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NETWORK AUTOCORRELATION: A SIMULATION STUDY 
OF A FOUNDATIONAL PROBLEM IN REGRESSION AND 
SURVEY RESEARCH * 

Malcolm M. DOW 
Northwestern Unioersity ** 

Michael L. BURTON and Douglas R. WHITE 
University of California, Irvine *** 

It is axiomatic to the social sciences, and an essential part of the 
network perspective, that human performances are intricately linked 
with their social and enviromental contexts. Researchers in each of the 
disciplines have rediscovered this in the past decade with respect to a 
whole host of specific problem areas, under such labels as “context 
effects”, “index utility”. and “systems analysis”. The earliest mention 
of the problem with respect to quantitative research occured, to our 
knowledge, in the debate between the nineteenth century cultural 
diffusionists and the evolutionists. The latter regarded individual socie- 
ties as independent instances of uniform causation, and hoped to learn 
about causation from correlational studies. The former regarded their 
observations as embedded in an interactive network of historical rela- 
tionships such as diffusion, migration, conquest, and competition, 
where the historical, evolutionary and ecological context of each society 
and the network of interconnectedness between societies plays a major 
role in multiple causation. In this view, events cannot be regarded as 
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comments on this paper. 
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*** University of California, Irvine, CA 92717, U.S.A. 
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isolated or independent as if each were a context-free “independent 
invention” of a single society. ’ 

The same arguments, of course, apply to the interpretation of data 
collected in social or opinion surveys. Political science offers a recent 
example of the discovery of “context effects” in voting behavior (e.g. 
Jackson 1975). How much of voting behavior is affected by attributes 
of the voting unit (whether individuals or aggregates), and how much is 
the result of interactions between them: of the communication process, 
bandwagon effects, reference group behavior, or other forms of “sym- 
bolic interactionism”? 

Our purpose in this paper, however, is not to attempt a review of the 
vast literature on context effects. Rather, we focus on the costs and 
benefits of either neglecting context or else incorporating it in the 
research design. Statistical methods such as multiple regression analysis 
necessarily contain mathematical axioms which either assert or deny the 
existence of context effects. We will explore here through simulation 
studies the following related questions: 

(1) What are the consequences of ignoring context effects, should they 
be present, or ordinary least squares regression estimates, and 

(2) what are some of the properties of a recently developed maximum 
likelihood procedure which permits context effects to be included in 
a regression model as network autocorrelated disturbance terms? 

Autocorrelation is the technical term which means, within the regres- 
sion framework, that some variable, or the error term, is correlated with 
itself, either directly or indirectly over time, through space or across a 
network. Temporal autocorrelation is a fairly common occurrence in 
time series analysis, and methods to deal with it have been developed 
for some time (Hibbs 1974). Spatial autocorrelation, on the other hand, 

’ In his classic paper Tylor (1889) marshalled data on over 350 preindustrial societies to 
illustrate the kinds of cultural “adhesions” (i.e. functional relationship) that he found between, for 
example, postmarital residence and descent reckoning. Commenting on Tyler’s paper, Francis 
Galton raised the possibility that due to various processes of cultural diffusion, some of the cases 
cited by Tylor might be “duplicate copies of the same original,” and that the independence of 
Tylor’s sample observations was thus in doubt. For more than half a century cross-cultural 
research was held in disrepute in anthropology because of the vulnerability of any findings to this 
criticism. Over the past 25 years, however, “Galton’s Problem” has become a major area of 
methodological concern in anthropology, and many different solutions have been suggested (see 
Naroll 1976; Schaefer 1974; Dow, White and Burton 1981; White, Burton and Dow 1981 for 
further discussion of Galton’s Problem). 
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has only very recently begun to receive serious attention (Cliff and Ord 
1973; Ord 1975; Hepple 1976; Doreian 1980, 1981). Generalization of 
the one-dimensional time-series approach to a two-dimensional situa- 
tion is not straightforward, and new analytical and computational 
problems arise with these more general models. A number of these 
difficulties have recently been overcome, and several models which 
allow different specifications of spatial autocorrelation are now within 
computational reach. As a result of our experience with previous 
research employing two of these models we focus on one of them in this 
paper, the disturbances model, where a network autocorrelation scheme 
is embedded in the error term of a multiple regression model. 

Although the model we explore in this paper was developed within 
the context of spatially distributed and autocorrelated data, we refer to 
this class of models generally as “network” autocorrelation models 
(Dow, White and Hansen 1979; White, Burton and Dow 1981). As we 
discuss in a later section, the kinds of data structure which require the 
use of these models are, as we suggested above, common in the social 
sciences, particularly when “context” is a substantively relevant re- 
search concern. 

The Foundational Problem 

If autocorrelated “context effects” are a pervasive feature of natu- 
rally occurring social phenomena, so that the cases under observation 
are non-independent, in what sense does this represent a foundational 
problem for testing hypotheses or drawing inferences from correlational 
or regression analysis? The ordinary least squares approach to regres- 
sion generally assumes independence of cases, and this assumption 
helps to maintain the additional assumption that the regression residu- 
als are also independent, i.e. not autocorrelated. If the cases under 
study are in fact interdependent and the residuals autocorrelated, then 
there are two main consequences for OLS estimation. First, the ordinary 
least square (OLS) estimates of the ps are unbiased, but they are highly 
dispersed relative to those obtained using the alternate maximum 
likelihood (ML) estimation procedures. Second, OLS estimates of the 
sampling variances of’ the ps will generally underestimate the true 
variances. Hence, with respect to estimates based on a single sample, 
underestimating the variances of the regression coefficients will lead to 
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spurious attribution of significance to particular independent variables. 
On the other hand, in replication studies across several interdependent 
samples, the investigator would tend to conclude that a valid model 
fails to replicate because of large differences in the magnitude of the 
same /3s due to their unreliability. Thus, both single and multiple 
sample replication studies are biased towards finding differences where 
none exists (type I inferential error) if OLS estimation procedures are 
used with interdependent samples. 

While the maximum likelihood estimator outlined below has the 
desirable properties of consistency and normality that the ordinary 
least squares estimator does not have when the disturbances are net- 
work autocorrelated, it nonetheless has the usual drawback of ML 
procedures: the desirable properties are asymptotic. It is well known 
that ML estimators need not retain these properties in finite, small 
samples. Since no exact analytical results are available for the small 
sample properties of the ML disturbances model, its small sample 
behavior has to be investigated via Monte Carlo methods. A major goal 
of the present study, then, is to use Monte Carlo methods to examine 
the small sample bias and efficiency of the ML network disturbances 
model relative to OLS procedures. That is, we are interested in whether 
or not the analytical differences in the two estimation strategies actually 
show up in small samples. Since the ML computational procedures are 
considerably more complex and expensive than OLS, it would be 
desirable to be sure that the additional costs really result in some 
significant gain in precision and confidence in ones estimates. Before 
going on to present the results of the simulation study, we first discuss 
some of the problems that could be expected to arise if data generated 
by an underlying network process are analyzed without consideration 
of these processes. Then we outline the ML computational procedures 
employed in this study. 

Specification of Context 

Most physical and social phenomena are embedded within elaborate 
networks of interdependencies which taken together make ‘up their 
entire “context”. In the experimental sciences it is often possible to gain 
control over this complexity through randomization and attempts to 
isolate effects, but this is usually not possible with naturally occurring 
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social or behavioral phenomena. Since the obvious complexity of the 
total context surrounding any interesting social phenomena precludes 
any attempt to include the “whole” context in the analysis, it is 
necessary to direct attention to selected aspects of contextual interac- 
tion, usually through simplifying assumptions about the substantive 
nature of the process under study. 

The principal contextual interaction which we examine in this paper 
is one where sample units are in some way differentially connected, and 
the connections between units specific differential interactions between 
them. When interacting units tend to become either more alike - 
through diffusion, contagion, imitation, assimilation, cooptation, con- 
vergent competition or a host of other processes - or more dissimilar - 
through repulsion, divergent competition, differentiation, etc. - as a 
result of interaction, we have a particular kind of contextual effect 
resulting from the network of relations between sample units rather 
than from their attributes. 

Typically, however, purely “local” effects such as might be specified 
in a multiple regression framework in terms of independent and depen- 
dent variable occur together with “contextual” or “interactive” effects. 
For example, sample units may be affected by units to which they are 
connected (the “contextual effect”), while in addition there are local 
effects in the sense that one variable in the set is affected by changes in 
the other variables. In a multiple regression framework specifying 
regression coefficients for the independent variables in predicting the 
dependent variable, the contextual or interactive effect will show up in 
the presence of autocorrelated error terms (“disturbances”) over the 
network of interactive connections between the units. 

This type of autocorrelated or interactive “disturbance” in addition 
to local regression effects is common in many different types of social 
survey studies, including cross-cultural studies. A number of agricult- 
ural variables, for example, may tend to diffuse together as a cultural 
“packet,” yet in addition certain of these variables may tend to affect 
others on a purely local basis. Wherever there is significant interaction 
between sample units which affects a packet of interdependent varia- 
bles, a network disturbances model is appropriate. * 

* Erbring and Young (1979) provide an excellent discussion of the theoretical and methodo- 
logical issues surrounding the “contextual effects” debate over the correct model specification of 
academic achievement as a function of ability plus ability of academic peers. They suggest that the 
second type of autocorrelation model, the “endogenous feedback” or “effect” model is more 
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Probably the most common approach to this problem with respect to 
data distributed over space is to assume a first order Markov scheme 
for interactive effects based on the notation of spatial adjacency (Cliff 
and Ord 1973; Hepple 1976). Given a collection of N mutually exclu- 
sive subregions which exhaustively subdivide a large geographical re- 
gion, it is straightforward to construct an N X N binary matrix C with 
elements 

1 if regions i andj are contiguous, 
c:j = 0 if regions i and j are not contiguous or i = j. 

This zero-one adjacency matrix can then be converted to a matrix of 
weights, W, by dividing each c!, by its row sum. That is, a weighting 
matrix W is formed using as weights w,, = c,,/~~c,,. Each row of the W 
matrix thus sums to unity, and the weights are simple proportions 
based on the number of adjacent regions each region has. These weigths 
indicate the degree of probable interaction between each pair of re- 
gions. 

Selection of adjacency as the relevant contextual characteristic in 
constructing the weighting matrix is, of course, a choice made with 
respect to the substantive question at hand. Doreian (1980,198 1) chose 
this spatial representation in his analyses of the Phillipine Huk rebel- 
lion based on prior theoretical notions concerning the ability of govern- 
ment or rebel forces to move troops and weaponry within an area, and 
the implications of this for adjacent regions. Doreian (1980) also notes 
that adjacency is actually a special case of “accessibility”, which may in 
fact be the key spatial characteristic. Bodson and Peters (1975) also 
argue that accessibility between regions, defined by minimum transpor- 
tation time between them, is the crucial process underlying their study 

appropriate than the disturbances model for this situation, since only the dependent variable is 
theoretically assumed to be autocorrelated with respect to some relational network. This “effects” 
model can be stated as 

Y=pWY+X~fr, c-NNID(O,o*I). 

Because an independent variable (WY) is thus a function of the error variable (c), OLS parameter 
estimates of this model are biased and inconsistent (Johnston 1972). Appropriate ML estimation 
procedures for this model similar to those examined in this paper are presented and discussed by 
Erbring and Young (1979) and Doreian (1981). 
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of the labor-demand relations among 44 Belgian arrondisements. Gat- 
trell (1978) has similarly employed a “communications matrix” based 
on distance and number of telephone links to express the interrelation- 
ships among 27 Swedish towns. 

Positional similarities in a social network are relevant contextual 
characteristics which are conceptually independent of spatial adjacen- 
ties. Social units may interact with others in their social environment in 
ways that are similar, and that have similar effects on their behavior, 
because of their positional similarities rather than their direct connec- 
tions. Thus, positional similarity is a kind of mediated or “global” 
interaction in a system. Positional similarity of actors in a social 
network may be estimated from data on their social relationships, roles, 
or positional attributes (Burt 1980; Lorrain and White 1970; White and 
Reitz 1981). A weighting matrix W could easily be constructed by 
normalizing the positional similarity matrix. 

Similarity matrices can also be derived from the overall similarity of 
social units or regions with respect to relevant social, demographic, 
political, and ecological characteristics. W matrices derived from such 
measures of attribute similarity can be used to test autocorrelation 
models (Cliff and Ord 1973). In a regression context, however, it seems 
that the attributes from which such similarities are derived are them- 
selves suitable for use as variables in the regression model. Thus, it 
would seem that autocorrelation models of contextual effects are best 
suited to theories of specific network processes. 

Clearly many choices can be made in specifying of context. Unfor- 
tunately, in any empirical situation the researcher usually will not know 
the true processes which generate the observed interdependence. Only 
substantive knowledge can give guidance to possibly appropriate speci- 
fications. This indeterminacy in specifying the weighting matrix W has 
led some investigators (Aurora and Brown 1975) to argue that this 
approach to the concept of autocorrelation should be abandoned in 
favor of other econometric techniques, such as joint generalized least 
squares, and random-coefficient regression models. However, these 
alternative procedures either require panels of observations or interac- 
tion-dependent variables (e.g. migration between areas) which are 
relatively rare even in econometrics. Since Aurora and Brown give no 
concrete examples of their applying procedures to real data, their 
suggestions remain speculative. 

If the specification of a network matrix W is theoretially well 
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founded, its inclusion in the disturbance term of a regression model 
may give the researcher some insight into the nature of the underlying 
processes, and perhaps offer some guidance about how the models 
might be respecified to explicitly include relevant autocorrelated varia- 
bles. As Doreian (1980) argues, some specifications of context will be 
more compelling and soundling based than others. To the extent that 
the investigator can specify relevant contexts and corresponding W 
matrices the procedure outlined below become applicable. 

It is important to note, however, that autocorrelated errors may be 
present where there is not true interactive context effect, and the 
autocorrelated errors result from model misspecification. Three ins- 
tances come to mind: 

(1) An autocorrelated variable has been mistakenly left out of the 
regression equation; 

(2) The dependent variable is nonlinearly related to the independent 
variable(s); 

(3) Various subgroups have been aggregated in estimating the model 
where in fact the regression model is different in each group. 

Each of the above m&specifications is rather straightforwardly han- 
dled, and simple modifications of the regression model will in general 
remove the autocorrelation from the error terms. It is entirely possible, 
however, that the model is correctly specified even though autocorrela- 
tion is present in the errors, and there is still no underlying interactive 
effect. For example, if sample units have originated by dispersal from a 
common origin (families, schools, social classes, language communities, 
etc.) thus being positively correlated with genetically linked units over 
many variables (the “contextual effect” of common history), autocorre- 
lated errors could easily arise from the pervasive autocorrelation of 
other varibles which are not properly part of the model under study. In 
this case the autocorrelation is treated as a nuisance factor to be dealt 
with technically, but having itself no substantive import. 

Effects of Network Disturbances on OLS Regression 

The ordinary least squares population regression model is 

y=xp+c 0) 
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E[c] = 0, E[ cd] = a,21 

177 

(2) 

where 

Y is an N X 1 column vector of dependent variable observations, 
X is an N X K matrix of independent variable observations, 
p is a K X 1 column vector of regression coefficients, 
E is an N X 1 column vector of multivariate normal errors, 
I is an N X N identity matrix. 

Assume that we are given an N X N network matrix of interdepend- 
encies, W, and that the error terms are autocorrelated with respect to 
this W. The OLS model can be respecified to include this matrix as 
follows: 

y=xp+c (3) 

c=pwc+v (4) 

E[v] = 0, E[ vv’] = a,21 (5) 

Here v is a vector of multivariate normal errors with mean and 
covariances given in equation (5). p is the network autocorrelation 
parameter which specifies the overal degree of autocorrelation in the 
system. It is discussed further below. 

The major computational tasks associated with the disturbances 
model are to obtain estimates of p, E, p and the variances of these 
estimates. ML estimation procedures are outlined below; however, 
taking expectations of these population parameters clearly pinpoints 
the problems that arise if the model corresponding to equations (1) and 
(2) is equations estimated when the data are generated by processes 
corresponding to equations (3), (4) and (5). 

From equation (4) we get 

c=(I--pJv-‘v, (6) 

assuming that the matrix (I - pW) is invertible. Hence, 

E[r] =E[(I-plv-‘v] =(I-pW)-‘E[v] =o 

and the residuals from OLS have a mean of zero. The expected variance 
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of the residuals is obtained from 

E[CE’] = E[(I- pIV-‘vv’(I- pw’))‘] 

= u”2(I- pIV-‘(I - pw’)-l 

=u,‘[(r-pW’)(I-ppW)]-’ 

= U”‘V. (7) 

Since V is not an identity matrix, the OLS regression model has a 
non-scalar variance-covariance matrix, thus violating the usual OLS 
assumptions. The effects of this violation on the OLS estimation of 
other parameters is easily seen. The OLS estimate of /3 is obtained from 

a = (xx-‘X’Y, 

hence, 

E[b] =E[(X’X)-‘Xyxptc)] 

= E[( xx-‘X’XB + ( X’X)-‘XrE] 

=E[p+(X’X)-‘X?] 

=p+E[(x’x)-‘X’c] 

=p+(ix)-‘X’E[c] 

=P. (8) 

The OLS estimate B is thus an unbiased estimate of the population p. 
The variance of fi is obtained by first noting that 

&p=(xIx)-‘X’Y-p 

= (x~x)-‘x’(xp+~) -p 

=p+(xlx)-‘xc-p 

= (x’x)-‘xc, (9) 



= (xx- ‘X’E[ re’] x( X’X 1-l 

= U”‘( X’X )-‘[(XVX(X’X) -I I. (10) 
In the absence of any autocorrelation in the system, the term in the 

square brackets will reduce to the identity matrix and the remaining 
term, u,‘( XX)-‘, will be identical to the OLS formula for the variance 
of j3. This occurs only when p = 0, or when there is no autocorrelation 
with respect to the independent X variables, since expanding the term 
inside the square brackets result in terms corresponding to the auto- 
correlation coefficients of the X variables at successive lags (Johnston 
1972; Martin 1974). The extent and direction of this estimation error 
depends on the autocorrelation in the X variables and on p, Thus the 
bias occuring in this part of the estimation procedure could be positive 
or negative. If, for example, any of the X variables are positively 
autocorrelated with respect to IV, and also p > 0, the term in square 
brackets almost certainly contains terms greater than unity and so the 
OLS formula will underestimate, perhaps very seriously, the true sam- 
pling variance of p. 
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and so 

E[(&p)(&@‘=E[(X’X)-‘xwx(X’x)-‘1 

A second source of error in using equation (10) above stems from 
using u,’ to estimate CT,” when the errors are in fact autocorrelated. The 
usual OLS estimator of the error variance is (Johnston 1972: 128) 

d’t? 
S2=*-K’ 

where 

5= Y-xp 

=xp+c-X(XIX)-‘Xyxp+E) 

=r-X(xX)-‘X’c 

=I-x(xX)-‘Xk 
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= ME (Where M is symmetric idempotent), 

hence, 

E[s2] = &E[“‘] 

= & E[ r’M’A4c] 

=&E[d4c] 

=~E(v’[(I-,W’-lM(I-pW)-‘]u) 

=&Etr((FpW’)-‘[I-X(X’X)-‘X’](+V)-’] 

=&Etr([(I-pW’)I(I-pW)-‘1 

-(r-pW’)-‘X(X’X)X’(I-pW)-1) 

=&E(trV-tr[(X’X)-‘X’I’X]). 

(11) 

(14 

Unless the term inside the curly brackets is equal to N - K, bias will 
exist in estimating the error variance using OLS procedures. 

The above results suggest that when autocorrelation is present, but is 
ignored, and the usual OLS procedure are applied, the regression 
coefficients will be unbiased but estimates of their sampling variances 
will be incorrect. In general, the estimates will be underestimates of the 
true variances, thus tending to result in inflated t- and F-ratios, and, 
hence, misleading inferences. 
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Maximum Likelihood Estimation Procedures 

Ordinary least squares procedures are thus problematic when the 
disturbances are autocorrelated according to some network scheme. 
Ord (1975) has examined the more general context of maximum likeli- 
hood estimation for this situation. More detailed treatments of the 
maximum likelihood approach are given by Hepple (1976) and Doreian 
(1980). The advantage of maximum likelihood estimates in this context 
are their properties of consistency, that is, asymptotic unbiasedness and 
efficiency, and asymptotic multivariate normality. Coefficients which 
maximize the likelihood function can be estimated and the variance-co- 
variance matrix of these estimates can be obtained, so that valid 
asymptotic significance tests can be performed. 

The computational algorithms employed in the simulation study 
reported below were developed using results stated in Ord (1975) and 
derived in detail by Doreian (1980). 

For the network disturbances model the appropriate likelihood func- 
tion is 

(13) 

When no network process is operative the estimates which maximize 
this likelihood function are identical to OLS estimates. However, there 
is no such equivalence in the case of network disturbances, as the 
following discussion shows. 

Changing variables in the likelihood function from v to e, where 
v = (I - pW)c = AE, gives 

where JAI is the jacobian of the change of variable from v to e. Since 
the E are unobserved we make another change of variable from the e to 
the observed Y. After changing variables, and switching to the log-like- 
lihood function, the function to be maximized is 

f?(Y) = const - (N/2)~lna* 



182 M.M. Dow et al. / Network m&correlation 

The necesarry conditions for maximizing the log-likelihood function 
are that the partial derivatives with respect to each of the unkown 
parameters equal zero. Thus, 

au> -= -$[-ZX'A'AY+ZX'A'Ax/3] =o, 
w 

which gives 

B=[X’A’AX]-‘X’A’AY. (17) 

For a known p, this amounts to a straightforward generalized least 
squares procedure where AY is regressed on AX. 

To obtain an estimating equation for 8*, we again differentiate the 
log-likelihood function: 

at(Y) N + 1 -=-- - 
2 2a2 2a4 

[ Y'A'A y - 
au 

2px'A'~ Y + ~x'A'Ax~] = 0, 

(18) 

which gives 

6* = 1 /N[ Y'A'A Y - 2fi'X'A'A Y + ,&X'A'AX/l] . (19) 

Estimating equations are thus available for both b and S2, but each 
depends on the unknown parameter p. This parameter is estimated by a 
direct search procedure. 3 Ord (1975) notes that the major difficulty in 
implementing a direct search of the likelihood function lies with the 
evaluation of the determinant of the real-valued but non-symmetric 
matrix A, i.e. [Al= II- pJ+‘l. This determinant would have to be 
evaluated at every search point over a given search interval, which 
would be extremely burdensome computationally. Ord suggests an 
alternate procedure which considerably reduces the computational ef- 

3 Hepple (1976) suggests various numerical optimization procedures to estimate p, and he 
employs a conjugate gradient algorithm method in this empirical example. Ord (1975) also states 
that some formal iterative procedure is probably desirable here. Doreian (1981), on the other hand, 
finds that numerical optimization is not really superior to the direct search procedure for this 
problem. Because of its computational simplicity, we employed a direct search procedure. 
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fort required. Given the eigenvalues of matrix W, {A ,, X 2,. .,A,} the 
eigenvaluesof(I-pW) are {1-pXl, l-pX,,...,l-Ax,}. (Ord 1975: 
121). Since the determinant of a matrix is the product of its eigenvalues 

(20) 

The eigenvalues of W thus need by computed only once, and this 
simple product function evaluated at each interation. 

Substituting the expression for e2 into the log-likelihood function 
gives 

Ina’- $ .i ln(1 - ph,), 
( i 1=l 

(21) 

as the function which ,6 must minimize. From (19) we see that 

N6 2 = Y’A’A Y - Y’A’AXP - ,&X’A’A Y + ,B’X’A’AXb, (22) 

and, after substitution for B from equation (18) this gives, after some 
simplification 

NC? 2 = Y’A’PA Y, (23) 

where P = I - (AX)[( AX)‘( A Y)]-‘( AX)‘. 
Substituting (23) into (20) yields the final expression that ,6 must 

minimize as: 

ln(Y’A’PAY)-$ ,$ ln(1 -phi) 
r=l 

(24 

p is located by a direct search over the interval lp(<(l/lX,,,,,l), 
where jh,IIXj h g t t b 1 1s t e rea es a so ute value of the eigenvalues of W (Ord 
(1975). When Wis row normalized to unity, /X,,,[C 1. Thus the search 
need only be carried out over the interval ( - l,l). With the appropriate 
6 found from equation (24), B and e2 are obtained from their estimat- 
ing equations. 

The next computational task is to estimate the corresponding vari- 
ante-covariance matrix of these three parameter estimates. A con- 
sistent estimate of the asymptotic variance-covariance matrix is ob- 
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tained from the negative inverse of the matrix of second-order partial 
derivatives of the log-likelihood function: 

1(0)=--E & ) 1 1 -1 

B= (c?‘,b,j ). (25) 

Detailed derivations of this variance-covariance matrix are available in 
Doreian ( 1980). 

Briefly, given 

a= - i A?/(1 -pxi)2 
i=l 

and 

B= WA-‘, 

the information matrix was estimated from 

I(s’,ij,b > =04 a’tr(B) a4(tr(B’B) -a) 0’ I 
N/2 02tr( B) 0’ 

0 0 u2X'A'AX 1. 

(26) 

-1 

Design of the Simulation 

The following model was used to generate the observations for the 
simulation: 

y=o+1*x+e (27) 

x=xwx+u (28) 

c=pw+v (29) 

where 

E(u)=50, E(u)=O, E(uu’)=641, E(vv’)=811. (30) 
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Since our main interest here is only with the relative bias and 
efficiency of the OLS and ML procedures with respect to the regression 
coefficient, the intercept was set equal to zero. For each combination of 
p and X, we first generated a random vector u with mean and variance 
as given in equation (30). The independent X variable was then calcu- 
lated using 

x= (I- xw)-‘24. (31) 

As we mentioned previously, the extent and direction of the estima- 
tion error is a function of the degree of autocorrelation in the indepen- 
dent variable (X) and p. 

For each independent X vector we generated 50 error vectors by first 
drawing random vectors z) and then transforming them into autocorre- 
lated error vectors as before: 

E = (I- pW)-lu (32) 

Then, given the X vector and the 50 e vectors, we constructed the 
dependent Y vectors using equation (27) above. These steps were 
repeated for values of X=0, 0.4, 0.8 and p=O.2, 0.4, 0.6, 0.8 and for 
sample sizes 20, 30, and 40. Only positive (or zero) values of h and p 
were employed, since negative autocorrelation is less interesting theoret- 
ically and less likely empirically, and the costs of running the ML 
procedure precluded examination of all possible autocorrelation values. 

At each sample size, W matrices conformable with the u and v 
vectors were required to generate the simulation data via equations (28) 
and (32). We constructed two connectivity matrices for each sample 
size, for a total of six matrices. Three of the matrices, one at each 
sample size, we constructed to have density equal to 0.1. Here, density 
refers to the simple ratio of actual links to the total number of possible 
links. Links were added randomly to the rows of a null matrix until the 
specified density was reached, after which the matrix was row normal- 
ized to unity. Although not all of the effects of employing different W, 
matrices are thus removed, effects due to varying sample size are 
nevertheless quite clear in the results reported below. 

Another three connectivity matrices provide considerable contrast to 
the low density random matrices. The conceptual image used in con- 
structing the second set of matrices was that of a tree-like stucture, such 
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as might be generated by a set of languages of varying degrees of 
historical relatedness. Each IV, matrix was formed as a block diagonal, 
each block being an identical 10 by 10 submatrix with each row 
containing five Is, four 2s, and OS on the main diagonal. This corre- 
sponds to a tree-structure where the entire sample is divided into blocks 
of 5 units, within which each unit is given a relatedness score of 2 for 
each member of its own block, 1 for each member of one other block of 
5 units, and zero relatedness with all other units. 

The W, and I+‘, matrices are thus clearly distinct in terms of both 
structure and density. Thus in comparing results using different connec- 
tivity matrices any differences noted will be due in part to the joint 
effects of structure and density. It was not possible, given the expense 
of the ML procedure at this time, to generate sets of matrices varying 
only on density, and then compare the performance of each procedure 
over all autocorrelation parameters and sample sizes. Rather, the aim at 
this point is simply to look at the nature of the difference produced by 
employing alternate connectivity schemes. Results of a study of the 
effects of varying network density over a range of autocorrelation 
parameters for a fixed sample size will be presented in a later paper. 

Results 

Comparison of OLS and ML in Estimating p and var( fi) 

(1) Average bias in estimating p (B - p). Table 1 gives the results of 
both procedures. Since there were no notable differences across levels 
of p, the results were averaged over this parameter. Each figure then 
represents the outcome of 600 replications. The results indicate that the 
ML procedure is generally superior to OLS on this criteria. However, 
the amount of bias is very small using either procedure, from l-5 
percent of the magnitude of the coefficient, as we might expect from 
our previous discussion. There is a slight tendency for the bias to move 
from positive to negative with increasing sample size, and to be slightly 
less for the W, matrices than for the IV, matrices. 

(2) Relative efficiency. The overall performance of an estimator de- 
pends not only on its average bias but also on its variance. It is possible 
for a relatively unbiased estimator to have high variance, negating the 
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Table 1 
Average bias in estimating /3. 

*, w, 

A OLS ML OLS ML 

N=20 0 0.03600 0.02258 0.03953 0.02690 
0.4 0.03836 0.02573 0.06035 0.03275 
0.8 0.02546 0.02 165 0.06679 0.03860 

N=30 0 0.00683 0.00558 0.0 1400 0.01673 
0.4 0.01196 0.01261 0.01107 0.01419 
0.8 0.01550 0.01648 0.0 1842 0.00858 

N=40 0 -0.05983 -0.05610 -0.05849 - 0.04935 
0.4 - 0.0577 1 - 0.05076 -0.06434 - 0.05098 
0.8 - 0.05222 - 0.05406 -0.04537 -0.05263 

gains made from low bias. Since the mean square error (MSE), defined 
as E( B - /3)2 = bias2 + variance’, combines both bias and variance, it 
is generally used to compare the performance of various estimators. 

. ..A = .a 
.* .a 

I 
. . . . . . . N = 20 

.5 ..--.- N = 30 

- N = 40 

.2 .4 .6 

Figure 1. Relative efficiency of ML and OLS. W, matrices. 
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Figure 1 compares the performance of OLS and ML using the 
random W, matrices. Since it is of interest to know how the results are 
affected by varying the autocorrelation in the independent variable, the 

7.5 
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5 

4.5 

4 

MSEOLS 3.5 

MSEblL 
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i 
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- 
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.2 .4 .6 .a 1 P 

Figure 2. Relative efficiency of ML and OLS. W, matrices. 
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results are presented for each level of A. For p 2 0.4, Fig. 1 suggests that 
using ML offers potential reductions in MSE of 5-50 percent with no 
serious potential costs. There is also a tendency for the relative ef- 
ficiency of ML to improve with increasing A. Figure 2 shows similar 
results for the W, matrix. The advantages of ML are quite clearly 
demonstrated when p > 0.6: the potential gains are anywhere from 
about lo-700 percent, especially if the independent variable is also 
autocorrelated. Where 0.5 < p -=z 0.6, there would also seem to be little 
potential loss in efficiency using ML, particularly if X > 0 given the 
strong tendency for efficiency to improve with increasing autocorre- 
lation in the independent variable. 

Figure 3. Average bias in ML estimation of p. W, matrix. 
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ML Estimation of p and var( p) 

(1) Average bias in estimating p. Figure 3 shows that using the W, 
matrix, the ML estimate ,2 consistently underestimates the true autocor- 
relation parameter. Hepple (1976) reports a similar tendency towards 
negative bias in some preliminary unpublished results. Doreian (1981) 
has also noted this result in an empirical context. The amount of 
negative bias appears to have no relationship to the sample sizes 
reported here, and appears to increase with increasing p. Since the 
results do not seem to be sensitive to variation in X, we averaged the 
replications over this parameter. 

Figure 4 shows the same results using the W, matrix. Here, there is a 
tendency to have a negative bias at lower values of p, although the bias 
now tends to decrease in absolute value as p increases, and becomes 

Ave i 

1 

.8 

.6 

Figure 4. Average bias in ML estimation of p. W, matrix. 
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slightly positive for sample size 40. Overall, there appears to be less bias 
associated with a sample size of 40, than with the smaller samples. 

(2) Average bias in estimating MSE(p). The negative bias found in 
estimating p suggests that there will be problems in estimating MSE( p), 
since this latter figure combines both bias and variance of p. With a 
substantial bias, the MSE will appear large, even though the variance 
may be relatively small. 

Table 2 gives the results of averaging the variance of p [MSE( p)] and 
the estimated var( fi) over A. For the W, matrix, there is a clear increase 
in MSE with increasing p for each sample size. However, there is an 
opposite trend with respect to var(fi), which decreases with increasing 
p. These results appear to be a reflection of the tendency noted above 
for the negative bias in estimating p to increase with p for the W, 
matrix. Hence, the MSE could also be expected to increase as p 
increase, and the var( p) should thus increasingly underestimate MSE( p). 
Figure 5 illustrates that the bias in ML estimates of the true variance of 
p is an approximately positive linear function of p. 

MSE 

.5 

(P) - Var(8) .4 

.3 

.2 

.l 

. . . . . 20 
.~.... 30 

- 40 

.2 .4 .6 .8 1 P 

Figure 5. Average bias in ML estimation of var( p). W, matrix. 
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The results are generally similar for the W, matrix, although the 
average MSEs are rather larger and the average var(b) rather smaller, 
than previously. Since there was no observed tendency towards increas- 
ing negative bias in estimate of p as p increases (for the WL matrix), in 

.5 -- 

MSE(P) - Var($ 

.4 -- 

.3 -- 

.2 -. 

.l -- 
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Figure 6. Average bias in ML estimation of var( p). W, matrix. 
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fact just the opposite occurred, it appears that the ML estimator of 
var(p) is problematical here. Figure 6 illustrates that the bias in 
estimating var( p) is a more rapidly increasing function of p. Signifi- 
cance tests of ,?I using the ML var( fi) would thus appear to be unreliable 
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for high ,6 and complexly structured connectivity matrices. 
To assess the degree of reliability of such significance tests, we have 

computed true 2 scores and estimated Z scores for the various combi- 
nations of the parameters. These appear in Table 3. Here we see that Z 
and Z are not affected by A, but that they both increase with p. The 
ratio of Z/Z also increases with p. It reaches a value of 1 at a p of 
about 0.50 for all combinations of X and N. There is no simple 
relationship to N. The highest values of Z/Z are for N = 40, but the 
values of N = 20 are not consistently smaller than the values for 
N = 30. This is graphed in Fig. 7. The conclusion from these calcula- 
tions is that the maximum likelihood technique will overestimate sig- 
nificance for large values of p, and underestimate significance for low 
values of p. Hence the significance tests associated with the maximum 
likelihood procedure must be used conservatively. 

Conclusions 
. 

The ML solution to the autocorrelated disturbances model of context 
effects in a multiple regression framework is proposed as superior to 
OLS for investigation of the substantive nature of the underlying 
network autocorrelation processes. Specifying such models involves the 
need to make clear theoretical decisions as to whether autocorrelated 
residuals in OLS should be conceived of as due to (1) interaction 
effects, (2) unspecified systemic independent variables which are auto- 
correlated, or (3) nuisance factors having no substantive import (note 
that only 1 and 3 are properly specified by the model). 

Simulation tests of the proposed superiority of ML over OLS estima- 
tion procedures in the face of autocorrelated disturbances showed clear 
dominance of the ML model (Figs. 1 and 2) with moderate or high 
levels of autocorrelation (A > 0, p 2 0.5) in estimating the variance of 
the regression coefficients. Both procedures are relatively unbiased in 
estimating these coefficients (Table l), and differ insignificantly in this 
regard. Since it is usually of major importance to obtain the best 
possible estimates of the regression coefficients and their variances, the 
relative efficiency results indicate that the ML procedure will generally 
be preferred. In particular, if highly significant autocorrelation of the 
residuals were initially detected using Cliff and Ord’s (1973) I-statistic, 
then ML should be used over OLS. 
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The simulation results for estimation of the autocorrelation parame- 
ter p (Fig. 3 and 4) and bias in variance (Fig. 5 and 6) indicate the 
difficulties in using ML estimation procedures to investigate network 
autocorrelation processes. For random autocorrelation matrices (Fig. 3), 
ML consistently underestimates the p parameter, roughly in proportion 
to its magnitude, and independently of sample size. On the positive 
side, however, the ML estimates for structured autocorrelation matrices 
gain in accuracy with increases in the magnitude of p. For the language 
IV, matrix, there is very little bias in the estimate p at a true p = 0.8. 
Bias in estimating the variance of p increase, however, at higher levels 
of autocorrelation, for more structured autocorrelation matrices, and 
for larger samples sizes. Thus, estimates of the significance of 6 are 
unreliable from ML procedures. 

Problems in estimating the significance of b, however, are much 
more severe for random W matrices than for structured autocorrelation, 
which is the more usual case in naturally occurring phenomena. With 
low sample size (N = 20) such estimates are fairly reliable (overestimat- 
ing Z-scores of fi by about 25 percent at the highest levels of autocorre- 
lation, and unbiased at lower levels where p 2 0.6). With larger samples 
(N = 40), the estimates are over by about 50 percent at p = 0.8, and 
reliable or underestimated elsewhere. 

There are two other routes to circumvent the problems in estimating 
the variance and significance of the autocorrelation parameter. One is 
to use the magnitude of the estimate fi (e.g. p 2 0.40) as indicating 
preference for ML over OLS solutions, or to use the I-statistics (Cliff 
and Ord 1973) to test significance of autocorrelation in the independent 
or dependent variables. The other is to explore other mathematical 
models for estimating the autocorrelation parameter and its variance. 

One other result of the simulation is gratifying. In generating the 
simulated data, we had to specify two autocorrelation parameters, only 
one of which can be solved for in the ML procedures. Rho (p), which 
can be estimated, is the amount of autocorrelation in the error terms. 
Lambda (A), which cannot be estimated, is the amount of independent 
autocorrelation in the independent variables. It turns out, however, that 
varying lambda makes no difference to the ML estimation results 
except in Fig. 2, where for structured W matrices, higher levels of X 
simply increase the efficiency of ML over OLS procedures. 

Overall, the problems in significance testing of the autocorrelation 
coefficient are dwarfed by the gains in using ML over OLS procedures 
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for estimating regression coefficients and their variances, when mod- 
erate or high levels of autocorrelation are present. Our simulation 
results on random versus structured autocorrelation matrices, however, 
clearly illustrate the need for ,further study of the effects of network 
structure on the autocorrelation models and the results of estimation 
procedures. 
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