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Abstract

The group finite element formulation is a strategy aimed at speeding the assembly of finite
element matrices for time-dependent problems. This process modifies the Galerkin matrix
of the problem in a non-consistent way. This may cause a deterioration of both the stability
and convergence of the method. In this paper we prove results for a group finite element
formulation of a convection–diffusion–reaction equation showing that the stability of the
original discrete problem remains unchanged under appropriate conditions on the data of
the problem and on the discretization parameters. A violation of these conditions may lead
to non-existence of solutions, as one of our main results shows. An analysis of the consistency
error introduced by the group finite element formulation and its skew-symmetric variant is
given.

Keywords: group finite element formulation, existence of solutions, stability, error
estimates, convection–diffusion–reaction equation

1. Introduction

The numerical solution of convection-dominated transient problems is a topic that has
received much attention over the last couple of decades. If the interest is to produce dis-
cretizations that preserve properties such as positivity, then the family of flux-corrected
transport (FCT) schemes [3, 16, 13, 14, 12, 10, 8] has been actively used over the past years.
These methods are related to the shock-capturing idea, and thus are nonlinear, but the main
advantage is that they have provided some of the best results to date (see, e.g., [6, 7] for
computational surveys).

When dealing with the numerical solution of the transient transport problem (or any time-
dependent problem with time-varying coefficients) by means of the finite element method
(FEM), a very costly part of the computations is the assembly of the finite element matrix at
every time step. This is due to the possible time dependence of the convective field. Then, in
order to make the implementation more efficient, the group finite element formulation can be
applied. This technique was introduced in [5, 4] to simplify the implementation of nonlinear
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(convective) terms and to increase the efficiency of computations. Its main idea is to represent
products (i.e., groups) of variables by single finite element functions. In this way, assembling
the matrix corresponding to the convective term reduces to the multiplication of the nodal
values of the convective field by a collection of matrix entries that are computed only once
at the beginning of the computation. This formulation can be interpreted also as evaluating
the convective term by using nodal quadrature. Over the years, the group finite element
formulation has been frequently applied in the context of explicit piecewise linear finite
element discretizations of compressible flow problems. However, the group formulation has
been also used intensively in implicit FCT discretizations of conservation laws and transport
and convection–diffusion problems with incompressible convection fields (see, e.g., [10, 11,
2, 9, 6]), with very satisfactory numerical results. The main focus of this work is on implicit
schemes for convection–diffusion–reaction equations with divergence-free convection fields.

There is, nevertheless, a lack of theoretical exploration on the limits of the group for-
mulation. In particular, no results seem to be available on the impact that the lack of
antisymmetry of the discrete convective term has in the formulation. One particular point
that, in our opinion, deserves attention is the following. The FCT-like schemes can be
reinterpreted as nonlinear stabilized finite element methods, where the stabilizing term is
positive semidefinite and, in particular, may vanish for some meshes and discrete solutions.
Consequently, the possible stability of the whole discretization relies on the stability of the
group formulation of the underlying Galerkin scheme. Thus, the impact of the modification
made by the group finite element method on the Galerkin scheme needs to be studied more
in detail.

The purpose of this work is to fill the gap that was described in the last paragraph. To
this end we consider the convection–diffusion–reaction equation as a model problem. Our
main objective is to explore what is the impact of replacing the original convective term by
its group formulation, both in terms of stability and lack of consistency. Concerning the
stability of the method, the situation is as follows. For the steady-state case, the ellipticity
of the approximate bilinear form can be proved by supposing that the convection is small
enough or the mesh is sufficiently fine. For the time-dependent case, this requirement can
be overcome by supposing, in turn, that the time step is small enough, which, in practice,
reduces to imposing a CFL condition. On the other hand, if the assumptions that guarantee
the stability are not fulfilled, the discrete problems based on the group formulation are not
solvable in general, as we demonstrate by constructing a counterexample. We then move
onto the analysis of the error introduced by the group finite element formulation. Our aim
in this paper is not to perform a detailed error analysis of FCT schemes for time-dependent
problems, and we will thus only present results estimating the consistency error induced by
the group formulation. This will, in turn, give us an insight of what sort of convergence
results can be expected for the considered schemes.

The plan of this work is as follows. In Section 2 we summarize the FCT methodology and
we motivate then why we require the group formulation of the Galerkin part to be stable.
Then, in Section 3 we present the problem of interest, namely the transient convection–
diffusion–reaction equation, and the basic formulation of the group finite element strategy.
The main result of that section is the aforementioned negative result in Theorem 3.1, where
we show that, without further assumptions, the discrete problem may not have a solution.
Next, in Section 4 we lie down conditions on the data, the mesh and the time step to make
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sure that the bilinear form associated to the discrete problem is elliptic and hence that the
discrete problem is solvable. Moreover, we present an alternative skew-symmetric group
formulation that is stable without any additional assumptions on the data and discretization
parameters. Finally, in Section 5 we estimate the consistency errors caused by the two group
formulations.

2. A flux-corrected transport scheme

Consider a linear initial-boundary value problem and let us discretize it in space by the
finite element method. Then, at a time instant t ∈ [0, T ], the approximate solution can be
represented by a vector U(t) ∈ RN of its coefficients with respect to a basis of the respective
finite element space. Let us assume that the last N −M components of U(t) (0 < M < N)
correspond to nodes where Dirichlet boundary conditions are prescribed whereas the first
M components of U(t) are computed using the semidiscretization of the underlying partial
differential equation. Then U(t) ≡ (u1(t), . . . , uN(t)) satisfies a system of linear ordinary
differential equations equipped with boundary and initial conditions of the form

M
dU

dt
(t) + A(t) U(t) = F(t) , t ∈ (0, T ] , (2.1)

ui(t) = ubi(t) , i = M + 1, . . . , N , t ∈ (0, T ] , (2.2)

U(0) = U0 , (2.3)

where M = (mij)
i=1,...,M
j=1,...,N is the mass matrix and A(t) = (aij(t))

i=1,...,M
j=1,...,N is the stiffness matrix.

It is assumed that the entries of the mass matrix are nonnegative. Introducing discrete
time instants 0 = t0 < t1 < · · · < tK = T and approximating the time derivative by a
difference formula, one obtains a discrete scheme for the approximations Un ∈ RN of U(tn).
For example, the Crank–Nicholson method leads to

M
Un − Un−1

∆tn
+

1

2

(
An Un + An−1 Un−1

)
=

1

2

(
Fn + Fn−1

)
, n = 1, . . . , K , (2.4)

uni = ubi(tn) , i = M + 1, . . . , N , n = 1, . . . , K , (2.5)

U0 = U0 , (2.6)

where ∆tn = tn − tn−1, An = A(tn), and Fn = F(tn).
In this work we are mainly interested in solving convection-dominated problems. Then,

if the semidiscrete equation (2.1) corresponds to a standard (conforming) finite element
method, an additional stabilization has to be considered, see, e.g., [15]. One possibility is to
apply a flux-corrected transport scheme, see, e.g., [12, 10, 8]. To formulate it, one first extends
the matrices An to (anij)i,j=1,...,N . A common way is to use the stiffness matrices corresponding
to the above-mentioned finite element discretization in the case where homogeneous natural
boundary conditions are used instead of the Dirichlet ones. Then one introduces artificial
diffusion matrices Dn = (dnij)

i=1,...,M
j=1,...,N possessing the entries

dnij = −max{anij, 0, anji} ∀ i 6= j , dnii = −
∑
j 6=i

dnij .
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In addition, one introduces the lumped mass matrix ML = (mL
ij)

i=1,...,M
j=1,...,N with the entries

mL
ij = 0 ∀ i 6= j , mL

ii =
N∑
j=1

mij .

Denoting Ãn := An + Dn, (2.4) can be written in the form

ML
Un − Un−1

∆tn
+

1

2

(
Ãn Un + Ãn−1 Un−1

)
=

1

2

(
Fn + Fn−1

)
+ Rn(Un,Un−1)

with

Rn(Un,Un−1) = −(M−ML)
Un − Un−1

∆tn
+

1

2

(
Dn Un + Dn−1 Un−1

)
.

Note that the matrix Ãn has non-positive off-diagonal entries. The matrix Dn has zero row
sums and hence

(Dn U)i =
N∑
j=1

dnij (uj − ui) , i = 1, . . . ,M ,

for any U = (u1, . . . , uN). Since also the matrix M −ML has zero row sums, one deduces
that

(Rn(Un,Un−1))i =
N∑
j=1

rnij , i = 1, . . . ,M ,

with fluxes

rnij =− 1

∆tn
mij (unj − uni ) +

1

∆tn
mij (un−1

j − un−1
i )

+
1

2
dnij (unj − uni ) +

1

2
dn−1
ij (un−1

j − un−1
i ) .

Now the idea of the flux correction is to limit those fluxes rnij that would otherwise cause
spurious oscillations. To this end, (Rn(Un,Un−1))i is replaced by

(R̃n(Un,Un−1))i =
N∑
j=1

αn
ij r

n
ij

with solution-dependent correction factors αn
ij ∈ [0, 1] satisfying

αn
ij = αn

ji , i, j = 1, . . . ,M . (2.7)

Then Un satisfies
1

∆tn
MUn +

1

2
An Un + Sn Un = F̃n,n−1 , (2.8)

where

(Sn U)i = − 1

∆tn

N∑
j=1

(1− αn
ij)mij (uj − ui) +

1

2

N∑
j=1

(1− αn
ij) d

n
ij (uj − ui) , i = 1, . . . ,M ,
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and the right-hand side F̃n,n−1 may depend on Un only through the factors αn
ij.

To obtain a well-defined numerical scheme, it is necessary to guarantee that the principal
M ×M submatrix (i.e., with indices i, j = 1, . . . ,M) of the matrix (1/∆tn)M + 1

2
An + Sn

is non-singular for any values αn
ij ∈ [0, 1] satisfying (2.7). Since Sn may vanish, a necessary

condition for this is the invertibility of the principal M × M submatrix of (1/∆tn)M +
1
2
An. On the other hand, a sufficient condition is that the principal M ×M submatrix of

(1/∆tn)M + 1
2
An is positive definite since the principal M ×M submatrix of Sn is positive

semidefinite (see [1, Lemma 1]).
From the above considerations, it is clear that the positive definiteness of the principal

M×M submatrix of (1/∆tn)M+ 1
2
An is of fundamental importance for a FCT-type method

to be well defined. The aim of this work is then to give sufficient conditions to ensure this
positive definiteness in the case of finite element discretizations of transient convection–
diffusion–reaction equations using a group formulation of the convective term.

3. Transient convection–diffusion–reaction equation and its group finite element
formulation

Let us consider the transient convection–diffusion–reaction equation

ut − ε∆u+ b · ∇u+ c u = f in (0, T ]× Ω , (3.1)

u = ub on [0, T ]× ∂Ω , (3.2)

u(0, ·) = u0 in Ω, (3.3)

where Ω ⊂ Rd, d = 2, 3, is a bounded polygonal or polyhedral domain with a Lipschitz-
continuous boundary ∂Ω, [0, T ] is a time interval, ε > 0 is a constant diffusivity, b : [0, T ]→
W 1,∞(Ω)d is a divergence-free convection field, c : [0, T ]→ L∞(Ω) is a nonnegative reaction
coefficient, f : [0, T ] → L2(Ω) is an outer source of the unknown quantity u, ub : [0, T ] →
H1/2(∂Ω) is the boundary condition, and u0 ∈ H1

0 (Ω) is the initial condition.
To define a finite element discretization of (3.1)–(3.3) having the form (2.4)–(2.6), we

introduce a triangulation Th of Ω consisting of simplices possessing the usual compatibility
properties and define the finite element spaces

Wh = {vh ∈ C(Ω) ; vh|T ∈ P1(T ) ∀T ∈ Th} , Vh = Wh ∩H1
0 (Ω)

consisting of continuous piecewise linear functions. We denote by x1, . . . , xN the vertices of
the triangulation Th and assume that the first M vertices (0 < M < N) lie in Ω whereas
xM+1, . . . , xN ∈ ∂Ω. We denote by ϕ1, . . . , ϕN the standard basis functions of Wh assigned
to these vertices that satisfy ϕi(xj) = δij, i, j = 1, . . . , N , where δij is the Kronecker symbol.
Then the functions ϕ1, . . . , ϕM form a basis of Vh. For later use, we introduce the Lagrange
interpolation operator ih : C(Ω)→ Wh by

ihv =
N∑
j=1

v(xj)ϕj , v ∈ C(Ω) .

Using the standard Galerkin finite element discretization, the entries of the matrices M
and An in (2.4) are given by

mij = (ϕj, ϕi) , anij = an(ϕj, ϕi) ,
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where (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d and

an(u, v) = ε (∇u,∇v) + (bn · ∇u, v) + (cnu, v) ,

with the notation bn = b(tn, ·), cn = c(tn, ·). Obviously, the matrix (mij)i,j=1,...,M is positive
definite. Moreover, since bn is divergence-free and cn is nonnegative, one has an(v, v) ≥
ε |v|21,Ω for any v ∈ H1

0 (Ω) so that the matrix (anij)i,j=1,...,M is positive definite as well. Next,
since for the considered finite element space mij ≥ 0, the principal M ×M submatrix of Sn

is positive semidefinite (the proof of this fact is essentially the same as in [1, Lemma 1]).
Therefore, the principal M ×M submatrix of the matrix (1/∆tn)M+ 1

2
An + Sn introduced

in the preceding section is positive definite and hence non-singular. Thus, for any given
correction factors αn

ij ∈ [0, 1] satisfying (2.7), the linearized FCT scheme (2.8) has a unique
solution.

Now, as was mentioned before, assembling the stiffness matrix can be costly if b varies
in time, since the computation of the entries (bn · ∇ϕj, ϕi) is needed at each time step.
The group finite element formulation [5, 4] appears as a cheaper alternative. It is based on
writing

(bn · ∇uh, vh) = (∇ · (bnuh), vh) , uh ∈ Wh, vh ∈ Vh ,
and replacing the product bnuh by one finite element function

ih(bnuh) =
N∑
j=1

bnj uj ϕj ,

where we use the notation bnj = bn(xj), uj = uh(xj). Note that then

(∇ · [ih(bnuh)], ϕi) =
N∑
j=1

(bnj · ∇ϕj, ϕi)uj =
d∑

k=1

N∑
j=1

(bnj )k (∂kϕj, ϕi)uj . (3.4)

Thus, it suffices to assemble the matrices ((∂kϕj, ϕi))i,j=1,...,N for k = 1, . . . , d only once
and the convection matrix at time level tn is obtained very efficiently by multiplying this
precomputed matrices by components of the nodal values of the convection field bn instead
of applying costly numerical quadrature.

Note that the group finite element method can be interpreted as an evaluation of the
convective term by simple nodal quadrature. Indeed, denoting by V(T ) the set of the d+ 1
vertices of any simplex T ∈ Th, one has

(bn · ∇uh, vh) = −(uh, b
n · ∇vh) = −

∑
T∈Th

(uh, b
n · ∇vh)T

≈ −
∑
T∈Th

|T |
d+ 1

∑
x∈V(T )

(uh b
n · ∇vh|T )(x)

= −
∑
T∈Th

|T |
d+ 1

∑
x∈V(T )

(ih(bnuh) · ∇vh|T )(x)

= −
∑
T∈Th

(ih(bnuh),∇vh)T = −(ih(bnuh),∇vh) = (∇ · [ih(bnuh)], vh) ,
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Figure 1: Triangulation used in the proof of Theorem 3.1.

where (·, ·)T is the inner product in L2(T ) or L2(T )d, |T | is the d-dimensional measure of T ,
and we used the fact that the function ih(bnuh) ·∇vh|T is linear on T so that it is integrated
exactly using the nodal quadrature formula.

When applying the group finite element method to the discretization of the convective
term, the stiffness matrix An has entries anij = anh(ϕj, ϕi), where

anh(u, v) = ε (∇u,∇v) + (∇ · [ih(bnu)], v) + (cnu, v) .

Unfortunately, a careful inspection shows that then the principal M × M submatrix of
(1/∆tn)M + 1

2
An can be singular. In other words, it can happen that there is a nontrivial

function uh ∈ Vh satisfying

2

∆tn
(uh, ϕi) + anh(uh, ϕi) = 0 , i = 1, . . . ,M . (3.5)

Note that the first term on the left-hand side of (3.5) is analogous as the reaction term
(cnuh, ϕi) in anh(uh, ϕi). Therefore, instead of showing (3.5), it is sufficient to prove that, for
a suitable mesh and for any ε and cn, there is a divergence-free convective field bn such that
there exists uh ∈ Vh \ {0} satisfying

anh(uh, ϕi) = 0 , i = 1, . . . ,M . (3.6)

This will be done in the following theorem.

Theorem 3.1. There is a polygonal domain Ω ⊂ R2 and a triangulation Th of Ω such that,
for any ε > 0 and cn ∈ L∞(Ω), one can find a divergence-free function bn ∈ W 1,∞(Ω)2 such
that (3.6) holds for a nontrivial function uh ∈ Vh.

Proof. Let Ω = (0, 3)2 and let Th be the uniform triangulation of Ω depicted in Fig. 1.
Then M = 4. We use the following numbering of the interior vertices of Th:

x1 = (1, 2) , x2 = (2, 2) , x3 = (1, 1) , x4 = (2, 1) .

Let u1, u2, u3, u4 ∈ R \ {0} be arbitrary and set

uh =
4∑

j=1

uj ϕj .
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Our aim is to show that, given ε > 0 and cn ∈ L∞(Ω), there is a divergence-free convection
field bn ∈ W 1,∞(Ω)2 such that (3.6) is satisfied. As a matter of fact, it suffices to find
suitable values of bn at the vertices x1, . . . , x4. We shall consider them in the form bnj = vj z,
j = 1, . . . , 4, with a fixed vector z ∈ R2. To obtain the divergence-free function bn, we first
introduce smooth divergence-free vector fields ψ1,ψ2,ψ3,ψ4 such that ψi(xj) = δij z for
i, j = 1, . . . , 4. For example, one may setψi = (∂2ηi,−∂1ηi), i = 1, . . . , 4, where ηi = (z×x) ξi
and ξi ∈ C∞0 (Ω) vanishes outside the ball {x ∈ R2 ; |x − xi| < 1

2
} and equals 1 in the ball

{x ∈ R2 ; |x− xi| < 1
4
}. Hence, once the values v1, . . . , v4 are computed, bn =

∑4
j=1 vj ψj is

the desired divergence-free vector field.
Using (3.4), one gets

(∇ · [ih(bnuh)], ϕi) =
4∑

j=1

(z · ∇ϕj, ϕi)uj vj .

Denoting

qij = (z · ∇ϕj, ϕi) , gi = −ε (∇uh,∇ϕi)− (cnuh, ϕi) , i, j = 1, . . . , 4 ,

one can write (3.6) equivalently in the form

4∑
j=1

qij uj vj = gi , i = 1, . . . , 4 . (3.7)

If |z1| 6= |z2|, then the matrix Q := (qij)
4
i,j=1 is non-singular. For example, setting z = (1, 0),

it is easy to verify that

Q =
1

6


0 2 1 0
−2 0 −1 1
−1 1 0 2

0 −1 −2 0


and detQ = 1

144
. This implies that there are uniquely determined values v1, . . . , v4 satisfying

(3.7), which finishes the proof. �
In the next section, we shall formulate conditions on h and ∆tn under which the bilinear

form (1/∆tn) (·, ·) + 1
2
anh(·, ·) is elliptic on Vh and hence the principal M ×M submatrix of

(1/∆tn)M + 1
2
An is positive definite.

4. Results on ellipticity of the bilinear form

The aim of this section is to investigate the ellipticity of the bilinear form

ah(u, v) = ε (∇u,∇v) + (∇ · [ih(bu)], v) + (c u, v)

on the finite element space Vh = Wh ∩H1
0 (Ω) where

Wh = {vh ∈ C(Ω) ; vh|T ∈ Pk(T ) ∀T ∈ Th}
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now consists of continuous piecewise polynomial functions of degree less than or equal to
k ≥ 1. Again, ih : C(Ω) → Wh is the Lagrange interpolation operator. We still assume
that ε > 0 is constant, b ∈ W 1,∞(Ω)d is divergence-free, and c ∈ L∞(Ω) is nonnegative.
For k = 1, b = bn and c = cn + 2/∆tn, one obtains a bilinear form generating the matrix
(2/∆tn)M + An discussed in the previous section. In this section we consider the more
general case to cover also other applications of the group FEM.

The ellipticity of the bilinear form ah will be studied with respect to the norm

‖v‖G =
(
ε |v|21,Ω + ‖c1/2 v‖2

0,Ω

)1/2
,

which is a natural norm for the Galerkin discretization of the steady-state case of (3.1). In
view of the Friedrichs inequality, ‖ · ‖G is a norm on H1

0 (Ω) also if c ≡ 0. We shall specify
conditions under which

ah(vh, vh) ≥ 1

2
‖vh‖2

G ∀ vh ∈ Vh . (4.1)

We assume that all triangulations Th are shape-regular, i.e.,

hT
%T
≤ σ ∀ T ∈ Th , (4.2)

where hT is the diameter of T , %T is the diameter of the largest ball contained in T , and σ
is a constant independent of h. Then, for any T ∈ Th, the interpolation operator ih satisfies

|v − ihv|m,T ≤ C hs−mT |v|s,T ∀ v ∈ Hs(T ) , s = 2, . . . , k + 1 , m = 0, 1 , (4.3)

where C is a constant depending only on σ and k. We shall also need the inverse inequality

|vh|m,T ≤ Cinv h
s−m
T |vh|s,T ∀ vh ∈ Vh , T ∈ Th , 0 ≤ s < m ≤ k , (4.4)

where Cinv again depends only on σ and k.
In what follows, we shall derive various estimates of the term (∇·[ih(b vh)], vh) enabling to

formulate conditions that allow us to prove the ellipticity (4.1). For vh ∈ Vh, the integration
by parts gives

(∇ · [ih(b vh)], vh) = −(ih(b vh),∇vh) (4.5)

and hence
|(∇ · [ih(b vh)], vh)| ≤ ‖ih(b vh)‖0,Ω |vh|1,Ω .

For any T ∈ Th, one gets

‖ih(b vh)‖0,T ≤ C |T |1/2 ‖b‖0,∞,T ‖vh‖0,∞,T ,

with C depending only on k. From the equivalence of norms on finite-dimensional spaces
(applied on the reference element), it follows that

|T |1/2 ‖v‖0,∞,T ≤ C ‖v‖0,T ∀ v ∈ Pk(T ) ,

and hence
‖ih(b vh)‖0,T ≤ C1‖b‖0,∞,T ‖vh‖0,T , (4.6)
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where the constant C1 again depends only on k. Consequently,

|(∇ · [ih(b vh)], vh)| ≤ C1‖b‖0,∞,Ω ‖vh‖0,Ω |vh|1,Ω . (4.7)

If h |b|1,∞,Ω < ‖b‖0,∞,Ω, this estimate can be improved by employing that (∇·(b vh), vh) =
(b · ∇vh, vh) = 0. This property implies that

(∇ · [ih(b vh)], vh) = (b vh − ih(b vh),∇vh) =
∑
T∈Th

(b vh − ih(b vh),∇vh)T

≤
∑
T∈Th

‖b vh − ih(b vh)‖0,T |vh|1,T . (4.8)

Consider any T ∈ Th and set

bT =
1

|T |

∫
T

b dx .

Then
‖b− bT‖0,∞,T ≤ C hT |b|1,∞,T ,

where C depends only on σ from (4.2). Since bT vh = ih(bT vh), it follows using (4.6) that

‖b vh − ih(b vh)‖0,T = ‖(b− bT ) vh − ih((b− bT ) vh)‖0,T

≤ (1 + C1) ‖b− bT‖0,∞,T ‖vh‖0,T

and hence one obtains

‖b vh − ih(b vh)‖0,T ≤ C2 hT |b|1,∞,T ‖vh‖0,T , (4.9)

with a constant C2 depending only on σ and k. Then

|(∇ · [ih(b vh)], vh)| ≤ C2 h |b|1,∞,Ω ‖vh‖0,Ω |vh|1,Ω , (4.10)

or, using (4.4),
|(∇ · [ih(b vh)], vh)| ≤ C2Cinv |b|1,∞,Ω ‖vh‖2

0,Ω . (4.11)

If b ∈ W k+1,∞(Ω)d, one can apply the interpolation error estimate (4.3) and the inverse
inequality (4.4) to obtain

‖b vh − ih(b vh)‖0,T ≤ C hk+1
T |b vh|k+1,T ≤ C̃ hk+1

T ‖b‖k+1,∞,T ‖vh‖k,T
≤ C̄ h2

T ‖b‖k+1,∞,T ‖vh‖1,T . (4.12)

Due to the Friedrichs inequality, this implies that

|(∇ · [ih(b vh)], vh)| ≤ C h2 ‖b‖k+1,∞,Ω |vh|21,Ω , (4.13)

but it does not lead to any improvement of (4.10) and (4.11) if we want to keep the norms
of vh used in these estimates.

Note that the estimate (4.9) cannot be improved by applying the interpolation error
estimate (4.3) with s ∈ {2, . . . , k}. Indeed, one obtains using (4.4)

‖b vh − ih(b vh)‖0,T ≤ C hsT |b vh|s,T ≤ C̃ hsT ‖b‖s,∞,T ‖vh‖s,T ≤ C̄ hT ‖b‖s,∞,T ‖vh‖1,T .
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The estimates (4.7), (4.10), and (4.13) together with the Friedrichs inequality imply that
there is a constant C0 depending only on σ, k, and Ω such that

|(∇ · [ih(b vh)], vh)| ≤ C0 min{‖b‖0,∞,Ω, h |b|1,∞,Ω, h
2 ‖b‖k+1,∞,Ω} |vh|21,Ω .

Thus, if
2C0 min{‖b‖0,∞,Ω, h |b|1,∞,Ω, h

2 ‖b‖k+1,∞,Ω} ≤ ε , (4.14)

one obtains (4.1), i.e., the bilinear form ah is elliptic. Note that bmay possess boundary layers
(typically if the flow field b satisfies a no-slip boundary condition) and then the minimum
in (4.14) may be equal to ‖b‖0,∞,Ω. Since ε is usually much smaller than |b| in applications,
the condition (4.14) will often not be satisfied.

Another possibility how to prove (4.1) is to employ the contribution of the reaction term
to the norm ‖ · ‖G, assuming that

c0 := ess inf
Ω

c > 0 .

For this the local inverse inequality (4.4) is fundamental. In view of (4.11), the ellipticity
inequality (4.1) holds if

2C2Cinv |b|1,∞,Ω ≤ c0 . (4.15)

If b possesses boundary layers, a less strict condition may be obtained by applying (4.4) and
(4.6) as follows:

|(∇ · [ih(b vh)], vh)| ≤
√
d
∑
T∈Th

|ih(b vh)|1,T ‖vh‖0,T ≤
√
dC1Cinv

∑
T∈Th

h−1
T ‖b‖0,∞,T ‖vh‖2

0,T .

Thus, (4.1) also holds if

2
√
dC1Cinv h

−1
T ‖b‖0,∞,T ≤ c0 (4.16)

for any T ∈ Th. However, it may be useful to formulate a condition for (4.1) involving both
(4.16) and the local version of (4.15). To this end, one may use (4.8), apply the inverse
inequality (4.4) and estimate ‖b vh − ih(b vh)‖0,T by taking the minimum of (4.9) and the
estimate

‖b vh − ih(b vh)‖0,T ≤ (1 + C1) ‖b‖0,∞,T ‖vh‖0,T , (4.17)

which follows from (4.6). Then one deduces that (4.1) is satisfied if

2Cinv min{(1 + C1)h−1
T ‖b‖0,∞,T , C2 |b|1,∞,T} ≤ c0 ∀ T ∈ Th . (4.18)

Finally, let us mention that (4.1) holds also if

min{C1‖b‖0,∞,Ω, C2 h |b|1,∞,Ω} ≤
√
ε c0 . (4.19)

Indeed, it then follows from (4.7) and (4.10) that

|(∇ · [ih(b vh)], vh)| ≤ ε1/2 |vh|1,Ω c
1/2
0 ‖vh‖0,Ω ≤

1

2
‖vh‖2

G .
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A local version of (4.19) reads

min{(1 + C1) ‖b‖0,∞,T , C2 hT |b|1,∞,T} ≤
√
ε c0 ∀ T ∈ Th (4.20)

and follows from (4.8), (4.9), and (4.17).
If we now return to the transient problems of the previous sections, for which b = bn and

c = cn + 2/∆tn, one has c0 ≥ (2/∆tn) and hence the conditions involving c0 can be satisfied
by choosing the time step appropriately. In particular, it follows from (4.16) that the FCT
scheme is well defined if the time step ∆tn satisfies a CFL-like condition ‖bn‖0,∞,T ∆tn ≤ C hT
for every T ∈ Th.

Gathering all the above ellipticity conditions, we can state the following main result on
the ellipticity of the bilinear form ah.

Theorem 4.1. The bilinear form ah is elliptic if one of the conditions (4.14), (4.15), (4.16),
(4.18), (4.19), or (4.20) is satisfied. If ah corresponds to the time-discretized problem (3.1),
then its ellipticity is guaranteed at the time level tn under the CFL condition

‖bn‖0,∞,T ∆tn ≤ C hT ∀ T ∈ Th , (4.21)

or, more generally, under the condition

min{‖bn‖0,∞,T , hT |bn|1,∞,T}∆tn ≤ C hT ∀ T ∈ Th .

If k = 1, a possible remedy to avoid the use of one of the conditions listed in the above
theorem is to consider a skew-symmetric discretization of the convective term. This is based
on the fact that

(b · ∇u, v) =
1

2
{(b · ∇u, v)− (u, b · ∇v)} ∀ u ∈ H1(Ω), v ∈ H1

0 (Ω) .

Applying the idea of the group FEM to this equivalent expression leads to the bilinear form

ãh(u, v) = ε (∇u,∇v) +
1

2
{(∇ · [ih(bu)], v)− (u,∇ · [ih(b v)])}+ (c u, v)

that satisfies
ãh(vh, vh) = ‖vh‖2

G ∀ vh ∈ Vh .
Thus, the bilinear form ãh is elliptic without any assumptions on the data and discretization
parameters while keeping all the advantages of the group finite element formulation. How-
ever, for k > 1, this skew-symmetric discretization of the convective term is not appropriate
since the corresponding consistency error is of first order (uniformly in ε) as we shall see in
the next section.

Remark 4.1. A further drawback to the alternative bilinear form ãh is that the skew-sym-
metric rewriting of the convective term is not valid if a non-Dirichlet boundary condition is
prescribed on Γ ⊂ ∂Ω. Then the test functions v vanish only on ∂Ω \ Γ so that one has

(b · ∇u, v) =
1

2
{(b · ∇u, v)− (u, b · ∇v)}+

1

2

∫
Γ

(b · n)u v ds ,

where n is the outward unit normal vector to ∂Ω.
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Remark 4.2. The derivation of most of the conditions in this section relied on the identity
(4.5) that is not valid if a non-Dirichlet boundary condition is prescribed on a part of ∂Ω
(cf. the previous remark). This leads to more restrictive conditions for the ellipticity of ah.
For example, instead of (4.14), one obtains min{‖b‖1,∞,Ω, h ‖b‖k+1,∞,Ω} ≤ C ε. Neverthe-
less, the condition (4.16) and hence also the CFL condition (4.21) remain valid.

5. Estimates of the consistency errors

A thorough error analysis of discretizations based on the group FEM is outside the scope
of this work. Therefore, we confine ourselves to estimates of the consistency errors caused
by replacing the standard Galerkin bilinear form

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v)

by ah or ãh. When deriving error estimates using the first Strang lemma, the difference
a(wh, vh)− ah(wh, vh) or a(wh, vh)− ãh(wh, vh) is estimated for wh equal to an interpolant of
the approximated solution u, which is assumed to be sufficiently regular. In what follows,
we simply set wh := ihu.

Theorem 5.1. Let b ∈ W l+1,∞(Ω)d for some l ∈ {1, . . . , k}, where k is the polynomial degree
used for defining the finite element space Wh. Then, for any u ∈ H l+1(Ω) and vh ∈ Vh, one
has

|a(ihu, vh)− ah(ihu, vh)| ≤ C hl max{c0, ε h
−2}−1/2 ‖b‖l+1,∞,Ω ‖u‖l+1,Ω ‖vh‖G ,

where C depends only on diam(Ω), σ, and k.

Proof. For vh ∈ Vh and wh ∈ Wh, one obtains

a(wh, vh)− ah(wh, vh) = (b · ∇wh, vh)− (∇ · [ih(bwh)], vh)

= (∇ · [bwh − ih(bwh)], vh) ≤
√
d |bwh − ih(bwh)|1,Ω ‖vh‖0,Ω .

On the other hand, integrating by parts before applying the Hölder inequality gives

a(wh, vh)− ah(wh, vh) = −(bwh − ih(bwh),∇vh) ≤ ‖bwh − ih(bwh)‖0,Ω |vh|1,Ω .

Setting wh := ihu with u ∈ H l+1(Ω), one has ih(bwh) = ih(bu) and hence, for m = 0, 1, one
deduces from (4.3) that

|bwh − ih(bwh)|m,Ω ≤ |b (u− ihu)|m,Ω + |bu− ih(bu)|m,Ω

≤ ‖b‖m,∞,Ω ‖u− ihu‖m,Ω + C hl+1−m |bu|l+1,Ω ≤ C̃ hl+1−m ‖b‖l+1,∞,Ω ‖u‖l+1,Ω ,

where C̃ depends also on diam(Ω) due to the estimate of ‖u − ihu‖1,Ω. Now the theorem
follows by combining the above estimates. �
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Theorem 5.2. Let b ∈ W 2,∞(Ω)d. Then, for any u ∈ H2(Ω) and vh ∈ Vh, one has

|a(ihu, vh)− ãh(ihu, vh)| ≤ C h max{c0, ε h
−2}−1/2 ‖b‖2,∞,Ω ‖u‖2,Ω ‖vh‖G ,

where C depends only on diam(Ω), σ and the polynomial degree k used for defining the finite
element space Wh.

Proof. For any vh ∈ Vh and wh := ihu with u ∈ H2(Ω), one obtains

a(wh, vh)− ãh(wh, vh) =
1

2
(∇ · [bwh − ih(bwh)], vh) +

1

2
(∇wh, b vh − ih(b vh)) .

The first term on the right-hand side of this identity was estimated in the proof of the
previous theorem. For the second one, it follows that

(∇wh, b vh − ih(b vh)) ≤ C ‖u‖2,Ω ‖b vh − ih(b vh)‖0,Ω , (5.1)

where we used the estimate |wh|1,Ω ≤ |u|1,Ω + |u− ihu|1,Ω ≤ (1+Ch)‖u‖2,Ω so that C in (5.1)
depends on diam(Ω). Using (4.9), one obtains

‖b vh − ih(b vh)‖0,Ω ≤ C2 h |b|1,∞,Ω ‖vh‖0,Ω . (5.2)

To obtain a second order estimate (with the H1 norm of vh on the right-hand side) without
the need of a higher regularity of b than assumed, we first introduce a piecewise linear
interpolant bh of b. Then

|b− bh|m,∞,Ω ≤ C h2−m |b|2,∞,Ω , m = 0, 1 , (5.3)

where C depends only on σ. The inequalities (4.12) and (5.3) imply

‖bhvh − ih(bhvh)‖0,Ω ≤ C h2 ‖bh‖1,∞,Ω ‖vh‖1,Ω ≤ C̃ h2 ‖b‖2,∞,Ω ‖vh‖1,Ω .

Furthermore, applying (4.6) and (5.3), one derives

‖(b− bh) vh − ih((b− bh) vh)‖0,Ω ≤ (1 + C1) ‖b− bh‖0,∞,Ω ‖vh‖0,Ω ≤ C h2 |b|2,∞,Ω ‖vh‖0,Ω .

Summing the last two estimates and applying the Friedrichs inequality gives

‖b vh − ih(b vh)‖0,Ω ≤ C h2 ‖b‖2,∞,Ω ‖vh‖1,Ω ≤ C̃ h2 ‖b‖2,∞,Ω |vh|1,Ω . (5.4)

Combining (5.2) and (5.4), one obtains

‖b vh − ih(b vh)‖0,Ω ≤ C h max{c0, ε h
−2}−1/2 ‖b‖2,∞,Ω ‖vh‖G ,

which completes the proof. �
The above theorems show that, if c0 > 0, the consistency error of the bilinear form ah is of

the order O(hl) uniformly for ε→ 0 so that the group formulation does not decrease the order
of the method. On the other hand, the skew-symmetric group formulation represented by the
bilinear form ãh leads to a first order estimate only due to the term (∇ihu, b vh − ih(b vh)).
This is the case also if b possesses a higher regularity than assumed in Theorem 5.2. If
c0 = 0, the consistency errors are at least of the order O(ε−1/2 hl+1), resp. O(ε−1/2 h2).
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