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EVIEW ARTICLE

unctional Imaging of Intervention Effects in Stroke
otor Rehabilitation
imea Hodics, MD, Leonardo G. Cohen, MD, Steven C. Cramer, MD
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ABSTRACT. Hodics T, Cohen LG, Cramer SC. Functional
maging of intervention effects in stroke motor rehabilita-
ion. Arch Phys Med Rehabil 2006;87(12 Suppl 2):S36-42.

Objective: To assess intervention-specific effects on cortical
eorganization after stroke as shown by available functional
euroimaging studies.
Data Sources: We searched Medline for clinical trials that

ontained the terms stroke, reorganization, and recovery, as
ell as either positron-emission tomography and PET, near-

nfrared spectroscopy and NIRS, single-photon emission to-
ography and SPECT, or functional magnetic resonance im-
ging and functional MRI; we reviewed primary and secondary
eferences.

Study Selection: Articles that reported neuroimaging find-
ngs as a result of a specific treatment involving more than 1
ubject were included.

Data Extraction: We included clinical trials that contained
he terms stroke, reorganization, and recovery, as well as
unctional neuroimaging data findings as a result of a specific
reatment involving more than 1 subject.

Data Synthesis: Included studies differed clearly from one
nother with regard to patient characteristics, intervention pro-
ocol, and outcome measures. Most studies used functional
agnetic resonance imaging and a motor paradigm. Studies
ere limited in size.
Conclusions: Despite the methodologic differences, several

ommon features can be identified based on the reviewed
tudies. Clinical improvements occurred even late after injury,
fter subjects were deemed to have reached a recovery plateau.
his clinical improvement was accompanied by cortical reor-
anization that depended on the type of intervention as well as
ther factors. This review also suggests direction for future
esearch studies.

Key Words: Magnetic resonance imaging; functional; Mo-
or skills disorders; Positron-emission tomography; Rehabilita-
ion; Stroke.

© 2006 by the American Congress of Rehabilitation
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ESPITE EFFORTS IN PREVENTION and acute treat-
ment, stroke remains the leading cause of adult disability

n the United States and many western countries. Most patients
how some spontaneous recovery of function in the weeks and
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onths after a new stroke.1,2 Because neurons are not thought
o regrow in large numbers within the adult human brain, this
ecovery likely occurs on the basis of reorganization of surviv-
ng brain elements. Despite this, most patients are left with
ubstantial impairments, resulting in disability and reduced
bility to perform activities of daily living.

A number of promising therapeutic advances are emerging in
he field of stroke rehabilitation. Some of these therapies target
atients during the acute phase and others during the chronic
hase. Examples of restorative therapies include cell-based
pproaches,3,4 selective serotonin reuptake inhibitors,5,6 cat-
cholaminergics,7-9 brain stimulation,10-14 robotic and other
evice-based interventions,15,16 mental imagery�based proto-
ols,17 and constraint-induced movement therapy (CIMT) plus
ther intensive physical therapy regimens.18-21 None of these is
et universally accepted for enhancing outcome after central
ervous system injury, such as stroke, though there is mounting
vidence to support the notion that higher-intensity training
esults in better functional outcome.22 Most approaches are
urrently being studied at the preclinical or early-phase human
linical trial stage.

A better insight into biologic mechanisms underlying func-
ional recovery and potential target for these restorative thera-
eutics might facilitate clinical yield. Which subset of stroke
atients are most likely to derive treatment-related gains, and
an they be identified by neuroimaging or neurophysiologic
echniques? Can the optimal dose of therapy be defined for
he individual patient by these studies? Functional neuroim-
ging provides insights into brain function that are relevant
o these questions.23-25 Indeed, in some conditions, functional
euroimaging provides insights into disease processes when
natomic imaging or behavioral assessments do not.26-31

There have been only a few studies dealing with the issue of
he neural substrates underlying functional recovery facilitated
y therapeutic interventions, although such data are likely of
ubstantial value to maximizing effect of restorative approaches.
ifferentiating reorganization due to therapeutic effects from

pontaneous recovery provides an initial step on the road
eading to neuroimaging-guided treatments that are tailored to
he patient’s specific need. These studies usually compare
imilar groups of patients in the therapeutic and control groups,
sing a longitudinal design that examines cerebral activation
atterns before and after intervention. An intervention that is
ffective in improving clinical variables may shift cortical
ctivation, mimicking the activation pattern of the well-recov-
red group, or develop a specific different activation pattern.

A body of functional neuroimaging literature exists regard-
ng brain events underlying spontaneous recovery after
troke.23-25 In sum, better functional recovery is associated
ith preserved activity in primary cortices.32-34 Lesser out-

ome is accompanied by emergence of adaptive mechanisms,
ncluding increased activation within secondary cortical areas35

nd the intact hemisphere, and the reduced extent to which
nterhemispheric balance is lateralized.36-39 Recovery from di-
schisis40 and restitution of function in ischemically insulted,
ut surviving brain areas41 might also be important to return of

ehavior in the early period after a stroke.
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S37FUNCTIONAL IMAGING IN STROKE MOTOR REHABILITATION, Hodics
The current review focuses on available data on the effects
f restorative interventions on functional magnetic resonance
maging (fMRI)–based assessments of brain function in pa-
ients with stroke. Although examples exist of other brain
apping modalities to probe treatment effects in stroke recovery,

uch as positron-emission tomography (PET),42 single-pho-
on emission tomography (SPECT),43 or transcranial mag-
etic stimulation (TMS),21,44 fMRI has been used most often in

his regard. Near-infrared spectroscopy (NIRS) was used in 2
tudies23,45 evaluating the superficial cortical changes during
pontaneous recovery from stroke. fMRI as a technique provides
window into functional activity in multiple brain areas, and has
ood accessibility, safety, and spatial resolution. Strengths and
eaknesses of available studies to date are considered and future
irections are discussed.

REVIEW OF THE LITERATURE
A Medline search was performed for clinical trials that

ontained the terms stroke, reorganization, and recovery, as
ell as either positron-emission tomography and PET, near-

nfrared spectroscopy and NIRS, single-photon emission to-
ography and SPECT, or functional magnetic resonance im-
ging and functional MRI. Primary and secondary references
ere then examined. Articles that reported neuroimaging find-

ngs as a result of a specific treatment involving more than 1
ubject were included.

There were no studies evaluating treatment effects using
IRS. Kononen et al43 performed a SPECT study to assess 12

hronic stroke patients at rest before and after 2 weeks of
IMT and found increased perfusion in motor-related areas.
ET was used to explore training-induced plasticity as a result
f CIMT in 16 patients more than 1 year after subcortical
nfarction,21 and in another report, PET was used to study
ask-oriented motor learning that facilitates shoulder and prox-
mal arm muscle activity.42 The latter study included 10 subcor-
ical stroke patients within the first 12 weeks of the index event
ho were unable to perform active forearm movements; there-

ore a passive movement paradigm was used. One PET study46

valuated cerebral activation changes as a result of treatment of
eglect. One studied the effects of piracetam to enhance the
ffects of language therapy.33 Two articles examined treat-
ent-related language recovery47,48 using fMRI in total of 5

ubjects. Both found evidence of cortical reorganization in
esponse to differing treatment using blood oxygenation-level
ependent (BOLD) or time-to-peak48 change as a primary
utcome measure.
A total of 13 fMRI motor studies published over 4 years

ere identified (table 1). Each of these studies examined motor
eficits and used a movement-based task during fMRI. Most of
hese studies were focused on upper-extremity motor recovery;
owever, 2 reports evaluated the lower extremity.49,50 The
ajority of studies (10/13) enrolled only well-recovered pa-

ients who could perform a distal motor task at baseline.
The location and extent of stroke lesions is variable, with

pproximately half of the patients having subcortical strokes,
ne third cortical strokes, and the remainder a cortical plus
ubcortical or brainstem stroke. Although right- and left-hemi-
pheric lesions are represented equally in these studies, other
emographic information of research subjects is different from
hat of the general stroke populations. For example, twice as
any male as female subjects participated in the research

tudies. The mean age of stroke patients in the United States is
3 years,51-53 but the mean age of research participants in these
unctional imaging studies is 10 to 20 years younger. Patients
hose motor deficits are accompanied by cognitive difficulties,

eglect, visual field cut, or multiple prior strokes—situations v
hat are commonplace among stroke patients—are generally
xcluded. Note that in all but 1 fMRI study,5 enrollees were in
he chronic phase of stroke.

Clinical factors such as medications used, as well as the
resence or absence of depression, may influence the observed
erebral activation pattern; however, these variables are not
eported in any of these fMRI studies (appendix 1). None of the
tudies reports vascular reserve, cerebral blood flow, or the
ncidence of large artery disease, measures of relevance to
MRI after stroke. Ideally all patients should be screened for
ltered cerebrovascular reserve before study participation, be-
ause perfusion defects caused by large vessel disease or even
mall vessel disease may interfere with the BOLD signal. Also,
part from 1 study,54 the rate with which studies are discarded
ecause of excessive head movement was not described.
Ten of the 13 fMRI studies used a form of physical or

ccupational therapy, including 5 studies evaluating CIMT.
ou et al50 used an innovative virtual reality technique to

nhance physical training. Electric stimulation in the form of
eripheral neuromuscular stimulation55 on the extensor mus-
les and brain epidural stimulation was evaluated.31

The primary clinical and functional imaging outcome mea-
ures, when stated, have varied significantly between studies
see table 1).

A number of different motor tasks have been used to activate
he brain during fMRI. Liepert56 and Pariente5 and colleagues
ave used passive hand movements. Most investigators have used
ctive movements, such as making a fist,57 wrist extension,31,58

rm flexion and extension,59 finger flexion and extension,5,54,60

nger tapping,31 sequential finger tapping with opposition,57,61

racking a sinus wave with the finger55,62 or foot,49 and knee
exion and extension.50 Feedback guiding movement has been
ither auditory5,50,54,57-59 or visual.49,55,60,62

The rate and range of movement used to activate brain motor
ystems has also varied across studies and has included 0.25,31

.33,59 0.4,49 0.5,50 and 1Hz,5 as well as “maximum”57,60 and
comfortable”61 rates. Range of motion was specified in a
inority of studies.5,49,50,59

Task performance was monitored by goniometer,49,55 poten-
iometer,62 camera,50,59,60 visually in the scanner,5,54 and by
lectromyography before scanning.54,59

There was substantial variability in acquisition methods,
ncluding scanner strength, field of view, and choice of imaging
arameters such as time to repetition and echo time.

DISCUSSION OF LITERATURE FINDINGS
The studies reviewed have a number of features in common.

owever, differences are apparent that provide insights into the
tility of functional imaging, in particular, fMRI for under-
tanding treatment effects after stroke. The current review also
dentifies several areas that require further study.

This review found the most data on the functional anatomy
f motor recovery. Motor deficits represent a major component
f poststroke disability, being present in more than half of all
hronic stroke patients.1,63 Performance of these studies is
acilitated because motor tasks are well integrated in the neu-
oimaging environment and provide a measurable controllable
ehavioral outcome. Reports evaluating the effects of intention
nd attention treatments in aphasia (n�2)47,48 are not discussed
n table 1 because of methodologic differences with studies of
otor function.
Most published studies have focused on patients with good

o excellent outcomes at baseline because they were more able
o perform the motor tasks required for neuroimaging measure-
ents. Additionally, rigorous entry criteria for therapeutic in-
estigations and pragmatic difficulties with scanning contrib-

Arch Phys Med Rehabil Vol 87, Suppl 2, December 2006



Table 1: Studies Using fMRI to Study Effects of Restorative Poststroke Therapy

Study
Treatment

N (M/F)
Mean Age

(y)*
Handedness

(R/L)
Side of

Lesion (R/L)
Control
Group

Hours Rehab
Therapy

Type of Rehab
Therapy

Time From
Stroke Onset*

Lesion
Location

Primary Clinical
Outcome Measure

Primary fMRI
Outcome Measure

Lindberg
et al58

10 (8/2) 56.4 2/0 2/0 None 10–13 Active-passive
movement
training

25.3 2 cortical MCP joint
extension, UE
MAS

Voxel count, voxel
intensity

Kimberley
et al55

16 (11/5) 60.1�14.5 14/2 8/8 Sham-treated
stroke
patients†

60 Extensor
NMES

35.5 3 cortical,10
subcortical,
1 cortical &
subcortical,
2 brainstem

Box and block,
MAL, JTHT

Voxel count, voxel
intensity,
Intensity Index

Luft et al59 21 (12/9) BATRAC,
63.3�15.3

DMTE,
59.6�10.5

NR 14/7 DMTE-treated
stroke patients

6 BATRAC,
DMTE

50.3 12 cortical, 6
subcortical,
3 brainstem

UE FMA, WMFT Voxel count

Pariente et al5 8 (5/3) 61.7 NR 3/5 Placebo-treated
stroke patients

Single
session

Fluoxetine vs
placebo

0.5 7 subcortical, 1
brainstem

Finger tapping Voxel intensity

Schaechter
et al54

4 (3/1) 57�17 4/0 1/3 Healthy subjects 40 CIMT 12.5 2 cortical, 1
subcortical,
1 brainstem

MAL, UE FMA,
WMFT

Laterality Index,
voxel count,
voxel intensity

Carey et al62 10 (6/4) 65.7�13.3 9/1 4/6 Healthy controls‡

and stroke
patients†

13.5–20 Finger
tracking

56.4 1 cortical, 6
subcortical,
2 cortical &
subcortical,
1 brainstem

Box and block,
finger tracking

Voxel count,
Laterality Index

Johansen-Berg
et al68

7 (5/2) 55.6 6/1 3/4 None 14 CIMT 37.6 6 cortical, 1
subcortical

Grip strength, UE
Motricity Index,
JTHT

Laterality Index,
voxel count,
z score, recovery-
weighted
activation

You et al50 10 (7/3) 54 NR 7/3 Stroke patients 20 Virtual reality 19.3 10 subcortical FAC, mMAS Laterality Index,
voxel count

Levy et al61 2 (1/1) 48.5 1/1 1/1 None 30 CIMT 6.8 2 cortical WMFT, MAL Laterality Index,
voxel count

Kim et al57 5 (5/0)§ 54.8 5/0 2/3 None 98 CIMT 21.4 4 cortical FMA, 9-hole peg
test, JTHT

Voxel count

Liepert et al56 15 NR NR NR None 60 CIMT NR NR MAL NR
Cramer et al31 12 (6/6) 61 9/2�1

ambidextrous
4/8 None 45 OT � epidural

stimulation
23 2 cortical, 6

subcortical,
3 cortical &
subcortical,
1 brainstem

UE FMA Activation volume,
location voxel of
maximum
activation

Carey et al49 1 (1/0) 50 1/0 0/1 None 12 Tracking
exercises

20 1 brainstem Ankle movement
measures

Voxel count, voxel
intensity,
Intensity Index

Total 121 (66%/34%) 58 86%/12% 50/49 32 26 34 cortical, 47
subcortical,
6 cortical &
subcortical,
10 brainstem

Abbreviations: BATRAC, bilateral arm training with auditory cueing; DMTE, dose-matched therapeutic exercise; F, female; FAC, Functional Ambulation Category; FMA, Fugl-Meyer
Assessment; Intensity Index, (intensity task minus intensity rest)/intensity rest; JTHT, Jebsen-Taylor Hand Test; L, left; M, male; MAL, Motor Activity Log; MCP, metacarpophalangeal;
mMAS, modified Motor Assessment Scale; NMES, neuromuscular electric stimulation; NR, not reported; OT, occupational therapy; R, right; UE, upper extremity; WMFT, Wolf Motor
Function Test arm test.
*Total treatment group, in months, mean values except median for Luft et al.59

†Control patients crossed over to treatment.
‡Five treatment, 4 controls.
§Includes 1 trauma patient.
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S39FUNCTIONAL IMAGING IN STROKE MOTOR REHABILITATION, Hodics
ted to this bias in patient selection. As a consequence, less is
nown about the functional anatomy of therapy-induced recov-
ry processes in patients with more severe deficits after stroke.
his issue is problematic because patients with poor recovery

epresent the largest fraction of the target population, and for
hose persons there is virtually no available treatment. A clear
imitation of the available literature is that missing information
n clinical and perfusion-related data reduces the ability to
eneralize results from these studies to the general population
f stroke patients.
Functional neuroimaging tasks can be performed in block

esign, when long epochs of repetitive activity are interleaved
ith rest periods; or in event-related design, where single
ovements alternate with long rest periods. All published

unctional neuroimaging studies that evaluated the effect of an
ntervention on brain plasticity used a block design. It should
e kept in mind that an event-related design might contribute
dditional information. This technique models the hemody-
amic changes and offers the potential to minimize fatigue by
sing isolated simple behaviors to activate the brain.64 Addi-
ionally, an event-related design might contribute to reduced
onfounds generated by analysis of erroneous or poorly per-
ormed trials. However, event-related design has its limitations,
uch as reduced signal.

Imaging results vary across studies, influenced by many
actors including patient characteristics, treatment content, and
harmacologic regimen. Among the subset of studies examin-
ng effects of CIMT on fMRI activation during movement of
he affected hand,56,57,60,61 the main finding was generally a
reatment-associated increase in activation within the ipsile-
ional primary motor cortex, dorsal premotor cortex, and sup-
lementary motor area.57,60 Consistent with this finding, a
egimen of intensive finger tracking training resulted in clinical
mprovements that were accompanied by a change in laterality
ndex from negative to positive,62 a finding that reflects rela-
ively greater involvement in or contribution from components
f the motor network in the ipsilesional hemisphere. Studies
sing virtual reality50 or fluoxetine5 also emphasized a treat-
ent-related shift toward increased ipsilesional activation.
hese treatment-related ipsilesional increases are concordant
ith findings in PET21,65 and most,44,66 but not all,67 TMS studies.
ne study54 after CIMT showed increment in bilateral activa-

ion. Most study results support the view that performance
mprovements found after this particular therapy strategy are
ssociated with a reconfiguration of the motor network that is
imilar to that identified in healthy age-matched controls.21

ome of these changes are reminiscent of those evidenced in
he process of skill acquisition in healthy humans.

After a different form of interventional therapy, bilateral arm
raining,59 involving patients with more severe deficits, more
rominent activity was found in contralesional motor areas,
uggesting that baseline clinical deficits or interventional ther-
pies influence how treatment modifies fMRI results. Similarly,
chaechter et al54 provided CIMT to patients who were weaker

han those enrolled by Johansen-Berg et al,68 and the former
roup found more contralesional activation increase with ther-
py, whereas the latter group found more ipsilesional activity
ith therapy. It must also be noted that bilateral arm training
ith auditory cueing therapy emphasizes bilateral movements

hat involve proximal limb, the latter known to be more bilat-
rally organized than distal limb.69 The finding of contrale-
ional changes with this intervention, therefore, might also
uggest that treatment content might also influence fMRI re-
ults.

The study by Pariente et al,5 in which the serotonergic drug

uoxetine was associated with changes in fMRI findings, as b
ell as the altered PET findings using piracetam,33 also under-
ines the potentially important influence of medications in
troke recovery trials, both on baseline blood flow and as a
unction of performance of a motor task.

Another important difference between studies is the time
nterval between stroke onset and functional neuroimaging.
pontaneous motor recovery after stroke is generally consid-
red to be complete by the end of the third month postin-
arct.1,63 All but one of the studies listed in table 1 enrolled
atients well beyond this point. Intensive exercise programs
ere effective in producing plastic changes and motor im-
rovement even at a delayed time frame in several of these
tudies, where the mean time from onset was 26 months (see
able 1). However, the functional neuroimaging correlates of
reatment gains in subjects with chronic stroke, who are no
onger showing spontaneous behavioral recovery, might be
ery different when compared with findings in subjects in the
ctive phase of spontaneous stroke recovery. This consider-
tion requires further study.

Physical therapy during epidural cortical stimulation was asso-
iated with reduced activation within ipsilesional motor cortical
reas.31,70 This reduction might be an effect of stimulation, and
ight correspond to effects of motor learning in some models,71

vents seen during spontaneous stroke recovery,35 remote effects
f stimulation,72 or thalamic plasticity.73 A recent study74 pointed
o the usefulness of a range of forms of cortical stimulation.

CONCLUSIONS
Functional neuroimaging at present provides an effective

ool to evaluate mechanisms underlying functional recovery
fter stroke. Studies are needed to better understand the effects
f various interventions according to lesion site, recovery level,
ex, and age. Additionally, methodologic advances are likely to
mprove in the future; for example, electromyographic and
inematic tools to monitor motor activity during scanning,
rucial for an accurate interpretation of neuroimaging data.
nderstanding drug effects at baseline and on task-related

MRI activation will allow more extensive use of this tool in
he neurorehabilitation setting. It is possible that when this
nformation becomes available, clinical gains derived from
estorative interventions will be maximized if guided by imag-
ng results. Results from functional neuroimaging theoretically
ave unique value for understanding biologic effects of thera-
eutic interventions, to predict treatment responses and triage,
nd to tailor dose according to brain state rather than clinical
xamination.

This review identified 88 patients in whom fMRI was per-
ormed and several patients studied using PET (n�26) or
PECT (n�12) in parallel with a poststroke motor restorative

ntervention. Although there are many differences in patient
haracteristics, intervention, and neuroimaging study design,
ertain common features emerge. Improved motor behavior,
ccompanied by reorganization of cortical function, occurs
ven months or years after a patient has reached the plateau that
efined spontaneous recovery after stroke.63,75 Increased reli-
nce on original, contralateral control mechanisms is associ-
ted with behavioral gains, as has been suggested in brain
apping studies of spontaneous recovery,23-25 though this may

e less true in more severely affected patients and those un-
ergoing bilateral training.
This review suggests a number of needed future research

irections. Further studies are needed to examine functional
maging correlates of treatment effects within nonmotor do-
ains, such as language and neglect. Measures of injury,76-79

hysiology,80,81 and clinical predictive models might be com-

ined with functional imaging measures to best address the

Arch Phys Med Rehabil Vol 87, Suppl 2, December 2006
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A

oal of optimizing restorative therapy. Study of a broader
raction of the stroke population is needed. Vascular pathology
an influence fMRI results.82-86 Studies using fMRI to evaluate
reatment effects in stroke patients therefore would have in-
reased impact if measures of arterial status and cerebral per-
usion were included. In addition, nearly all functional neuro-
maging of restorative interventions after stroke have relied on
MRI. Use of alternate methods is to be promoted, in part to
ddress reliability of fMRI results and to examine fMRI valid-
ty in stroke patients.

Noninvasive neuroimaging techniques allow the study of the
orking human brain and suggest that functionally important

daptation occurs after focal injury. A higher degree of under-
tanding of the underlying neurobiologic principles that drive
hese changes will make it possible to design targeted inter-
entions to minimize impairment in stroke patients.

APPENDIX 1: PATIENT-RELATED FACTORS THAT
CAN INFLUENCE FMRI RESULTS

● Prestroke disability, experience, and education
● Age
● Hemispheric dominance
● Stroke topography including volume and location
● Clinical deficit and disability from stroke
● Acute stroke therapies
● Time after stroke
● Medications
● Medical comorbidities, eg, hypertension or diabetes mel-

litus
● Psychiatric comorbidities, eg, depression
● Type and amount of rehabilitative therapies
● Arterial pathology, eg, stenosis or vascular reserve capacity
● Ascertainment bias, eg, those related to MRI contraindi-

cations (claustrophobia or pacemaker)
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