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Abstract 

 

The sediments in the Salford Quays, a heavily-modified urban water body, contain high levels of 

organic matter, iron, zinc and nutrients as a result of past contaminant inputs.  Vivianite 

[Fe3(PO4)2.8H2O] has been observed to have precipitated within these sediments during early 

diagenesis as a result of the release of Fe and P to porewaters.  These mineral grains are small (<100 
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µm) and micron-scale analysis techniques (SEM, electron microprobe, µ-EXAFS, µ-XANES and µ-

Raman) have been applied in this study to obtain information upon the structure of this vivianite and 

the nature of Zn uptake in the mineral.  Petrographic observations, and elemental, X-ray diffraction and 

Raman spectroscopic analysis confirms the presence of vivianite.  EXAFS model fitting of the Fe K-

edge spectra for individual vivianite grains produces Fe-O and Fe-P co-ordination numbers and bond 

lengths consistent with previous structural studies of vivianite (4 O atoms at 1.99-2.05 Å; 2 P atoms at 

3.17-3.25 Å).  One analysed grain displays evidence of a significant Fe3+ component, which we 

interpret to have resulted from oxidation during sample handling and/or analysis. EXAFS modelling of 

the Zn K-edge data, together with linear combination XANES fitting of model compounds, indicates 

that Zn may be incorporated into the crystal structure of vivianite (4 O atoms at 1.97 Å; 2 P atoms at 

3.17 Å).  Low levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination 

XANES fitting and to a limited extent, the EXAFS fitting, the origin of which may either be an 

oxidation artifact or the inclusion of Zn sulphate into the vivianite grains during precipitation.  This 

study confirms that early diagenetic vivianite may act as a sink for Zn, and potentially other 

contaminants (e.g. As) during its formation and, therefore, forms an important component of metal 

cycling in contaminated sediments and waters.  Furthermore, for the case of Zn, our EXAFS fits for Zn 

phosphate suggest this uptake is structural and not via surface adsorption.    

 

1. Introduction 

The cycling of contaminant elements and nutrients between freshwater lake sediments and waters 

plays a key role in the chemical and ecological functioning of these important environments. It has 

long been known that early diagenesis plays a particularly strong role in the short- to long-term 

release of the chemical species Fe, Mn, contaminant elements and P (Hamilton-Taylor et al., 1996a, 

b; Bryant et al., 1997; Taylor et al., 2003). The release of P from sediments during early diagenesis 
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has been recognised to be an important control on water quality in freshwater systems (Carignan and 

Flett, 1981; Jensen et al., 1992; Hupfer et al., 1995; Gonsiorczyk et al., 2001). 

 

As diagenesis proceeds, a build up of porewater solutes may lead to mineral saturation, resulting in the 

precipitation of authigenic sulphides, carbonates and phosphates. These precipitates may also sorb or 

co-precipitate trace metals, thereby acting as long-term sinks for contaminants in sediments. For 

example, early diagenetic sulphides in marine sediments have been shown to act as sinks for the 

metallic elements Cu, Pb and Zn (Ankley et al., 1996; Parkman et al., 1996; Pirrie et al., 1999). The 

absence of significant sulphate reduction in freshwaters has led to the assumption that such sinks do not 

exist in freshwater sediments. It is known, however, that the iron phosphate mineral vivianite 

[Fe3(PO4)2.8H2O] may precipitate during early diagenesis in freshwater sediments (Nriagu and Dell, 

1974; Emerson and Widmer, 1978), and it has recently been documented that vivianite can be abundant 

in nutrient-rich freshwater sediments (Dodd et al., 2000; Taylor and Boult, 2007). These sediments 

result from inputs from sewage-treatment works and from fertilizer runoff from land, and are therefore 

of considerable concern. Vivianite is the Fe-rich end-member of the vivianite mineral group 

[X3(YO4)2·8H2O, where X=Co, Fe, Mg, Mn, Ni or Zn, and Y=P or As]. It should theoretically be 

possible for vivianite to co-precipitate or sorb substantial amounts of the contaminant elements Mn, Ni, 

Zn, Co and As, and the nutrient P. Since no quantitative data have been collected on the partitioning of 

contaminants into vivianite during early diagenesis, nor the mechanisms by which this takes places, the 

aim of this study was to test the hypothesis that naturally-occurring vivianite is a significant sink for 

contaminant elements (in this case Zn) in a contaminated freshwater sediment. 

 

2. Study Site 

Vivianite analysed in this study is a diagenetic mineral present in the heavily contaminated Salford 

Quays of the Manchester Ship Canal, Manchester, NW England (Fig. 1). A full description of this site, 
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and its contamination and remediation history, can be found in Taylor et al. (2003). The Manchester 

Ship Canal is up to 8 m deep, steep-sided and up to 50 m wide. As a result, flow is slow, and this has 

led to the accumulation of highly contaminated, organic-rich sediments. Although the site has recently 

been significantly remediated as regards to contaminant inputs, the historical sediments present in the 

Quays are metal-rich, containing maximum concentrations of Zn, Cu and Pb of 30,000 µg/g, 7000 

µg/g, and 4000 µg/g, respectively, and Fe, Mn, Zn and P are present in porewaters at concentrations up 

to 700 µM, 50 µM and 2 µM, respectively. Taylor and Boult (2007) documented the presence of Zn-

rich glass grains in these sediments, which are undergoing diagenetic dissolution. They also 

documented the precipitation of vivianite in these sediments within the first few cm of the sediment-

water interface, and suggested that this mineral may play an important role in contaminant metal 

cycling at the site, but did not determine any chemical or structural data for it.  

 

3. Experimental and Materials 

Sediment cores were taken from Basin 9 of the Salford Quays (Fig. 1) using a 1 m long, 60 mm 

diameter stainless steel corer with a stainless steel liner. The corer was pushed into the sediment using 

lengths of steel rod, and the core retrieved. The collected core was split into 1 cm vertical sub-sections 

by use of a screw-threaded plunger, in a N2-filled glove-bag to minimise oxidation of reduced species, 

and samples placed into acid-washed, N2-purged centrifuge tubes and sealed. Porewater separation and 

analysis of these sediments is reported in Taylor & Boult (2007).  

 

The sediment mineralogy was characterised by whole rock X-ray diffraction (XRD) analysis of N2-

dried powdered samples. Samples were run on a Philips PW1050 X-ray diffractometer, using CuKα 

radiation, with scans taken from 4º to 64º at a scan rate of 2º/min. Petrographic and quantitative 

chemical data were obtained through the use of scanning electron microscopy (SEM) and electron 
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microprobe analysis. N2-dried samples of sediment were impregnated with epoxy resin and polished 

surface blocks produced. These blocks were analysed using a JEOL 5600LV SEM, operating at 15kV 

and with a working distance of 15 mm, using backscattered electron (BSE) imagery. A Link eXL 

energy dispersive X-ray microanalysis system (EDX) was used to obtain semi-quantitative data on 

major element compositions of mineral grains. Fully quantitative chemical data for both major and 

trace elements were obtained using wavelength-dispersive X-ray analysis on a Cameca SX100 electron 

microprobe. Detection limits for trace metals using this technique is on the order of 100 ppm. 

 

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) 

spectroscopies were used to investigate how Fe and Zn are bound within the vivianites. Reviews of the 

principles of these methods and mineral systems applications can be found in Calas et al. (1984) and 

Brown et al. (1988). For this study, X-ray absorption spectra at the Cu and Fe K-edges and Pb LIII-edge 

were collected at the minifocus XAS Station 9.2 at the Synchrotron Radiation Source (SRS) at 

Daresbury Laboratory, UK. The storage ring operated at 2 GeV with a current of between 125 and 

250mA. Spectra were collected using a water-cooled, double crystal Si111 monochromator detuned 

70% to remove high energy harmonics. Two Kirkpatrick-Baez mirrors (substrate ULE glass coated 

with 15 nm Rh on 20 nm Pt) are used to focus the beam horizontally and vertically to a spot size of ~50 

µm. Stability of the focussed beam is less than the spot size. For fluorescence measurements a 

Canberra 13-element solid state Ge detector with full electronics including semi-automatic windowing 

was used. For both the natural and synthetic samples, encased in polished epoxy blocks, an XRF map of 

the elements of interest (Fe, Zn) was collected using GDA Acquisition Version 5.6.0 software. “Hotspots”, 

where concentrations of the respective element were high, were selected from the XRF map for further 

analysis by XAS. Between 6 and 16 XAS scans were collected for each element for each of the 

“hotspots”. Incident and transmitted intensities were measured using ionisation chambers filled with a 

He/Ar mix appropriate for the X-ray energy of interest. X-ray absorption spectra were collected in 
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fluorescence mode (16 scans) for both the Fe K-edge and Zn K-edge for four vivianite grains 

previously characterized by SEM and electron microprobe. X-ray absorption spectra were also 

collected in transmission mode (single scan) at the Zn K-edge for a suite of Zn model compounds (Zn 

metal foil, Zn3(PO4)2, ZnNO3, ZnCO3, ZnS2, ZnSO4, ZnO, Zn-sorbed goethite) to allow comparison 

with experimental data for the natural samples. With the exception of Zn-sorbed goethite, the model 

compounds were chemical standards of 98% purity or greater. Goethite was synthesized in the 

laboratory according to the methods of Schwertmann and Cornell (1991), and Zn sorbed to it using the 

methods of Parkman et al. (1999). 

 

The X-ray absorption spectra of the Zn and Fe K-edges were measured. Data were collected from ~200 

eV before to ~600 eV above the standard edge position. In the pre-edge region the X-ray energy step 

size was large (~9 eV), across the edge the step size was 0.6-1 eV and in the post edge region the step 

size was 1.5-2 eV.  The spectra were processed using the computer programs EXCALIB, EXBROOK, 

EXSPLINE and EXCURV98 compiled at the SRS (Binsted, 1998). The spectra were summed using the 

EXCALIB program. This process also converted the monochromator angle into X-ray energy.  

 

For XANES analysis the edge position was determined and the data normalised such that the edge step 

was equal to one using the EXBROOK program. Linear combination fitting was performed on the 

XANES portion of the data using the model compounds stated above.  The proportion that each of 

these standards in the spectra and a least squares residual factor were calculated. These standards were 

measured for XANES and EXAFS comparisons. 

 

For analysis of the EXAFS oscillations, the background was subtracted from the raw XAS spectra and 

the data normalised using the EXSPLINE program. A spline curve, which estimates the smooth 

background absorbance, was used to remove the smooth background absorbance. No more than 3 

Comment [khe1]: Do you 
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spline points were used. The data were then normalised so that the edge step is equal to one. The 

energy range of the spectrum was reduced if there was significant noise present in the higher energy 

region of the spectra. The EXAFS spectrum was then weighted by k3 to amplify the upper k range. The 

final step was the Fourier Transform (FT) of the data in order to convert energy into a radial 

distribution function over a k range of 2 to 13 Å-1. 

 

Once the EXAFS and the FT had been calculated the data were fitted to gain structural information. 

EXCURV98 (Binstead, 1998; Rehr & Albers, 1990) used exact curved wave theory (Lee & Pendry, 

1975) to simulate EXAFS. The element, coordination number (CN), distance and Debeye-Waller factor 

were determined using this phase and amplitude functions from this program. Standard compound 

EXAFS traces were also used to compare with experimental samples in order to determine similarities 

in the spectra. Single and multiple scattering were considered however multiple scattering did not 

improve the fit for any sample. During fitting the Eo value, distance, Debeye-Waller factor and CN 

were varied. Identification of possible elements was determined by differences in the amplitude and 

phase and possible structural configurations taken from databases, e.g. Inorganic Chemical Structural 

Database (www.cds.dl.ac.uk/icsd). The accuracy of the fit was determined using the R factor statistical 

parameter for which a lower value indicates a better fit. The fitting procedure accurately determines 

distances to within 0.02 Å, but coordination number is highly correlated to the Debeye-Waller factor 

and hence larger errors (±1) exist. 

 

For Raman microprobe spectroscopy grains of vivianite were analysed, using the same polished blocks 

as for SEM and XAS, on a Renishaw 1000 Raman microscope system at Manchester Metropolitan 

University. The samples were placed, and areas of analysis located, on the stage of a Leica microscope, 

with 10, 20 and 50× objective lens. Measurements were made at room temperature using a 514 nm 

laser argon at 10% power, and the laser spot size was less than 5 µm. Multiple (five) acquisitions were 
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made to maximize the noise-to-signal ratio. Spectra were also collected for a natural, hydrothermal 

crystalline sample of vivianite from Bolivia. 

 

4. Results and Discussion 

4.1 Mineralogy of the vivianite grains 

The presence of vivianite [Fe3(PO4)2.8H2O] was confirmed by comparing the powder XRD patterns to 

the those reported for vivianite in the Mincryst mineral structural CPDS files. (Fig. 2). No quantitative 

measures of vivianite abundances were made, but the presence of significant XRD peaks for vivianite 

suggests that levels in the sediment are in excess of 1%.  

 

The abundance of vivianite was confirmed by SEM observations of the bulk sediment. Backscatter 

electron SEM imaging shows that the vivianites are radiating lath-shaped crystals and needle-like 

masses growing within the sediment matrix (Fig. 3). Electron microprobe analyses for the vivianite 

grains have been published previously (full details can be found in Taylor and Boult, 2007).  The 

vivianite crystals contain significant amounts of Mn (up to 5.4% MnO) and contain up to 550 µg/g of 

Zn.  

 

The classification of the grains as vivianite was also supported by Raman spectroscopy. A typical 

Raman spectra for the Salford Quays vivianite grains is shown in figure 4, together with the spectra of 

a well-characterised crystalline vivianite. In both cases, the bands are in good agreement. The major 

band at 950 cm-1 has been assigned to the Raman active P-O stretching vibration, and bands at 1050 

cm-1 and 1020 cm-1 are similar to those assigned to the P-O anti-symmetric stretching vibration (Pirrou 

and Poullen, 1987; Frost et al., 2002, 2003). The bands at 230 cm-1 and 175 cm-1 are reported in 

vivianite (Frost et al., 2002, 2003) and may be attributed to the Fe-O stretching vibration. The bands 

Comment [khe2]: Do we have 
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associated with the 550 cm-1 peak are attributed to the ν4 modes, and the band at 460 cm-1, to the ν2 

mode of the phosphate ion, respectively (Frost et al., 2002, 2003). 

 

4.2. Speciation and bonding environment of Fe in vivianite grains 

Nriagu (1972) has pointed out that poorly-crystalline, redox-sensitive phases such as vivianite are 

prone to oxidation when exposed to standard laboratory conditions. The XRD, SEM and Raman data 

presented above suggest that oxidation of the Salford Quays vivianite grains is limited. This is 

confirmed by Fe K-edge XANES spectra for the vivianite grains 2 to 4 (Figure 5). However, for the 

vivianite 1 grain, a shift in the Fe K-edge and details in the pre-edge area, suggests significant amounts 

of Fe3+. The smaller features on the pre-edge area of grains 2 to 4, with different edge position to that in 

grain 1, are consistent with an Fe2+ pre-edge feature.  

 The parameters derived from the EXAFS fitting for Fe are shown in Table 1, together with Fe-

O and Fe-P co-ordination numbers and bond lengths for vivianite from Mori and Ito (1950), Fejdi et al. 

(1980) and Bartl (1989). EXAFS Fe K-edge spectra and Fourier transforms for vivianites 1 and 4 are 

shown in Figure 6 (the spectra for vivianites 2 and 3 are virtually identical to that of vivianite 4 and so 

are not shown). The results from a first shell fitting for the apparently unoxidised vivianites (2 to 4) 

suggest that Fe exists in tetrahedral coordination, with Fe-O distances of 2.03-2.05 Å. Crystallographic 

studies of vivianite suggest that Fe occupies two distinct octahedral sites, with Fe2O6(H2O)4 groups 

linked to two neighbouring similar groups and to four other single octahedral groups, FeO2(H2O)4, by P 

(Mori and Ito, 1950; Fejdi et al., 1980; Bartl, 1989; Table 1). Because it is an averaging technique, the 

EXAFS analysis is unable to resolve these differences in our vivianites, but the bond distance of 2.03-

2.05 Å is similar to the average first shell Fe-O distances calculated for the data of Fejdi et al. (1980) 

and Bartl (1989; Table 1) and the average second shell distance of 2.02 Å calculated for the data of 

Mori and Ito (1950). The tetrahedral coordination fit for our vivianites also matches the second shell of 

these previous studies, suggesting that either our data are not of sufficient quality to fit the additional 
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shell of 2 O around the Fe, or that the Fe is more disordered within the normally octahedral site. The 

identification of a shell of two P atoms at a distance of 3.23 Å in grains 2 to 4 is typical of the vivianite 

structure (Mori and Ito, 1950; Fejdi et al., 1980; Bartl, 1989; Table 1).  

 First and second shell fits for the apparently oxidized vivianite 1 grain are similar to those of 

vivianites 2 to 4 in terms of the scatterer atoms and their co-ordination, but bond distances are slightly 

shorter (O – 1.99 Å; P – 3.17 Å; Table 1). This is likely due to the formation of an FeIII phase. 

 

4.3. Bonding environment of Zn in vivianite grains 

The Zn K-Edge XANES data for the vivianite grains, along with those for model compounds, are 

shown in Figure 7. Parameters from the Zn EXAFS fitting for vivianites 2 and 3 (the only two grains 

with clean enough spectra for fitting) are shown in Table 1, and the K-edge EXAFS spectra and Phase 

Shifted Fourier transforms in Figure 8. 

 XANES linear combination fitting for the apparently unoxidised (or very minimally oxidised) 

grains 2 to 4 suggest 85% phosphate or Zn-sorbed goethite (the XANES for these are almost identical) 

and 15% Zn sulphate (errors in linear combination fitting are +/- 10%). EXAFS fits for grain 2 define 

three shells of atoms around the Zn: a first shell of 4 O at 1.97 Å, a second shell of 2 O at 2.98 Å, and a 

third shell of 2 O at 3.17 Å. The first and third shells exactly match O and P distances and coordination 

numbers reported for Zn phosphate dehydrate by Sarrett et al. (2001). This, together with the XANES 

fitting, suggests that Zn may be substituting for Fe in the vivianite structure. The shorter first shell O 

distance for Zn compared to Fe (Table 1) may be due to the larger ionic radius of the former.  

 The first shell of 4 O atoms fit for Zn also matches that of a first shell fitting of Zn sorbed on 

goethite (Trivedi et al., 2001). This, together with the XANES fitting and the small amount of FeIII in 

grain 2 (see above), suggest that some Zn-sorbed goethite may be present. However, Trivedi et al. 

(2001) also report a second shell of 1.74 to 2.89 Fe atoms with Zn-Fe distances of 3.51-3.54 Å, which 
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do not match any of our calculated distances (Table 1), suggesting that, if present, the amounts of Zn-

sorbed goethite in our samples are small.  

 The second shell of O atoms at 2.98 Å fit for grain 2 is unlike any previously reported distances 

for metal-O bonds in vivianites, or for Zn sorbed to goethite (Table 1; Trivedi et al., 2001). Given the 

XANES fitting, it is possible that this second shell fit is indicative of Zn sulphate either within, or 

sorbed on, the vivianite structure. Sulphate is known to substitute for phosphate in other minerals (e.g., 

orpheite PbAl3(PO4,SO4)2(OH)6), and moderate concentrations of SO4
2- are reported in Salford Quays 

porewaters (Taylor and Boult, 2007).  If true, then the amounts of Zn sulphate substituting in the 

structure are probably very low, given that no bands attributable to sulphate (ν1 983, ν2 450, ν3 1105 

and ν4 611 cm-1; Ross, 1974) are recorded in the Raman spectra (Figure 4). The Zn sulphate may 

therefore be forming post-vivianite formation, possibly during oxidation of the grain. Despite all of 

this, the bond distance of 2.98 Å does not match any Zn-O distances reported for the Zn sulphate 

mineral zincosite (2.312, 2.113, 1.970 Å; Wildner and Giester, 1988). It is therefore possible that the 

2.98 Å bond distance represents an average of different Zn bond types including sulphate or Zn sorbed 

to goethite, as above. (Figure 5). 

 For grain 3, only one shell of 4 O at 1.97 Å was fit around Zn. This is identical to the first shell 

fit for grain 2, but in this case the lack of extra shells suggests less long-range order (due to either lower 

concentration of Zn or fewer scans collected) and possibly sorption of Zn on the vivianite surface rather 

than incorporation within the structure. As with grain 2, the fit of 4 O at 1.97 Å also matches that of 

Zn-sorbed goethite (Trivedi et al., 2001), and this, together with the possible presence of FeIII, suggests 

that Zn-sorbed goethite may also be present.  

 For the apparently oxidised grain 1, linear combination XANES fitting yielded 42% Zn goethite 

or phosphate, and 58% Zn sulphate. This may be indicative of secondary Zn sulphate or Zn-sorbed 
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goethite formation following oxidation of this grain. As with grain 2, this may indicate the presence of 

structural Zn phosphate and sulphate, as well as secondary Zn sulphate and Zn-sorbed goethite.  

 

5. Implications 

 

The study has shown that the use of µ-Raman and µ-XAS analysis of low temperature mineral 

precipitates in sediment systems can provide critical information upon the structure and composition of 

these minerals.  Given that low temperature diagenetic minerals are commonly fine-grained and poorly 

crystalline, the application of these techniques promises to provide new insights into the mechanisms of 

precipitation and nature of these important minerals.  We have shown for the first time that Zn may be 

incorporated into the crystal structure of vivianite. These findings indicate that vivianite can indeed act 

as a significant sink for trace metals in contaminated sediments during early diagenesis.  Early 

diagenetic sulphide mineral precipitates have been documented previously to act as sinks for trace 

metals in marine and brackish sediments (Parkman et al., 1996; Pirrie et al., 1999; Morse and Luther, 

1999) and these minerals are routinely considered in contaminated marine sediment assessment 

(Ankley et al., 1996).  Our study is the first to consider the incorporation of the potentially toxic 

element Zn in vivianite, an important mineral in anoxic environments such as acid mine drainage sites 

(Ueshima et al., 2004), rivers (House, 2003), lakes (Fagel et al., 2005) and urban water bodies (Taylor 

et al., 2003). There is a need to study the role of vivianite in the uptake of other potentially toxic 

elements in freshwater systems (e.g. As, Pb, Sb).   

 

6. Conclusions 
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1) Petrographic observations, and elemental, X-ray diffraction and Raman spectroscopic analysis 

confirms the presence of vivianite [Fe3(PO4)2.8H2O], precipitated during early diagenesis, within the 

sediments of the urban water body of the Salford Quays, Greater Manchester, NW England.  

 

2) EXAFS model fitting of the Fe K-edge spectra for individual vivianite grains produces Fe-O and Fe-

P co-ordination numbers and bond lengths consistent with previous structural studies of vivianite.  One 

analysed grains displays evidence for the presence of a significant Fe3+ component, which we interpret 

to have resulted from oxidation during sample handling and/or analysis. 

 

3) EXAFS modelling of the Zn K-edge data, together with linear combination XANES fitting of model 

compounds, indicates that Zn may be incorporated into the vivianite as a Zn-phosphate structure.  Low 

levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination XANES fitting 

and to a limited extent, the EXAFS fitting, the origin of which may either be an oxidation artifact or the 

inclusion of Zn sulphate into the vivianite grains during precipitation.  

 

4) This study confirms that early diagenetic vivianite may act as a sink for contaminant metals during 

its formation and, therefore, forms an important component of metal cycling in contaminated sediments 

and waters.  Furthermore, for the case of Zn, our data suggest that this uptake is structural and not 

surface adsorption.   This observation highlights the need to consider the role of vivianite in the uptake 

of other potentially toxic elements in freshwater systems (e.g. As).   
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Figure Captions  

Figure 1 – Location map of the Salford Quays and the Manchester Ship Canal, showing the location of 

the sediment core samples. 

 

Figure 2 – A typical X-ray diffractogram of a sample of sediment from the Salford Quays (this sample 

from 10cm below the sediment surface). The vivianite peaks are marked (V), with the calculated d-

spacings (in angstroms). Other mineral peaks are marked (Q = quartz; M = mica; K = kaolinite; C = 

calcite). 

 

Figure 3 – Backscatter electron images of the vivianite grains analysed by Raman and XAS in this 

study.  The black areas surrounding the grains are resin. 

 

Figure 4 - Raman spectra of one of the vivianite grains (vivianite 2), together with the spectra for a 

crystalline vivianite sample of hydrothermal origin, Bolivia. 

 

Figure 5 – Normalised Fe XANES for vivianite grains 1 to 4.   

 

Figure 6 –Normalised Fe K-edge EXAFS and Phase Shifted Fourier Transform spectra  for vivianites 1 to 

4. Dashed lines are least-squares fits using parameters shown in Table 1.  

 

Figure 7 – Normalised Zn XANES for vivianite grains 1 to 4, and for model compounds.  

 

Figure 8 – Normalised Zn K-edge EXAFS and Phase Shifted Fourier Transform spectra for vivianites 2 
and 3. Dashed lines are least-squares fits using parameters shown in Table 1. 
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Table 1. Parameters used in fitting Fe and Zn K-edge EXAFS data for Salford Quays vivianite grains. 
2σ2 is the Debye-Waller type factor, and the R factor indicates quality of fit (lower R factor indicates a 
better fit).  Structural data of vivianite (averages) from Mori and Ito (1950), Fejdi et al. (1980) and 
Bartl (1989) are shown for comparison purposes. Errors in this table are as follows: Number of atoms ± 
1; r ± 0.02Å; DW ± 0.002Å2. 

 
Element Analysed 

Grain 
Scatterer No of Atoms R (Å) 2σ2 (Å2) R factor 

Fe 1 O 4 1.99 0.031 39.73 
  P 2 3.17 0.007  
 2 O 4 2.03 0.025 39.01 
  P 2 3.25 0.020  
 3 O 4 2.05 0.023 48.80 
  P 2 3.21 0.012  
 4 O 4 2.05 0.028 39.48 
  P 2 3.23 0.027  
       

Zn 1 Not determined    
 2 O 4 1.97 0.025 41.70 
  O 2 2.98 0.021  
  P 2 3.17 0.028  
 3 O 4 1.97 0.021 31.90 
 4 Not determined    
      

Fe Mori and 
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O 
O 
P 

 
2 
4 
2 

 
1.98 
2.02 
3.28 

 
 
 
 

 
 
 
 

Fe Fejdi et 
al., 1980 

 
O 
O 
P 

 
2 
4 
2 

 
2.06 
2.18 
3.22 

 
 
 
 

 
 
 
 

Fe Bartl, 
1989 

 
O 
O 
P 

 
2 
4 
2 

 
2.06 
2.19 
3.23 

 
 
 
 

 
 
 
 

 


