Apoptosis: Mechanisms and Roles in Pathology

https://doi.org/10.1016/B978-0-12-364932-4.50010-1Get rights and content

Publisher Summary

This chapter discusses the mechanisms and roles of apoptosis in pathology. Necrosis differs from apoptosis in structure, mechanism, and sequelae. Structurally, necrotic cells show critically damaged organelles, ruptured plasma membranes, and dispersal of cytoplasmic elements into the extracellular space. The mechanisms are various, but do not depend upon continuing synthetic activity. There is no evidence that specific signaling pathways are involved. There is breakdown of membrane homeostasis and net flow of water into the necrotic cell, whose density falls. Intracellular calcium rises uncontrollably to equilibriate with the millomolar concentrations in the extracellular space. The process results in an acute inflammatory reaction, triggered by complement-activating factors emanating from mitochondria that have escaped from the damaged cell. Alternatively, leukotrienes and other arachidonate chemotaxins can be generated from partially- degraded cell membranes. The arrival of neutrophil polymorphs permits digestion and phagocytosis of the constituents of the necrotic cells, but brings with it the risk of further tissue damage.

References (142)

  • E.S. Alnemri et al.

    J. Biol. Chem.

    (1989)
  • S.K. Chapes et al.

    Cell. Immunol.

    (1983)
  • M.M. Compton et al.

    J. Biol. Chem.

    (1987)
  • A.R. Currie et al.

    Lancet

    (1962)
  • K.-M. Debatin et al.

    Lancet

    (1990)
  • K. Drickamer

    J. Biol. Chem.

    (1988)
  • E. Duvall et al.

    Immunol. Today

    (1986)
  • L. Fesus et al.

    FEBS Lett.

    (1987)
  • L. Fesus et al.

    FEBS Lett.

    (1989)
  • B.D. Halligan et al.

    J. Biol. Chem.

    (1985)
  • C. Haslett et al.

    Curr. Opin. Immunol.

    (1989)
  • R.O. Hynes

    Cell

    (1987)
  • R. Ishida et al.

    Biochem. Biophys. Res. Commun.

    (1974)
  • L.F. Liu et al.

    Cell

    (1980)
  • E. Martz et al.

    Immunol. Today

    (1989)
  • D.J. McConkey et al.

    Arch. Biochem. Biophys.

    (1989)
  • D.J. McConkey et al.

    J. Biol. Chem.

    (1989)
  • D.R. Phillips et al.

    Blood

    (1988)
  • M. Skalka et al.

    FEBS Lett.

    (1976)
  • N. Allbritton et al.

    J. Exp. Med.

    (1988)
  • M.J. Arends et al.

    Am. J. Pathol.

    (1990)
  • G. Ashwell et al.

    Annu. Rev. Biochem.

    (1982)
  • F.R. Balkwill

    Br. Med. Bull.

    (1989)
  • E.A. Barker et al.

    Am. J. Pathol.

    (1973)
  • G.D. Baxter et al.

    J. Pathol.

    (1989)
  • G. Berke

    Prog. Allergy

    (1980)
  • I.D. Bowen et al.
  • W. Bursch et al.

    Carcinogenesis

    (1984)
  • R. Buttyan et al.

    Mol. Endocrinol.

    (1988)
  • K.-C. Chow et al.

    Mol. Cell Biol.

    (1987)
  • W. Clark et al.

    Immunol. Rev.

    (1988)
  • J.J. Cohen et al.

    J. Immunol.

    (1984)
  • C. Denzlinger et al.

    Science

    (1985)
  • I. Dransfield et al.

    Immunol. Rev.

    (1990)
  • R.C. Duke et al.

    Lymphokine Res.

    (1986)
  • R.C. Duke et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1983)
  • E. Duvall et al.

    Immunology

    (1985)
  • T.A. Dykes et al.

    Clin. Res.

    (1987)
  • M.E. Elmes

    J. Pathol.

    (1977)
  • D.J.P. Ferguson et al.

    Virchows Arch. A: Pathol. Anat. Histol.

    (1981)
  • D.J.P. Ferguson et al.

    Br. J. Cancer

    (1981)
  • I.V. Filippovich et al.

    Int. J. Radiat. Biol.

    (1982)
  • J.T. Finch et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1976)
  • D. Flieger et al.

    Int. J. Cancer

    (1989)
  • G.C. Gobe et al.

    Int. J. Radiat. Biol.

    (1988)
  • P. Golstein

    Nature (London)

    (1987)
  • H. Green

    Harvey Lect.

    (1980)
  • P. Gullino

    Prog. Cancer Res. Ther.

    (1980)
  • A.H. Handyside et al.

    Wilhelm Roux's Arch. Dev. Biol.

    (1986)
  • D.J. Harrison

    Histopathology

    (1988)
  • Cited by (1426)

    • Special Techniques in Toxicologic Pathology

      2021, Haschek and Rousseaux's Handbook of Toxicologic Pathology: Volume 1: Principles and Practice of Toxicologic Pathology
    • Neurological Diseases and Mitochondrial Genes

      2021, The Molecular Immunology of Neurological Diseases
    • Imaging Biomarkers for Precision Medicine in Locally Advanced Breast Cancer

      2018, Journal of Medical Imaging and Radiation Sciences
    • Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway

      2018, Life Sciences
      Citation Excerpt :

      Cell cycle arrest indicates apoptosis inducing and growth inhibitory effects of AO-(2) in A431 and HaCaT cells. Apoptosis is associated with a distinct set of biochemical and physical changes involving the cytoplasm, nucleus and plasma membrane [40–42]. Results obtained from several end point assays relating to cell death in the present study revealed chromatin condensation, phosphatidylserine externalisation and loss of MMP, indicating the induction of apoptosis by AO-(2) in A431 and HaCaT cells.

    View all citing articles on Scopus
    View full text