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Abstract
Sustainablemanufacturing is one of themost important andmost challenging issues in present industrial scenario.
With the intention of diminish negative effects associated with cutting fluids, the machining industries are
continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining
machining efficiency. In the present study, three regression based machine learning techniques, namely,
polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were
developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the
development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were
considered as control factors. Since cooling/lubricating techniques significantly affects the machining
performance, prediction model development of quality characteristics was performed under minimum quantity
lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed
models was evaluated by statistical error analyzing methods. Results of regressions based machine learning
techniques were also compared with probably one of the most frequently used machine learning method, namely
artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was
utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.
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1. Introduction
Cutting fluids are traditionally used in metal cutting operations to improve the tool life,
surface quality as well as entire machining process productivity. However, cutting fluids
have negative effects on the human health and environment due to presence of potentially
harmful chemicals [1]. In addition, the use of cutting fluids represents a considerable amount
of total manufacturing costs [2]. Weinert et al. [3] demonstrates that the estimated cost of the
cutting fluids is around 7 to 17% of the aggregate machining costs. Nowadays, conventional
flood cooling is the most common cooling/lubricating technique used to improve machining
performance. However, high cutting fluid consumption as well as power consumption, poor
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cooling/lubrication capability, excessive waste management and problems related to human
health and environmental issues are some of the most important disadvantages of this
method.

The growth of global production and consequently the increase of cutting fluids
application caused intensive research concerning economic and environmental aspects of
systems for cooling/lubricating the cutting zone. Thus, recently several cooling/lubrication
techniques were developed in order to achieve sustainable manufacturing by reducing or
eliminating of cutting fluids. Currently, the most widely used cooling/lubricating techniques
with low negative effect on the environment and human operator’s health are: dry cutting,
cryogenic cooling, minimum quantity lubrication (MQL), high-pressure coolant (HPC), or
utilization as a cooling/lubricating fluid the biodegradable oils. Apart from being more
economical and environmentally sustainable, these new technologies are also more efficient
as compared with traditional flood cooling. Considerable improvements have been reported
in surface quality, tool life, productivity, total costs, etc.

Due to fact that manufacturing operations consume significant amounts of energy,
competitive manufacturing industries require energy efficient machining processes to
minimize negative effect on the environment as well as to reduce costs. For instance,
according to Zhou et al. [4] about 20% of overall consumed annual worldwide energy is used
in manufacturing. In addition to eco-friendly and clean machining process, waste
management and reduction, conserving energy represents one of the important indicators
of sustainable production. Therefore, industries are searching for alternative manufacturing
methods in which less energy is consumed [5,6].

Machining processes are characterized by the presence of a large number of highly
correlated parameters. Due to the high complexity and nonlinearity of metal cutting
phenomena, it is very complicated or even impossible to formulate an adequate analytical
model using traditional methods based on the process’s physics. Nowadays, the trends are
towards predictive modeling of these processes using machine learning methods. Over the
last few decades, artificial neural networks (ANN) and multiple regression have been
successfully implemented in the prediction of various quality characteristics in turning under
dry and conventional coolant supply, such as surface roughness [7–11], cutting force [12–15],
tool wear [16–19], specific cutting force [7,12], cutting power [10,15,19] and cutting
temperature [20–22].

Nowadays, academic research as well as industrial efforts are being directed towards the
challenge of elimination or, at least, minimization of cutting fluids use, while preserving
process efficiency. However, there are significantly less studies dealing with application of
the machine learning techniques in estimating machining responses in environmentally
friendly processes, such as MQL and HPC-assisted machining environments. Cica et al. [23]
formulate two models, namely, ANFIS and ANN-based, for prediction of main cutting force,
feed force and passive force. Three different cooling and lubricating conditions (flood, MQL
and HPC), depth of cut, feed rate, cutting speed were used as the variables for cutting force
componentsmodeling. They concluded that bothmodels can be used effectively to predict the
cutting force components in turning operations. Mia et al. [24] proposed ANN and support
vector regression (SVR) models for surface roughness, cutting temperature and chip
coefficient prediction when turning of Ti-6Al-4V alloy. The cutting speed, feed rate, cutting
conditions (dry and HPC), and turning forces were the input variables. They demonstrated
that both methods can be used successfully in predicting the machining responses. Cica et al.
[25] modeled tool life and surface roughness in hard turning of the 100Cr6 steel under HPC
environment using ANN and ANFIS. Experimental machining data such are feed, cutting
speed and time were used in this study to train and evaluate both models. The estimation
results obtained by both models are compared with experimental results and very good
agreement is observed. Mia andDhar [26] developedANN-based predictive models of surface
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roughness in hard turning of EN 24T steel under dry and high pressure coolant jet machining
environments. Apart from cutting conditions, cutting speed, feed rate and material hardness
were used as the input variables. Different ANN architectures and several training methods
were employed to determine the best predictive model. Mia and Dhar [27] formulate two
predictive models of surface roughness, namely support vector regression and response
surface methodology (RSM) in turning of AISI 1060 steel under dry and HPC conditions. The
cutting speed, feed rate and material hardness were considered as input variables for model
formulation. The results indicated that both methods can be utilized to predict the roughness
value in dry turning, while the support vector regression model is preferable over RSM in
HPC assisted turning. Kamruzzaman et al. [28] formed ANN model of cutting temperature in
terms of cutting speed, feed rate, depth of cut, workpiece materials (C-60, 17CrNiMo4 and
42CrMo4) and cutting environments (dry, wet andHPC), and found 97.3%accuracy. Mia et al.
[29] formulated ANN-based predictive model of surface roughness model for MQL-assisted
hard turning, wherein cutting speed, feed rate and MQL flow rate were inputs. Their results
indicate that ANN model is capable of preserving 97.5% accuracy. Mia et al. [30] utilized the
SVR for the prediction of average surface roughness parameter with respect to spindle speed,
feed rate, depth of cut and time gap between pulsing in MQL assisted turning of high
hardness steel. Their results show that the developed model is able to predict the output
responses with 95.04% accuracy. Abbas et al. [31] developed the regression models for the
surface roughness and power consumption under dry, wet and nanofluid MQL-assisted
turning of AISI 1045. Nouioua et al. [32] utilized response surface methodology and ANN
technique to search for optimal prediction of predicting surface roughness and cutting force
in turning of X210Cr12 steel according to cutting speed, feed rate and cutting depth under
dry, wet and MQL machining conditions. ANN were found to be better than the response
surface methodology model in the prediction of cutting parameters.

Machine learning techniques have been extensively utilized in the prediction of different
machining responses in turning. However, presented models in literature mainly dealt with
dry andwet cutting. Furthermore, a very few utilizable information is provided regarding the
prediction of the cutting energy and as well as the cutting pressure under different cooling/
lubricating conditions. This study presents a prediction models development of machining
force, cutting energy and cutting pressure in turning using three regression based machine
learning techniques (polynomial regression, support vector machine and Gaussian process
regression) as well as artificial neural networks. Contrary to other presented works, here the
estimation of selected machining responses was carried out for different cooling/lubricating
conditions. In particular, the study covered theMQL andHPCmachining conditions. Selected
machine learning techniques are moreover used for comparative assessment of machining
responses in order to determine the best approach according to model accuracy and
capability. In addition, multi-objective optimization problem was also carried out.

2. Experimental details
Straight turning of AISI 1045 (C45E) steel supplied as bars 120 mm in diameter and 300 mm
long in a lathe Boehringer that develops a spindle power of 8 kW have been carried out by
standard carbide inserts SNMG 1204 08 NMX. In this study, focus is placed on the
application of various cooling/lubricating techniques in machining. Therefore, the
experiments are conducted under different machining environments, namely MQL and
HPC. The MQL and HPC systems were attached in the experimental setup during the
machining trials.

For MQL assisted turning, cutting fluid was supplied to spray gun at the rate of 30 ml/h,
which is mixed with compressed air (3 bar) in the mixing chamber of spray gun. Then the
mixture of air and cutting fluid is supplied at the cutting zone by spray gun nozzle located
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30 mm away from tool tip, at an angles of 908 and 308, from the cutting edge and clearance
face, respectively.

During HPC assisted turning, the cutting fluid was supplied at a constant pressure of
50 bar and flow rate of 2 l/min through 0.4 mm nozzle (diameter) normal to the cutting edge at
a low angle (about 5–68) with the cutting tool rake face. The nozzle was positioned 30 mm
away from the tool tip with purpose to achieve fairly close to the tool-chip contact zone aswell
as to reduce the interference of the nozzle with the flowing chips.

Apart from different machining environments, three cutting parameters, that are cutting
speed (v), depth of cut (a) and feed rate ( f ), were also selected as control factors. Referring to
Table 1, the three levels of cutting speed, three levels of depth of cut and four levels of feed
rate generate 36 (33 33 4) number of experimental runs for each of machining environment.
The ranges of these parameters were selected based on the recommendations of the cutting
tool manufacturer and in accordance with previous studies. Moreover, the parameter ranges
were also extended in order to achieve higher productivity and to investigate machining
responses in different machining environments.

The three components of the cutting force, namely, main cutting force (Fc), feed force (Ff)
and passive force (Fp), were measured using the Kistler dynamometer type 9259A. The
measurement chain further includes a charge amplifier (Kistler 5001), spectrum analyzer
(HP3567A) and personal computer for data acquisition and analysis.

The machining force (FR), cutting power (Pc) and cutting pressure (Ks) are computed from
the following equations:

FR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
c þ F2

f þ F2
p

q
(1)

Pc ¼ Fc$v (2)

Ks ¼ Fc

a$f
(3)

The obtained experimental data were divided into two data sets, namely training data set for
model development (75% of the entire data set) and test data set for model validation (25% of
the entire data set). Thus, 27 sets of randomly selected experimental trials were used for
model construction, leaving the remaining 9 sets of data to test model performance. Identical
data partition scheme was utilized for MQL and HPC machining conditions. The detailed
experimental conditions are listed in Table 2.

The experimental setup comprised of work material, cutting tool, MQL and HPC system
and environment is shown in Figure 1.

3. Machine learning methods
3.1 Polynomial regression
Regression analysis is probably one of the most important aspects of statistical as well as
machine learning based analysis. The objective of the regression analysis is to model the

Factor Name Units Type
Levels

Level 1 Level 2 Level 3 Level 4

A Environment Categorical MQL HPC – –
B Cutting speed, v m/min Numerical 210 320 400 –
C Depth of cut, a mm Numerical 1.5 2 2.5 –
D Feed rate, f mm/rev Numerical 0.224 0.28 0.355 0.4

Table 1.
Control factors along
with their values and

levels
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relationship between among dependent and independent variables for the purpose of
estimation of future values [33]. The simplest approach to the regression task is linear
regression, where the dependent (response) variable is modeled as a linear combination of the
independent (input) variables. More advanced regression models include multiple regression
analysis where dependent variable is also linearly related to the independent variables. An
assumed linear relationship among dependent and independent variables might be
inadequate to describe the particular relationship. Therefore, this paper deals with the
task of polynomial regression. In polynomial regression model, the relationship between the
dependent variable and independent variables is modeled in the form of a polynomial
equation. Since polynomial regression models are considered as special cases of multiple
linear regression models, fitting these models with least squares does not introduce any new
problem and analysis of residuals can be utilized to determine the adequacy of the model.

No.

Cutting parameters
Responses

MQL HPC

Type
v

(m/min)
a

(mm)
f

(mm/rev)
FR
(N)

Pc
(kW)

Ks

(N/mm2)
FR
(N)

Pc
(kW)

Ks

(N/mm2)

1. 210 1.5 0.224 985 2.89 2455.4 913 2.71 2303.6 Training
2. 210 1.5 0.28 1099 3.29 2235.7 1034 3.14 2138.1 Testing
3. 210 1.5 0.355 1346 4.15 2229.1 1268 3.94 2116.4 Training
4. 210 1.5 0.4 1448 4.48 2135.0 1398 4.37 2080.0 Training
5. 210 2 0.224 1160 3.48 2221.0 1165 3.55 2265.6 Training
6. 210 2 0.28 1325 4.05 2064.3 1322 4.09 2085.7 Training
7. 210 2 0.355 1645 5.14 2069.0 1635 5.15 2071.8 Testing
8. 210 2 0.4 1806 5.68 2028.8 1802 5.72 2042.5 Training
9. 210 2.5 0.224 1382 4.21 2148.2 1427 4.35 2217.9 Testing
10. 210 2.5 0.28 1588 4.91 2005.7 1608 4.98 2034.3 Training
11. 210 2.5 0.355 2007 6.30 2028.2 2006 6.33 2038.3 Training
12. 210 2.5 0.4 2234 7.04 2011.0 2228 7.05 2015.0 Training
13. 320 1.5 0.224 935 4.19 2336.3 896 4.07 2273.8 Training
14. 320 1.5 0.28 1055 4.84 2159.5 1011 4.68 2088.1 Training
15. 320 1.5 0.355 1288 6.06 2133.3 1241 5.91 2080.8 Training
16. 320 1.5 0.4 1412 6.70 2095.0 1385 6.61 2066.7 Testing
17. 320 2 0.224 1068 5.14 2151.8 1142 5.32 2227.7 Training
18. 320 2 0.28 1306 6.11 2044.6 1288 6.09 2039.3 Training
19. 320 2 0.355 1611 7.71 2036.6 1605 7.76 2049.3 Testing
20. 320 2 0.4 1781 8.55 2003.8 1727 8.37 1961.3 Training
21. 320 2.5 0.224 1373 6.37 2133.9 1381 6.46 2162.5 Testing
22. 320 2.5 0.28 1572 7.40 1982.9 1571 7.43 1991.4 Training
23. 320 2.5 0.355 1951 9.36 1977.5 1959 9.44 1994.4 Training
24. 320 2.5 0.4 2174 10.43 1955.0 2172 10.49 1966.0 Training
25. 400 1.5 0.224 849 4.90 2187.5 885 5.05 2253.0 Training
26. 400 1.5 0.28 969 5.66 2021.4 994 5.77 2059.5 Training
27. 400 1.5 0.355 1207 7.23 2037.6 1221 7.37 2077.0 Testing
28. 400 1.5 0.4 1316 7.94 1985.0 1364 8.16 2040.0 Training
29. 400 2 0.224 1115 6.48 2169.6 1117 6.49 2174.1 Training
30. 400 2 0.28 1278 7.53 2017.9 1280 7.57 2026.8 Training
31. 400 2 0.355 1573 9.48 2002.8 1583 9.54 2015.5 Training
32. 400 2 0.4 1742 10.54 1976.3 1757 10.59 1985.0 Testing
33. 400 2.5 0.224 1407 8.03 2151.8 1369 7.94 2126.8 Training
34. 400 2.5 0.28 1584 9.23 1977.1 1558 9.21 1974.3 Training
35. 400 2.5 0.355 1961 11.68 1974.1 1944 11.75 1986.5 Testing
36. 400 2.5 0.4 2167 12.92 1938.0 2191 13.23 1985.0 Training

Table 2.
The full data set
consisting of 36 data
points
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Figure 1.
Experimental setups

and modeling
procedure.
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The general expression for a second-order polynomial (quadratic) model that represent the
simplest extension of the straight-line model is given by

y ¼ β0 þ
Xk
i¼1

βixi þ
Xk
i¼1

βiix
2
i þ

X
i

X
j

βijxixj þ ε (4)

where y is a dependent variable, xi and xj are independent variables, β0 is fixed term, βi, βii and
βij are the coefficients of linear, quadratic and cross product terms, respectively, and ε is
random error.

3.2 Support vector regression
The support vector machine (SVM) is relatively novel algorithm based on the theoretical
foundation of statistical learning theory proposed by Vapnik [34]. Known for its excellent
generalization ability, robustness, small number of adjusting parameters, single global
optimum solutions and no necessity for experimentation to finding the learning machine
architecture SVM is perhaps the most accepted machine learning approach for supervised
learning.

SVM acts by producing a separating hyperplane maximizing the margin within two data
sets in accordance to their classes which have been formerly mapped to a high dimensional
space. The margin is established by creating two parallel hyperplanes on each side of the
separating hyperplane. The larger the margin between the classes the better the
generalization error of the classifier is achieved. Thus, an optimal separation (solution) is
attained by the hyperplane which has the largest distance to the neighboring data points of
two classes. The points on the boundary of the slab that are closest to the separating
hyperplane are called support vectors. After the support vectors are selected, remain of the
feature set can be excluded, because the support vectors involve all the indispensable
information for the classifier (Figure 2).

SVMprovides particular distinguishing features that make it an effective tool in modeling
and prediction tasks with widespread application in many engineering areas. One of the
major advantages of using SVM is that model can be determined by assigning a quite a few
parameters, namely the kernel function, the loss function, the cost function etc. Furthermore,
appropriate architecture does not have to be specified before training and SVM produce a
unique solution after training.

Figure 2.
The graphical
illustration of SVM

ACI
20,1/2

168



Although SVM was originally developed for the classification problems, this algorithm can
be also implemented to regression problems by the introduction of a loss function that
includes a distance measure. The method by which regression problems can be solved
through SVM is known as support vector regression (SVR).

Considering a set of data points fxi; yigNi¼1 such that x∈R
n is an input, y∈R is a

corresponding target output to be estimated by the regression function, and N is the total
number of data patterns. The idea of the regression problem is to find a function f(x) that has
at most ε deviation from the actually obtained targets yi for all the training data. The
nonlinear relationship between the output and the input can be described by a following
regression function:

f ðxÞ ¼ wTfðxÞ þ b (5)

wherew is the weight vector, fðxÞ is a nonlinear function that map the input pattern x from
R

n into a higher-dimensional feature space and b is the bias term. The objective is to find
values of unknown parameters that are the weight vector w and bias term b such that the
values of x can be determined by minimizing the regression risk. Based on it, the regression
problem can be formulated as follows

Minimize C
1

N

XN
i¼1

Lεðyi; f ðxÞÞ þ 1

2
kwk2 (6)

where

Lεðy; f ðxÞÞ ¼
�
0; if jy� f ðxÞj≤ ε;
jy� f ðxÞj � ε; otherwise:

(7)

In the regularized risk function given by Eq. (6), C is regularized constant, Lεðy; f ðxÞÞ is the
loss function. The most common loss function, namely the linear loss function with
ε-insensitivity zone, was proposed by Vapnik [34] s given by Eq. (7). The parameter ε is the
difference between actual values and values computed from the regression function.

Introducing two positive slack variables ðξi þ ξ*i Þ that represent the distance from actual
values to the corresponding boundary values of the ε-tube, it is possible to transformEq. (6) in
a primal objective function given by following equation:

Minimize C
1

N

XN
i¼1

�
ξi þ ξ*i

�þ 1

2
kwk2 (8)

subject to

yi �wTfðxiÞ � b≤ εþ ξi
wTfðxiÞ þ b� yi ≤ εþ ξ*i
ξi; ξ

*
i ≥ 0; i ¼ 1; 2; :::; N :

(9)

By adding Lagrangianmultipliers this constrained optimization problem can be solved using
the Eq. (10)

Minimize
1

2
kwk2 þ C

XN
i¼1

�
ξi þ ξ�i

��XN
i¼1

βi½yi �wfðxiÞ � bþ εþ ξi�

�
XN
i¼1

β*i
�
wfðxiÞ þ b� yi þ εþ ξ*i

��XN
i¼1

�
αiξi þ α*

i ξ
*
i

�
(10)

Predictive
modeling of

turning
operations

169



Eq. (10) is minimized with respect to primal variablesw; b; ξ and ξ*, and is maximized with
regard to non-negative Lagrangian multipliers αi; α*

i ; βi and β*i . Finally, using the
appropriate Karush-Kuhn-Tucker conditions on Eq. (9) yields the following dual
Lagrangian form of the optimization problem:

Maximize
XN
i¼1

yi
�
βi � β�i

�� ε
XN
i¼1

�
βi þ β�i

�� 1

2

XN
i¼1

3
XN
j¼1

�
βi � β�i

��
βj � β�j

	
Kðxi;xiÞ

(11)

subject to

XN
i¼1

�
βi � β�i

� ¼ 0 and βi; β
*
i ∈ ½0; C�; i ¼ 1; 2; :::;N : (12)

After obtaining values of the Lagrange multipliers, an optimal solution of weight vector
of the regression is represented by Eq. (13)

w ¼
XN
i¼1

�
βi � β*i

�
fðxiÞ (13)

Thus, the regression function can be written as follows:

f ðxÞ ¼
XN
i¼1

�
βi � β�i

�
Kðxi;xjÞ þ b (14)

whereK(xi,xj) is the Kernel functionwhich can be described in the feature space as following:

Kðxi; xjÞ ¼ fðxiÞ$fðxjÞ (15)

The Kernel function can be substituted by any function satisfying the Mercer’s condition.
Several kernel functions can be used, such as the following: Gaussian or radial basis function
(RBF) kernel, polynomial kernel and linear kernel. In this study, the radial basis kernel
function has been chosen and this is given by:

Kðxi; xjÞ ¼ exp

 
−
kxi � xjk2

2σ2

!
(16)

where σ is the kernel width parameter.

3.3 Gaussian process regression
Gaussian process regression (GPR) for machine learning was initially proposed by Williams
and Rasmussen [35]. Compared with other regression techniques based on the kernel method,
such as SVM, GPR is a probabilistic model based on the standard Bayesian approaches. GPR
is very convenient to deal with complex problems of high dimensionality, nonlinearity and
small number of training parameters. As a result of its very good performance, GPR has been
widely applied in recent years in various fields of engineering.

Assume thatD ¼ fX; yg is a set of training data, whereX ¼ ½x1; x2; . . . ;xn� is an input
vector in Rd and y ¼ ½y1; y2; . . . ; yn� is a vector containing scalar training outputs yi in R
(extension to multiple outputs is possible). The output yi could be assumed to contain mean-
zero additive Gaussian noise with variance σ2n, which is also described pðεiÞ ¼ Nð0; σ2nÞ.
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Furthermore, assuming that the outputs are independent and identically distributed, each
observation yi can be thought of as related to an underlying function f ðxÞ through aGaussian
noise model

yi ¼ f ðxiÞ þ εi (17)

The joint distribution over the (noisy) outputs is a zero-mean Gaussian and has the following
form

pðf ðxÞjx1; x2; :::; xnÞ ¼ N
�
0; Kðx; x0Þ þ σ2

nI
�

(18)

where f (x)5 [ f1, f2, . . ., fn ]
T s a vector of latent function values, Kðx; x0Þ is the covariance

(kernel) matrix with elementsKijðxi; xjÞ, the term σ2
nI introduces the Gaussian noise, and I is

the identity matrix.
Given the training samples and a set of test points X*, the goal of GPR is to find the

predictive outputs f * with probabilistic confidence levels. According to the definition of
Gaussian process, a prior joint distribution of the training outputs f and test output f * can be
formulated by following equation

p
�
f ; f *

� ¼ N



0;

Kf ;f Kf * ; f

Kf ;f * Kf *; f *

�
(19)

The independent likelihood can be formulated as follows

pðyjf Þ ¼ N
�
f ; σ2

nI
�

(20)

Assuming that the hyper-parameters involved in K were learned from the training data in
advance, the posterior distribution can be obtained to give the Gaussian predictive
distribution

p
�
f *jyÞ ¼ N

�
μ�; σ

2
�
�

(21)

where the mean m and the variance Σ are given by

μ� ¼ Kf *;f

�
Kf ;f þ σ2

nI
�−1

y (22)

σ2
* ¼ Kf * ;f * �Kf *;f

�
Kf ;f þ σ2

nI
�−1

Kf ;f * (23)

The squared exponential kernel function evaluates the covariance between the two input
feature vectors xi and xj as [36]

Kðxi; xjÞ ¼ σ2
sexp

�
−
1

2
ðxi � xjÞM−2ðxi � xjÞ


þ σ2nδij (24)

where σ2
s is the signal variance that quantifies the overall magnitude of the covariance value,

usually initialized to 1,M is a diagonal matrixM ¼ diagfl1; l2; . . . ; lmg; l are scaling factors
and δij is Kronecker’s delta function that serves to selectively specify the noise variance σ2n to
the covariance value.

The parameters of the kernel function denoted by θ ¼ ½M; σs; σn� are called the hyper-
parameters of the Gaussian process. These parameters can be learned by maximizing the log
likelihood of the training outputs given the inputs

θmax ¼ arg max
θ

flogðpðyjX ; θÞÞg (25)

where the log term in Eq. (25) can be expressed as
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logðpðyjX ; θÞÞ ¼ −
1

2
yT
�
K þ σ2I

�−1
y� 1

2
log
��K þ σ2I

��� n

2
log2π (26)

This nonlinear optimization problem can be solved using numerical optimization techniques,
such as gradient-based methods [37].

3.4 Artificial neural networks
In last few decades, machine learning techniques, mostly artificial neural networks (ANN),
have caught the interest of many researchers in practically all engineering fields [38]. ANN
have been inspired by the human brain information processing in an effort to achieve human-
like performance [39]. Because of nonlinear function approximation capability, noise
resistance, adaptability and good generalization capability, ANN are especially useful for
modeling of themachining processes characterizedwithmany highly interrelated parameters.

Different ANNmodels have been proposed in the literature, but themulti-layer perceptron
(MLP) is the most widely used. MLP is a kind of feed-forward ANN consisting neurons
divided into three type of layers: (i) input layer, (ii) output layer and (iii) hidden layers (one or
more). Each layer containing a group of neurons (nodes) that are linked with neurons from
other layers by connections between the neurons. Each neuronwithin the network is typically
a simple processing unit where the basic calculations are performed to process one or more
inputs and produced the proper outputs. Links between neurons, or a synapses, have an
associated weight which control the output of the neuron. The outputs of the ANN can be
modified by adjusting the values of synaptic weights. These adjustment of weights is
designed to be in a direction that minimize the difference among ANN output and present
response vectors. The back-propagation (BP) algorithm is probably one of the most popular
techniques in the field of ANN. Thus, in the present study, multi-layer feed forward ANN
based on BP algorithm is selected to develop the prediction of the model.

Figure 3 shows a typical BP network architecture containing one input layer, one hidden
layer and one output layer. Input layer consists of a set of neurons representing the process
inputs features. The number of hidden layers as well as the number of nodes per hidden layer
is usually determined through a trial and errormethod, by increasing or the number of hidden
layer and neurons during training. The last layer acts as the network output layer. The
number of neurons in the last layer that acts as the network output layer is equal to the
number of functions being approximated by the model.

Figure 3.
The ANN architecture
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4. Analysis and discussion
4.1 Predicting responses using machine learning techniques
In this section, four predictive models, namely polynomial regression (PR), support vector
regression (SVR), Gaussian process regression (GPR) and artificial neural networks (ANN)
were developed and compared on the basis of their prediction accuracy.

First, from a set of experimentally obtained data, a polynomial regression models to
estimate the machining force, cutting power and cutting pressure as a function of machining
parameters such as cutting speed (v), depth of cut (a) and feed rate ( f ) in MQL assisted
turning are determined by

FRMQL
¼ 929:3217� 1:7317v� 266:9927a� 532:4534f þ 0:6772vaþ 2146:3422af (27)

PcMQI
¼ 7:3469� 0:0192v� 3:9496a� 17:379f þ 0:0118vaþ 0:0502vf þ 10:1892af (28)

KsMQL
¼ 4997:2191� 2:3269v� 1058:7474a� 7470:6688f þ 0:8768vaþ 160:6979a2 þ 10250:0764f 2

(29)

Similarly, followingpolynomial regressionmodels inHPCassisted turninghavebeenestablished

FRHPC
¼ 928:91� 1:1937vþ 14:0408a� 3418:2f þ 2008:56af þ 0:00159v2 þ 4970:8f 2 (30)

PcHPC ¼ 8:2151� 0:01723v� 3:1323a� 32:0446f þ 0:0099vaþ 0:0578vf þ 9:8238af

þ 20:9642f 2 (31)

KsHPC ¼ 3863:375� 0:34295v� 93:5567a� 8861:9024f þ 12519:3723f 2 (32)

Among 36 data sets of process variables related toMQLmachining condition, 27 data sets have
been utilized with the purpose to create regression equations, while 9 data sets were reserved to
test the established equation’s predictive capacity. Identical approach was applied in the case of
experimental data sets found on HPC machining condition. The analysis of variance (ANOVA)
was utilized to justify the significance of the developed regression models. This analysis was
carried out for a significance level of α5 0.05, i.e. for a confidence level of 95%. ANOVA results
shows that the developed mathematical models for machining force, cutting power and cutting
pressure are adequate, irrespective of the cutting condition (MQL or HPC).

For SVR-based models Statistics and Machine Learning Toolbox from Matlab was used.
The selected machining parameters for SVR inputs were the cutting speed, depth of cut and
feed rate, whereas the quality responses were machining force, cutting power and cutting
pressure. The type of kernel function, kernel function parameters, the value ofC, and the value
of ε for the ε-insensitive loss function are the most important factors which have significant
effects on the performance of the SVR-basedmodel. Optimized values of these parameters can
be determined by using various methods, such as cross validation, grid search, genetic
algorithm, particle swarm optimization, etc. In present work, RBF kernel was selected for
developing all SVR-based models. The kernel scale was estimated automatically using a
heuristic subsampling procedure, which was empirically determined by built-in Matlab
functions. For median-sized problems the grid search method is an efficient technique for
determination the optimumvalues of the SVR-basedmodel. In thismethod, the parameters are
varied by fixed step-sizes across a range of values, and the performance of each set of
parameters is compared by using different statistical measures such as maximizing
correlation coefficient, minimizing normalized root mean square error or mean absolute
percentage error, etc. With purpose to improve the generalization ability, this method can use
cross validation process. In the present study, the selection of the optimal values ofC and ε for
each SVR-based model was determined employing grid search method.
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TheMatlab Statistics andMachine LearningToolbox was also used for creating and testing
the different GPR-based models of the machining force, cutting power and cutting pressure in
MQL and HPC machining condition. The determination of appropriate values of hyper-
parameters is crucial step for the prediction capabilities of any GPR-basedmodel. Therefore, the
grid searchmethodwas utilized in order to solve that problem. There are several key parameters
and functions influencing the GPR-based model. For this study, the parameters such as kernel
function, basis function and initial value for the noise standard deviation of the GPRmodel were
optimized to obtain the best model configuration for the prediction of selected quality responses.

In ANN model, a back-propagation algorithm was used to predict the machining responses,
where the error for hidden layers is determined by propagating back the error determined for the
output layer. As previouslymentioned, the numbers of the neurons in the input and output layer
are governed by the numbers of input and output variables, respectively. However, the number
of hidden layers and the favorable number of neurons in each hidden layer are subject to the
complexity of the target function, generalization capabilities, computation time required for
training, the risk of over-fitting, etc. Therefore, network optimization was performed by
adjusting the number of hidden layers and the number of nodes in these layers through a trial
and error method, in order to adjust the converged error. After examining different neural
networks architectures, the result showed that network structurewith one hidden layer and nine
neurons was found to be accurate and reliable in the present investigation. Among different
training methods, the Levenberg-Marquadt was selected as training algorithm, because it
consumes less memory and require fewer computation time. The hyperbolic tangent sigmoid
transfer function has been used between the input and hidden layers and a linear transfer
function have been utilized between the hidden and output layers. The network was trained for
10,000 epochs with a learning rate of 0.03 and a momentum term of 0.1, while error between the
desired and the actual outputs is less than 0.001 at the end of training process.

The prediction accuracy of the developed models was analyzed in terms four statistical
measures: mean absolute percentage error (MAPE), maximum absolute percentage error
(MaxAPE), the mean absolute error (MAE) and normalized root mean square error (NRMSE).
Furthermore, coefficient of determination (R2) was also used as performance metric. These
statistical metrics are defined as follows:

MAPE ¼ 1

n

Xn
i¼1

�jTi � Yij
Ti


$100 (33)

MaxAPE ¼ max

�jT � Y j
T

$100


(34)

MAE ¼ 1

n

Xn
i¼1

jTi � Yij (35)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðTi�YiÞ2

q
n

σ
(36)

R2 ¼

0
B@

Pn

i¼1ðTi � �Ti

��
Yi � �Y i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
Ti � �Ti

�2Pn

i¼1

�
Yi � �Y i

�2q
1
CA

2

(37)
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where n is number of training pattern, Ti and Yi are experimental and predicted result of ith
training pattern, respectively, �Ti and �Y i are the average values of experimental and predicted
result, respectively, and σ is standard deviation of Ti.

MAPE, MaxAPE, MAE and NRMSE were used to measure the deviation between the
observed and predicted values. The smaller the values of these performance metrics, the
closer were the predicted values to the observed values. The statistical metric R2 was used to
measure the correlation between the observed and the predicted values. A value of 1 indicates
a perfect relationship between the two variables. Performance evaluations of different
machine learning models in terms of these five statistical measures for the test data set are
shown in Table 3. Furthermore, to illustrate obtained results more clearly, a performance
comparison of machine learning techniques for machining force, cutting power and cutting
pressure prediction are also shown in Figures 4–6, respectively.

From the comparative results of Table 3 considering 9 trials for the test data set it is
evident that all methods provide reliable accurate prediction accuracy. For MQL cutting

Cutting environment Response Method
Statistical metrics

MAPE MaxAPE MAE NRMSE R2

MQL FRMQL PR 1.5 3.3 20.33 0.098 0.9955
SVR 0.9 1.8 13.00 0.055 0.9983
GPR 0.9 2.4 12.05 0.056 0.9985
ANN 0.7 1.2 9.89 0.044 0.9992

PcMQL PR 2.7 9.5 0.142 0.065 0.9983
SVR 0.9 1.7 0.057 0.024 0.9997
GPR 0.9 2.7 0.053 0.023 0.9998
ANN 0.8 2.4 0.047 0.022 0.9999

KsMQL PR 1.4 2.8 28.63 0.375 0.9906
SVR 1.1 2.2 23.99 0.339 0.9601
GPR 0.9 2.9 19.41 0.315 0.9750
ANN 0.8 2.3 16.96 0.265 0.9799

HPC FRHPC PR 1.3 2.4 19.11 0.076 0.9981
SVR 0.8 2.2 11.78 0.053 0.9991
GPR 0.7 1.8 10.89 0.048 0.9992
ANN 0.6 1.4 9.89 0.043 0.9992

PcHPC PR 2.1 6.7 0.126 0.053 0.9992
SVR 0.9 2.7 0.065 0.032 0.9995
GPR 0.7 2.7 0.054 0.030 0.9996
ANN 0.6 1.3 0.043 0.018 0.9999

KsHPC PR 1.4 3.1 28.51 0.470 0.9464
SVR 0.8 2.0 16.13 0.300 0.9713
GPR 0.8 2.3 15.86 0.265 0.9678
ANN 0.7 2.3 13.51 0.245 0.9739

Table 3.
Performance

evaluations of different
models for the test

data set

Figure 4.
Performance

comparison of machine
learning techniques for

machining force
prediction
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environment, MAPE values varies from 0.7 to 2.7, whereas MaxAPE values ranging from 1.2
to 9.5%. The highest values of these two metrics were found in modeling of cutting power
using PR. It is evident that SVR and GPR method outperformed PR, while ANN slightly
outperformed both SVR and GPR models for all performance characteristics. A similar
conclusion can be drawn also with regard to MAE and NRMSE analysis. It was also found
that the coefficient of determination for the predicted machining force and cutting power
values is found to be a very high (above 0.99), noting slightly lower values in modeling of
cutting pressure (above 0.96).

According to presented results for HPC assisted turning, MAPE values are within the
range 0.6–2.1% and MaxAPE values are identified to be between 1.3 and 6.7%. The highest
values of MAPE and MaxAPE were found in modeling of cutting power when PR is
employed, just as in the MQL cutting condition. The results of these two metrics, as well as
MAE and NRMSE, again confirm the superiority of using SVR and GPR over PR method. In
addition, it was found that ANN is even slightly accurate compared to SVR andGPRmethods
when estimating all responses. The determination coefficient for the estimated machining
force and cutting power values were both very close to 1 (above 0.99), while somewhat lower
values (above 0.94) were observed in estimating of cutting pressure.

Based on the analysis of the results, it is obvious that all considered machine learning
techniques are accurate, efficient and practical tool for estimation of machining force, cutting
energy and cutting pressure under different cooling/lubricating conditions. The comparison
of regression based machine learning techniques shows that SVR and GPR models have
similar performances and have better outcomes in terms of accuracy than PR-based models.
Moreover, the ANN-based models were even somewhat more accurate compared to the
regression based machine learning techniques for all datasets. Despite the fact that the SVR,
GPR and ANN outperformed PR-based method, results produced by this method have been
quite satisfactory. Additionally, in terms of computational time, PR method is the fastest
because the training does not require much parameter tuning.

Figure 5.
Performance
comparison of machine
learning techniques for
cutting power
prediction

Figure 6.
Performance
comparison of machine
learning techniques for
cutting pressure
prediction
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4.2 Multi-objective optimization
The relationships betweenmachining parameters and responses have been established using
different machine learning methods. However, SVR, GPR and ANN-based have been
characterized by complex non-linear functions, thus conventional optimization methods are
difficult to use effectively and consistently. On the contrary, PR-based models are simple, yet
effective, easy to interpret and broadly applicable to relate input parameters and output
parameters. Therefore, the mathematical relation between machining variables and
responses for MQL and HPC machining environment, given in Eqs. (27)–(29) and Eqs.
(30)–(32), respectively, were used as functional equations to establish the objective functions.
The objective has been to find the optimal machining condition for minimizing themachining
force, cutting power and cutting pressure simultaneously. Hence, for multi-objective
optimization of the turning under MQL and HPC cutting conditions, the following complex
objective functions (COF) were developed

COFMQLðv; a; f Þ ¼ w1

FRMQL

FRMQLmin

þ w2

PcMQL

PcMQLmin

þ w3

KsMQL

KsMQLmin

(38)

COFHPCðv; a; f Þ ¼ w1

FRHPC

FRHPCmin

þ w2

PcHPC

PcHPCmin

þ w3

KsHPC

KsHPCmin

(39)

where w1, w2 and w3 are the weight values of the machining force, cutting power and
cutting pressure, respectively. In this study, equal weights for all responses were selected,
i.e. w1 5 w2 5 w2 5 1/3.

The minimization of the developed complex objective functions should be performed on
the basis of operation constraints. These constraints impose the lower and upper limits of the
experimental parameters and are given as follows: 200≤ v≤ 400, 1.5≤ a≤ 2.5, 0.224≤ f≤ 0.4.

For the purpose of solve such types of problems, different metaheuristic methods such as
the genetic algorithm, particle swarm optimization, differential evolution, simulated
annealing, etc. are commonly applied. In present research, a relatively new optimization
algorithm, namely neural network algorithm was employed for the multi-objective
optimization of the MQL and HPC assisted turning. This method is developed based on
the structure and concept of artificial neural networks in terms of generating new candidate
solutions and also employing other operators used in the conventional ANN. More details
about this optimization algorithm can be found in [40].

The minimum values of the complex objective function COFMQL 5 1.147 and COFHPC 5
1.095 were found after 8 iterations and 5 iterations, respectively. The optimization algorithm
results revealed that for both cutting environments the best combination of machining
parameters in simultaneously optimizing the machining force, cutting power and cutting
pressure was: 210m/min for cutting speed, 1.5 for depth of cut and 0.224mm/rev for feed rate.
Thus, the experimental trial 1 has the optimal combination ofmachining parameters forMQL
as well as for HPC assisted turning.

5. Conclusion
The present study revealed comparative analysis of four machine learning methods:
polynomial regression, support vector regression, Gaussian process regression and artificial
neural networks, for machining force, cutting power and cutting pressure prediction in the
turning of AISI 1045 using coated carbide tools. In the developed models, the input data
include cutting parameters, such as cutting speed, depth of cut and feed rate. The prediction
of selected quality characteristics was carried out for two different machining environments.
To be specific, the study covered the minimum quantity lubrication and high-pressure
coolant assisted turning. The performance of four methods were evaluated in terms of
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different statistical measures such as mean absolute percentage error, maximum absolute
percentage error, the mean absolute error, normalized root mean square error and correlation
coefficient and very good agreements with experimental results were observed.

The developed prediction models of machining force, cutting power and cutting pressure
have exhibited a very high accuracy in prediction for MQL as well as for HPC machining
environment. According to presented results, MAPE values are within the range 0.7–2.7%
and 0.6–2.1%, whereas MaxAPE values varies from 1.2 to 9.5% and from 1.3 to 6.7%, for
MQL and HPC cutting environment, respectively. The highest values of these two statistical
measures were observed in modeling of cutting power in both cutting environment when PR
is employed. The comparison was also done using MAE and NRMSE as the performance
measures.When regression basedmachine learning techniques are compared, it is found that
SVR andGPRmodels have comparable performances and that thesemodels obtain relatively
better accuracy than those achieved by PR-based model. Moreover, the results revealed that
ANN-based model have slightly better outcomes in terms of accuracy than regression based
machine learning methods when estimating quality characteristic for both cutting
environment. Summarizing the main features of the statistical results, it can be concluded
that selected machine learning techniques produce adequate results when compared to the
experimental outcomes. The estimated machining parameters on test data set were found to
be closely correlated with the real performance results. Thus, by using developed models
acceptable results can be estimated rather than experimentally obtained which consequently
reduces the testing cost and time.

Moreover, mathematical models of the multi-objective optimization were established
based on the polynomial regression method and metaheuristic approach based on a neural
network algorithm was used to obtain optimal solutions. The optimal combination of
machining parameters for both cutting environment based on the studied performance
criteria (i.e. machining force, cutting power and cutting pressure) was found to be 210 m/min
for cutting speed, 1.5 for depth of cut and 0.224 mm/rev for feed rate.

The performance can additional be enhanced with a wide range of cutting conditions, taking
into account other major aspects of cutting operations such as tool coatings, tool geometry,
workpiece materials, etc., as well as considering the additional quality characteristics.
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