In Fig. 3 (e), the increased intensity of C 1s peak and 8 

the detected Si 2p peak proved that HTS existed on the rough surfaces. These results obtained from 9 

XPS survey spectra were in accordance to those from EDS.  10 

 11 

Table 1  12 

Atomic percentages of bare Al, rough Al before and after modification. 13 

sample C (%) O (%) Al (%) Cl (%) F (%) Si (%) 

bare  2.93 97.07    

etching  39.02 60.98    

sandblasting  49.03 50.97    

etching-SS 23.95 36.19 38.44    

etching-OA 23.07 41.97 34.96    

etching-

HDFS 

18.91 34.83 44.05 0.76 1.06 0.38 

etching-

HTS 

22.71 35.27 41.55   0.47 

sandblasting

-SS 

25.15 45.16 27.15    

sandblasting

-OA 

22.56 46.65 30.79    

sandblasting

-HDFS 

16.51 45.17 36.44 0.33 1.14 0.41 

sandblasting

-HTS 

22.47 39.18 37.75   0.6 

 14 
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 1 

Fig.3. XPS survey spectra of (a): etched rough Al surfaces; (b): rough Al surfaces modified by SS; 2 

(c): rough Al surfaces modified by OA; (d): rough Al surfaces modified by HDFS; (e): rough Al 3 

surfaces modified by HTS. In the images, “etching” meant that the rough Al surfaces were prepared 4 

by chemical etch, and “sandblasting” meant that the rough Al surfaces were made by sandblast. 5 

 6 

To get more information in the changes of the surface compositions, XPS deconvoluted spectrum 7 

of modified rough surfaces were collected in Fig. 4. Fig. 4 (a) and (b) showed the O 1s and Si 2p 8 

peaks of SS. The etching-SS O 1s peak at 532.8 eV and the sandblasting-SS O 1s at 532 eV were 9 

attributed to SiO2 [28, 29]. The Si 2p peaks at 103.6 eV and 103.5 eV of etching-SS and sandblasting-10 

SS came from SiOx, respectively [30-32]. These indicated that SS included many SiO2 particles which 11 

could improve the durability of rough surfaces [33]. In Fig. 4 (c), the three peaks of O 1s at 532.3 eV 12 

(C-O), 531.3 eV (C=O) and 530.2 eV (–OH) [19] were three kinds of valence in OA molecules, which 13 

indicated that the valence state of oxygen atom did not change. So the covalent bonds between OA 14 

molecules and the rough surface were not formed. The Al 2p peaks of etching-OA and sandblasting-15 

OA still at about 74.0 eV which came from Al(OH)3 [34] further explained that the rough Al surfaces 16 

did not react chemically with OA molecules and OA just filled in the pores by physical effect on the 17 

rough Al surface. In Fig. 4 (e) and (g), the O 1s peaks of HDFS and HTS modified surfaces were all 18 

around at 531.6 eV, attributing to the -Si-O-Al group [35]. The presence of Si 2p peaks around 101.95 19 

eV in Fig. 4 (f) and (h) confirmed that -C-Si-O group existed [31, 36]. The formed -C-Si-O and -Si-20 

O-Al groups illustrated that HDFS and HTS were grafted to the surface with covalent bonds. In most 21 

cases, the three methoxyl groups in the HTS molecules were unable to be converted to hydroxyls 22 

completely, and incompletely hydrolysed silane molecules could also be grafted to the substrates 23 

during the later silanization processes, leading to a large degree of local disorder in the surface layer. 24 

So the Si 2p peak of HTS was thus relatively more variable [37]. The reason for the fluctuating Si 2p 25 

peaks of HDFS in Fig. 4 (f) was the same as previously described.  26 
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 1 

 2 

 3 

 4 

Fig.4. Deconvoluted XPS spectra of different chemical modification technologies on the two kinds 5 

of rough surfaces (etching and sandblasting). SS: (a) O 1s and (b) Si 2p; OA: (c) O 1s and (d) Al 2p; 6 

HDFS: (e) O 1s and (f) Si 2p; HTS: (g) O 1s and (h) Si 2p. 7 
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Since the depth of XPS detection was only 1.5 nm, and the height of SS stacked on the rough 1 

surfaces was larger than 1.5 nm, so it’s hard to detect whether or not the covalent bonds between the 2 

SS and the rough Al surface were formed. The rough surfaces could only be seen from the 3D images 3 

of AFM. However, from the routes of SS fabrication, it could be concluded that there were no covalent 4 

bonds formed between the SS and the rough Al surfaces. The ≡Si-O-Si(CH3)3 molecules had no active 5 

groups to react with Al surface. The routes of SS fabrication were listed as follows [22]:  6 

(CH3)3SiNHSi(CH3)3 + 2 H2O → 2 HO-Si(CH3)3 + NH3 7 

Si(OCH2CH3)4 + 4 H2O → Si(OH)4 + 4 CH3CH2OH 8 

≡Si-OH + HO-Si(CH3)3 → ≡Si-O-Si(CH3)3 + H2O 9 

So the increased durability of SS modified surfaces could only be attributed to the existence of stacked 10 

SiO2 inside the surfaces.  11 

 12 

3.3 Surface morphological studies 13 

 14 

SEM technique was used to observe the morphologies of surfaces after modified with different low 15 

surface energy materials including SS, OA, HDFS and HTS. These materials were introduced 16 

particularly to investigate their effects on durability property. Fig. 5 showed the images of rough 17 

surfaces modified by hydrophobic materials. 18 

 19 

Fig.5. SEM images showing the structures of (a): etching-SS; (b): etching-OA; (c): etching-HDFS; 20 

(d): etching-HTS; (e): sandblasting-SS; (f): sandblasting-OA; (g): sandblasting-HDFS; (h): 21 

sandblasting- HTS. 22 
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The SEM images were visualized to reveal the results. It could be seen that the surfaces of etching-SS and 1 

sandblasting-SS in Fig. 5 (a) and (e) were coated by silica sol with a mountain of SiO2 particles. The SS layer 2 

consisted of nanoparticles had very high surface curvature. The nano particle aggregates increased the surface 3 

curvature of convex particles, so the contact angles of SS modified surfaces were increased. [38] Thus, even 4 

if some part of SS coating was frayed, the remaining particles with very high contact angles would ensure the 5 

sample still have high contact angles. In Fig. 5 (b) and (f), the two rough surfaces were modified by OA which 6 

just filled in the grooves on the surfaces without any covalent bond. When the surface was rubbed against 7 

sandpaper, OA was worn off from surfaces easily, exposing the hydrophilic Al. Water would stick to the 8 

surface and non-wettability was lost even though the Cassie state was still stable [39]. Fig. 4 (c) etching-HDFS, 9 

(d) etching-HTS, (g) sandblasting-HDFS and (h) sandblasting-HTS showed that HDFS and HTS had no 10 

obvious effect on morphologies. It indirectly showed that HDFS and HTS were grafted on the surfaces with 11 

covalent bonds. When the rough surfaces modified by HDFS or HTS were frayed, the modified micro-12 

structures would defend the surfaces from abrasion, [40] thus the surface could bear a certain degree of 13 

abrasion, keeping the surfaces still superhydrophobic.  14 

AFM, a topography observation tool, was used to observe the changes of the surface topography 15 

and the roughness of various substrates before and after modification. Fig. 6 and Fig. 7 illustrated the 16 

surface topography of Al plates before and after modified by low surface energy materials through 17 

plane images and 3D images. From the topographical images in Fig. 6 and Fig. 7, the topography of 18 

etching-SS, etching-OA, sandblasting-SS and sandblasting-OA had obviously changed, which was 19 

consistent with the SEM images. As shown in the plane images (Fig. 6 (b)), the etching-SS surface 20 

was coated with a large number of prills, while the etching-OA surface topography showed in Fig. 6 21 

(c) became smooth without distinct micro-structures. Fig. 6 (d) etching-HDFS and 6 (e) etching-HTS 22 

had no evident variations in the structures. AFM 3D images provided more direct evidence of 23 

topography changes on the modified Al surfaces, which were outlined in Fig. 6 (i-v) and Fig. 7 (i-v). 24 

The values of roughness (Rq) were calculated by the analysis software of AMF to explain the changes 25 

of the rough surfaces and the values were listed in Table 2. The formula of the analysis software used 26 

to calculate the Rq was given in equation (1), where L represented the length of the computational 27 

domain in two-dimensional rough surface contour, 𝑦(𝑥𝑖) was the height of the measurement points 28 

in two-dimensional rough surface contour, and n was the number of the sampling sites.  29 

 30 

                      𝑅q = √
1

𝐿
∫ [𝑦(𝑥)]2𝑑𝑥
𝐿

0
= √

1

𝑛
∑ 𝑦(𝑥𝑖)2
𝑛
𝑖=1                      (1) 31 

 32 

From the equation (1), the value of Rq was larger when 𝑦(𝑥𝑖) was higher for an equal number of 33 

sampling sites. In AFM measurement, all the samples were measured with a scan size of 5 µm × 5 34 

µm. So it was concluded that the SS modified rough surfaces had the maximum Rq values and the 35 

OA modified surfaces had the minimum Rq values. Meanwhile, for the superhydrophobic surfaces 36 

modified by the same low surface energy material, the second roughing method had higher Rq values 37 

than the first method. So the superhydrophobic surface of sandblasting-SS had the highest Rq values 38 

0.474 µm and the etching-OA had the lowest Rq value 0.152 µm. 39 

 40 
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 1 

 2 

Fig.6. AFM plane images and 3D images of the rough Al surfaces made by etching-method before 3 

and after modification. (a) and (i): etching; (b) and (ii): etching-SS; (c) and (iii): etching-OA; (d) and 4 
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(iv): etching-HDFS; (e) and (v): etching-HTS. The roughness parameters were achieved by profile 1 

extraction of topographical images. Scan area 5×5µm2. 2 

 3 

 4 

 5 

Fig.7. AFM plane images and 3D images of the rough Al surfaces made by sandblasting-method 6 

before and after modification. (a) and (i): sandblasting; (b) and (ii): sandblasting-SS; (c) and (iii): 7 
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sandblasting-OA; (d) and (iv): sandblasting-HDFS; (e) and (v): sandblasting-HTS. The roughness 1 

parameters were achieved by profile extraction of topographical images. Scan area 5×5µm2. 2 

 3 

Table 2   4 

Effects of roughness on wettability and durability. 5 

samples Rq (µm) SCA (°) SA (°) abrasion times 

etching 0.170±0.014 \ \ \ 

etching-SS 0.212 ± 0.024 166 ±1.6 2 ± 0.3 35 ± 5 

etching-OA 0.152 ± 0.009 143 ± 4.3 18 ± 3.5 \ 

etching-HDFS 0.184 ± 0.021 159 ± 1.0 3.5 ± 1.0 23 ± 4 

etching-HTS 0.190 ± 0.021 153.5 ± 1.3 3 ± 1.2 21 ± 3 

sandblasting 0.348±0.026 \ \ \ 

sandblasting-SS 0.474 ± 0.054 165 ± 2.0 2 ± 0.5 60 ± 2.5 

sandblasting-OA 0.245 ± 0.017 150 ± 1.5 9 ± 2.5  4 ± 2 

sandblasting-HDFS 0.373 ± 0.036 158± 2.0 3 ± 1.1 31 ± 2 

sandblasting-HTS 0.364 ± 0.035 155 ± 1.8 3.5 ± 0.8 30 ± 4 

 6 

3.4 Surface wettability 7 

 8 

In order to describe the wettability of the modified rough surfaces, the static contact angles (SCA) 9 

were tested using an optical contact angle instrument. The slide angles (SA) were measured by a drop 10 

of water released onto the inclined substrate from a defined height. The minimum angle of inclined 11 

surface at which the drop completely rolled off the surface was defined as the sliding angle. Fig. 8 12 

displayed the images of SCA on the modified rough Al substrates. The values of SCA, SA and Rq 13 

were presented in Table 2. The contact angles of the flat aluminum and the flat layer of each 14 

modification were listed in Table 3. 15 



15 

 

 1 

Fig.8. Water contact angle images of (a): etching-SS; (b): etching-OA; (c): etching-HDFS; (d): 2 

etching-HTS; (e): sandblasting-SS; (f): sandblasting-OA; (g): sandblasting-HDFS; (h): sandblasting-3 

HTS. 4 

                                                                                                                                                                                                                                                                                                                                                                                                                     5 

Table 3 6 

The contact angles of the flat surfaces before and after being modified. 7 

samples flat aluminum flat aluminum 

modified by 

SS 

flat aluminum 

modified by 

OA 

flat aluminum 

Modified by 

HDFS 

flat aluminum 

modified by 

HTS 

SCA(°) 89.4±3.0 145±2.3 92.4±2.5 120.7±1.2 105.1±2.0 

 8 

In Table 2, it was observed that the SCA changed along with the roughness which was affected by 9 

the low surface energy materials. For the same method to prepare rough structures, compared to un-10 

modified surfaces, the roughness of SS modified surfaces was increased, but that of OA modified 11 

surfaces was decreased. However the roughness of HTS or HDFS modified surfaces was similar to 12 

the un-modified surfaces. So the surfaces modified by SS (etching-SS, sandblasting-SS) had the 13 

largest contact angles of 166° and 165°, respectively. The contact angles were only 143° and 150° for 14 

OA modified rough Al surfaces. The SCA on the surfaces modified by HTS or HDFS lied between 15 

the SS modified and OA modified surfaces. However, the values of SCA on the HDFS modified 16 

surfaces were larger than the HTS modified surfaces. The reason was that the surface energy of HDFS 17 

was lower than that of HTS. Further, according to Table 3, on the flat aluminum, the SCAs on the 18 

HDFS modified surface were larger than those on the HTS modified surface, which indicated that the 19 

surface energy of HDFS was lower than that of HTS. It testified that the roughness of the rough 20 

surfaces played a vital role in illustrating the superhydrophobic behavior, [41] however, the rough 21 
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surfaces must be prepared by the same method. If the rough surfaces were made through different 1 

methods, the roughness was not a correct indicator to measure superhydrophobic behavior. 2 

Meanwhile, for the same roughing method, it was very important to choose which low surface energy 3 

material was used as the hydrophobic material to make the surface repelling water.  4 

 5 

3.5 Durability 6 

 7 

Up to now, the durability of superhydrophobic surfaces is still an obstacle to practical applications. 8 

Many researchers are working on this particular field to fabricate durable substrates [42, 20]. In this 9 

paper, we have prepared eight kinds of superhydrophobic surfaces using two roughing methods and 10 

four low surface energy materials to modify the rough surfaces. Through a sandpaper-abrasion 11 

experiment, we evaluated the durability of these rough superhydrophobic surfaces to find the best 12 

anti-wear rough surface. The modified rough Al plates were put on a 1500 CW sandpaper with 10 g 13 

weights over the plates. Under the impetus of force, substrates moved slowly along with the ruler. 14 

The contact angles were tested after each abrasion, and the abrasion times were recorded. Table 2 15 

listed the abrasion times of all the rough superhydrophobic surfaces. From Table 2, it could be found 16 

that the durability of the rough surface was proportional to the roughness of the surface. Fig. 9 showed 17 

the effect of abrasion on the wetting properties of the superhydrophobic aluminum surfaces.  18 

It could be seen in Fig. 9 that the SS modified rough surfaces were more durable than the rough 19 

surfaces modified by other three kinds of modifiers. Since SS which included a mount of SiO2 20 

particles stacked on the rough surfaces, it obviously enhanced the roughness of the rough Al surfaces. 21 

In the early stages of wear, the SiO2 nanoparticles acted as roller bearings, leading to decreased 22 

abrasive wear. The SS layer was much thicker than other low energy layers, which could be seen in 23 

the SEM and AFM testing section. Therefore more abrasion cycles were required to be removed. In 24 

addition, the SS layer consisted of SiO2 nanoparticles was with very high surface curvature and their 25 

aggregates increased the surface curvature for convex particles, which resulted in the contact angle increasing. 26 

Thus, even if some part of SS coating was frayed, the remaining particles with very high contact angles would 27 

still help to maintain the superhydrophobicity of the surface. When SS stacking on the rough surface was 28 

worn off, the protected Al rough surface was exposed to abrasion. The rough surfaces modified by 29 

HDFS or HTS had similar durability properties. They both formed covalent bonds with the modified 30 

surfaces and dispersed on the surface with monomolecular layers. The roughness of these substrate 31 

surfaces was enhanced slightly. When these surfaces were rubbed, the Al surfaces were directly 32 

exposed to abrasion, which were parallel to the SS modified surfaces after the SS stacking was worn 33 

off. So HDFS or HTS modified surfaces were less anti-wear than the SS modified surfaces. The 34 

surfaces modified by OA were the least durable surfaces. The OA molecules were just filled in the 35 

grooves on the surfaces rather than by covalent bonds with the substrates. The Rq values of the OA 36 

modified surfaces were decreased. When these surfaces were subjected to fray, the rough structures 37 

of Al surfaces were easily rubbed off and the superhydrophobicity was easily lost. When the contact 38 

angle was lower than 150°, the abrasion test was stopped. So the abrasion test was not performed on 39 

the surface etching-OA. From the values of Rq and the times of abrasion cycles, though the 40 

sandblasting-OA had larger Rq values than the etching-HDFS and etching-HTS surfaces, its times of 41 

abrasion cycles was less than the latter two. The contact angle of sandblasting-OA was only 150 °C, 42 

so its superhydrophobicity was easily lost after abrasion. From Fig. 9, it also could be seen that the 43 
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rough surfaces prepared by the second method were much durable than the first method prepared 1 

surfaces. The reason was that the second method prepared surfaces had higher values of Rq than the 2 

first method prepared surfaces. So when the surface had higher Rq values, its durable was better. This 3 

is in agreement with the conclusion that the enhanced roughness from the nanostructures formed on 4 

the microscale structures would improve the mechanical durability of superhydrophobic 5 

surface.[14,39] 6 

 7 

 8 

 9 

Fig.9. Water contact angles of the superhydrophobic surfaces versus the abrasion cycles. 10 

 11 

The pencil hardness test was conducted as follow [13]: a pencil with quantified hardness was 12 

pressed firmly on the surfaces while moving along the surface at a constant speed. The pencil was 13 

formed a 45 degree angle with the surface. The test was carried out on the surfaces before and after 14 

being exposed in the open air for 7 months. The results were listed in Table 4. If a thin film was 15 

coated on a substrate by van der Waals interactions, it usually could not endure 1B pencil hardness 16 

tests. A good index of performance for a durable superhydrophobic surface was at least 2H. From 17 

Table 4, it could be concluded that OA was grafted on the surfaces by van der Waals interactions, 18 

which was in accordance to the XPS result that OA molecules did not form covalent bonds with the 19 

surfaces. The surfaces modified by HDFS or HTS were durable due to the covalent bonds between 20 

the HDFS/HTS molecules and the surfaces. As the SiO2 nanoparticles act as roller bearings, the 21 

durability of SS modified surfaces was higher than others. 22 
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However, from the wettability of the surfaces exposed outdoor for 7 months, the HDFS modified 1 

surfaces had higher SCA and lower SA than other candidates. It may be the reason that the surface 2 

energy of HDFS was lower than others.    3 

  4 

Table 4 5 

The hardness and wettability tests on the surfaces  6 

samples Hardnessa  Hardnessb  SCAb (°)  SAb (°)  

etching-SS 3H H 135.8±1.5 20±1.0 

etching-OA 2B ˂ 2B 44.3±2.3 > 20 

etching-HDFS 2H H 150.8±2.0 9±0.3 

etching-HTS 2H HB 144.5±2.1 10.5±0.5 

sandblasting-SS 6H 4H 151.5±1.3 7.8±0.5 

sandblasting-OA 2B ˂ 2B 91±1.7 > 20 

sandblasting-

HDFS 

5H 2H 154.1±2.3 5±0.5 

sandblasting-HTS 5H 3H 150.6±1.6 8.5±0.3 
a  the thin film before exposed outdoor for 7 months 7 
b  the thin film after exposed outdoor for 7 months 8 

 9 

4.  Conclusions 10 

 11 

In summary, two methods were used to build different rough structures, and four low surface 12 

energy materials were respectively used to modify the rough substrates through solution immersion 13 

method. After abrasion tests, the durability was investigated. Conclusions were drawn as follows: (a) 14 

when SS that included some amount of SiO2 was used to modify the rough surfaces, SS could coat 15 

on almost all areas of the Al surfaces. Hence, the roughness of the surfaces was increased greatly. (b) 16 

When HDFS or HTS was used to modify the rough surfaces, the HDFS or HTS molecules would 17 

form covalent bonds with Al surfaces and they were dispersed on the substrates in monomolecular 18 

layers. So the roughness of these surfaces was changed slightly. (c) When OA was used to modify 19 

the rough surfaces, the OA molecules filled in the grooves of the rough surfaces by physical effect. 20 

So the roughness of the surfaces was reduced. (d) When the surfaces had larger roughness, they would 21 

be more durable. So the SS modified surfaces that were prepared by the second method were the best 22 

durability surfaces. It provided a direction for the fabrication of promising durable super-hydrophobic 23 

surfaces. 24 
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Table captions 1 

Table 1 Atomic percentages of bare Al, rough Al before and after modified. 2 

Table 2 Effects of roughness on wettability and durability. 3 

Table 3 The contact angles of the flat surfaces before and after being modified. 4 

Table 4 The hardness and wettability tests on the surfaces. 5 

Figure Captions 6 

Fig.1. The schematic of sandpaper-abrasion test. 7 

Fig.2. SEM images of (a): bare Al; (b): microstructural Al obtained by sandblasting; (c): 8 

microstructural Al obtained by NaClO etching; (d): hierarchical structure obtained by 9 

sandblasting combined with wet chemical etching (the amplified picture was inserted into the 10 

upper right corner); (e): hierarchical structure obtained by two-step chemical etching (the 11 

nanostructures were depicted in the upper right corner). 12 

Fig.3. XPS survey spectra of (a): etched rough Al surfaces; (b): rough Al surfaces modified by SS; 13 

(c): rough Al surfaces modified by OA; (d): rough Al surfaces modified by HDFS; (e): rough Al 14 

surfaces modified by HTS. In the images, etching meant the rough Al surfaces were prepared by 15 

chemical etched and sandblasting meant the rough Al surfaces were made by sandblast. 16 

Fig.4. Deconvoluted XPS spectra of different chemical modification technologies on the two kinds 17 

of rough surfaces (etching and sandblasting). SS: (a) O 1s and (b) Si 2p; OA: (c) O 1s and (d) 18 

Al 2p; HDFS: (e) O 1s and (f) Si 2p; HTS: (g) O 1s and (h) Si 2p. 19 

Fig.5. SEM images showing the structures of (a): etching-SS; (b): etching-OA; (c): etching-HDFS; 20 

(d): etching-HTS; (e): sandblasting-SS; (f): sandblasting-OA; (g): sandblasting-HDFS; (h): 21 

sandblasting- HTS. 22 

Fig.6. AFM plane images and 3D images of the rough Al surfaces made by etching-method before 23 

and after modification. (a) and (i): etching; (b) and (ii): etching-SS; (c) and (iii): etching-OA; (d) 24 

and (iv): etching-HDFS; (e) and (v): etching-HTS. The roughness parameters were achieved by 25 

profile extraction of topographical images. Scan area 5×5µm2. 26 

Fig.7. AFM plane images and 3D images of the rough Al surfaces made by sandblasting-method 27 

before and after modification. (a) and (i): sandblasting; (b) and (ii): sandblasting-SS; (c) and (iii): 28 

sandblasting-OA; (d) and (iv): sandblasting-HDFS; (e) and (v): sandblasting-HTS. The 29 
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roughness parameters were achieved by profile extraction of topographical images. Scan area 1 

5×5µm2. 2 

Fig.8. Water contact angle images of (a): etching-SS; (b): etching-OA; (c): etching-HDFS; (d): 3 

etching-HTS; (e): sandblasting-SS; (f): sandblasting-OA; (g): sandblasting-HDFS; (h): 4 

sandblasting-HTS. 5 

Fig.9. Water contact angles of the superhydrophobic surfaces versus the abrasion cycles. 6 

 7 


