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lA. Introduction. 

In this review paper I have restricted my attention only to major 

theoretical papers. However I have tried to be objective, as far as possible, 

in selecting papers from the enormous bulk of literature in this area. The 

recently published bibliography on multivariate analysis (Anderson, Das Gupta, 

and Styan, 1972) lists over 400 papers published before 1967 

in the area of classification and discrimination. Moreover, some results 

are available in the well-known textbooks by Anderson (1958) and by Rao (1952), 

besides few books {listed in the references) completely devoted to thisand allied 
fields. 

Anyway, I apologize for omitting many papers, especially many important 

applied papers and useful computer programs. 

In the literature we find many names for this general area of problems; 

for example, allocation, identification, prediction, pattern recognition, 

selection, besides the standard terms, such as, classification and discrimination. 

Whatever names may be attached, it is clear that this branch has attracted 

many researchers from different disciplines. From the existing literature, 

I have extracted the main formulations of the classification problem and 

reviewed almost all the important results under different broad categories of 

problems. 

lB. Early History 

In the first survey of discriminatory analysis, Hodges (1950) aptly 

mentioned the following. 

In his invited address at the meeting of the Institute of 
Mathematical Statistics in Berkeley, California, June 16, 1949, 
Professor M.A. Girshick pointed out that the development of 
discriminatory analysis reflects the same broad phases as does 
the general history of statistical inference. We may distinguish 
a Pearsonian stage, ••• , followed by a Fisherian stage. Professor 
Girshick further notes a Neyman-Pearson stage and a contemporary 
Waldian stage •••• 
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In the early work, the classification problem was not precisely 

formulated and often confounded with the problem of testing the equality 

of two or more distributions; the term "discriminatory analysis" was used 

for both. In practice, the following scheme was generally 

followed for the two-population classification problem. Suppose we have 

thr~e distributions 

test the hypothesis 

and T. 
]. 

F=F. {i= 1, 2). 
l. 

is a test statistic designed to 

The decision F = F. 
l. 

is taken :if 

T. 
l. 

is the smaller of T1 and T
2

; sometimes the critical values of T. 's 
l. 

are compared in order to take the decision. Thus statistics for testing 

the equality of two distributions played an important role. Generally, such 

a test statistic may be·considered as a measure of divergence between the 

two distributions. Karl Pearson (in a paper by Tildesley (1921)) proposed 

one such measure, termed as the "coefficient of racial likeness (CRL). 11 

This was modified by Morant in 1928 and by Mahalanobis in 1927 and 1930. 

tllll I 

-.. 

Mahalanobis called his measure D2 and suggested (193o)also some measures of ~ 

divergence in variability, skewness and kurtosis and studied the distributions 

of these measures. In 1926, Pearson published the first considerable theoretical 

work on the CRL and suggested the following form for the coefficient when the 

variables are dependent: 

where x. is the sample mean vector based on a sample of size n from the 
]. i 

·
th 

1 . ( 1 ) d 1. popu ation i = , 2 an S is the pooled sample covariance matrix. 

In 1935 and 1936, Mahalanobis gave the dependent-variate versions of his n2 -

statistic in the classical and the studentized forms. 
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The distributions of these statistics were studied by Bose (1936 a, b), 

Bose (1936), Bose and Roy (1938), and Bhattacharya and Naryana (1941). In 

1931 Hotelling suggested a test statistic T2 which is a constant multiple 

of the studentized Mahalanobis D2 and obtained its null distribution. 

Hodges remarded that "the first clear statement of the problem of 

discrimination~ and the first proposed solution to that problem were given 

by Fisher in the middle of the 1930's ••• the ideas of Fisher first appeared 

in print in papers by other people (Barnard ( 1935), Martin (1936)). 11 Earlier 

than this Morant (1926) considered the problem of classifying a skull into 

Eskimo or modern English groups by two sets of tests. Fisher's own first 

work on the subject appeared in his paper in 1936. For the univariate two­

population classification problem Fisher suggested a rule which classifies 

h b · · h · 
th 

1 · 1.· f I - I · th 11 f t e o servat1.on x 1.nto t e 1. popu at1.on x-xi is e sma er o 

Ix-xii and lx-x2I . For p-componerit observation vector (p > 1), Fisher 

reduced the'problem to the univariate one by considering an "optimum" linear 

combination (called the "linear discriminant function") of the p components. 

For a given linear combination Y of the p components, Fisher considered 

the ratio between the difference in the sample means of the r-values and the 

standard error within samples of the Y-values and maximized this ratio in or­

der to define the optimum linear combination. It turns out that the coef­

ficients of this optimum linear combination are proportional to 

Incidentally, Fisher (1936) suggested a test for the equality of two normal 

distributions with the same unknown covariance matrix and this test is the 

same as the one proposed by Hotelling (1931). 

The next development was influenced by the pioneering fundamental work 

by Neyman and Pearson (1933, 1936). For the two-population problem, Welch (1939) 
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derived the forms of Bayes rules and the minimax Bayes rule when the distri­

butions are known; he illustrated the theory with multivariate normal 

distributions with the same covariance matrix. This example was also 

considered by Wald (1944) who further ~reposed some heuristic rules by 

replacing the unknown parameters by their respective {maximum likelihood) 

estimates. Wald studied the distribution of the proposed classification 

statistic. Von Mises (1944) obtained the rule which maximizes the minimum 

probability of correct classification. The problem of classification into 

two normal distributions with different covariance matrices was treated by 

Cavalli (1945) and Penrose (1947) when p = 1 and by Smith (1947) for 

general p. In a series of papers,Rao(1946,1947a,1947b, 1948, 1949a, 1949b, 1950) 

suggested different methods of classification into two or more populations 

following the ideas of Neyman-Pearson and Wald; in particular, Rao suggested 

a measure of distance between two groups and considered the possibility of with•. 

holding decision (through "doubtful" regions) and preferential decision;. 

Rao's development is for the case when th~ distributions are all known. 

General theoretical results on the classification problem {as a special case) 

in the framework of decision theory are given in the book by Wald (1950) and 

in a paper by Wald and Wolfowitz (1950). 
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2. Problems in classification; different situations. 

The following are the main formulations of the classification 

problems along with some important variations. 

Problem 1. Let be m distinct populations (of experi-

mental units). A random sample (of size n C- 1 

mental units is available from a population 

or a sequence} of experi­

which is known to be 

exactly one of ,,1 , ... ' n; the problem is to d~~ide which one. 
m 

In 

order to distinguish the populations a vector (of p components, p ~ 1, 

or a sequence of components) X of real-valued characteristics of a 

unit is considered. The distribution of X in n. 
1. 

is denoted by 

corresponding c.d.f. of the p-dimensional distribution being Fi), 

P. 
l. 

i = 0, i, .•. ,m. Since P0 = PI for some I= 1,2, .•• ,m, the problem 

(the 

is to choose one among the m decisions I= i(i=l, ••• ,m). A decision 

rule is based on the observations on the units to be classified and 

the available information on P1 , ••• ,Pm. If these distributions are not 

completely known, supplementary information on them is obtained through 

available samples from the populations n
1

, ••• ,nm. In this case, it is 

assumed that F1 X F2 X ••• XFm belongs to a certain set O of distributions 

and for each point F1 X F2 X ... X Fm, Fi's are taken to be different. 

The samples from the populations n1 , ••. , "m will be called "training" 

samples, (this term is used generally by engineers), and Pi's (or Fi'S) 

will be called ''class-cl istributions." 

Problem 2. 

"1' ... , n. 
m 

Here is considered to be a mixture of the populations 

Corresponding to each unit we define X as be fore and 

consider a number I which denotes the serial number (1,2, ••• ,m) of the 

population to which the unit belongs. For the units to be classified I 

is unobservable and the problem is to decide on the value of I from the 
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knowledge of x. The distribution of X, given I = i, is P. 
l. 

and 

the distribution of I is over the set {1,2, .•• ,m}. The problem will 

be termed as "known mixture" or "unknown mixture" according as the dis-

tribution of I is known or unknown. If the distribution of (X,I) is 

unknown, a (training·, sample from iTO (of size N ~ 1, or a sequence) is 

available to get information on it. A training sample may be of two types 

( i) "Supervised" or "identified" - -For each unit in the training sample 

both X and I are observable. (ii) "Unsupervised". or "unidentified" -­

For each unit in the training sample only X is observable. 

Sometimes the units to be classified occur in a sequence and after 

the ith unit is classified its exact I-value becomes available. Thus 

for classifying the nth unit, the previous n - 1 units form a supervised 

.. training sample. We shall cal 1 this case as ( iii) post- supervised or 

post-identified . 
• 

It may also happen that the units to be classified do not come 

from the sample population, but, in a given sample, the number of units 

from each population may be known. 

Problem 2G. In the above problem I is taken as a classificatory variable 

and it is artificial in nature. More generally, one may consider I as 

a continuous or discrete variable with physical meaning and the population 

n. corresponds to re S., where s1 , •.. ,S is a partition of the I-space. 
l. l. m 

Marshall and Olkin (1968) incorporated the decision of observing I along 

with the m decisions in their formulation. 

Instead of considering only the m decisions, one may also incorporate 

the possibility of reserving judgments, preferential decision, as well as 

consider a more general decision space as p O € f p. ' ••• ?_. ) 
l.1 l.k 
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in a subset of (1,2, ••• ,m) and k z 1,2, ••• , m - 1. 

The populations T\, rr
2

, ••• , TTrn may represent rn different "stat es" 

or points of time. In that case, one may get a training sample such that 

on each of its units X-observations are available at these m points·of 

time. This would lead to "dependent" training sample. 

Also it may not be possible to observe every component of X on 

each sampled unit. This would give rise to "incomplete" data. It may be 

mentioned that one may consider a general stochastic process instead of a 

finite-dimensional vector X. 

The possibility of treating m as unknown is not considered in this 

review. 
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3. Classification Into Known Distributions: General Theories. 

Suppose that the distributions of X are P1,.o., Pm in n1, ••• , TTm' 

respectively, and the p.d.f. of X in TTi is given by f. with respect to 
l 

a a-finite measure U• We shall first consider the problem of classifying 

one unit from TTo into one of n1 , ••• , nm, from the decision-theoretic viewpoint. 

The problem can be stated as a zero-sum two-person game where each person has 

m possible actions. Let t{i,j) 2: 0 be the loss for classifying a unit 

into n. when it really belongs to n.; assume t{i,i) = 0 for all i = 1, ••• , m. 
1 J 

A decision rule is given by 6 = (6 1, ••• , 6) where 6.{x) is the conditional 
m 1 

probability of classifying into TT. 
]. 

given the observation x. The risk ... vector 

of a rule 6 is given by 
m 
lJ £ . .J 6. (x)dP. (x). When 
. 1 1J 1 J 1= 

£.[1-a.(6)], where a.(6) 
J J J 

r(o) = (r1(o), ••• , r (6)), where r.(6) = 
m J 

t .. =· t. for all i ~ j, r.(6) = t.J[l-6.(x))dP.(x) = 
1J J J J J J 

is the probability of correct classification (PCC) 

for the rule 6 when TT. is the correct population. Correspondingly the 
J 

.- probabilities of misclassification (PM:) are given by J 6.{x)dP.(x), if j. 
1 J 

... 

... 

-
-
-
... 

-
-
.. 

A prior distribution is given by s = {~1, ••• , ;m), where ;j is the 

probability that n. is the true population. (In case of mixed population, 
J 

the distribution of X can be expressed as ~ s.P .• ) The ;-Bayes risk of 
m j J J 

a rule 6 is given by R(s, 6) = 6 s.r.(6)0 The main results are as follows. 
j=l J J 

(i) A necessary and sufficient condition for a rule o to be ;-Bayes is 

that for any j (j = l, •• o, m), 6.(x) = 0 for all x (except possibly for a 
J m 

set of u-measure 0) for which L.(x) > min L.(x), where L.(x) = 6 t.k~kfk(x). 
J l~i~m 1 1 k=l 1 

In particular, when t .. = 1 
l.J 

for all if j, the above inequality can be 

expressed as ;.f.{x) < max ;.f.{x). 
J J l~i~m 1 1 

(ii) The class of all admissible rules is complete {and hence minimal 

complete). 

{iii) Every admissible rule is Bayes. 
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(iv) For every prior distribution ~, there exists an admissible s-Bayes rule~ 

(v) There exists a least favorable distribution 
0 

F, and a minimax rule 

6M which is admissible and ~0 -Bayes. For every minimax rule 6, 

r.(6) < R(~
0

, 5) = 
1. -

max 
1-:;;i~m 

r.(5), 
1. 

i = 1, ••• , m. 

(va) If m = 2, there exists a unique minimax rule (and hence- admissible 

Bayes) for which 

(vb) Suppose tij = t > 0 for if j, and the distributions P1 , ••• , Pm 

are mutually absolutely continuous. Then there exists a unique minimax rule 

6M for which 

It can be shown that if either of the above two conditions is violated, the 

equality of the risk components of 
M o may not hold. 

For proofs of the above results one may see Wald (1950, Section 5.1.1) and 

Ferguson (1967), although there are many papers and books (including Rao (1952), 

Anderson (1958)] which deal with this problem and present results weaker than 

the above. For earlier work see Welch (1939) and Von Mises (1945). Raiffa 

(1961) considered comparisons among experiments along standard lines dealing 

with risk functions. 

A Bayes rule may lead to large PM::'s and there have been several attempts 

to overcome this difficulty. Anderson (1969) posed the classification problem 

with m + 1 actions, the additional action being termed as a "deferred judgement" 

or "query." In that case, a decision rule 6 is given by (5
0

, 5
1

, ••• , 5m), 

where o
0

(x) is the conditional probability of suspending judgement. He 

considered the problem of maximizing 
m 

~ s.a.(6) subject to constraints given by 
i=l 1. 1. 

r 6.(x)dP.(x) < c .. , (i, j = 1, ••• , m; if j) 
J 1 J - 1.J 

where c .. 's are given constants, and obtained results on the existence, 
1.J 
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necessity, sufficiency and uniqueness of such solutions. Neyman and Pearson 

(1936) dealt with the maximization of the PCC to one population subject to 

the PM::'s of m other populations being equal to specified levels. See also 

Lehmann (1959). Rao (1952) also considered the problem posed by Anderson but 

gave only sufficient conditions. There is a heuristic discussion in Rao (1952) 

on introducing doubtful decisions {or regions) or preferential decisions besides 

the m actions. Quesenberry and Genaman (1968) considered the classification 

problem as a (2m-1)-decision problem as follows: 

5. . : means decide that 
1 1'•••,1.s 

(P. , •• •' 
1.1 

for s = 1, ••. , m-1 

50 : means reserve judgement, 

where {i
1

, ••• , is) is a subset of (1, ••• , m). They posed the problem of 

finding a rule which minimizes the probabilities of reserving judgement when 

the probabilities of wrong decisions {i.e., P j (decide P
0 
+ P j)) are controlled; 

they gave the solution for m = 2. 

Marshall and Olkin (1968) {see Section 2 for their problem) gave some 

characterizations of minimum risk procedures. The possibility of observing 

the components of X sequentially was also considered. See Cochran (1951) for 

a related problem. 

Heuristic Rules: A likelihood-ratio (LR) rule is defined by 5, where 

if (for some positive constants c1,•••, c) c.f.(x) < max [c.f.(x)]; 
m J J l~i~m 1 1 

o.(x)>O, 
J 

see 

the result (a). In particular, if c. 's are all equal, the rule will be called 
1. 

a maximum-likelihood (ML) rule. 

For a distance function d defined for pairs of distributions, a minimum 

distance (MD) rule classifies X into F. if d(Fo, Fi)= min d(Fo, F.); 
1 l~j~m J 

ties may be resolved in some mannerv In the above, F
0 

is an estimate of F
0 

obtained from the sample (from n0 ) to be classified, so that d(F0 , Fj) are 

defined; when F = F(,; 9), one may consider 
0 

- 13 -
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Suppose we restrict our attention to rules belonging to a given class. 

Then one may find an optimum rule in that class (if it exists) by maximizing 

a weighted average of the PCC's or minima.xing P:K:;'s. See Aoyama (1950) in 

this connection. 

For m = 2, the classification problem is essentially the problem of 

testing a simple hypothesis against a simple alternative. In this case, there 

are well-known results on the asymptotic behavior of the error probabilities~ 

See Kullback (1958), Chernoff (1952). For m > 2, see Hellman and Raviv (1970) 

Suppose is the average error probability for a rule 

when m = 2. Chernoff (1970) showed that 

sup inf e(F1, F2, t) = [2(1 + t?)]-1, 
F. e:3'. t 

1 1. 

where ;Ji is the class of all univariate distributions with means 

< X > t, 

µ. and 
1. 

variance er/~, and /1 = 1µ
1

- µ
2

l/(cr1+ a
2

). The same result is obtained if 

one considers only the LR tests. For other studies on error probabilities, 

see Bahadur {1971) and references therein. 

The problem of distinguishing (i.e., finding sequential or non-sequential 

rules so that the P?i£'s can be controlled arbitrarily) between two sets of 

distributions is posed by Hoeffding·and Wolfowitz (1958) and some necessary 

and sufficient conditions were obtained by them. In this framework, one 

considers a sequence of i.i.do random variables whose common distribution is 

known to belong to either of two given sets. Freedman (1967) extended some 

of these results when the possible distributions are countably manyo Yarborough 

(1971) studied this problem with likelihood-ratio rules. The papers dealing 

with discrimination between stochastic processes are mainly concerned with 

finding conditions for which two (or more) processes {i.e., the induced 

measures) are equivalent or orthogonal. In case of equivalence, the next problem 

- 14 -
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is to obtain the likelihood-ratio and study some rules based on it. For 

Gaussian processes, see Feldman (1958), Hajek (1958), Rao and Varadarajan (1963) 

and the references therein. Brown (1971) dealt with Poisson processes; Shepp 

(1965), and Kantor's (1967) results are concerned with distinguishing between 

a process and its translate. For general work in this area, see Kakutani (1948), 

Gikhman and Skorokhod (1966), Kraft (1955), and Adhikari (1957). When we have 

a sample (x
1

, ••• , X ) from TIO and the problem is to make decisions on their 
no 

common distribution (which is known to be one of F1 , ••• , Fm) one may treat 

the problem from the standard decision-theoretic view-point. it is also possible 

to use the compound-decision approach of Robbins (1951) in order tQ get some 

asymptotically good rules. The empirical Bayes approach may be used when the 

observations are from a mixed population. 

When one has the possibility of getting observations from TIO sequentially, 

, it may be appropriate to consider the sequential m-decision problem. Out of a 

considerable literature, the following may be mentioned: Wald (1947), Wald (1950), 

Armitage (1950), Mallows (1953), Simons (1967), Fu (1968, and the references 

therein), Meilijson (1969), Roberts and Mullis (1970), Kinderman (1972). 

Dvoretzky, Kiefer and Wolfowitz (1953) pointed out that most of the results 

of Wald (1947) extend to the case of stochastic processes in continuous time 

provided that the last observation is a sufficient statistic for the entire 

past and the log(LR) of these statistics at various points of time form a 

process with stationary and independent increments; e.g., sequentially testing 

the drift of a Brownian motion or the intensity of a Poisson process. 

Bhattacharya and Smith (1972) defined sequential probability ratio tests for 

testing a simple hypothesis against a simple alternative for the mean value 

function of a real Gaussian process with known covariance kernel; exact formulas 

are obtained for the error probabilities and the OC function. 
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4. General Theory of Classification When the Information About the Distribution 

is Based on Samples. 

When the class-distributions F1 , F
2

, ••• , Fm (and the mixture probabilities 

!;l' ••• ' s , in case of a mixed population)· are not completely known, information ·m 

on them is available through a training sample (Ts). As described in Section 2, 

a training sample may be obtained separately from each n-i (i = 1, •.• , m), or 

from a mixture of these populations and, in that case, the sample may be 

supervised, unsupervised or post-supervised. Let n be the total size of 

the training sample and n. 
l. 

be the size of the sample from 1T •• 
l. 

Let be 

the size of the sample from n
0 

which has to be classified and we shall denote 

such a sample by "cs." 

Classification rules are generally devised using the following methods: 

{a) Plug-iri rules: Under complete knowledge of F. 's {and ~- 's, in case of 
l. l. . 

mixed population) a good rule {e.g., Bayes rule, minimax_rule, LR rule, MD rule 

etc.) 6 
,. 

is chosen. A plug-in rule 6 is obtained by replacing the F. 1 s (and 
l. 

~. 's) in 6 by the corresponding estimates obtain~d from TS. When 6 involves 
l. 

only the class densities or the parameters {in the parametric case) the corresponding 

" estimates of the densities or the parameters are used in 6. In case of a 

MD rule using a distance function d, estimates of the distributions have to 

be chosen appropriately so that d is defined for these estimates. 

(b) LR rules and :tvn, rule: Suppose the class-densities are known except for 

some parameters. Let L(TS) denote the likelihood of the training sample 

and L.(cs) denote the likelihood of CS under the hypothesis 
l. 

Let 

~i = sup[Li(CS)L(TS)], the supremum being taken over the parametric space. A 

LR rule classifies CS into n., iff 
l. 

k.A.. = 
l. l. 

max [k.L], 
l~j~m J J 

- 19 -



• -
where k. 's are non-negative constants; ties may be resolved in some manner. 

i -

A ML rule is a LR rule with equal k. 's. The concept of a LR rule for the 
i 

classification problem is due to Anderson (1951). 

(c) Best-of-class or constructive rules: Such a rule is given by the one 

which optimizes certain specified criteria in a given class. One may consider 

Bayes rules, admissible rules, minimax rules or characterize a (reasonable) 

complete class following the general theory of statistical decision functions; 

the class of rules may be restricted by some invariance requirement. Note 

that in this case the action space of the statistician is finite. See Wald 

(1950), Kudo (1959, 19£>o). Another possibilicy is to consider some criteria 

depending on PM::'s and use Neyman-Pearson theory and its extensions. See 

Rao {1954). 

The criteria may be defined "empirically" as follows. Suppose the 

criteria for evaluating the performance of a rule is given by a real-valued 

function (e.g., PCC). For each rule, an estimate of the value of the function 

corresponding to the rule is defined in terms of TS. Then an empirical best­

of-class rule is the one for which such an estimate is the maximum in a given 

class of rules. See Glick (1969). 

. ..• 

The main problem in obtaining plug-in rules is to get reasonable estimates 

of the distributions (or the densities, or the parameters). Generally, maximum­

likelihood or some other consistent estimates are used. For estimation, 

especially in the non-supervised case, there is a huge literature and it is 

not possible to discuss these papers in this review. For an early work on 

non-supervised estimation, see Pearson (1894). For estimation by potential 

function method and stochastic approximation method, especially in the non­

supervised case, see Fu (1968) and Patrick (1972) and references therein. 

General results on asymptotic properties of plug-in rules are given in Hoel 

and Peterson (1949), Fix and Hodges (1951), Das Gupta (1964), Van Ryzin (1966); 

Bunke (1967), Glick (1969, 1972). 
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See Sections 5, 6, 7 and Glick (1969, 1972), in particular, for studies 

on estimation of PM::'s of a rule. 

There is no systematic work on sequential rules. See Fu (1968), Patrick 

(1972) and Kurz and Woinsky (1969) in this connection~ Kinderman (1972) 

studied some sequential rules based on distance functions and suggested some 

rules based on the idea of "tests with power 1" of H. Robbins. 

Class ifiabil ity. 

Following the work of Hoeffding and Wolfowitz (Ann. Math. Statist., 1958) 

on distinguishability of distributions, Das Gupta and Kinderman (1972) (see 

also Kinderman (1972)) introduced an important notion termed as "classifiability." 

Suppose F1 X F2 x ••• x Fm belongs to a certain set O of distributions. 

The set O is said to be classifiable finitely or sequentially if the PM::'s 

can be controlled {arbitrarily) by some fixed sample-size rule or sequential 

rule, respectively, based on observations from TT
0

, TT1 , ••• , TTm· Different 

conditions are obtained for O to be classifiable. The structure of O is 

studied for resolving the problem whether observations from all the populations 

or some (specific) of them are required (or sufficient) so as to get a rule 

when the PM::'s are controlled {arbitrarily). 

Compound-Decision and Empirical Bayes Approaches. 

Let x1 , x
2

, ••• , Xn be independent random variables. The distribution 

of Xi is given by F(•, ei) where 9i e [1,2, ••• , m] and for each i the 

problem is to choose one of the decisions ei = j(j = 1, ••• , m); this will be 

11 d h . th bl ca e t e 1 component pro em. The main bulk of the literature concerns 

with m = 2 and we shall only describe this case. The general theory is given 

be a decision rule, where t. and 
1 

1 - t. are the conditional probabilities of deciding 9. = 1 and 2, respectively, 
1 1 

given the observations. Let R be the minimum value of the average of risks 
n 
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for the n component problem when one considers only fixed rules given by 

t. = t(x.). It is shown in Robbins (1951), Hannan and Robbins (1955) that 
i i 

there exists {T} with T. = t. {x1 , ••• , x) such that for large n the 
n i i n 

risk of T is uniformly (in 9. 's) close to R; it is assumed that F(•, j) n i n 

are known for all j. Hannan and Van Ryzin (1965) studied the rate of convergence 

of the risks of the above rules. Assuming that x1 , x2 , ••• , Xn occur in a 

sequence, Samuel considered "sequential" rules T with t. = t.(x
1

, ••• , x.). n i i i 

She (1963a) first characterized the minimal complete class under complete 

knowledge and in (1963b) proved a result similar to Hannan and Robbins restricting 

to "sequential" rules. For a nonparametric method, see Johns (1961). 

The empirical Bayes method, suggested by Robbins (1964), was used by 

Hudimoto (1968) in devising a rule for classifying observations from the mixed 

population n
0

• When the class-distributions are unknown, they are estimated 

{by nonparametric method) from a supervised TS. The risk of such a rule was 

also studied. Based on n
0 

observations from a mixed distribution given by 
m 
~ F,.F(x; 9.), Choi (1969) suggested to estimate the i;. 's and the 9. 's by 

j=l J J J J 

minimizing 

f[z.~jF{x; ej) - F{x)]2 dF 

where 
A 

F is the empirical c.d.f. These estimates are used to obtain a plug-in 

rule 6 from the Bayes rule 6. The asymptotic behavior of the conditional 
A 

risk of 6 given the observations was studied. 

See Tanaka (1970) for a method of approximating the difference of two 

posterior probabilities at the n
th 

stage for classifying a sequence of 

observations, each into one of two distributions. 
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5. Classification Into Multivariate Normal Populations--Nonsequential Methods. 

A. Classification Into Two Multivariate Normal Distributions With the Same 

Covariance Matrix. 

The distribution of X in TT. is N (µ,., E), i = 1, 2. Suppose all 
l. p l. 

the parameters are known and X - N {µ,, E), where 
p 

µ, = 9µ,1 + (1-9)µ,
2

; for the classification problem 9 = 0 or 1. It is 

easily seen that (µ,1- µ,
2

)'E-
1x is a sufficient statistic for 9. The class 

of Bayes rules is the same as the class of LR rules. Typically, a LR rule 

6c classifies X into Np(u1 , r.), iff 

2 2 

T(x) = T{x; u1 , ~' E) = llx-u111r - \lx-u211r, ~ c, 

where lla-bll; = (a-b)'E-1(a-b). The minimax Bayes rule (0-1 loss) is given 

by o
0

; it is also called the minimum distance (MD) rule (for Mahalanobis 

distance). The P}£ of 6c is given by 

2 
where (12 = l!u1- µ,

2
IIE , and qi is the c.d.f. of N(0, 1). This classical 

case is treated in many papers and books, of which Welch (1939), Wald (1944), 

Rao (1952) and Anderson (1958) are worth mentioning. Recall that Fisher's 

( ) 
I -1 LDF (in the population) is given by µ,1- ~ E x which maximizes 

[a'(µ,
1

- µ,
2

)]2 /a'Ea among all vectors ao Penrose (1947) suggested to consider 

the best LDF in terms of two linear functions of X given by the sum and a 

linear contrast of the components of X expressed in terms of their standard 

deviations; he called them the "size" and the"shape" respectively. He 

discussed the case when all the correlations are equal. 

If the unknown parameters are structured in a special way, reasonable 

rules based on X can be found. For instance, Rao (1966) considered the 
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following structure, relevant for growth models: 11.. = \). + f30. {i = 1,2), 
""1. l. l. 

where "i' f3 are known but the vectors e. are unknown. By restricting to 
l. 

similar devisions of the sample space or by considering ancillary statistics, 

the problem is reduced to finding the usual LDF in terms of the projection 

of X on a space orthogonal to the column-space of f3. This problem was 

originally posed by Burnaby (1966). Rao also treated the case when the 

covariance matrices are different. 

Cochran (1962, 1964) studied the effects of the different components of 

X on ~2 (which determines the PM:: of a LR rule), especially when all the 

correlations are equal. 

When all the parameters are not known, random samples of sizes 

n2 from NP(µ1 , r) and NP(µ2 , r) are used to get infonnation on the 

parameters. (Sampling is different in the mixed-population case.) The 

and 

literature in this area spans over (i) suggestions of some heuristic rules, 

especially the plug-in LR rules, (ii) distributions of classification statistics 

and expressions for PM::, (iii) estimation of the P1'£ of a given rule, and {iv) 

derivation of constructive rules. 

The rules considered in the literature are usually of the type involving 

a classification statistic Z and a cut-off point c {i.e., classifies into 

Z < c), where z is a function of x, xl, x2, and s' where xl and 

x2 are the sample mean vectors and S is the sample pooled covariance matrix 

(the divisor being n1 + n2 - 2 = r). The plug-in version of &c, denoted by 

6c' is based on the statistic W = T(X; x
1

, x
2

, s), when all the parameters 

are unknown. This statistic was proposed by Anderson (1951). More generally, 

one may consider a plug-in LR rule by replacing the unknown parameters in T 

-· 

by their respective estimates. Fisher (1936) and Wald (1943) suggested the 

plug-in LDF as the classification statistic, which is given by U = (X - x
1

) 1s-1x. 
2 • 

Anderson (1951, 1958) proposed the LR rules which have the following classification 

statistic: 
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[r + (l+l/nl(
1
llx-~11:Hr + (l+l/n2)-

111x-\11:r1 
• 

When the cut-off point c is 1, this rule reduces to 

V = (l+l/nl)-1II X-~II: - (1+1/n2)-lllx-\ll: § o 

A 

This is the same as 50 , when n1 = n2 • For known L, the LR rules involves 

the statistic V with S replaced by r. In the sequel, the rule V ~ O 
A 

will be called the W:.. rule and 5
0 

will be called the MD rule; we shall use 

the same terminology when some of the known parameters are used instead of 

their estimates. Rao (1954) derived some rules restricting to invariance 

and local optimal conditions; the classification statistic for his rule 

(L unknown) will be called R. Ma~usita's (1967) minimum distance rules (for 

his distance function, see Sec. 5B) reduces to MD rules in this case; 

Matusita also considered the case when there are n observations to be 
0 

classified and obtained some lower bqunds for the PCC of the MD rule. 

Rao (1946) suggested to test the hypothesis µ = (µ
1
+ µ

2
)/2 by Hotelling 1 s 

T2 -test and use the MD rule when this test is significant. Brown (1947) con-

sidered a problem where µi = ~ + swi (i = 1, 2), wi being the classificatory 

variable (e.g., age). From training sample,~ and S are estimated and using 

these estimates w is estimm.a:l for the observation to be classified; Brown 

extended this to more than 2 populations. Cochran (1964) posed the problem 

when the last q components of X have the same means in n
1 

and TT2 and 

* suggested to consider a statistic W (similar in form to W) in terms of the 

residuals in the first p-q compcnents of X after eliminating their (linear) 

regression on the last q components. Each of the statistics, U, V, W and 

R can be expressed as a linear function of the elements of a 2 X 2 random 

matrix 

M = [mij] = (Y1 Y2 )'A-
1

(Y1 Y2), 
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are independent N ( •, I ) vectors , and A - W ( n
1
+ n

0 
- 2; I ) p p p '. p 

independently of y
1 

and Y
2

• In partlcular, for V, W and R the means 0£ 

y 
1 

and Y.
2 

ara proportional, and, moreover, V is a constant multiple of 

m12• Wald (1943) gave a canonical representation of U, and Harter (1951) 

derived its distribution when p = 1. Sitgreaves (1952) derived the distribution 

of M when the means of Y1 and Y2 are proportional; Kabe (1963) derived 

it without this restriction. Bowker (1960) showed that W can be represented 

as a (rational) function of two independent 2 x 2 Wishart matrices one of 

which is noncentral. Bowker and Sitgreaves (1961) used this representation 

to find an asymptotic expansion of the c.d.f. of W in terms of -1 n 
1 

and 

Hermite polynomials, when n1 = n
2

• Sitgreaves (1961) derived the distribution 

Elfving 

• 

of m12 and explicitly obtained the P:t-£ of the MD rule when n
1 

= n
2

• 

(1961) obtained an approximation to the c.d.f. of W for large n
1 

= n
2 

- . 
and 

p = 1. In the univariate case, Linhart (1961) gave an asymptotic expansion 

for the average P:t-£ of the MD rule in po~ers of (n1 + n
2

)/n
1
n

2 
and Hermite 

polynomials in 62 • Teichroew and Sitgreaves (1961) used an empirical sampling 

plan to obtain an estimate of the c.d.f. of W. Okamoto (1963) considered the 

statistic W where the degrees of freedom r of S is not necessarily 

n1 + n
2 

- 2, and gave asymptotic expansions of 

in terms of and -1 r as r tend to 00 and 

tend to a finite positive constant. Anderson (1972) obtained asymptotic expansions 
2 

of the above probabilities with 62 replaced by D2 = llx'c X2lls· Mernon and 

Okamoto (1971) obtained an asymptotic expression for the c.d.f. of (V+62 )/26, 

when 

... 



.... 

-· 
• 

-

Cochran (1964) numerically compared the PM.::'s (computed from Okamoto-

expansion} of the rules w* § 0 with those of W § 0 when is large. 

Memon and Okamoto (1970) derived an asymptotic expansion for the distribution 

* * of W and the PM:: of the W -rule in terms of and -1 r 

John (1959, 1960) derived the distributions of the statistics U, V, W 

and Rao's statistic (when L is known), S being replaced by E and obtained 

explicitly the PM:: when the cut-off point is O. Some bounds for the PCC were 

also given·by John. When E is unknown, and S is used for E, some approx­

imations are given for the distributions and the PCC's. ,.. ,.. 
µl+ I-L2 

For p = 1, µ1 < u
2

, Friedman (1965) considered a rule: X § 
2 

and 
µ + µ 

compared its PMC with that of the rule X ~ 1 
2 

2 , with approximations for 

large size of the training sample. 

Recently, Das Gupta (1972) proved that for a large class of rules (including 

the MD and the ML rules--E known and L unknown) the PCC I s are monotonic 

increasing functions of ~2 • 

Let 6 = 6(•; u1 , u
2

, E) be a decision rule when all the parameters are 
,.. 

known. We shall denote the plug-in version of 6 by 6 by replacing the 

unknown parameters by their respective (standard) estimates. The conditional 

error probabilities of 6, given xl, x2 and s, are given by 

if j; i, j = 1, 2. The unconditional error-probabilities of 
,.. 
5 are 

~.(&) = E(e.(6)). An estimate of e.(6) is given by @.(5) which is obtained 
1. 1. 1. 1. 

by replacing the unknown parameters in e.(6) by their standard estimates. 
1. 

Similarly ai(o) and ai(6) are defined. 

In the literature, the error-probabilities of the minimax rule. 60 (parameters 

known} and its plug-in version 
,.. 
6
0 

(the MD rule} are mostly considered. When 
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L is known, John (1961) derived the distributions of ei(&0 ) and obtained 

their means; similar results are obtained when the cut-off point is not 0 

and only approximations are given when L is unknown and and are 

large. In (1964) John considered the similar problem except that µ may be 

different from µ
1 

or µ
2

• John (1963) studied the conditional PM::'s of the 

.... 
• 

rules defined by the classification statistics (1 + !
1
)-

11lx-x111; - 11(1 + ! f 1Jlx-x2\!; 
2 .. 

and Rao's statistic R, when L is known. Dunn and Varady (1966) empirically 

studied (Monte Carlo methods) 1 - &i(60 ), 1 - ei{60 ) and 1 - ei(50 ) and 
,.. 

derived a confidence interval for the conditional error probabilities of o0 • 

Geisser (1967) considered a prior measure for the paramters whose {improper) 

1~1 (p+l)/2_ density is proportional to ~ Using the posterior distribution of 

the parameters {given xl, x2 and s) he obtained confidence bounds for 

ei{&
0

); for large n1 , n
2 

he used normal approximations. Several estimates 

of e
1

{&
0
), a

1
(&

0
), a 1(6

0
) are suggested in the literature of which the 

following are of main types: {i) Smith's (1947) reallocation or counting 

estimates, {ii) Lachenbruch's (1967) deletion-counting estimate, {iii) Fisher's 

estimate e
1

{60 ) = ffi(-D/2) or the estimate obtained by replacing ~ in 

~(-~/2) by some other estimate, {iv) the leading term in the Okamoto-expansion 

and replacing ~2 by its estimate, {v) estimates obtained from additional 

training sample. It follows from Hills (1966) that ai(&0 ) > ai(o0 ) when 

n1 = n
2

• For p = 1, Hills (1966) obtained the distribution of 81(&
0

) and 

compared the expectations of e
1

(&
0

}, e
1

{6
0

) and thoseof the counting estimate 

by exact expressions and numerical computations. In 1967, Lachenbruch proposed 

the deletion-counting method for estimation. Lachenbruch and Mickey (1968) 

suggested some estimates of ~2 and studied empirically the behavior of the 

estimates (i)-(iv}. Brofitt (1969) derived the uniformly minimum variance 

estimates of the mean values of Smith's and Lachenbruch's estimates and suggested 

some other estimators with smaller mean-square errors. Sorum (1971) obtained 
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some estimates based on additional observations. For known ~, she derived 

the means, the variances and approximation to the mean-square errors of most 

of the estimates and studied these estimates numerically when ~ is unknown 

(1972a, 1972b). Dunn (1971) studied the average PCC of 
A 

60 and Lachenbruch's 

estimates {using his estimate of 62 ) for n1 = n
2 

by Monte Carlo methods. 

For p = 1, Sedransk and Okamoto (1971) obtained asymptotic expansions for 

the mean-square errors of several estimates. Recently, Das Gupta (1972) 

obtained some results on Fisher's and Smith's estimates which g.eneralize 

Hill's (1966) results • 

Chan and Dunn {1972) studied the effect of missing data on the PM:! of 
A 

5
0 

by Monte Carlo methods using several standard techniques of handling 

missing data. Srivastava and Zaatar (1972) derived the ML rule when ~ is 

known and the samples from the two populations are incomplete (all the p 

components are not available on each unit sampled) and showed that this rule 

is admissible Bayes. Lachenbruch (1966) posed the problem when the parent. 

populations of the observations in the training sample are incorrectly identi­

fied. Mclachan (1972) derived asymptotic expressions for the mean and the 

variance of ei(6
0

) incorporating the possibility of incorrect identification 

of the training sample. 

Following Glick (1972) it can be shown that as n1 , n2 ""? 00 , ~i(o)-? ai(6) 

a.s. uniformly in the class of all rules {not based on training data). Further­

more, if 6 is a LR rule, then a.(6) ""? a.(6) a.s. and &.(5) ""? a.(5). For 
i 1 i 1 

related results, see Glick (1969, 1972) and for slightly weaker results see 

Fix and Hodges (1950), Bunke (1964). Kinderman (1972) suggested a measure of 

the relative asymptotic efficiencies of two rules by the limit of the ratio 

of minimum total sample sizes required by the two rules to achieve a maximum 

probability of error a, as a""? o. In particular, he illustrated this concept 
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by comparing a two-sample rule based on samples from n
0 

and n 1 and a 

three-sample rule using Anderson's statistic when the populations are univariate 

normal with variance 1 and 6 = lµ1- µ2 1 > O. 

There are many ad hoc methods for choosing "good" components of the 

vector X. Cochran (1961, 1964) studied the effect of the different components 

of X on 6~, especially when all the correlations are equal. Urbakh (1971) 

made a similar study on 62 , as well as, on Lachenbruch's estimate of 62 • 

Linhart (1961) made a numerical comparison of the effectiveness of selecting 

components by i(-6/2) and the average PM:: of 6
0

• Weiner and Dunn (1966) 

also studied empirically three methods for selecting components. 

In the normal case, Glick (1969) obtained some interesting results for 

the 'best-of-class' rules. Let CLD be the class of all rules based on linear 

(discriminants) functions of X (i.e., partitioning the sample space into two 

lij 

half spaces). * Let 6 be a rule in CLD which maximizes (in CLD) the average· • 

{over some !mown prior or the standard estimates of the proportions in the 

mixture) of the proportions of the training sample correctly classified. Then 

this maximum value converges (a.s.) to the PCC of the best (Bayes) rule and 

* the risk of 6 converges a.s. to the Bayes risk as the sample size in the 

training sample increases to oo. 

When the training sample comes from a mixed population different methods 

are available to estimate the parameters and the proportions in the mixture, if 

they are unknown. For the supervised case, there is not much change in the 

theory and the methods from the usual case discussed before. For some asymptotic 

results see Glick (1969, 1972). In the non-supervised case, there is a good 

. ..., 

... 

.., 

... 

..., 

.... 

.... 

... 

... 

-
... 
..., 

-
... 

... 

deal of literature; for this and relevant references, see Fu (1968), Patrick (1972); _. 

for an earlier work see Pearson (1894). 
...I 

Rao (1954) derived an optimal rule in the class of rules for which the 

probabilities of error depend only on A* using the following criteria: (i) to .. 
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minimize a linear combination of the derivatives of the error-probabilities with 

respect to 6 at 6 = 0 subject to the condition that the error-probabilities 

at 6 = 0 bear a given ratio. ( ii) The above criterion with the additional 

restriction that the derivatives of the error-probabilities at 6 = O bear 

a given ratio. Rao separately treated the problem according as E is known 

or unknown. When E is known, Kudo (1959, 1960) showed that the ML rule 

has the maximum PCC among all translation-invariant rules 6 for which the 

error-probabilities depend on 62 , and 

for all 61 and 62 such that He also 

showed that this rule is most stringent in the above class without the 

requirement of translation-invariance. When E is known, Ellison (1962) obtained 

.- a class of admissible Bayes rules which includes the MD and ML rules. In this 

case, Das Gupta (1962, 1965) showed that the ML rule is admissible Bayes (with 

a different prior and a general loss function) and minimax (unique minimax 

under some mild conditions). When E is unknown, similar results were obtained 

by Das Gupta (1962, 1965), restricting to the class of rules invariant under 

translation and the full linear group. For p = 1, n1 = n
2

, Bhattacharya and 

Das Gupta (1964) obtained a class of Bayes rules and showed that the MD rule is 

minimax Bayes. Srivastava (1964) also obtained a class of Bayes rules when E 

is unknown. Geisser (1964) used a prior (improper) density which is proportional 

to and v = 0 when E is known; he derived the (improper) 

Bayes rules for these priors which are the likeliho~d-ratio rules in respective 

cases. For similar analysis, see Geisser (1966). Kiefer and Schwartz (1965) 

indicated a methodtD obtain a broad class of Bayes rules which are admissible; 

in particular, they showed that the LR rules are admissible Bayes when E is 

unknown and r + 1 > p. Marshall and Olkin (1968) derived Bayes rules for normal 

distributions in their special set-up. When p = 1, n1 = n
2 

and the number 
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of observations to be classified is n{2: 1), Kinderman (1972) characterized 

an essentially complete class of rules, invariant under translation and 

change of signs. 

B. Classification Into Two Multivariate Normal Populations With Different 

Covariance Matrices. 

The distribution of X in TT· is taken as N {µ,., E.), i = 0,1,2; 
1 p 1 1 

furthermore, it is known that E1 and E2 are different. Generally, three 

cases are considered: {i} (µ,0 , E0 ) = {µ,i' Ei) for some i = 1, 2, {ii) µ,0 = µ,i, 

for some i = 1, 2, (iii) E0 = Ei for some i = 1, 2. 

When the parameters are known, the LR statistic was studied by Cavalli 

(1945) (p = 1), Smith (194-7), Okamoto (1963) (µ,0 = µ,1 = µ,2 ), Cooper (1963, 1965), 

Bartlett and Please (1963) (µ,0 = µ1 = µ,2 = O, E. = (1-p.)I + p.J, i = 1, 2), 
1 ]. p ]. p 

Bunke (1964), Han (1968) (E1· = (1-p.)I + p.J, i = 1, 2), Hann (1969) (E1 = cU::2 , ]. p ]. p 

d > 1), Han (1970) (E. 's are of circular type). 
]. 

Kullback (1952, 1958) suggested a rule based on the linear statistic which 

maximizes the divergence J(l, 2) between Np(µ,1 , E1) and Np(µ,2 , E2 ). He 

also obtained some partial results on deriving the optimum class of rules based 

on linear functions of X from Neyman-Pearson viewpoint (i.e., minimizing one 

P~ by controlling the other). Clunies-Ross and Riffenburgh (1960) studied this 

problem geometrically. Anderson and Bahadur (1962) derived the minimax rule 

and characterized the minimal complete class after restricting to the class of 

rules based on linear functions of X. Banerjee and Marcus (1965) studied the 

form of this minimax rule. 

Gilbert (1969) derived the PK! of a LR rule when the parameters are known 

and compared it with the PK! of the corresponding LR rule when E
1 

= E
2

• For 

the later rule he obtained the optimum cut-off point for which the total p~ 

is minimized. 
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Lbov (1964) studied the PMC when p is large and the parameters are 

known. See Grenander (1972) for a similar problem. 

Anders:>n (1964) studied the problem of choosing components by minimizing 

Bayes risk when the distributions are univariate normal. 

When equals either or µ
2

, and the covariance matrices are known, 

a class of admissible Bayes rules was obtained by Ellison (1962); in particular 

he showed that the MD and the ML rules are admissible Bayes. 

Okamoto (1963) derived the minimax rule and the form of a Bayes rule when 

the parametersare known; he studied some properties of the Bayes' risk function, 

and suggested a method for choosing components. He also treated the case when 

L.'s are unknown, and the common value of u. 's may be known or unknown. 
1 1 

The asymptotic distribution of the plug-in log{LR) statistic was also obtained 

by Okamoto. Bunke (1964) derived the minimax rule and the form of a Bayes 

rule and proved that the plug-in minimax rule is consistent. Following the 

method of Kiefer and Schwartz (1965), Nishida (1971) obtained a class of admissible 

Bayes rules when the parameters are unknown. 

Matusita (1967) considered a minimum distance rule and suggested its plug-in 

version by replacing the unknown parameters by their respective estimates; the 

distance between two distributions with p.d.f.'s p1 and p
2 

with respect 

to a a-finite measure m was taken as 

He separately treated the different cases according as the µi's 

are known or unknown, and obtained some bounds for the PCC. 

and L. 's 
1. 

When Ll = ~
2 

{d > 1), the distributions of the log(LR) statistic and its 

plug-in version (by replacing the mean vectors by their estimates) were derived 

by Han (1969). Similar results were obtained by Han (1970) when 

of "circular" type • 
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Chaadha and Marcus (1968) studied {mainly simulation) the behavior of 

some estimates of a measure of divergence defined as 2(u1- µ2)'(E1+ E2)-1(µ1- ~). 

Ayoma. (1950) considered rules of the form X §: x0 and found the optimum 

value of x
0 

which minimizes the PCC when X is a mixture of two univariate 

normal distributions; the mixture ratio may be known or unknown. 

C. Classification Into More Than Two Multivariate Normal Populations. 

The distribution of X in TTi is taken as N (µ., E.), i = 0,1, ••• , m. p 1. 1. 

In most of the cases the results for m = 2 are extended in a straightforward 

way, and discussions on this case may be found in many papers cited in Sections 

5A and 5B. In particular, see Fisher (1938), Day and Sandomire (1942), Brown 

(1947), Rao (1952), Anderson (1958), Rao (1963). Generalizing Fisher's LDF,one 

considers the eigenvectors of the "between means" matrix in the metric of ''within 

error" matrix. For other criteria, see Uematu (1964). 

Das Gupta (1962) considered the problem when µ1, ••• , µm are linearly ~ 

restricted (as in the linear model in MA.NOVA) and showed that the ML rule 

is admissible Bayes when the connnon covariance is known. Following Kiefer 

and Schwarz (1965), Srivastava (1967) obtained similarresults when the common 

covariance matrix is unknown. 

Cacoullos (1965) considered the case when the distribution of X in TT. 
1. 

is N (µ.,E), i = O, 1, ••• ,m, 
p 1. 

and 

µ1 , ••• ,µm; the problem is to choose a 

is not necessarily equal to one of 

n. which is nearest to 
1. 

(in the 

sense of Mahalanobis-distance). When µ
1

, ••• ,µm, and E are known he ob­

tained a unique invariant minimax rule allowing for indifference regions; for 

them-decision problem he obtained a class of admissible Bayes rules including 

the minimax rule. In a later paper (1965), Cacoullos obtained a class of 

Bayes rules when E and µ1, ••• ,µm are unknown. 
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6. Discrete and Other Non-normal Distributions. 

The papers are grouped according to the type of distribution and the 

nature of the problem considered. A short review is given for each paper~ 

(a) Multinomial distribution. 

The random variable X is distributed as a multinomial distribution with 

k cells in each of the populations. 

Matusita (1956): 

A minimum distance rule is proposed based on samples of sizes 

from the populations TT, TT · and 
1 

,r
2

, respectively. The distance is 

computed for the sample c.d.f.'s and the distance function is taken as the 

square root of 

and 

_, where (p
1

, ••• , pk) and {q
1

, ••• , qk) all cell probabilities corresponding to 

the distributions F and G, respectively. He obtained lower bounds for PCC 

and approximate value of the PCC when the sample sizes are large; the case 

.. 

n = 1 is also discussed. 

Chernoff (1956): 

The distribution of X in ,r
1 

is the multinomial with equal cell­

probabilities and a multinomial with unknown cell probabilities in ,r
2

• A 

sample of size n
2 

is available from ,r
2 

and the problem considered is to 

classify a sample of size n0 from 1b into ,r1 
or Results are directed 

towards applications when the number of cells is large, n0 and n
2 

are large, 

and the ratio of error probabilities is either very large or very small. In 

a certain class, an 'optimal' rule is obtained which classifies into n
2 

if 

the sum of the frequencies of all the cells for which the sample from ,r
2 

_ provids;non-zero frequencies is too large • 
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Wesler (1959): 

The distribution of X in is taken as a multinomial with cell 

probabilities being any permutation of a given probability vector 
(i) 

p ' 

{i = 1, 2). The problem considered is to classify a sample of °o observations 

from TT ,by minimaxing one error probability when the maximum of the other 
0 

error probability is held fixed. He obtained an approximate solution for large 

n
0 

and considered the case k = 2. 

Cochran and Hopkins (1961): 

They obtained the form of the Bayes rules and considered, in particular, 

the'maximum likelihood' rule. For this rule they discussed the 

effect of 'plug-in' on the PM:: and suggested a correction for bias. 

Raiffa (1961): 

See Section 3. Multinomial distributions, and, in general, discrete 

distributions are included in the development of theories. 

Hills ( 1966): 

This paper contains some theoretical developments on the errors of 

misclassification for the 'ML' rule in the two-population case. In particular, 

it is shown that for k = 2 PM:: for the 'ML' rule is greater than the corre­

sponding Pr-£ for the ML rule obtained under complete knowledge of. distributions 

and Smith's reallocation estimate of the 
Pl-C underestimates the PM:: of the ML rule. He obtained normal approximations 

for the expected value of the reallocation estimate, plug-in estimate of the 

; 

.... 

Pl£ of the ML rule and its expected value. The effectiveness of these estimates 

are compared through a numerical study. 

Bunke ( 1966): 

For multinomial distributions, a property of the estimated (with empirical 

c.d.f.'s) minimax rule is studied from asymptotic viewpoint. 
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Glick ( 1969): 

The development is for general discrete distributions but also specialized 

for multinomial distributions. This paper generalizes some of the results of 

Cochran and Hopkins (1961) and Hills (1966) and furnishes rigorous proofs. 

The sample space 1 of the random variable X is taken as 1 = {x
1

, x
2

, ••• , xk, ••• ). 

The population TT O is considered as a mixture of the populations 11
1

, ••• , TTm. 

The rule 6 (Bayes) which maximizes the PCC is dealt with throughout. Let 
A 

6 be the plug-in version of 6 using the "supervised training" data. Let 

A 

y = PCC for 6, c(6) = the conditional (given the training data) PCC for 6, 

C"(o") =plug-inversion of c(6). The following results are obtained. 

{i) Ec{6)?: y:::: c{6). 

{ii) c{6) ~ y a.s. and in quadratic mean when the sample size in the 

training data increase to oo. 

(iii) When m = 2, the bias of C""(~) v for estimating y is at worst of 

order 1/jn, where n is the size of the training data. 

{iv) When m = 2, and the distributions are multinomial, P(c{6) =Y) ~ 1 

as n ~ oo. 

(v) Smith's reallocation estimate for PCC using 
,.. 
6 is equal to c(a). 

(vi) Suppose X = {x
1

, .•• , xk), enclosed in a finite interval. Consider 

partitions of this interval into k disjoint subintervals with x. 
]. 

in 

exactly one sub-interval. Let CM be the collection of all m-partitions 

(B1,•••, B ) such that B. is a union of at most k sub-intervals 
m ]. 

containing x .• The rule in CM which maximizes the proportion of training 
1. 

A 

c(6) ~ y a.s. data correctly classified is the same as &. Moreover, 

(vii) When m = 2, and the distributions are multinomials, he discussed on 

some shortcomings of Lachenbruch's estimate and suggested some other 

estimates and studied their pe~formances numerically. 
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(b) Multivariate Bernoulli distributions. 

The random variable X is a p x 1 vector and each component of X 

takes values O or 1. 

Bahadur (1961): 

- -~· 

• 

m = 2. This paper gives some approximations to the log likelihood-ratio, 

e.g., normal approximation and approximations using various truncations of 

Bahadur's series representation for the probability function. Some approximations 

to Kullback-Leibler synnnetric information measure J are also obtained. These 

approximations are useful when J is small, pis large, and the interdependence 

among the components of X is not appreciable. 

Solomon (1960, 1961): 

m = 2. This is a numerical study of the effectiveness (P?-:C) and relative 

comparisons among rules based on the sum of the components, Fisher's LDF, LR 

statistic, and some truncated functions obtained from Bahadur's series 

representation for the probability functions. 

Hills (1967): 

m = 2. This is concerned with the problem of estimating log(LR) at a 

given point X = x
0

• The following estimates are suggested. 

(i) (r/ni / (r2/nJ, where ri is the number of observations in a sample 

of size n. from TT- which equal x
0

• 
]. ]. 

(ii) 'Near neighbor' estimate of order 1, 

where r , 
i 

)!( 
' r2+ r2 

n2 ) ' 

is the number of 'near neighbors' in a sample of size 

from TT· whose x-value differ from x
0 

in only one component. 
l. --

(iii) 'Near neighbor' estimates of order> 1. 

n. 
l. 

• 

. 

The distributions of these estimates are studied numerically. A step-wise method • 

-la.I 

... 

~ 

.... 

11-::1 

.... 

... 

i..l 

i.i . 

w 

lal 

lal 

lad 

.... 

la.I 

la.I 

~ 

for selecting components using Kullback-Leibler information measure J is suggested;·._. 
... 
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Elashoff et al. (1967): 

m = 2. Fisher's LDF, two functions based on a logistic model, and a 

function. based on the assumption of mutual independence of the components are 

considered as possible classification statistics. The effectiveness of these 

statistics is studied numerically. 

Martin and Bradley (1972): 

The probability function of X in TTi is taken as 

p.(x) = f{x)[l + h (a., x)], 
1. s 1. 

where hs is a linear function of the orthogonal polynomials on the sample 

space of X. This paper deals with the estimation of and f subject 

to some constraints. 

{c) Parametric non-normal continuous-type distributions. 

Cooper (1962, 1963): 

The distribution of X in TTi is taken as a known multivariate distribution 

of Pearson type II or type VII. The LR statistic is studied. 

Bhattacharya and Das Gupta (1964): 

m = 2. The distribution of X in TTi is taken as a member of the one­

parameter exponential family. A class of admissible Bayes rules is obtained. 

Cooper ( 1965): 

The p.d.f. of X in TT. is taken as 
1. 

1 1 
p . ( x) = A . I E • I -1' f . [ ( Q • ( x) ) 2] , 

1. 1. 1. 1. 1. 

where Qi is a positive definite quadratic form and 

increases from O. The LR statistic is studied. 

Day and Kerridge (1967): 

The p.d.f. of X in TTi is taken as 

pi{x) = di exp[-½(x-µi)'E-
1
(x-µi)]f{x). 
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Two cases are considered, namely, (i) f(x) = 1, (ii) r = I and f(x) = 1 if 

every component of x is either O or 1 and f(x) = O, otherwise. The 

posterior probability of the hypothesis H.: TT = TT., given X = x, is expressed · 
l. l. 

as exp(x'b + c)/(1 + exp(x'b + c)]. This paper mainly deals with the maximum 

likelihood estimates of b and c. For classification, it incorporates the 

idea of 'doubtful' decision. 

Anderson (1972): 

For them-population, the posterior probability of Hi: TT= TTi' given X = x, 

is taken as 

p(H. Ix) = exp(a.
0 

+ x'Q'. )p(H Ix), 
l. l. l. m 

m-1 
p ( H Ix) = 1 / [ 1 + 2J exp ( Q' iO + x 'Q' i) ] • 

m i=l 

This paper deals with the estimation of Q' 1
S by the maximum-likelihood method. 

(d) Other cases. 

Kendall ( 1966): 

Some heuristic rules are suggested based on categorization of data. 

Marshall and Olkin (1968): 

For their formulation (see Section 3) of the problem, X is considered as 

:;; 

• 

a binomial random variable with the probability of success Y which is distributed 

as the uniform distribution on (0, 1). The form of a Bayes rule is obtainedo 

- 50 - ; 

-~ 



• -- . 

References (6) 

Johnson, P.O. (1950). The quantification of qualitative data in discriminant 

analysis. J. Amer. Statist. As:soc. 45 65-76. - -- ---- -·- -
Matusita, K. (1956). Decision rule, based on the distance, for the classification 

problem. Ann. Inst. Statist. Math. 8 67-77. 

Chernoff, H. (1956). A classification problem. Stanford University, Department 

of Statistics Technical Report No. 33. 

Wesler, O. (1959). A classification problem involving multinomials. Ann. Math. 

Statist. ~ 128-133. 

Linhart, H. (1959). Techniques for discriminant analysis with discrete variables. 

Metrika g_ 138-149 (MR.21-6067). 

Solomon, H. (1960). Classification procedures based on dichotomous response 

vectors. Contrib. Probability and Statistics (Hotelling vol.), 414-423. 

Solomon, H. (1961). Classification procedures based on dichotomous response 

vectors. Stud. Item Anal.~- {ed. H. Solomon), Stanford Univ. Press, 

Stanford, California, 177-186. 

Bahadur, R.R. (1961). On classification based on responses to N dichotomous 

items. Ibid. 169-176. 

Raiffa, H. (1961). Ibid. (See Ref. 3 ). 

Cochran, W. G. and Hopkins, C. E. (1961). Some classification problems with 

multivariate qualitative data. Biometrics !110-32. 

Takakura, s. (1962). Some statistical methods of classification by the theory 

of quantification. ~- Inst. Statist. Math. Tokyo~ 81-105 (MR.27-3063). 

Cooper, P. w. (1962). See Ref. 5. 

Cooper, P. W. (1963). Statistical classification with quadratic forms. Biometrika 

2.£ 439-448. 

Bhattacharya, P. K. and Das Gupta, s. (1964). See Ref. 5. 

- 51 -



Cooper, P. W. (1965). See Ref. 5. 

Hills, M. (1966). See Ref. 5. 

Bunke, O. (1966). Nichparametrische Klassifikations verfahren fur qualitative 

und quantitative Beobachtungen. Wiss z. Humboldt Univ. Berlin Math. 

Naturwiss. Reihe .!2._ 15-18. (MR,36-1031). 

Kendall, M. G. (1966). Discrimination and classification. Proc. Internat. 

Symp. Multiv. Anal. (ed. P.R. Krishnaiah), Academic Press, New York, 165-185. 

Hills, M. (1967). Discrimination and allocation with discrete data. Applied 

Statist. 16 237-250. 

Elashoff, J. D., Elashoff, R. M., and Goldman, G. E. (1967). On the choice .. 
of variables in classification problems with dichotomous variables. 

Biometrika 54 668-670. 

Day, N. E. and Kerridge, D. F. (1967). A general maximum likelihood discriminant. 

Biometrics g_1 313-323. 

Gilbert, E. (1968). On discrimination using qualitative variables. J. Amer. 

Statist. Assoc.~ 1399-1412. 

Marshall, A. W. and Olkin, I. (1968). See Ref. 3. 

Glick, N. (1969). See Ref. 4. 

Martin, D. Co and Bradley, R. A. (1972). Probability models,esti.mation and 

classification for multivariate dichotomous populations. Biometrics ~203-222. 

Anderson, J. A. (1972). Separate sample logistic discrimination. Biometrika 

• 

- 52 -

... 



~-

' . 

-

! . 

-

7. Nonparametric or "Distribution-free" Methods. 

The so-called nonparametric or distribution-free methods are used in 

statistical inference when one is concerned with a wide class of distributions 

which usually cannot be expressed as a parametric family with a·finite number 

of parameters. When a statement regarding the probability of a certain 

statistical inference remains valid for every member in a given family of 

distributions, we call that a distribution-free inference with respect to that 

family; in particular, if the distribution of a statistic (used for inference) 

is the same for every member of a family of underlying distributions of the­

random variables involved, we say that the statistic is distribution-free with 

respect to that family. In the classification problem sometimes we face a similar 

situation when we devise rules for a broad class of underlying distributions 

whose structures cannot be expressed in simple parametric forms. However, 

unlike the problems of testing hypothesis or estimation, "a classification 

problem cannot be distribution-free" (A~derson, 1966) in the broad sense. 

The available work in this area can be classified broadly into three 

main categories: 

1) Consider a "good" rule (generally taken as a Bayes and/or an 

admissible minimax) assuming that the distributions are known. In this rule, 

replace the c.d.f.'s or the p.d.f.'s by their respective sample estimates. 

The rule thus obtained will be called a "plug-in"rule. 

2) Use the statistics involved in devising some well-known tests for the 

nonparametric two-sample or k-sample problems. 

3) Some ad-hoc methods which are typical for the classification problems, 

eog.,"minimum distance" rule. 

In the literature, the main emP,hasis is (a) to study the asymptotic 
\ 

behavior (e.g., consistency, efficiency in some sense) of the rules, (b) to 
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obtain some bounds for the PCC of a given rule, and (c) to study the small-sample "-' 

performance. 

Rules with Density Estimates. 

There are several papers in the literature describing different methods 

for estimating a p.d.f. and the properties of different estimates. The 

following papers are mentioned in this connection; these references may be 

found in Van Ryzin (1966), Fu (1968,book), Patrick (1972, book), and Glick (1972). 

Rosenblatt (1956, Ann. Math. Statist.). 

Parzen (1962, Ann. Math. Statist.) 

Cencov (1962, Soviet Math.) 

Watson and Leadbetter (1963, Ann. Math. Statist.) -- ---

Aizerman, Braverman and Rozonoer (1964, Autom. Rem. Control)-Potential function~ 

method. 

Nadarya ( 1965, Theory of Prob. and Appl.) 

Loftsgarden and Quesenberry (1965, Ann. Math. Statist.) 

Van Ryzin (1965, See Ref. 7) 

Cacoullos (1966, Ann. Math. Statist.) 

Murthy (1966, 1st. Internat. Symp. Multiv. Anal.) 

Tsypkin (1966, Autom. Telemekhanika)-Stochastic approximation method. 

Kashyap and Blaydon (1968, IEEE Trans. Inform. Theory) 

Moore and Henrichon (1969, Ann. Math. Statist.) 

As mentioned earlier, estimates of p.d.f.'s are used to obtain a plug-in rule 

from a given rule which involves density functions. * Suppose 5 is a Bayes 

rule with respect to a prior distribution ~ ,assuming that the densities in 

the m populations are known. Let R(~, 6) be the Bayes risk of a rule 6 

h* * and 6 be the plug-in rule obtained from 6 by replacing the densities by 
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their respective estimates (based on training sample).Van Ryzin .(1966) defined 

the notion of "Bayes-risk consistent" by the following: 

"* * P[R{~, 6) - R{~, 6)::: e] "'0 

as the sample sizes in the training sample tend to oo. Van Ryzin also defined 

the Bayes risk consistency of order ~N by the following: 

as N = minimum of the sample sizes"' oo and qN is any sequence - 0 as 

N "'oo• With respect to these notions, he studied some plug-in rules with 

different density estimates. For related results, see Van Ryzin (1965). 

Glick (1969, 1972) obtained some properties of non-randomized plug-in 

rules assuming that the training data come from a mixed population {with 

unknown mixture ratios). Let y{6) be the PCC of a rule 6 and * 6 be the 

rule which maximizes y(6) assuming that the class-densities and the mixture 

ratios are known. Let y(6) be a plug-in estimate of y(6) by replacing the 

densities by their respective estimates. Glick's results are as follows: 

i) If 
... 
fi "'fi (density in ni) a.s. {i = 1, ••• , m) as the sample size 

in the training data increases to oo, then 

v(o) "'y(6) a.s., 

uniformly in the class of all rules (not based on training data) •. 

ii) If 
... 
f. "'f. aos. {in probability), 

]. ]. 

"* * y{6) "'Y(6) 

aos. {in probability). 
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iii) If the density estimates are pointwise unbiased, then .... 
A* * A* E[y(6 )] ~ y(6)::: y(6 ). ... 

For other results, see the books by Fu (1968) and Patrick (1972). 

Fix and Hodges (1951) also considered the density-plug-in rules (of which _, 

the nearest neighbor rules have drawn much attention) and studied the 

consistency of such rules. 

Bunke (1966) considered the plug-in rule 
,,. 
6 obtained from a restricted 

(the prior probability measures are restricted to a given class) minimax rule 

6 by replacing the distributions involved by the respective empirical c.d.f.'s. 

He showed that asymptotically the rule 6 has the same Bayes-minimax 

property. 

Nearest Neighbor (NN) Rules. 

In 1951, Fix and Hodges proposed a classification rule for the two-popu-

i.. 

... 

al 

... 
-

I.ii 

• 
lation problem based on nonparametric estimates of the p.d.f.'s. Their method ~ 

of estimating a density f can be described as follows: Let x
1

, ••• , Xn 

be i.i.d. r.v.'s with the common p.dof. f which is continuous at x. Let 

{S) be a sequence of sets in the sample space with corresponding volumes 
n 

{V ) , such that n 

Let 

i) lim sup llx-yll = 0, 

ii) 

n~ 00 yes 
n 

lim nV = 00 • n n~ 00 

K be the number of observations that lie in S • 
n n 

k ,,. n P. 
f(x) = ~ ~ f(x) 

n 

Then 

when k ~ oo, n ~ oo. Rosenblatt (1956) used this approach for 
n 

Sn= {y:llx-yll :=: hn)' lim hn ~ o. 

- 56 

1111111 

... 

.... 

_, 

.. 
'-I 

I.I 

• 
1..1 

" 

al 



- . e 

-

-

Parzen (1962) replaced this set 

k ,. n 
f(x) = nV 

n 

S by kernels 
n 

K (y, x). 
n 

More generally, 

where V = J K (x, y)dy, K = nr K (x, y)dF (y), and F is the empirical n n n ~ n n m 

c.d.f. based on x1, ••• , Xn. Watson and Leadbetter (1963) determined the best 

kernel which minimizes the integral square error for some specific f. Fix 

and Hodges (1951) also considered the sets S which depend on the sample 
n 

x
1

, ••• , Xn; they suggested that S be defined as a "ball" with respect to 
n 

some distance function d, centered at x, just large enough to contain k 

observations. For them-population problem, one may also consider m different 

sequences of such sets. These estimates were studied by Loftsgarden and 

Quesenberry (1965). 

The K-NN rule, as proposed by Fix and Hodges (1951) is described as 

follows. Let {Xij; j = 1, ••• , ni) be a random sample from the i
th 

population, 

i = 1, ••• , m. Let X be the observation to be classified. Consider a 

distance function d and order all the value d(X .. , X), j = 1, ••• , n.; 
l.J l. 

i = 1, ••• , m. The K-NN rule assigns X to the population TTi' if K./n. 
l. l. 

= max (K./n.) where KJ. is the number of observations from 
. J J 
J 

in the K 

observations "nearest" to x; ties may be resolved in some manner. For 

m = 2 , n1 = n2 = n, they showed that the PCC 1s of the K-NN rule (with d 

as the Euclidean distance) tend to the respective PCC's of the "likelihood 

maximum" rule when n -+ oo, K = K -+ co, K /n -+ 0. 
n n Fix and Hodges (1953) obtained 

the exact and asymptotic expression for the P?-£ 1s of the NN rule when p = 1, 

K = 1, 3 and the parent distributions are normal with the same covariance 

matrix. For this normal case, they (numerically) compared the NN-rule with 

the ML ~ule for p = 1, 2; k = 1, 3. 
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Cover and Hart (1967) considered the mixed-population case and proposed 

a K-NN rule which assigns X to the population TT., if K. = max K .• They 
1 1 j J 

showed, under mild regularity conditions, that when the sample space is a 

separable metric space, and the distributions admit densities with respect 

to a measure, the limiting Bayes risk (0-1 loss function) of their 1-NN rule 

* * * * is bounded below by R and bounded above by R (2-R m/(m-1)), where R 

is the minimum Bayes risk {assuming that the distributions are known). Another 

result of Cover and Hart is as follows: Let X, x
1

, x
2

, ••• be a sequence of 

i.i.d. r.v.'s in a separable metric space. Then x' = nearest neighbor to X 
n 

among x1, ••• , Xn' tends to X with probability 1 as n ~oo. In a later 

paper, Cover (1968) studied the rate of convergence of the Bayes risk of their 

1-NN rule. In the above notation, let y(X, X 1 ) 
n 

be the conditional Bayes 

risk of the 1-NN rule, given X and X' , and let 
n * Y (x) be the conditional 

Bayes risk, given X, under complete knowledge of the distributions. Peterson 

(1970) studied the different modes of ·convergence of 

* * y{x, x') - 2y (x)[l-y (x)J n 

under appropriate conditions. In a recent paper, Goldstein (1972) has studied 

some asymptotic properties of the 

bound for its P?-C. 

K -NN rules and obtained a consistent upper n 

In 1966, Whitney and Dwyer considered the K-NN rule {of Cover and Hart) 

when the observations in the training sample are correctly identified with 

probability S > 1/2. Hellman (1970) modified the K-NN rule of Cover and 

• 

• 

... 

Hart such that if at least K' of the K nearest neighbors to X comes from 

the same population, then X is assigned to that population; otherwise, decision 

is withheld. Specht (1966) noted that if the densities (p-variate) in the 

..... 

I 

'-

Bayes rule {mixed-population case) are replaced by the corresponding Parzen's ~ 

estimate with 
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1 
K {x, y) = 72 n (2ncr2)P 

1 
exp(- - llx-y\\ 2

) 

2cr2 

then the plug-in rule is the same as the 1-NN rule of Cover and Hart for 

cr sufficiently small. 

In 1966, Patrick proposed another NN-rule in a more general framework. 

-He considered different distance functions d. such that 
l. 

lim 
e-+ O 

[max {llx-yl\: d. (x, y) < d] = 0, 
1. y 

and the set {y: d.(y, x) = e) has zero volume for all e > 0 and all x. 
1. 

He suggested the following estimate of 

£. (x) = 
1. 

K/x) 

{ni+l)Vi' 

f. (x): 
1. 

where K.{x) is a positive-integer and V. is the volume of a d.-neighborhood 
1. 1. 1. 

S. of X depending on the training sample. Using these estimates he proposed 
in 

the plug-in rule, obtained from the Bayes rule. For the special case, Patrick's 

NN rule assigns X to TT· 
l. 

if the Kth nearest neighbor to X in the sample 

from TT. is closest to X than that for a sample from any other population. 
l. 

An excellent account of these NN rules is given in Patrick's book (1972); 
see also the paper by Patrick and Fisher (1970). Pelto (1969) studied some 

estimates of the PMC of a NN-rule. 
Rules Based on Distances Between Empirical c.d.f.'s. 

For classification into two discrete distributions Ma.tusita (1956) 

proposed the minimum distance rule based on Matusita-distance between the 

empirical c.d.f.'s and obtained some lower bounds for the PCC's. (See also 

Section 6)8 Das Gupta (1964) considered the minimum distance rule (with 

arbitrary distance) for them-population problem and showed the consistency 

of such rules under appropriate conditionso He also obtained a lower bound 

for PCC of such rules and specialized this to the minimum Kolmogorov-distance 

rule. 
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Best-of-Class Rules. 

The systematic development of this concept is due to Glick (1969). Suppose 

that the observation X to be classified comes from a mixture of m distri-

butions. Consider a collection cp of ordered m-partitions of the sample 

space; for any such ordered partition S = (s1,.o., Sm), Xe Si 

d . . h f h . th 1 . L (S) ec1.s1.on tat X comes rom t e 1. popu at1.on TTi• et y 

of the rule s. Define 

y(~) = sup y(s) • 
Seep 

leads to the 

be the PCC 

Let x1 , ••• , XN be a supervised training sample. Then the "reallocation 

estimate" of y{s) is given by 

y(s) 
m n. 

= ~ ..2:. 
. 1 N 
l.= 

J s. 
1. 

dF. {x) 
]. 

where n. 
l. 

is the number of observations from TTi 

empirical c.d.f. Define 

y{cp) = sup y(s). 
Seep 

,.. 
and F. is the corresponding 

1. 

If a rule S e cp exists such that y(c.p) = y(s) then S is called a "best-of-

class" rule in cp. The results obtained by Glick (1969) are stated below: 

i) E(y(c.p)) 2:: y(cp). 

ii) sup 1-v(s) - y(s)I ~ 0 a.s. as N ~oo. 

iii) 

Seep 

Let H be t~e collection of all subsets of the sample space which 
\) 

i 

are intersections of at most " open half spaces. Let c.p("l' "2 ) be the 

collection of all ordered m partitions S = (s1 , ••• , Sm) such that for each i, 

either Si or its complement is a union of at most "2 sets, each of which 
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is a member of H or the complement of a member. Let cp c cp( v1 , . v2 ) be a 
"1 

collection of ordered m-partitions. Then, as N -? 00 

{a) y(cp) "? y(~) a.s. 

{b) lv(cp) - y(s)I "? o a.s. 

{c) y{s) "? y(cp) a.s. 

It is to be noted that these results tacitly assume the existence of s. For 

m = 2, the collection of all hyperplane partitions coincide with cp{l,1). The 

collection of all "interval" m..;partitions, denoted by cp
1

, is a subset of 

cp(2, 2). When cp = ci>r, y( cp) ~ y(s). 

Stoller (1954) 

assumed m = 2 and the two distributions are such that an interval partition 

is the best oneo Restricting to the class of all interval partitions (with 

known order) he proved the results {i), (iii){a), (iii){c) of Glick only· 

"in probability" instead of "a.s. 11 Hudim<?to (1956) also considered the special 

case treated by Stoller and obtained an upper bound for the c.d.f. of 

lv(s) - y(s)I, where S is a rule with a given cut-off point S• Furthermore, 
,,. 

he showed that the cut-off point s corresponding to the best-in-class rule 

S is a consistent estimate of S• In a later paper, Hudimoto (1957) gave 

better bounds for the distribution of y(S) and obtained lower bounds for the 

c.d.f.'s of y(s) - y(S), y(~) - y{cp), where cp is the class of all (known) 

ordered interval partitions and m = 2. 

Rules Based on Tolerance Regions. 

The idea of using tolerance regions for classification was first suggested 

by Anderson (1966), although it is implicit in the work of Fix and Hodges (1951) • 

For the univariate case, Anderson suggested some variations of NN rules; 
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vector observations may be "ranked" {using them to define blocks) and then 

a univariate method can be applied. Other heuristic methods proposed by Ander.son 

are as follows. Use the pooled training sample to construct "blocks." An 

observation X is classified into if the block to which X belongs is 

defined by majority of observations from TT-• For the two-population problem, 
l. 

construct two sets of blocks separately based on the observations from TTl 

and Let and B
2 

be the blocks in the two sets which contain X. 

Consider the number of observations from TT
2 

in and the number of obser-

vations from TTl in and classify X according to the larger number. 

Quesenberry and Gessaman (1968) also suggested to use tolearance regions 

for them-population classification problem with 2m-1 decisions {instead 

of m decisions) described below: 

decide P e {P. , ••• , P. ) , s = 1, ••• , m-1 
1.1 l.s 

o
0

: reverse judgement 

where (i1 , ••• , is) is a subset of {1,2, ••• , m). For each j, sample 

observations from TT· are used to construct a tolerance region A. for P .• 
J J J 

They suggested a decision rule obtained by partitioning the sample space 

using the standard union-intersection method with the A. 's. 
J 

The PM:: 's may 

be controlled by appropriately choosing the number of blocks used for 

Aj (j = 1, ••• , m). When the underlying distributions have some appropriate 

structure, the tolerance regions A. 
J 

can be so chosen that the resulting 

rule 5· is consistent with the rule * * 6 {i.e., P.(6 = 6) ~ 1, for each j) 
J 

which minimizes the probabilities of reserving judgement subject to the size 

restrictions for the P?£ 1s under complete knowledge of P
1

, ••• , Pm. However, 

in practice, the information concerning the distributions may not be sufficient 

; 

.... 

.... 

enough so as to construct the above rule 6. ~ Anderson and Benning (1970) partially 
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resolved this difficulty by using clustering techniques to get information on 

the likelihood-ratios. Patrick and Fisher (1970) u~ed tolerance regions for 

estimating p.d.f.'s and plug-in rules. {See the discussion on NN ruleso) Gessaman 

and Gessaman (1972) suggested some procedures based on statistically equivalent 

blocks and studied them by Monte Carlo methods. 

Rules Based on Rank.s--Analogy With Rank Tests. 

The idea of using the statistics in the standard nonparametric rank-tests 

for devising classification rules was suggested by Das Gupta (1962, 1964). 

Das Gupta considered a rule which decides p = p. 
1. 

if lw.l is the smaller of 
1. 

jw1 j and jw
2
j, where Wi is the Wilcoxon statistic based on samples from 

TT and TT.; he proved that this rule is consistent. Hudimoto (1964) modified 
1. 

this rule by taking Wi instead of lwil 

for all x; he derived a bound for the PCC of this rule and in a later paper 

(1965) studied it when ties may be present. Kinderman (1972) proposed 

a class of rules based on linear rank statistics as follows: Suppose n 

observations are available from each of three populations TTo 

Define N = 3n, 

T . 
nJ 

N 
-1 ~ = n , .J ENi L j i , j = 0, 1, 2, 

i=l 

where ENi is a sequence of scores and L .. 
J 1. 

is 1 if the i th ordered 

observation in the pooled sample is from TTj' and O otherwise. Kinderman's 

rule classifies the observations from TTo into 

he assumed that the distribution in TT
2 

differs from that in TTl by a positive 

shift in translation. He computed the relative asymptotic efficiency {in 

Pitman's sense} of this rule with the rule obtained by replacing the T . 
nJ 

by 

the corresponding sample mean of the observations {from TT,) and specialized 
J 

his results to "Wilcoxon's rank-sum" scores and "normal" scores. Govindarajulu 

and Gupta (1972) considered similar linear rank statistics for them-population 

problem when the sample sizes may b~ .. different and obtained a rule based on them 

which asymptotically controls the average{with respect to a known prior) PCC. 
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For the two-populaticn problem, a sequential rule based on Mann-Whitney 

statistics was proposed and studied by Woinsky and Kurz (1969). (see Fu 1s 

book (1968), for some other nonparametric sequential rules.) 

An Empirical Bayes Approach. 

Johns (1961) considered the two-category classification problem when I 

is considered as a random variable and the two categories are defined by a 

partition of the I-space. (See Section 2.) Following the empirical Bayes 

approach, he proposed a rule 6N based on a training sample of size N and 

showed that the Bayes risk of 6N tends to the minimum Bayes risk computed under 

complete knowledge of the distribution of (X, I). He treated the following 

three cases: (i) X is discrete-valued (supervised training sample); (ii) 

X is of continuous type, (supervised training sample); (iii) X is discrete­

valued (post-supervised training sample). It may be noted that when I is 

treated as a classificatory variable and the loss function is 0-1, his rules 

reduce to NN rules. 

Selection of Variables. 

On the basis of random samples from two p-variate distributions, Patrick 

and Fisher (1969) devised a method for obtaining a q-dimensional (q < p) 

... 

.. 

linear subspace of RP such that the two induced q-variate marginal distributions 

are most "separated." Their method is based on nonparametric estimates (Murthy's 

extension of Parzen 1s estimate) of the p.d.f.'s and a 'separation' or distance 

criterion. For related work, see Patrick's book (1972) and Meisel's paper 

(1971). A nonparametric sequential method for including additional variates 

for classification is given in Smith and Yau (1972). For other methods, see 

Fu 1s book (1968), Wu (1970), Davisson et al. (1970). 

Other Results. 

Suppose that the c.d.f. of X is F: 
]. 

the mean and the covariance matrix ~ 

rule classifies X into n1 , iff 
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Recall that the maxinrum likelihood 
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when the distributions F. are N. Using the well-known one-sided ]. p 

Chebyshev-inequality, Zhezhel (1968) showed that the maximum PK! of such a 

rule is (1 + t:i2 /4 )-1
, where ~2 = lh.1i1 - ~211: , for all possible such Fi' s. 

Albert (1963) considered the classification problem where the supports 

of X are s1 and s
2 

in TTl and TT
2

, respectively, where s. 's 
l. 

are 

unknown disjoint subsets of a Hilbert space such that the convex hulls of 

Si's are at a positive distance apart. Samples are drawn from s
0 

U s
1 

th sequentially and at then stage a decision rule is given based on post-

supervised training sample such that the PM:'s tends to O as n -?~ • 
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