
Social Networks, 1 (1978/79)5-5 1 
@Elsevie Sequoia S.A., Lausanne ~ Printed in the Netherlands 

Contacts and Influence 

Ithiel de Sola Pool 
Massachusetts Institute of Technology” 

Manfred Kochen 
University of Michigan * * 

This essay raises more questions than it answers. In first draft, which we 
have only moderately revised, it was written about two decades ago and has 
been circulating in manuscript since then. (References to recent literature 
have, however, been added.! It was not published previously because we 
raised so many questions that we did not know how to answer; we hoped to 
eventually solve the problems and publish. The time has come to cut bait. 
With the publication of a new journal of human network studies, we offer 
our initial soundings and unsolved questions to the community of researchers 
which is now forming in this field. While a great deal of work has been done 
on some of these questions during the past 20 years, we do not feel that the 
basic problems have been adequately resolved. 

1. Introduction 

Let us start with familiar observations: the “small world” phenomenon, 
and the use of friends in high places to gain favors. It is almost too banal 
to cite one’s favorite unlikely discovery of a shared acquaintance, which 
usually ends with the exclamation “My, it’s a small world!“. The senior 
author’s favorite tale happened in a hospital in a small town in Illinois 
where he heard one patient, a telephone lineman, say to a Chinese patient 
in the next bed: “You know, I’ve only known one Chinese before in my 
life. He was __ from Shanghai.” “Why that’s my uncle,” said his neighbor. 
The statistical chances of an Illinois lineman knowing a close relative of one 
of (then) 600 000 000 Chinese are minuscule; yet that sort of event happens. 

The patient was, of course, not one out of 600 000 000 random Chinese, 
but one out of the few hundred thousand wealthy Chinese of Westernized 
families who lived in the port cities and moved abroad. Add the fact that the 
Chinese patient was an engineering student, and so his uncle may well have 
been an engineer too - perhaps a telecommunications engineer. Also there 
were perhaps some geographic lines of contact which drew the members of 
one family to a common area for travel and study. Far from surprising, the 
encounter seems almost natural. The chance meetings that we have are a clue 
to social structure, and their frequency an index of stratification. 
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Less accidental than such inadvertent meetings are the planned contacts 
sought with those in high places. To get a job one finds a friend to put in a 
good word with his friend. To persuade a congressman one seeks a mutual 
friend to state the case. This influence is peddled for 5%. Cocktail parties 
and conventions institutionalize the search for contacts. This is indeed the 
very stuff of politics. Influence is in large part the ability to reach the crucial 
man through the right channels, and the more channels one has in reserve. 
the better. Prominent politicians count their acquaintances by the thousands. 
They run into people they know everywhere they go. The experience of 
casual contact and the practice of influence are not unrelated. A common 
theory of human contact nets might help clarify them both. 

No such theory exists at present. Sociologists talk of social stratification; 
political scientists of influence. These quantitative concepts ought to lend 
themselves to a rigorous metric based upon the elementary social events of 
man-to-man contact. “Stratification” expresses the probability of two people 
in the same stratum meeting and the improbability of two people from dif- 
ferent strata meeting. Political access may be expressed as the probability 
that there exists an easy chain of contacts leading to the power holder. Yet 
such measures of stratification and influence as functions of contacts do not 
exist. 

What is it that we should like to know about human contact nets? 
-~- For any individual we should like to know how many other people he 

knows, i. c. his acquaintance volume. 
- For a popnfatiorl we want to know the distribution of acquaintance 

volumes, the mean and the range between the extremes. 
_ We want to know what kinds of people they are who have many con- 

tacts and whether those people are also the influentials. 
,.- We want to know how the lines of contact are stratified; what is the 

structure of the network? 
If we know the answers to these questions about individuals and about the 

whole population, we can pose questions about the implications for paths 
between pairs of individuals. 

- How great is the probability that two persons chosen at random from 
the population will know each other? 

- How great is the chance that they will have a friend in common? 
- How great is the chance that the shortest chain between them requires 

two intermediaries; i.e., a friend of a friend? 
The mere existence of such a minimum chain does not mean, however, 

that people will become aware of it. The surprised exclamation “It’s a small 
world” reflects the shock of discovery of a chain that existed all along.’ So 
another question is: 

‘In the years since this essay was first written, Stanley Milgram and his collaborators (Milgram 
1967; Travers and Milgram 1969; Korte and Milgram 1970) have done significant experiments on the 
difficulty or ease of finding contact chains. It often proves very difficult indeed. 
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- How far are people aware of the available lines of contact? A friend of a 
friend is useful only if one is aware of the connection. Also a channel is use- 
ful only if one knows how to use it. So the final question is, what sorts of 
people, and how many, try to exert influence on the persons with whom 
they are in contact: what sorts of persons and how many are opinion leaders, 
manipulators, politicists (de Grazia 1952; Boissevain 1974; Erickson and 
Kringas 1975)? 

These questions may be answered at a highly general level for human 
behavior as a whole, and in more detail for particular societies. At the more 
general level there are probably some things we can say about acquaintance- 
ship volume based on the nature of the human organism and psyche. The 
day has 24 hours and memory has its limits. There is a finite number of 
persons that any one brain can keep straight and with whom any one body 
can visit. More important, perhaps, there is a very finite number of persons 
with whom any one psyche can have much cathexis. 

There are probably some fundamental psychological facts to be learned 
about the possible range of identifications and concerns of which a person is 
capable (Miller 1956). 

These psychic and biological limits are broad, however. The distribution 
of acquaintanceship volumes can be quite variable between societies or social 
roles. The telephone makes a difference, for example. The contact pattern for 
an Indian villager SU~ZS radio, telephone, or road to his village is of a very dif- 
ferent order from that of a Rotarian automobile dealer. 

There is but little social science literature on the questions that we have 
just posed.* Even on the simplest question of the size of typical acquain- 
tanceship volumes there are few data (Hammer, n.d.; Boissevain 1967). Some 
are found in anecdotal descriptions of political machines. In the old days 
there was many a precinct captain who claimed to know personally every 
inhabitant of his area. While sometimes a boastful exaggeration, there is no 
doubt that the precinct worker’s success derived, among other things, from 
knowing 300 - 500 inhabitants of his neighborhood by their first names and 
family connections (Kurtzman 1935). At a more exalted level too, the art of 
knowing the right people is one of the great secrets of political success; 
James Farley claimed 10 000 contacts. Yet no past social science study has 
tested how many persons or what persons any politician knows. The esti- 
mates remain guesswork. 

There exists a set of studies concerning acquaintanceship volume of 
delinquent girls in an institutional environment: J. L. Moreno and Helen 
Jennings asked girls in a reform school (with 467 girls in cottages of 23 or 
24 apiece) to enumerate all other girls with whom they were acquainted 
(Jennings 1937). It was assumed they knew all the girls in their own cottage. 

*In the last few years, however, the literature on human networks has started proliferating. There 
are articles dealing with information and help-seeking networks in such fields as mental health 
(Saunders and Reppucci 1977; Horowitz 1977; McKinlay 1973). There is also some anthropological 
literature on networks in different societies (Nutini and White 1977; Mitchell 1969; Jacobson 1970). 
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Computed that way, the median number of acquaintances was approximately 
6.5. However, the range was tremendous. One girl apparently knew 175 of 
her fellow students, while a dozen (presumably with low 1.Q.s) could list 
only four or fewer girls outside of their own cottage. 

These figures have little relevance to normal political situations; but the 
study is valuable since it also tested the hypothesis that the extent of contact 
is related to influence. The girls were given sociometric tests to measure their 
influence. In each of two separate samples, a positive correlation (0.4 and 
0.3) was found between contact range and influence. 

One reason why better statistics do not exist on acquaintanceship volume 
is that they are hard to collect. People make fantastically poor estimates of 
the number of their own acquaintances (Killworth and Russell 1976). Before 
reading further, the reader should try to make an estimate for himself. 
Define an acquaintance as someone whom you would recognize and could 
address by name if you met him. Restrict the definition further to require 
that the acquaintance would also recognize you and know your name. (That 
excludes entertainment stars, public figures, etc.) With this criterion of 
acquaintance, how many people do you know? 

The senior author tried this question on some 30 colleagues, assistants, 
secretaries and others around his office. The largest answer was 10 000; the 
smallest was 50. The median answer was 522. What is more, there seemed to 
be no relationship between the &messes and reality. Older or gregarious 
persons claimed no higher figures than young or relatively reclusive ones. 
Most of the answers were much too low. Except for the one guess of 10000 
and two of 2000 each, they were all probably low. We don’t know that. of 
course, but whenever we have tried sitting down with a person and enumera- 
ting circles of acquaintances it has not taken long before he has raised his 
original estimate as more and more circles have come to mind: relatives, old 
school friends, merchants, job colleagues, colleagues on former jobs, vacation 
friends, club members, neighbors, etc. Most of LIS grossly underestimate the 
numer of people we know for they are tucked in the recesses of our minds, 
ready to be recalled when occasion demands. 

Perhaps a notion of the order of magnitude of acquaintanceship volume 
can be approached by a geu’unkene-~perirnent with Jennings’ data on the 
reform school. The inmates were young girls who had not seen much of the 
world; they had but modest 1.Q.s and memories; they had come from limited 
backgrounds; and in the recent past they had been thoroughly closed off 
from the world. We know that the average one knew 65 inmates. Is it fair to 
assume that we may add at least 20 teachers, guards, and other staff members 
known on the average? Somewhere the girls had been in school before their 
internment. Perhaps each knew 40 students and 10 teachers from there. 
These girls were all delinquents. They were usually part of a delinquent gang 
or subculture. Perhaps an average of 30 young people were part of it. They 
had been arrested, so they knew some people from the world of lawyers, 
judges, policemen, and social workers. Perhaps there were 20 of them. We 
have not yet mentioned families and relatives; shall we say another 30? Then 
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there were neighbors in the place they had lived before, perhaps adding up to 
35. We have already reached 250 acquaintances which an average girl might 
have, based solely on the typical life history of an inmate. We have not yet 
included friends made in club or church, nor merchants, nor accidental con- 
tacts. These might add another 50. Nor have we allowed for the girls who 
had moved around - who had been in more than one school or neighbor- 
hood or prison. Perhaps 400 acquaintances is not a bad guess of the average 
for these highly constricted, relatively inexperienced young girls. Should we 
not suspect that the average for a mature, white collar worker is at least 
double that? 

Perhaps it is, but of course we don’t know. All we have been doing so far 
is trying to guess orders of magnitude with somewhat more deliberation than 
was possible by the respondents to whom we popped the question “How 
many people do you know?“. There has been no real research done to test 
such estimates. 

It could be done by a technique analogous to that used for estimating a 
person’s vocabulary. In any given time period during which we observe, a 
person uses only some of the words he knows and similarly has contact with 
only some of the people he knows. How can we estimate from this limited 
sample how many others are known to him? In each case (words and friends) 
we can do it by keeping track of the proportion of new ones which enter the 
record in each given time period. Suppose we count 100 running words. 
These may contain perhaps 60 different words, with some words repeated 
as many as 6 or 7 times, but most words appearing once. Adding a second 
100 running words may add 30 new ones to the vocabulary. A third hundred 
may add 25 new ones, and so on down. If we extrapolate the curve we reach 
a point where new words appear only every few thousand running words, 
and if we extrapolate to infinity we have an estimate of the person’s total 
vocabulary. In the same way, on the first day one may meet 30 people. On 
the second day one may meet another 30 but perhaps only 15 of them are 
new, the other 15 being repeaters. On the third day perhaps the non-repeaters 
may be down to 10, and so on. Again by extrapolating to infinity an estimate 
of the universe of acquaintances may be made. 

Extrapolation to infinity requires strong assumptions about the number of 
very rarely seen acquaintances. If there are very many who are seen but once 
in a decade, then a much longer period of observation is required. If the 
number of people seen once in two decades is not significantly smaller than 
the number seen in a shorter period, then there are methodological difficul- 
ties in estimation. 

Two further cautions are necessary. It turns out that the lumpiness in the 
schedules of our lives makes this technique unusable except over long 
periods. Perhaps we start on Thursday and go to work. Friday we go to work 
and see almost the same people. Saturday we go to the beach and have an 
entirely new set of contacts. Then Monday, perhaps, we are sent on a trip to 
another office. In short, the curves are highly irregular. Long and patient 
observation is called for. 



Also note that at the end of a lengthy experiment (say after one year), it 
is necessary to check back over the early lists to determine who are forgotten 
and no longer acquaintances. Just as new persons enter the acquaintanceship 
sphere, old ones drop out of it. In one record, for example, a subject recorded 
156 contacts in five successive days, with 117 different persons whom he 
then knew. Two years and ten months later, though still working in the same 
place, he could no longer recall or recognize 3 1 of these; i.e., 86 (or 74%) 
were still a~~luaintan~es. 

It is important to collect more such empirical information. Section 2 of 
this paper describes some empirical findings that we have obtained. But 
before we can decide what to collect we need to think through the logical 
model of how a human contact net works. We shall do that roughly and non- 
mathematically in this introduction. Section 3 of the paper deals with it 
more formally. 

One question that quite properly is raised by readers is what do we mean 
by acquaintanceship, or f~el~dsllip, or con tact. For the mathematics model, 
the precise definition of “knowing” is quite irrelevant. What the mathemati- 
cal model gives us is a set of points each of which is connected with some of 
the other points. As we look away from our model to the world for which it 
stands, we understand that each point somehow represents a person, and 
each connection an act of knowing. The model is indifferent to this, how- 
ever. The points couId stand for atoms, or neurons, or telephones. or nations, 
or corporations. The connections could consist of collisions, or electric 
charges, or Ietters written, or hearing about, or acqLIaintanceship, or friend- 
ship, or marriage. To use the model (and satisfy ourselves that it is appro- 
priate) we shall have to pick definitions of person (i.e., point) and knowing 
(Le., connectedness) related to the problem at hand. But we start with a 
model that is quite general. We do indeed impose some constraints on the 
points and on their connections. These constraints are the substance of our 
theory about the nature of human contacts. 

One simplification we make in our model is to assume that the act of 
knowing is an all-or-none relationship. That is clearly not true and it is not 
assumed by Hammer (n-d.), Gurevich (I 96 1) and Schulman (1976). There 
are in reality degrees of connectedness between persons. There are degrees of 
awareness which persons have of each other, and there are varied strengths of 
cathexis. But we cannot yet deal with these degrees. For the moment we 
want to say of any person, A, that he either does or does not know any given 
other person, B. 

The criterion of human acquaintanceship might be that when A sees B he 
recognizes him, knows a name by which to address him, and would ordinarily 
feel it appropriate that he should greet him. That definition excludes. as we 
have noted, recognition of famous persons, since as strangers we do not feel 
free to greet them. It excludes also persons whom we see often but whose 
names we have never learned; e.g., the policeman on the corner. It is, how- 
ever, a useful operational definition for purposes of contact net studies. 
because without knowing a name it is hard to keep a record. 
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Alternatively, the criterion might be a relationship which creates a claim 
on assistance. In politics, that is often the important kind of knowing. One 
might well find that a better predictor of who got a job was a man’s position 
in the network of connections defined by obligation than his position in the 
network of mere acquaintance connections. 

For some anthropological studies the connection with which we are con- 
cerned might be kinship. As many societies operate, the most important fact 
in the dealings of two persons is whether they are kin or not. Kinship creates 
obligations and thus provides a protection of each by the other. Blood kin- 
ship is a matter of degree fading off imperceptibly; we are all ultimately 
related to everyone else. But society defines the limit of who are recognized 
as kin and who are unrelated. This varies from society to society, and some- 
times is hard to establish. In many societies, Brazil and India for example, 
the first gambit of new acquaintances is to talk about relatives to see if a 
connection can be established. For such societies kinship is clearly an impor- 
tant criterion of connectedness. 

Another criterion of connectedness, of considerable relevance in the 
United States, is the first-name index. This makes a sharp distinction between 
levels of knowing, just as does Se and u’u in German or vous and tu in 
French. 

Whatever definition of knowing we choose to use, our model proceeds by 
treating connectedness as an all-or-none matter. In short, we are trying to 
develop not a psychological model of the knowing relationship, but a model 
for treating data about knowing relationships (however defined) which can 
be applied using whatever knowing relationship happens to be of interest. 

The political scientist, using an appropriate definition, may use a contact 
net model to study influence (Gurevich and Weingrod 1976; n.d.). He asks the 
number of “connections” of a political kind a person has. The sociologist or 
anthropologist, using an appropriate definition, may use such a model to 
study social structure. He asks what kinds of persons are likely to be in con- 
tact with each other. The communications researcher may use such a model 
to study the channels for the flow of messages. Psychologists may use it to 
examine interrelationships within groups. 

So far we have imposed only one restriction on the knowing relationship 
in our model, namely, that it be all-or-none. There are a few further things 
we can say about it. When a mathematician describes a relationship he is apt 
to ask three questions about it: Is it reflexive? Is it symmetric? Is it transitive? 
The “equals” (=) relationship is reflexive, symmetric, and transitive. 

The knowing relationship about which we are talking is clearly not an 
equality relationship. Anything equals itself; i.e., the equals relation is 
reflexive. Acquaintanceship is reflexive or not as one chooses to define it. 
The issue is a trivial one. One could say that by definition everyone knows 
himself, or one could say that by definition the circle of acquaintances does 
not include oneself. (We have chosen in our examples below to do that latter 
and so to define the knowing relation as nonreflexive.) 



There is no reason why the knowing relation has to be symmetric. Many 
more people knew the film star Marilyn Monroe than she knew. If we use 
the definition of putting a face together with a name then, clearly, persons 
with good memories know persons with bad memories who do not know 
them. Similarly, it has been found in some studies that persons are more apt 
to know the names of persons with higher than lower social status. Thus, 
privates know each others’ names arzd the names of their officers. Officers 
know each others’ names and the names of those they serve, but not neces- 
sarily those of privates. Those served may only know servants categorically 
as, for example, “the tall blond waitress”. All in all, to define any knowing 
relationship as a symmetric one is a great constraint on reality, but it is one 
which simplifies analysis enormously. It helps so much that for the most part 
we are going to make that assumption in the discussion below. And, for 
many purposes, it is largely correct. A kinship relationship is clearly sym- 
metric; if A is a kin to B, B is a kin to A. Also the recognition relationship 
is mostly symmetric. Most of the time if A can recognize and greet B, B can 
recognize and greet A. It is generally convenient in our model to define away 
the minority of cases where this does not hold. 

On the other hand, the assumption of transitivity is one that we cannot 
usefully make. If A knows B, and B knows C, it does not follow that A 
knows C. If it did follow, then all of society would decompose into a set of 
one or more cliques completely unconnected with each other. It would mean 
that everyone you knew would know everyone else you knew, and it follows 
that you could not know anyone who was outside the clique (i.e., not 
known to all your friends).3 Clustering into cliques does occur to some 
extent and is one of the things we want to study. We want to measure the 
extent to which these clusters are self~ontaine~i, but they are not that by 
definition. 

Thus one useful model of a contact network consists of a set of individuals 
each of whom has some knowing relationships with others in the set of a 
kind which we have now defined: all-or-none, irreflexive, symmetric, not 
necessarily transitive. 

We would like to be able to describe such a network as relatively unstruc- 
tured or as highly structured. Intuitively that is a meaningful distinction, but 
it covers a considerable variety of strictly defined concepts. Figure 1 describes 
three hypothetical groups of eight people each, in which each individual has 
three friends. In the first there are no cliques, in the third there are two com- 
pletely disjoint cliques, and the second group is intermediate. In the first 
any two people can be connected by at most one intermediary; in the second 
some pairs (e.g., A and E) require two intermediaries to be connected; in the 
third some individuals cannot be connected at all. We are inclined to describe 
the third group as the most stratified or structured and the first as least so, 

3Most so&metric literature deals with “liking” rather than “knowing”. Preference relationships do 
tend to be transitive (Haliinan and 1:clmlec 1975). 
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and in some senses that is true. But, of course, the first graph is also a rigid 
structure in the sense that all individuals are alike. In general, however, when 
we talk of a network as showing more social stratification or clustering in 
this paper, we mean that it departs further from a random process in which 
each individual is alike except for the randomness of the variables. The 
clustering in a society is one of the things which affects who will meet 
whom and who can reach whom .4 Any congressman knows more congress- 
men than average for the general populace; any musician knows more 
musicians. 

Figure 1. Networks of different strumredness. 
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4A growing literature exists on structures in large networks (Boonnan and White 1976; Lorrain 
1976; Lorrain and White 1971; Rapoport and Horvath 1961; Foster et al. 1963; Foster and Horvath 
1971;Wolfe 1970;McLaughlin 1975; Lundberg 1975; Alba and Kadushin 1976). 
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The simplest assumption, and one perhaps to start with in modelling a 
large contact net, is that the number of acquaintances of each person in the 
population is a constant. We start then with a set of N persons each of whom 
knows II persons from among the N in the universe; II is the same for all N 
persons. 

If in such a population we pick two persons at random and ask what is the 
probability that they know each other, the answer can quickly be given from 
knowing N and II (or, if 17 is a random variable, the mean II). We know 
nothing about A and B except that they are persons from a population of 
size N each of whom on the average knows II other persons in that popula- 
tion. The probability that B is one of the II persons in the circle of acquain- 
tances of A is clearly rz/N. If we were talking of a population of 160 000 000 
adults and each of them knew, on the average, 800 persons, the chances of 
two picked at random knowing each other would be one in 200 000. 

Suppose we pick A and B who do not know each other, what is the proba- 
bility of their having an acquaintance in common? The answer to that ques- 
tion, even with random choice of A and B, no longer depends just on II and 
N. The results now depend also on the characteristic sfructurc of inter- 
personal contacts in the society, as well as on the size of the population and 
the number of acquaintances each person has. To see the reason why. we 
turn to an example which we outline diagrammatically in Fig. 2. This Figure 
represents parts of two networks in which II = 5; i.e., each person knows 
five others in the population. We start with A; he knows B, C, D, E. and F; 
this is his circle of acquaintances. Next we turn to B; he also knows five 
people. One of these, by the assumption of symmetry, is A. So, as the 
acquaintanceship tree fans out, four persons are added at each node. 

Figure 2. Structure in a population. 

Structured Unstructured 
Population Population 

However, here we note a difference between the structured and the un- 
structured population. In a large population without structure the chance of 
any of A’s acquaintances knowing each other is very small (one in 200 000 
for the U.S.A. figures used above). So, for a while at least, if there is no 



structure the tree fans out adding four entirely new persons at each node: 
A knows five people; he has 20 friends of friends, and 80 friends of friends 
of friends, or a total of 125 people reachable with at most two interme- 
diaries. That unstructured situation is, however, quite unrealistic. In reality, 
people who have a friend in common are likely to know each other (Hammer, 
n.d.). That is the situation shown in the slightly structured network on the 
left side of Fig. 2. In that example one of D’s acquaintances is B and another 
is E. The effect of these intersecting acquaintanceships is to reduce the total 
of different people reached at any given number of steps away from A. fn 
the left-hand network A has five friends, but even with the same 82 only 11 
friends of friends. 

So we see, the more cliquishness there is, the more structure there is to 
the society, the longer (we conjecture) the chains needed on the average to 
link any pair of persons chosen at random. The less the acquaintanceship 
structure of a society departs from a purely random process of interactions, 
in which any two persons have an equal chance of meeting, the shorter will 
be the average minimum path between pairs of persons.’ Consider the impli- 
cations, in a random network, of assuming that 12, the mean number of 
acquaintances of each person, is 1000. Disregarding duplications, one would 
have 1000 friends, a million (1 OOOz) friends-of-friends, a billion (1000”) 
persons at the end of chains with two intermediates, and a trillion (1000”) 
with three. In such a random network two strangers finding an acquaintance 
in common (Le., experiencing the small-world phenomenon) would still be 
enjoying a relatively rare event; the chance is one million out of 100 or 200 
million. But two intermediaries would be all it would normally take to link 
two people; only a small minority of pairs would not be linked by one of 
those billion chains. 

Thus, in a country the size of the United States, if acquaintanceship were 
random and the mean acquaintance volume were 1000, the mean length of 
n~inimum chain between pairs of persons would be well under two inter- 
mediaries. How much longer it is in reality because of the presence of con- 
siderable social structure in the society we do not know (nor is it necessarily 
longer for all social structures). Those are among the critical problems that 
remain unresolved. 

Indeed, if we knew how to answer such questions we would have a good 
quantitative measure of social structure. Such an index would operationalize 
the common sociological statement that one society is more structured than 

‘Let us state this more carefully for a network of n nodes and nr links, in which n! P m, but all 
nodes are reachable from all nodes. In that case, m pairs know each other. The question is what 
structure will minimize the average number of steps between the n ! - m renlainin~ pairs. Whenever 
the m pairs who know each other are also linked at two steps, then the two-step connection is wasted. 
The same is true for pairs finked by more than one two-step route. Such wastage occurs often when 
there are dense clusters of closely related nodes in a highly structured network. It happens rarely 
(because n! % m) in a random network structure ~ but it does happen. The minimum average chain 
would occur not in a random structure, but in one designed to minimize wasted links. However, when 
n! > m, the random structure will depart from that situation only to a small extent. 
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another. The extent to which the mean minimum chain of contacts departs 
from that which would be found in a random network could be a convenient 
index of structuredness. 

There are all sorts of rules for the topology of a network that can make its 
graph depart from random linkages. Perhaps the simplest and most important 
structure is that of triangular links among a given person’s friends. If two 
persons both know person A, the odds are much better than otherwise that 
they will know each other; if they do know each other the acquaintanceship 
links form a triangle. For an example see Fig. 3. Disregarding the symmetric 

Figure 3. Efject of structure. 
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path (LE., A knows B so B knows A), let us ask ourselves how many links it 
takes to go from A out to each of his acquaintances and back to A viu the 
shortest path. If we start out on the path from A to B, we can clearly return 
to A via a triangle, A,B,D,A. We can also return by a triangle if we go from A 
to D or A to E. On the other hand, there is no triangle which will take one 
back if one starts on the path from A to F. Sooner or later there will be a 
path back, in this instance a path of eight links. (The only instance in which 
there would be no path back would be if the society were broken into two 
cliques linked at no point (see Fig. l), or at only one point.) Clearly, the 
number of triangles among all the minimum circular chains is a good index 
of the tightness of the structure, and one that is empirically usable. It is 
perfectly possible to sample and poll the acquaintances of A to estimate how 
many of them know each other. That figure (which measures the number of 
triangles) then provides a parameter of the kind for which we are looking 
(Hammer, n.d., Wasserman 1977). 

The fact that two persons have an acquaintance in common means that to 
some extent they probably move in the same circles. They may live in the 
same part of the country, work in the same company or profession, go to the 
same church or school, or be related. These institutions provide a nucleus of 
contacts so that one acquaintance in common is likely to lead to more. One 
way to describe that situation can be explained if we turn back to Fig. 3. 
Suppose we inquire of a person whether he knows A. If the answer is yes, 
then the chances of his knowing B are better than they would otherwise 
have been. Conversely if the answer is no, that reduces the chances of his 
knowing B. If he has told us that he does not know either A or B the 



chances of his knowing C are still further reduced. And so on down the 
list. This fact suggests that a second measure of structuredness would be 
the degree to which the chance of knowing a subsequent person on the list 
of acquaintances of A is reduced by the information that a person does not 
know the previous person on the list. In a society that is highly segmented, 
if two persons have any acquaintances in common they will have many, and 
so each report of nonacquaintanceship reduces more markedly than it 
otherwise would the chances of finding one common acquaintance on the 
list. 

We require a measure, such as one of those two we have just been dis- 
cussing, of the degree of clusteredness in a society, to deal with the question 
with which we started a few pages back, namely, the distribution of length 
of minimum contact chains: how many pairs of persons in the population 
can be joined by a single common acquaintance, how many by a chain of 
two persons, how many by a chain of three, etc.? 

The answer depends on three values: N, n, and a parameter measuring 
structuredness. Increased social stratification reduces the length of chains 
between persons in the same stratum and at the same time lengthens the 
chains across strata lines. Thus, for example, two physicians or two persons 
from the same town are more likely to have an acquaintance in common 
than persons who do not share such a common characteristic. While some 
chains are thus shortened and others are lengthened by the existence of 
clusters within a society, it seems plausible to conjecture that the mean chain 
averaged over pairs of persons in the population as a whole is lengthened. 
Two persons chosen at random would find each other more quickly in an un- 
structured society than in a structured one, for most of the time (given 
realistic values of N, 12, and clustering) persons chosen at random will not 
turn out to be in the same strata. 

We might conjecture, for example, that if we had time series data of this 
kind running over the past couple of decades, we would find a decline in 
st~cturedness based on geography. The increased use of the long-distance 
telephone (and in the future of computer networks), and also of travel, 
probably has made acquaintanceship less dependent on geographic location 
than ever in the past. 

In the final section of this paper we turn to an exploration of some of the 
alternative ways of modelling a network of the kind just described. The 
central problem that prevents an entirely satisfactory model is that we do 
not know how to deal with the structuredness of the population. Because of 
its lovely mathematical simplicity, there is an almost irresistable tendency to 
want to assume that whenever we do not know how the probability of 
acquaintanceship within two pairs of persons differs, we should treat it as 
equal; but it is almost never equal (Hunter and Shotland 1974; White 1970a). 
The real-world population lives in an n-dimensional space distributed at 
varying social distances from each other. But it is not a Euclidean space. 
Person A may be very close to both B and C and therefore very likely to 
know them both, but B and C may be very far from each other. 



In the hope of getting some clues as to the shape of the distribution of 
closeness among pairs in real-world populations, we undertook some research 
on the actual contact networks of some 27 individuals. These data we shall 
describe in Part 2 of this paper. While we learned a lot from that exercise, it 
failed to answer the most crucial questions because the most important links 
in establishill~ the coll~lecte~~~less of a graph may often be not the densely 
travelled ones in the im~ne~~iate e~~vironI~lent from which the path starts. 
but sparse ones off in the distance. How to go between two points on oppo- 
site sides of a river may depend far more critically on where the bridge is 
than on the roads near one’s origin or destination. The point will become 
clear as we examine the data. 

2. Empirical estimates of acquaintan~s~ip parameters 

One is awed by the way in which a network multiplies as links are added. 
Even making all allowances for social structure, it seems probable that those 
whose personal acquaintances range around 1000, or only about l/l 00 000 
of the U.S. adult population, can presumably be linked to another person 
chosen at random by two or three intermediaries on the average, and almost 
with certainty by four. 

We have tried various approaches to estimating such data. We start with 
geLlarlh_err~.rl?erirrael?ts, but also have developed a couple of tec~~niq~les for 
measuring acquaintance volume and network structure. 

Consider first a rather fanciful extreme case. Let LB suppose that we had 
located those two individuals in the U.S. between whom the minimum chain 
of contacts was the longest one for any pair of persons in the country. Let 
us suppose that one of these turned out to be a hermit in the Okefenokee 
Swamps, and the other a hermit in the Northwest woods. How many inter- 
mediaries do we need to link these two? 

Each hermit certainly knows a merchant. Even a hermit needs to buy 
coffee, bread, and salt. Deep in the backwood, the storekeeper might never 
have met his congressman, but among the many wholesalers, lawyers, inspec- 
tors, and customers with whom he must deal, there will be at least one 
who is acquainted with his representative. Thus each of the hermits, with 
two intermediaries reaches his congressman. These may not know each 
other, though more likely they do, but in any case they know a congressman 
in common. Thus the maximum plausible minimum chain between any two 
persons in the United States requires no more than seven intermediaries. 

This arnLlsin~ example is not without significance. Viewed this way, we 
see Congress in a novel but important aspect, that of a communication node. 
The Congress is usually viewed as a policy choosing, decision-making instru- 
ment, which selects among pre-existing public opinions which are somehow 
already diffused across the country. Its more important function, however, is 
that of a forum to which private messages come from all corners, and within 
which a public opinion is created in this process of confrontation of attitudes 
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and information. Congress is the place which is quickly reached by messages 
conveying the feelings and moods of citizens in all walks of life. These 
feelings themselves are not yet public opinion for they are not crystallized 
into policy stands; they are millions of detailed worries concerning jobs, 
family, education, old age, etc. It is in the Congress that these messages are 
quickly heard and are revised and packaged into slogans, bills, and other 
policy formulations. It is these expressions of otherwise inchoate impulses 
that are reported in the press, and which become the issues of public opinion. 
Thus the really important function of the Congress, distinguishing it from an 
executive branch policy making body, is as a national communication center 
where public reactions are transformed into public opinion. Its size and 
geographically representative character puts it normally at two easily found 
links from everyone in the country. Its members, meeting with each other, 
formulate policies which express the impulses reaching them from outside. 
Through this communication node men from as far apart as the Okefenokee 
Swamps and the north woods can be put in touch with the common threads 
of each other’s feelings expressed in a plank of policy. A body of 500 can 
help to weld a body of 100 000 000 adults into a nation. 

While thinking about such matters has its value, it is no substitute for 
trying to collect hard data. 

Empirical collection of contact data is possible but not easy: 
First of all, people are not willing to reveal some or all of their contacts. 
Second, it is hard to keep track of such massive and sequential data. 
Third, because contacts run in clusters and are not statistically indepen- 

dent events, the statistical treatment of contact data is apt to be hard. 
Reticence is probably the least serious of the difficulties. It is certainly 

no more of a problem for studies of contacts than for Kinsey-type research 
or for research on incomes or voting behavior, all of which have been success- 
fully conducted, though with inevitable margins of error. As in these other 
areas of research, skill in framing questions, patience, proper safeguards of 
confidence, and other similar requirements will determine success, but there 
is nothing new or different about the difficulties in this field. Reticence is 
less of an obstacle to obtaining valid information about contacts than are the 
tricks played by our minds upon attempts at recall. 

Indeed it is usually quite impossible for persons to answer questions 
accurately about their contacts. We noted above the bewilderment which 
respondents felt when asked how many people they knew, and how most 
gave fantastic underestimates. Over one day, or even a few hours, recall of 
contacts is bad. Given more than a very few contacts, people find it hard to 
recall whom they have seen or conversed with recently. They remember the 
lengthy or emotionally significant contacts, but not the others. The person 
who has been to the doctor will redall the doctor, but may neglect to 
mention the receptionist. The person who has been to lunch with friends 
may forget about contact with the waiter. In general, contacts which are 
recalled are demonstrably a highly selected group. 



Most importantly, they are selected for prestige. A number of studies have 
revealed a systematic suppression of reports of contacts down the social 
hierarchy in favor of contacts up it (Warner 1963; Festinger et ul. 1950; Katz 
and Lazarsfeld 1955). If one throws together a group of high status and low 
status persons and later asks each for the names of the persons in the group 
to whom he talked, the bias in the outcome is predictably upward. Unaided 
recall is not an adequate instrument for collecting contact data except where 
the problem requires recordin g only of emotionally meaningful contacts. 
If we wish to record those, and only those, we can use the fact of recall as 
our operational test of meaningfulness. Otherwise, however, we need to sup- 
plement unaided recall. 

Some records of contacts exist already and need only be systematically 
noted. Non~te~iew sources of contact information include appointment 
books, committee memberships, and telephone switchboard data. The 
presidential appointment book is a fascinating subject for study. 

Telephone switchboard data could be systematically studied by a~ltomati~ 
counting devices without raising any issues of confidence. The techniques are 
already available and are analogous to those used for making load estimates. 
They could have great social science value too. A study, for example, of the 
ecology of long-distance telephone contacts over the face of the country 
would tell us a great deal about regionalism and national unity. A similar 
study of the origin and destination of calls by exchange could tell us a great 
deal about ~leighborhoods, suburbanislll, and urbanjsm in a metropolitan 
region. This would be particularly interesting if business and residential 
phones could be segregated. The pattern of interpersonal contact could be 
studied by counting calls originating on any sample of telephones. (What 
proportion of all calls from any one phone are to the most frequently called 
other phone? What proportion to the 10 most frequently called others?) 
How many different numbers are called in a month or a year? Would the 
results on such matters differ for upper and lower income homes, urban and 
rural, etc.? 

In similar ways mail flows can tell us a good deal (Deutsch 1956, 1966). 
The post office data are generally inadequate, even for illternation~ flows, 
and even more for domestic flows. Yet sample counts of geographic origins 
and destinations are sometimes made, and their potential use is clear. 

Not all the information we want exists in available records. For some pur- 
poses interviews are needed for collection of data. Various devices suggest 
themselves for getting at the range of a person’s contacts. One such device is 
to use the telephone book as an uide-memoire. We take a very large book, 
say the Chicago or Manhattan book. We open it to a page selected by a table 
of random numbers. We then ask our respondent to go through the names on 
that page to see if they know anyone with a name that appears there or a 
name that would appear there if it happened to be in that book. Repeat the 
operation for a sample of pages. One can either require the subject to think 
of all the persons he knows with such names, which is both tedious and, 
therefore, unreliable, or assume that the probabiIity of a second, third. or 
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fourth known person appearing on a single page is independent of the previous 
appearance of a known name on the page. Since that is a poor assumption 
we are in a dilemma. Depending on the national origins of our respondent, 
he is apt to know more persons of certain names; he may know more Ryans, 
or Cohens, or Swansons according to what he is. Nationality is a distorting 
factor in the book, too. The Chicago phone book will contain a dispropor- 
tionate number of Polish names, the Manhattan phone book a disproportionate 
number of Jewish ones. Also if the subject knows a family well he will know 
several relatives of the same name. In short, neither the tedious method of 
trying to make him list all known persons of the name, nor the technique in 
which one simply counts the proportion of pages on which no known name 
occurs (and uses that for p, 1 - p = q, and then expands the binomial), gives 
a very satisfactory result. Yet with all those qualifications, this technique of 
checking memory against the phone book gives us a better estimate of 
approximate numbers of acquaintances than we now have. 

One of the authors tried this technique on himself using a sample of 30 
pages of the Chicago phone book and 30 pages of the Manhattan phone 
book. The Chicago phone book brought back names of acquaintances on 
60% of the pages, yielding an estimate that he knows 3100 persons. The 
Manhattan phone book, with 70% of the pages having familiar names, 
yielded an estimate of 4250 acquaintances. The considerations raised above 
suggested that the estimate from the Manhattan phone book should be 
higher, for the author is Jewish and grew up in Manhattan. Still the dis- 
crepancy in estimates is large. It perhaps brings us closer to a proper order of 
magnitude, but this technique is still far from a solution to our problem. 

To meet some of these problems we developed a somewhat better method 
which involves keeping a personal log of all contacts of any sort for a 
number of sample days. Each day the subject keeps a list (on a pad he carries 
with him) of all persons whom he meets and knows. The successive lists in- 
creasingly repeat names which have already appeared. By projecting the 
curve one hopes to be able to make estimates of the total size of the 
acquaintanceship volume, and from the lists of names to learn something of 
the character of the acquaintances. 

The rules of inclusion and exclusion were as follows: 
(1) A person was not listed unless he was already known to the subject. 

That is to say, the first time he was introduced he was not listed; if he was 
met again on a later day in the 100 he was. The rationale for this is that we 
meet many people whom we fail to learn to recognize and know. 

(2) Knowing was defined as facial recognition and knowing the person’s 
name - any useful name, even a nickname. The latter requirement was con- 
venient since it is hard to list on a written record persons for whom we have 
no name. 

(3) Persons were only listed on a given day if when the subject saw them 
he addressed them, if only for a greeting. This eliminated persons seen at a 
distance, and persons who the subject recognized but did not feel closely 
enough related to, to. feel it proper to address. 
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Table 1. loo-day contacts of respondents 

sex Job Age 

Blue collar 
M 

M 

M 

%I 

M 
F 

White collar 
t: 

1: 

M 

M 

M 

1: 

Professional 

M 
I: 

M 

M 

M 

hl 

M 

M 

M 

Housewives 
1: 

Is 
1: 

1: 

1: 

1: 

Adolescent 
M 

Porter 
Factory labor 

Dept. store receiving 

Factory labor 

Foreman 
Factory labor and 
unemployed 

Technician 30-40 276 2207 8.0 

Secretary 40 50 318 1963 6.2 

Buyer 20 - 30 390 2756 7.1 
Buyer 20 - 30 474 4090 8.6 

Sales 30-40 505 3098 6.1 

Secretary 50-60 596 5705 9.5 

Factory engineer 30-40 235 3142 13.5 
T.V. 40-50 533 1681 3.2 

Adult educator 30-40 541 2282 4.2 

Professor 40 - 50 570 2175 3.8 

Professor 40-50 685 2142 3.1 

Lawyer-politician 30-40 1043 3159 3.0 

Student 20 - 30 338 1471 4.4 

Photographer 30-40 523 1967 4.8 

President* 50-60 1404** 4340** 3.1** 

Student IO- 20 464 4416 

50-60 83 2946 35.5 
40-50 96 2369 24.7 

20 30 137 1689 12.3 

60 - 70 376 7645 20.3 

30 - 40 510 6371 12.5 

30-40 146 1222 8.4 

30-40 72 377 

20 - 30 255 1111 

20 - 30 280 1135 

30-40 363 1593 

30 - 40 309 1034 

50-60 361 1032 

5.2 

4.4 

4.0 
4.4 

3.3 
2.9 

9.5 

la) lb) 
No. of different No. of 
persons seen in contact 
100 days events 

Ratio 

hla 

*Data estimated from Hyde Park records. 
**Record for 85 days. 

(4) Telephone contacts were included. So were letters written but not 
letters received. The rationale for the latter is that receiving a letter and 
replying to it is a single two-way communication such as occurs simul- 
taneously in a face-to-face contact. To avoid double counting, we counted 
a reply as only half the act. Of course, we counted only letters written to 
people already known by the above criterion. 
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(5) A person was only listed once on a given day no matter how often he 

was seen. This eliminated, for example, the problem of how many times to 
count one’s secretary as she walked in and out of the office. 

The task of recording these contacts is not an easy one. It soon becomes a 
tedious bore. Without either strong motivation or constant checking it is 
easy to become forgetful and sloppy. But it is far from impossible; properly 
controlled and motivated subjects will do it. 

The data on 27 persons were collected mostly by Dr. Michael Gurevich 
(196 1) as part of a Ph.D. dissertation which explored, along with the acquain- 
tanceship information itself, its relation to a number of dependent variables. 
AS Table 1 shows US, the respondents, though not a sample of any defin,ed 
universe, covered a range of types including blue collar, white collar, profes- 
sional, and housewives. 

Among the most important figures in the Table are those found in the 
right-hand column. It is the ratio between the number of different persons 
met and the number of meetings. It is what psychologists call the type-token 
ratio. It is socially very indicative, and is distinctive for different classes of 
persons. 

Blue collar workers and housewives had the smallest number of different 
contacts over the 100 days. They both lived in a restricted social universe. 
But in the total number of interpersonal interactions the blue collar workers 
and housewives differed enormously. Many of the blue collar workers worked 
in large groups. Their round of life was very repetitive; they saw the same 
people day in and day out, but at work they saw many of them. Housewives, 
on the other hand, not only saw few different people, but they saw few 
people in the course of a day; they had small type-token ratios. They lived 
in isolation. 

In total gregariousness (i.e., number of contact events) there was not 
much difference among the three working groups. Blue collar workers, white 
collar workers, and professionals all fell within the same range, and if there is 
a real difference in the means, our small samples do not justify any conclu- 
sions about that. But in the pattern of activity there was a great difference. 
While blue collar workers were trapped in the round of a highly repetitive 
life, professionals at the other extreme were constantly seeing new people. 
They tended to see an average acquaintance only three or four times in the 
hundred days. One result of this was that the professionals were the persons 
whose contacts broke out of the confines of social class to some extent. 
They, like the others (see Table 2) tended to mix to a degree with people 
like themselves but, to a slightly greater degree than the other classes, they 
had a chance to meet people in other strata of society. 

The tendency of society to cluster itself as like seeks like can also be seen 
in Tables on contacts by age, sex,‘and religion (see Tables 3,4 and 5). These 
data reflect a society that is very structured indeed. How can we use the data 
to estimate the acquaintanceship volume of the different respondents? We 
found that over 100 days the number of different persons they saw ranged 
between 72 for one housewife and 1043 for one lawyer-politician. Franklin 



Acquaintances’ 

occupation 

Professional 

Managerial 
Clerical 
Sales worker 
Craftsman, 

foreman 

Operative 
Service worker 

Laborer 

Housewife 

Student 

Farmer 

Dont’ know 

-_ 

White collar Professional Entire group 
(‘I) (%*I C%) 

20 45 24 

19 14 14 

13 I 11 

19 4 11 

15 5 6 5 7 

25 1 3 5 8 

9 2 2 1 3 
4 1 1 1 
4 35 10 12 13 
2 3 1 5 3 

- -. _ 

4 IO 8 3 6 ..-.. _- 

100* 100* 100* 100’ 1 oo* 

*Figures may not add up to 100% because of rounding. 

Acquaintance’s age Subject’s age 
-..-- ~_-.._l .__~ -~--_---.__--._ 

20-30 31-40 41-50 over 50 

(%I (‘h,) (‘/cl (%I 

lJnder 20 

20-30 31-40 

41-50 21 22 @ :; 

Over 50 21 19 j 

1 cto* loo* too* 100* 

*Figures may not add up to 100(% ltecause of rounding. 

Roosevelt’s presidential appointment book, analyzed by Howard Rosenthal 
(1960), showed 1404 different persons seeing him. But that leaves us with 
the question as to what portion of the total acquaintance volume of each of 
these persons was exhausted. 

One of the purposes of the data collection was to enable us to make an 
estimate of a~quailltanc~ volume in a way that has already been described 
above. With each successive day one would expect fewer people to be added, 
giving an ogive of persons met to date such as that in Fig. 4. In principle 
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Table 4. Sex of subject and sex of acquain tance 

Subject Acquaintances 

Male Female Total 

(%I (%I (%I 

Blue collar 

Male 83 17 100 

White collar 

Male 65 35 100 

Female 53 47 100 

Professional 

Male 71 29 100 

Housewife 

I:ern ale 45 55 100 

Table 5. Religion of subject and religion of acquaintance 

Subject’s religion Acquaintance’s religion 
__~ 

Protestant Catholic Christian Jewish Religion known 

(didn’t know 

denomination) 

(%I (%J (%J (%J (%I 

Protestant 46 25 25 4 100* 
Catholic 15 57 23 5 100* 
Jewish 9 16 27 47 100* 
__- _ 

*Figures may not add up because of rounding and omission of other religions. 

Figure 4. Acquaintanceship ogives. 
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one might hope to extrapolate that curve to a point beyond which net addi- 
tions would be trivial. 

Fitting the lOO--day curve for each subject to the equation (acquaintance- 
ship volume) = AP gave acquaintanceship volumes over 20 years ranging 
from 122 individuals for a blue collar porter in his fifties to 22 500 persons 
for Franklin Roosevelt. 

However, that estimation procedure does not work with any degree of 
precision. The explanation is that the estimate of the asymptote is sensitive 

Table 6. Frequency distribu tiorz of contacts with acquaintames 

Frequency of Blue collar group 
contact over ~-----. 
100 days Case A (%) Case B (o/n) Case C (%) Case D (‘%) Case E (Y/I) 

I 
2 
3 
4 
5 
6 10* 

11 - 20* 
21 - 30* 
31-40* 
41-50* 
51 -6O* 
61 - 70* 
71 - 80* 
81 -9O* 
91- 100* 

4.8 
2.4 

1.2 
2.4 
0.8 
1 .o 
1.8 
1.7 
1.7 
0.6 
0.1 

0.2 

23.9 
11.4 
4.1 
4.1 
3.1 
0.4 
0.5 
0.6 
0.6 
0.3 
1.4 
1 .l 
0.1 

0.2 

29.0 
11.6 

6.5 
4.3 
3.6 
1.7 
1.2 
1 .o 
0.6 
0.5 
0.1 

0.07 

0.07 

100% 100% 1 OOV, 

9.3 23.5 
5.0 10.7 
3.9 8.4 
3.4 4.7 
3.4 4.9 
3.4 2.2 
2.1 1.3 
1.3 1.0 
0.9 0.7 
0.5 0.4 
0.4 0.2 
0.7 0.1 

0.02 

0.05 0.02 

100% 100% 

I:requency of White collar group 
contact eve* 
100 days Case G (‘%) Case H (%) Case I (S) Case J (%) Case K (‘%) Case L (%) 

1 
2 
3 
4 
5 
6- lO* 

11-20* 
21- 30* 
31-40* 
41- 50* 
51 -6O* 
61 - 70* 
71 - 80* 
81 - 90* 
90 - 100* 

43.4 
11.5 

7.9 
4.3 
3.2 
1.9 
0.7 
0.4 
0.3 
0.5 
0.1 

_ 
0.04 

100% 

44.3 27.2 30.8 47.7 
16.9 20.0 12.4 13.1 

1.5 10.7 9.0 6.5 
3.7 6.1 6.9 7.1 
3.4 6.1 4.0 3.2 
1.8 2.3 2.8 1.9 
0.8 0.7 1.1 0.6 
0.3 0.4 0.4 0.2 

0.2 0.2 0.2 
0.09 0.1 0.2 0.1 
0.1 0.2 0.2 0.1 
0.2 0.1 0.06 

0.03 0.03 

loo%> 100% 

0.02 0.02 

1007r 100%) 

37.1 
12.9 

7.5 
4.5 
3.0 
2.3 
0.9 
0.3 

0,3 
0.3 
0.4 
0.1 

0.02 

100% 

(continued on facing page) 
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Table 6. (continued) 

Frequency of Professionals Housewives 
contact eve* 
100 days Case M (%) Case 0 (%) Case P (%) Case Q (%) Case v (%) Case w (%) Case x (%) 

1 
2 
3 
4 
5 
6 - 10* 

ll-20* 
21- 30* 
31-40* 
41 -so* 
51-60* 
61 - 70* 
71 -SO* 
81 - 90* 
91~ 100* 

39.5 
7.7 
4.3 
3.9 
3.0 
1.2 
1.6 
0.4 
0.4 
0.3 
0.7 
0.1 
_ 

0.1 

100% 

53.0 
12.3 

7.5 
4.2 
3.6 
2.3 
0.4 
0.09 
0.07 
0.05 
0.07 
_ 

_ 
0.02 

43.3 49.6 
17.5 18.5 
12.2 10.9 
5.9 4.7 
5.2 3.8 
1.8 1.3 
0.5 0.3 
0.07 0.09 
0.02 0.06 
0.05 0.01 
0.02 0.01 

_ 
0.02 

_ 

_ 
0.01 

100% 100% 100% 

56.0 
18.8 

7.8 

::“9 
1.1 
0.3 
0.04 
0.08 
0.04 
0.08 
- 

0.04 

0.08 

100% 

54.6 
18.9 

7.8 
3.2 
2.5 
1.3 
0.4 
0.04 
0.04 
_ 

0.1 

0.07 

0.04 

100% 

47.9 
16.5 

8.8 
6.8 
4.4 
1.6 
0.3 
0.2 
0.03 
0.1 

- 
0.03 
0.03 

100% 

*The percentages in each entry are average percentages for a single day, not for the 5- or lo-day period. 

to the tail of the distribution (Granovetter 1976). Such a large proportion 
of the respondent’s acquaintances are seen only once or twice in 100 days 
that any estimate which we make from such data is very crude. Table 6 
shows the figures. Except for blue collar workers, half or more of the 
acquaintances were seen only once or twice in the period. 

One may think that the way around this problem would be to rely more 
heavily on the shape of the curve in its more rugged region where contact 
events are more frequent. The problem with that is that the nature of the 
contacts in the two parts of the curve are really quite dissimilar. To explain 
that perhaps we should look more closely at a single case; we shall use that 
of one of the author’s own contact lists. 

In 100 days he had contact with 685 persons he knew. On any one day 
the number of contacts ranged from a low of two other persons to a high of 
89, the latter in the Christmas season. The mean number of acquaintances 
with whom he dealt on a day was 22.5. The median number was 19. There 
were several discreet typical patterns of days, resulting in a multimodal 
distribution. There was one type of day, including most weekend days, 
when he would typically meet 7 - 9 people, another type of day with typi- 
cally around 17 contacts, and a third type of day of highly gregarious activity 
which involved dealing with about 30 people. 

Only about half of the 685 persons were seen more than once in the 100 
days. The mean frequency was 3.1 times per person. The distribution, how- 
ever, is highly skewed (Table 7). 



Number of days on Numtwr of persons 

which contact was had with that frequency 

during the 100 days of contact 

Pcrvons 

_-.- ..-.. .~-- -~~ --- 
1 
2 

3 

4 

5 

6 

8 

9 

10 

33s 

12s 
74 

32 

26 

12 

16 

5 

R 

4 

11 
12 

13 

14 

15 

16 

18 

19 

20 

23 

4 24 1 
4 26 2 

I 30 1 
2 33 2 

4 34 I 

2 36 1 

1 45 1 
1 51 I 
4 92 1 
1 

-..- _-_.-_.. .._ -. ~. _~ . .-..- ..” -.-..-....----. ___ __.._-_ 

These figures, however, are somewhat misleading. It seems that we are 
actually dealing with two distrib~ltions: one which includes those persons 
living in the author’s home and working in his office whom he saw during his 
regular daily routine, and the other including a11 his other acquaintances in 
the seeing of whom all kinds of chance factors operatored. All individuals 
seen 19 or more times are in the former group; so are all but two individuals 
seen 13 or more times. Removing 5 1 such family members and co-workers 
gives us the data that are really relevant to estimating the large universe of 
occasional contacts, but in that sample more than half the persons listed were 
seen only once and 91% five times or less. No easily interpretable distribu- 
tion (such as Poisson which would imply that there is no structure among 
these contacts) fits that distribution, and with such small frequencies the 
shape of the distribution is unstable between resl~onde~lts. It is possible that 
the projection of the loo-day data for this author to a year’s time could 
come out at anywhere between 1100 and 1700 persons contacted. That is 
not a very satisfactory estimate, but it is far better than the estimates we had 
before. 

This estimate is way below our telephone book estimates, which it will be 
recalled ranged from 3 100 to 4250 acquaintances. The discrepancy is more 
revealing than disturbing. It suggests some hypotheses about the structure of 
the universe of acquaintances. It suggests that there is a pool of persons with 
whom one is currently in potential contact, and a larger pool in one’s 
memory, which for the senior author is about 2 - 3 times as large. The active 
pool consists of acquaintances livin, 0 in the areas which one frequents, 
working at the activity related to one’s occupation, belonging to the groups 
to which one belongs. Random factors determine in part which persons out 
of this pool one happens to meet, or even meet several times during any set 
period. But in one’s memory there are in addition a considerable number of 
other persons whose names and faces are still effectively stored, but who are 
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not currently moving in the same strata of contacts as oneself. These are 
recorded by the telephone book measure; they will not appear in the record 
of meetings except for the rarest kind of purely chance encounter. Needless 
to say, these two pools are not clearly segregated, but merge into each other. 
Yet, our data would suggest that they are more segregated than we would 
otherwise have suspected. The probabilities of encounter with the two types 
of persons are of quite different orders of magnitude. 

We have now established plausible values for some of the parameters of 
the contact net of one of the authors. He typically deals with about 20 
people in a day. These are drawn from a set of some 1500 persons whom he 
actively knows at the present time. At the same time he remembers many 
other persons and could still recognize and name perhaps 3500 persons 
whom he has met at some point in the past. (Incidentally, he has never 
regarded himself as good at this.)6 

The remaining parameter which we would wish to estimate is the degree 
of structuredness in this acquaintanceship universe. The indicator that we 
proposed to use was the proportion of the acquaintances of the list-keeper 
who knew each other; i.e., the proportion of triangles in the network graph. 
When the loo-day data collection was finished, we took the lists of some of 
the respondents and turned them into a questionnaire. To a sample of the 
people who appeared on the respondent’s list of contacts, we sent a sample 
of the names on the list and asked, regarding each, “Do you know that 
person?“. This provided a measure of the degree of ingrowth of the contact 
net. It can be expressed as the percentage of possible triangles that are com- 
pleted (Wasserman 1977). The values for five subjects from whom we got 
the data ranged from 8 to 36%, and we would speculate that a typical value 
lies toward the low end of this range. 

We have indicated above that the degree of structure affects how much 
longer than chance the minimum chain between a pair of randomly chosen 
persons is apt to be. We can go no further in specifying the effect of struc- 
ture on the chains in this qualitative verbal discussion. Any more precise 
conclusion depends on the treatment of this subject in a much more formal 
mathematical way. We turn, therefore, to a restatement of our presentation 
in a mathematical model. 

3. Mathematical models of social contact 

To describe with precision the structure of human acquaintance networks, 
and the mechanisms by which social and political contacts can be established 
within them, it is necessary to idealize the empirical situation with a model. 
Models have been used effectively in a number of related fields. Rapoport 

6The n = AtX fitted curve for this author’s ogive reached that level in just 5 years, but without 
taking account of forgetting. 
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and others have modelled the flow of messages in a network (Rapoport and 
Horvath 196 1; Foster et al. 1963; Foster and Horvath 197 1; Rapoport 1963 ; 
Kleinrock 1964). Related models use Markov chains, queuing theory and 
random walks (White 1970h, 1973). Most such models, however, depend 
critically upon an assunlption that the next step in the flow goes to other 
units in the model with a probability that is a function of the present posi- 
tion of the wanderer. The problem that we are addressing does not lend itself 
to that kind of model; the probability of contact between any two persons is 
a function of a long-established continuing relationship that inheres in them. 
The model required for our purposes must be one which retains a charac- 
terization of the relationship of each pair of individuals. 

Nonetheless, it is useful to begin our analysis with the simplest models 
in order to develop the needed framework within which to formulate the 
essential problems. Two extreme situations are relatively easy to analyze. 
The first is one in which the number of individuals is sufficiently small so 
that combinatorial methods are still feasible. The second is one in which 
there are so many iIldividuals that we can treat it as an infinite ensemble, 
applying methods similar to those used in statistical mechanics. The hard 
problems deal with conditions between these two extremes. 

Let P denote a group of N people. We shall represent the individuals 
by integers 1 ,...,i,...JV. We draw a directed line or arrow from individual i 
to individual j to indicate that i knowsj. This can be presented as a directed 
graph, shown in Fig. 5 for IL’ = 5, and also represented by an incidence 
matrix in Fig. 6, where a one is entered in the cell of row i and row j if 
i knows] and a zero otherwise. If we assume the knowing relation to be sym- 
metric, then every arrow from i to j is side by side with an arrow from j to i 
- and the incidence matrix is symmetric as well -. and we may as well use 
undirected edges. Let M be the total number of edges or mutual knowing- 
bonds. 

Figure 6. An itzcidence matrix. 

1 2 3 4 5 

t -- 1 0 0 0 
3 i. 0 - 1 1 0 

300-10 

~ 

4 0 0 1 -- 0 

5 0 I 0 1 0 
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The incidence matrix has N rows and N columns, but only (N2 - N)/2 of 
its elements can be chosen freely for a symmetric irreflexive (or reflexive) 
knowing relation. Thus, there can be at most (N2 - N)/2 pairs or edges. 
Generally, 0 < M < (N2 - N)/2. If M takes the largest value possible, then 
every individual knows every other; if M = 0, then no individual knows any 
other. There is just one structure corresponding to each of these extreme 
cases. If M = 1, there are (W -- N)/2 possible structures, depending on which 
pair of people is the one. If M = 2, there are (N2 -2N’2) possible structures, 
and there are altogether 2’N2 --N)‘2 possible structures corresponding to 
M = 0,1,2 ,..., (N2 - N)/2. Th e number of possible structures is largest when 
M=(iV - N)/4. 

Let U denote the symmetric incidence matrix, and let Uij be (0 or 1) its 
element in row i, column j. Let Uij (') denote the corresponding element in 
the symmetric matrix Uhf This represents the number of different paths of 
exactly k links between i and j (Lute 1950; Doreian 1974; Peay 1976; 
Alba 1973). A path is an adjacent series of links that does not cross itself. 
Two paths are called distinct if not all the links are identical. Thus, there are 
exactly two 2-step paths from 5 to 3 in Fig. 5, one via 4 and one via 2; 
multiplying U by itself (with 0 in the diagonals) gives 

and the element in row 5, column 3 is clearly 2, since matrix multiplication 
calls for the sum of the products of the elements in row 5, (0 10 lo), and the 
elements in column 3, (0 10 1 O), which is 0 - 0 + 1 - 1 + 0 - 0 + 1 - 1 + 0 * 0 = 2. 

It follows that UiiC3) is the number of triangles that start and end with 
individual i. Each individual could be the start-end point of as many as 
(N; ‘) different triangles, or as few as 0. If Ui/3) = 0 for all i, then there 
cannot be any tightly knit cliques; if uii (3) > 1 for all i, then there is a con- 
siderable degree of connectedness and structure. 

Let n denote the number of others each individual knows. This is the 
number of l’s in each row and each column of the incidence matrix or the 
number of edges incident on each node of the graph. Let (Yk be the sum of 
all the elements in Uk . It follows that (11~ = 2M, and a2 is twice the number 
of length-2 paths, which could serve as an index of clustering. 

If each of a person’s II acquaintances knew one another, U would consist 
of N (n + 1) X (n + 1) matrices consisting of all l’s (except for the diagonal) 
strung out along the diagonal, assuming that n + 1 divides N. Here no indi- 
vidual in one cluster knows anyone in a different cluster. 

Such combinatorial, graph-theoretic approaches are intuitively appealing 
and have considerable descriptive power. There is also a number of theorems 
for counting the number of different configurations, such as Polya’s theorem, 



as well as computer-based techniques for eliminating structures, such as 
Lederberg’s creation of a language, DENDRAL, for representing the topology 
of molecules. ~raj~~“tlleor~ti~ theorems, however, have to ignore reality to 
introduce assumptions leading to mathematically interesting applications or 
else follow the scientifidally unnatural approach of starting with strong but 
far-fetched assumptions and relaxing them as little as possible to accommo- 
date reality. The limitations of combinatorial methods become clearest 
when their computational complexity is studied. MuItiplying matrices is of 
polynomial complexity, requiring of the order of N3 n~~~jt~j~li~atioIls~ for 
sparse incidence matrices this can be reduced. But tracing out various con- 
figurations or finding a specified path can be much more complex, so that it 
cannot even be done by computer. Moreover, there is no realistic way that 
data can be obtained to fill in the elements of U for a nation.7 and different 
ways of representing acquaintanceshij-r among millions of p’eoj3le must be 
found. Even storing who knows whom among millions is a ~loIl-trivi~~l 
problem, and more efficient ways of processing such data than are provided 
by conventional ways of representing sets such as P by ordering its elements 
1 ,...,A’ must be used. The problems of processing data about social networks 
and drawing inferences from them have received considerable attention, but 
still face serious obstacles (Wasserman 1977; Holland and Leinhardt 1970; 
Breiger et al. 1975 ; Granovetter 1974; Newcomb 196 1). 

We now take advantage of the large size of N, typically 10” or greater. 
corresponding to the population of a country such as the U.S. We select any 
two individuals A and B at random from such a large ~~op~~latio~i P. We 
would like to estimate the distribution of the shortest contact chain neces- 
sary for A and B to get in touch. 

Let k = 0 mean that A and B know one another, that a direct link exists. 
We have a chain of one link with k = 0 intermediaries. But k = 1 means that 
A and B do not know one another, yet have a common acquaintance. It is a 
chain with two links and one intertnedia~. k = 2 means that A and B do not 
even have a mutual acquainta~~ce but A knows someone who knows B. It is a 
chain with three links and two intermediaries. 

Let pk be the probability of a chain with exactly k intermediaries, k = 
1,2,... . We approximate p0 by II/N, the ratio of each person’s total number 
of acquaintances to the total population size. Thus, if A knows 1000 people 

7The use of bibliomctric data for csample, who co-authored with whom, who cilod whom, which 
can be obtained in computerized form from the Institute for Scientific Information in Philadelphia 
for much of the world’s scientific literature may be a practical source. Mathematicians have fol 
some time used the term ‘“Erd6s number”, which is the distance bctwecn any author and Paul Iirdiis 
in terms of the number of intermediary co-authors; c.g.. A may have co-authored with B who co- 
authored with C who co-authored with IkdGs, making the Erd6s distaxvt 2 from A. The use of co- 
citation and similar data also appears pro~lisi~l~ (Griffith et nl. 1973). 
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out of 100000 000 Americans (other than A) then the probability of his 
knowing a randomly chosen person B among the 100 000 000 is lo3 / lo8 = 
1o-5. 

Let q. be the probability that B does not know A. This is q. = 1 - po. 
It is the probability that one of A’s acquaintances is not B. If we now make 
the strong assumption that the corresponding probability of a second of A’s 
acquaintances is also not B, nor is it affected by knowledge of the proba- 
bility of the first of A’s friends not being B, then the probability that none 
of the y1 of A’s acquaintances is B is qt. This corresponds to a random or 
unstructured acquaintance net. 

The probability p1 that A and B are not in direct contact but have at least 
one common acquaintance is qo( 1 - 4;). This assumes that B not being in 
direct contact with A is also independent of B not being in direct contact 
with each of the y1 people whom A knows. 

Similarly, we estimate: p2 = qoqi( 1 - qG2). 
This uses another simplifying assumption: each of A’s y2 acquaintances has 

y1 y2ew acquaintances that will not include any of A’s y1 acquaintances nor 
any acquaintance of his acquaintances. Thus, there are altogether n2 different 
people who are the friends of A’s friends. Thus if A knows 1000 people, 
their friends number a million people not assumed to be counted so far. 

If we extend these assumptions for the general case, we have 

Pk = qo&t 
2 

. . . qo nk-l (1 _ q;k) 

= (1 _po)(nk-l)/(n-l) 
[1 - (1 -poYkl k = 1, 2, 3, . . . (1) 

Table 8. Distribution of contact in an unstructured net 

n=500 n = 1000 n = 2000 

PO 

PI 
Pz 

P-1 

x Pk 
k=3 

Mean 
Variance 

0.00000500 0.00001000 0.00002000 
0.00249687 0.00995012 0.03921016 
0.71171102 0.98999494 0.96076984 

0.28578711 0.00004495 0.00000000 

2.28328023 1.99007483 1.96074984 
0.20805629 0.00993655 0.03774959 

Table 8 shows some typical numbers for N = 1 08. The numbers were com- 
puted using equation 1 on the University of Michigan 47O/V6. Note that the 
average number of intermediaries is 2 (when n = lOOO), and the average 
chain is three lengths, with very little variation around that mean. Nor is that 
average sensitive to ~1, a person’s acquaintance volume. This is not implau- 
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sible for, according to the above assumptions, if a person knows 1000 people 
(in one remove), then in two removes he reaches 1000 X 1000, and in three 
removes 10’) which exceeds a population of 1 08, according to a simple and 
intuitive analysis. This result is, however, very sensitive to our independence 
assumption. The probability of a randomly chosen person C knowing A, 
given that he knows a friend of A, is almost certainly greater than the uncon- 
ditional probability that C knows A. (The latter should also exceed the con- 
ditional probability of C knowing A, given that C does not know any friend 
of A.) We turn next to models that do not depend on this independence 
assumption. 

The number of common acquaintances 

The independence assumptions of the last section imply that the proba- 
bility of A having exactly k acquaintances in common with randomly chosen 
B is (I:)pi~&-~. Here, pi is the probability that k out of the PZ acquaintances 
of A each knows B and that each of his remaining \I - k acquaintances do 
not know B; there are (z) ways of selecting these k from the y1 people whom 
A knows. The mean of this binomial distribution is np, and the variance 
~~Po40. 

If y1 = lo3 and N = 10’ thenp, = 10m5, q. = 1 --- low5 and the average 
number of common acquaintances is approximately 0.01 with a variance of 
0.0 1. This is far too small to be realistic, and it points out the weakness of 
the independence assumption. 

One way to replace it is to define pb, the conditional probability that a 
randomly chosen friend of A knows randomly chosen person B’, given that 
B’ also knows A. This should exceed p. or n/N. A plausible estimate for the 
probability that two of A’s friends know each other is l/(/z -- l), because 
there are II - 1 people from whom a friend of A could be chosen with whom 
to form an acquaintance bond. The probability that k of A’s friends each 
knows another friend could now be estimated to be (~b)~ or (IZ -.- l)-k, if we 
assume independence of acquaintance among A’s friends. Similarly, 
(1 - pb>“-k is an estimate of the probability that y1 - k of A’s friends do not 
know another of A’s friends. As before, the mean number of common 
acquaintances is tlpb, which is n/(n - I), or close to 1, with a variance of 

rzpbqb > which is close to 0. This, too, is too small for realism, however. 
Consider next an approach that relates recursively the average number of 

acquaintances common to k individuals chosen at random. Call this rnk and 
assume that 

mk+l =a?nk, m1 =!I, k = 2, 3, . . . (2a) 

This means that the average number of acquaintances common to four 
people is smaller than the average number common to three by a fraction, a, 
which is the same proportion as the number of friends shared by three is to 
the number shared by two. This constant a is between 0 and 1 and would 
have to be statistically estimated. It is assumed to be the same for all <B> 
groups of k people. 



Contacts and influence 35 

pO, the probability of A knowing a randomly chosen person B, is n/N or 
m,/N, as before. If mz = am,, then n/N = (mz /a)/N and a = m2/n. Thus, if 
we could estimate the number of acquaintances shared by two people, we 
could estimate a. Thus, we can set the number of common acquaintances, 
m,, to any value we please, and use it to revise the calculation of ok from 
what it was in the last section. 

pl, the probability that A does not know randomly chosen B but knows 
someone who knows B, is (1 - pO) X Prob {A and B have at least one 
common acquaintance}. The latter is the number of ways of choosing a 
person out of the y1 people A knows so that he is one of the m, common 
acquaintances, or m, /n. Thus, 

p1 =(I -po)m21~ 

and 

Pz =(I -Po>(l -P1)Pi 

To calculate pi, the probability that B knows someone who is a friend of 
one of A’s II acquaintances, we need n’, the number of different persons 
known to the n acquaintances of A. Then we could estimate p; by 

Pi = (7): - (nz’)$ + (;‘)$ _ (;); + +(“n:)!g (2b) 

Here (z ‘)mk is the number of ways that B could be one of the rnk acquain- 
tances common to some k of the ~1’ friends of A’s friends. It follows from 
eqn. (2a) that 

m2 =am, 

m3 =am2 = a(um,> = a2m1 

and generally that 

mk =a k-1, 

Substituting into eqn. (2b), we can show that 

(2c) 

Pi = a+ [l -(l -&] 

To estimate n’, we note that of all A’s YI friends, m2 are also known to one 
other person, m3 to two others, etc. Thus, 

n’ = (y)ml - (i)m, + (;)m9 - (i)m4 + . . . *(t)mn 

= n [(;i - (:)a + (:)a2 - (:)a3 + . . . + (E]anvl] 

= !z[($ - ($2 + ($2 - . . . f (;)uj 
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= $ [ 1 - ( 1 - a)” 1 by tne Dmomial theorem 

Hence, 

p2 =(l -p&l -[J()(n/fzN)[I -. (I -#‘f 

(:d) 

and 

p3 =(I -&I(1 -j71)(1 -p&/clN)[l -m(l -a)““1 

where 

II ” = (n/a)[ 1 -(l -&I 

We can set up a recursive equation for I>k in general. We can also require it 
to hold for k = 1, in which case we should expect that 

?Y1z /FZ = (PZ /rN> [ I - ( 1 ~ LI )” ] = u (2e) 

If I? = lo3 and N = lo’, then a shoufd be such that (lO-s/a)[ 1 --- (1 - ,IZ)‘~~~] 
- CI. This is a transcendental equation to be solved for a, and the value of 
a = 0.003 is an approximate solution because 10e5 [ 1 - (1 - 0.003)1000] is 
approximately (0.003)2 or 9 X 10m6, which is reasonably close. A value for 
a = 0.003 or nt, = 3 is no longer so unreasonable for the number of acquain- 
tances common to two people chosen at random. The assumption expressed 
in eqn. (2a) now implies that wlS, the number of acq~~aintances common to 
three people, is (0.003) X 3 or 0.009, which is effectively zero. This is too 
small to be realistic. Using these values, we obtain, 

PO = 0.0000 1, as before 

p1 = 0.003 compared with 0.009949 

pz = 0.00332 compared with 0.99001 

p3 = 0.00330 

Fl’ = 381 033, ?I” = 333 333 

The distribLltion of k is now considerably flattened, with chains of short 
length no less improbable than chains of greater length. This is due to a value 
of CI greater than lo-‘, as specified by a chosen value of m, and eqn. (2e). 

The above analysis, though more realistic, is still limited by an indepen- 
dence assumption and the low value ofm3, m4, . . . . Yet it may be fruitful to 
explore it further by exploiting the sensitivity of these results to m2, or 
replacing eqn. (2a) by one in which u is not constant. We now proceed, 
however, to replace this approach by defining the following conditional 
probab~~jties. 

Let K, be A’s circle of acquaintances, with I<A its complement. Let 
A,. . . . . A, denote the individuals in it. Consider: 

Prob(B E KA,), Prob(B E KA21B E K,,), Prob(B E R*3 IB E a~,, BE RA,), 
etc. The product of these probabilities IS Prob(B E KA,niZC,lnK,,n...), the 
probability that a randomly chosen B is not known to each of A’s acquain- 
tances. 
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A simple and perhaps plausible assumption other than independence is 
that of a Markov chain: 

Prob(BEK~kIBE~~lz~,,...,BER~,)=Prob(lfAkIKAk_,)=b 

where b is a constant to be statistically estimated. 
Thus, 

Prob WA,,, KA,_ ,, . . . . K(A,) = PrOb(KA,),“-’ = (1 - n/N)@-’ 

For k = 2, 

PrOb(K,+ KA,) = (1 - ~z/N)b = 1 - 2n/N + mz/N 

Hence 

b = !-+~$?_~ 

This gives more freedom to choose m,. If m2 = 10, y1 = 103, N = 10’) then 
b = 0.9999900999. 
Now 

p0 = n/N = 0.00001 as before 

and 

p1 =(l -pO)[l -(l -n/N)bn-l] =O.OOl 

P2 = (1 -PoNl -P,)P2’ 

where 

PZ ' = Prob(B knows at least one of the ~1’ friends of A’s friends) 

= 1 - (1 - n/N)b+ 

~1’ = (y)mI - (i)m, + (i)m, - (i)m, + . . . *(:)mn as before 

To estimate rnk we need Prob(K,, . . . . Kk), the probability of B being known 
to k randomly chosen people, and we shall assume this to be Prob(K,).$-‘, 
where c = Prob(KklKk_,). If k = 2, then 

Prob(K, , K,) = ~2~ /N = Prob(K,).c = (n/N)c 

so that c = m2/n. Hence, 

rnk = N*(n/N) (m2/n>k-1 = n(m,/n)k-l k = 1, 2, .., 

Therefore, 
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= (n2/m,)[ 1 - (1 - m2/n>H] 

If m2 = 10, then c - lO/lOOO = 0.01 and n’ = 105(1 - e-l’) = 99996. Thus 

P2 ’ = 1 - (1 - o.oooo1)(o.9999900999)g99g6 

= 1 ~ (0.99999)(0.37 16) 

= 0.6278 

and 

p2 = (0.99999)(0.999)(0.6278) = 0.627 

To compute p3 we shall need p”, the number of different people who are 
the friends of the acquaintances of the II people whom A knows. 

n ” = ki, (-l)h_l( ;‘) n(m,/n)k-’ = (n2/m,)[ 1 ~ (1 - m,/n>n’l 

E(106/10)[1 -(1 - 1O-2)1o5l Y 105(1 ~ eelOoo) N 10’ ~12’ 

p; = 1 - (1 - n/N)&-1 = 1 -- (1 - 10-5)(0.9999900999)‘05 = 0.6278 

P3 =(I --PoNl -PA1 m~mp2)p3’ = (0.999)(0.373)(0.6278) = 0.234 

This calculation leads to more plausible results, but it still does not have 
an underlying rationale to warrant attempts to fit data. 

Contact probabilities in the presence oJ’socia1 strata 

In a model of acquaintanceship structure it is desirable to be able to 
characterize persons as belonging to subsets in the population which can be 
interpreted as social strata. We show how the distribution for the length of 
minimal contact chains can be computed when strata are introduced. We 
begin by partitioning the entire population into r strata, with the ith stratum 
containing mi members. Let hii denote the mean number of acquaintances 
which a person who is in stratum i has in stratum j. The mean number of 
acquaintances of a person in stratum i is then Iii = C;=, hii. The conditional 
probability pii that a person picked at random in stratum j is known to 
someone in stratum i, given j, is hij/mi = pii. The r X r matrix @ij) is sym- 
metric. and doubly stochastic because we have assumed that the “knowing” 
relation is symmetric. 

We now select two people, A and C, with A in stratum i and C in stratum 
j. To obtain the probability that there is no 2-link contact chain from A to 
C, with the intermediary being in a specified stratum k, let Ki be the set of 
A’s hik friends in stratum k. Combinatorially, ProNKinKi = 4) is the number 
of ways of selecting hik and hjk out of mk elements such that KinKi = 4, 
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divided by the total number of ways of selecting hik , hjk out of mk elements, 
assuming independent trials without replacement. Thus, 

mk!/[hik!hjk!(mk - hik - hjk)!] 
Prob(KinKi = $J} = ~ --~ 

= (mk - hik)!(mk - hjk)! 

mk!(mk - hjk - hjk)! 
(3) 

The probability that there is no chain from A in stratum i to C in stratum 
i via some mutual acquaintance in any stratum is 

r hk - hjk)!(mk - hjk)! ~____ 
k!l mk!(mk - hik - hjk)! 

f qii’ 

While data about all the elements of (hii) are not likely to be readily 
obtainable, the variables mi, yli and hii for i = 1, . . . . Y may be estimable. We 
now make a methodological simplification and assume these variables equal 
for all i,-with rni = m = N/r, ni = n, hii = h and 

hii= nTI+ =h’foralli#j 

To compute ql’, the probability that there is no chain of length 1 - or 
that there is y10 mutual acquaintance - between two individuals A and C, it 
is necessary to consider two cases: 

(1) that in which A and C are in the same stratum; 
(2) that in which A and C are in different strata. 
In the first case, ql’ = uv’-’ = q,’ (1) (the number in parentheses refers to 

case l), where u is the probability that B, the intermediary between A and C, 
fails to be in the same stratum as A and C, and v is the probability that he 
fails to be in a different stratum. Using eqn. (3), it is readily seen that 

(m - h)!’ 
u= - 

m!(m - 2h)! 
(5) 

(m - h’)!* 
V= 

m!(m - 2h’)! 

By similar reasoning, 

q ,‘(2) = w* v’-2 

(6) 

where w is the probability that the stratum of B is the same as that of A but 
not of C; this is equal to the probability that the stratum of B is the same as 
that of C but not of A. This is, by eqn. (3), 

(m - h)!(m - h’)! WE _~_~_ 
m!(m -h -h’)! 

(7) 



With the help of Stirling’s formula and series expansions we can derive a use- 
ful approximation for by. It is 

\,, z (1 + ~lh’/v12)e-““~~~~ ” ,-hh’h (8) 

As before, let JJ, denote the ~~robability that A and C do not know each 
other, but that they have at least one common acquaintance. Then 

/l,(i) -(I -p*)[l --q$‘(i)l i= I,?, 

To estimate $3 1 ) we could take a weigh ted average, 

PI =(li~)P1(1)+(1 - UQQ(2) 

The above relation is written as an approximation, because y,‘(i) is not a 
coilditiona~ probability given that A and C do not know each other, but the 
error is negligible. The number in the parentheses, 1 or 2, refers to whether 
or not A and C are in the same stratum, respectively. Thus, 

J>,(l) -(I --IL/N)(I -ULJ-‘) 

Because II can also be a~~?roxi~llated by exp( -h2/rn) and v by exp(““““~i’z/r~l), 
we can approximate pl( 1) by 

S~lbstitLItirl~ ~2 = ~~/r, this becomes 

p,(l) = 1 -. expC -.(r/fV)[1~2 +/I’~@ - I)]) (91 

If A has more friends in a given stratum not his own than he has in his own 
stratum, then h’ > h. If almost all of A’s friends are in his own stratum, 
then k’ < It, and h = II. If y is Iarge enough, pI( 1) can be very close to 1. For 
instance, if N = 1 O*, h = 100, /z = 1000 and Y = IO, we have that Ir’ = 900/S, = 
100, and JII 1 ( 1) = 0.00995, as in the case of independence. 

Next, 

p,(2) -(I .--fI/fV)(l --&Y~-2) 

= 1 ^- ~X~~.-(2/~)[2~2~~’ + (r - 2)h’2 1) 

For the same nume~cal values as above, 

p,(2) ill 1 - e-**-’ = 0.00995 also 

(10) 

We now wish to compute [)2 *, the joint probability that A and C do not 
know each other, crnd that they have no common friends, ct~ct that A has 
some friends, at least one of whom knows some friend of A. As before, we 
shall compute the conditional probability that A has some friends, at least 
one of whom knows some friend of C, given that A and C neither know each 
other, nor have a coni~non acquaintance. We shall denote this col~ditional 
probabiii~ by pi*, so that pz* = (1 - po)( I -” pI’*)p21*. To say that A has 
some friends, at least one of whom knows some friend of C’: is to say that 
there is at least one person B, who knows A a~ll who has at least one friend, 
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D, in common with C. By the assumed symmetry of the knowing relation, 
this is the same as saying: there exists B E Kc, where Kc is the set of all 
people who can be linked to C by a minimal chain of length 1 (one inter- 
mediary). Select B at random and consider the choice fixed. Prob(B E Kc) = 
1 --- pl*, averaged over all strata. Assuming independence, the probability 
that any II B’s, and in particular the n friends of A, all fail to be connected 
to C by a minimal chain of length 1 is (1 - P~*)~. Hence, neglecting a small 
correction due to the condition in the definition of p:*, we can estimate: 

P2 ‘* = 1 -(l -P,*)~ N 1 -exp(-p,*Iz) 

for pl* very small. 
To obtain a more precise estimate of pi* we proceed as follows. Let 

s(A) denote the stratum of A. Consider first the case i = 1, where s(A) = 
s(C). Now suppose that s(B) = s(A). Then the probability that no chain of 
length 1 links B and C is UV” as before. If s(B) f s(A), however, B can 
be in any one of Y - 1 strata, and for each stratum the probability that no 
chain of length 1 links B and C is w2vr-*. Hence the probability that no 
chain of length 2 links A and C with s(A) = s(C) is 

4;(l) =UhVh(r-1)(ly2vr-2)(r--I)h’ 

= Uh~(‘-l)h+(r--1)(T-2)h’W2(r-l)h’ 
(11) 

Consider next the case i = 2, where s(A) # s(C). If s(B) = s(A), the proba- 
bility that no chain of length 1 links B and C is (w*v’-2)h. If s(B) f s(A), 
this probability is the product of: 

(a) the ‘probability of no l-chain linking B and C when s(B) = s(C) - this 
is (uY’-‘)~ ; and 

(b) the same probability when s(B) 3: s(C), i.e. (w*v’-*)(~~*)~‘, Hence, the 
probability that no chain of length 2 links A and C when s(A) # s(C) is 

As before, we may estimate the conditional probability that A and C 
are linked by at least one 2chain given that A does not know C or any friend 
ofCby 

1 _p;ii; =4;* = (l/r)uhV(rIi)h+(r-l)(v-2)h’w2(r-lI)h’ + 

+(I - l/r)u h’ v h(r-z)-lz’fr2 -3r+3)W2[h--fr-2)h’] 

Note that effects due to the two conditions have been neglected and that 
independence has been assumed throughout. 

Observe also that we could have written 



42 Ithiel de Sola Pool and Manfred Kocherl 

q;(l) = [L/1’(1)]” [qJ2)lh’(‘-1) 

q;(2) = kduNh’[q,(2)lh [q,(2)lh’~‘-2’ 

q2 ‘* = (l/r)q,‘(l) + (1 -- l/r)&(2) 

The above relation suggests a recursive scheme of generalizing the calcu- 
lation. That is: 

Ijh_ =(l -/Jo)(l -pl’“)(l -pi*) . ..(I -P&:*)(1 -q;*) 

qk* = u/f-)qkYl) +(l - l/r)qk’(2) 

4k’(l) = [qL,(l)P [qk_1(2)] 
h ‘+ I ) 

L&(2) = [4;(-1(l)J”‘[qk_,(2)lh+h’(r--) k = 2, 3, 4, . . . 

Using the cruder method suggested in the first paragraph of the above 
section, 

Pk” z 1 - (1 -- pk-_ ;*)‘I k = 2, 3. 4, . . . 

There is another iterative method that could be used to compute pk*. If 
k is odd (c.g., k = 3), compute qk’(1) and qk(2) using formulas (9) and (10) 
but substituting pi_ 1 (1)~ for 11 and pi-, (2)nz for h’. Similarly, if k is even, 
use formulas (11) and (12) with the same substitutions for h and lz’. 

In the Appendix we develop further approximations to facilitate the cal- 
culation of pO*, pl*, and p2*, which we find to be 0.00001, 0.00759, and 
0.9924, respectively, with the parameters used previously. 

Note the departure from the model without strata is not very great. That 
is a significant inference. Structuring of the population may have a substan- 
tial effect on pl. (It has no effect, of course, on p,,.) However, in a connected 
graph (which we believe any society must be) the nuclei get bridged by the 
longer chains quite effectively, and so the mean length of chains between 
randomly chosen pairs is only modestly affected by the structuring. We 
would therefore conjecture that, despite the effects of structure, the modal 
number of intermediaries in the minimum chain between pairs of Americans 
chosen at random is 2. We noted above that in an unstructured population 
with n = 1000 it is practically certain that any two individuals can contact 
one another by means of at least two intermediaries. In a structured popula- 
tion it is less likely, but still seems probable. And perhaps for the whole 
world’s population probably only one more bridging individual should be 
needed. 

Monte-Carlo simulution models 

To achieve greater understanding of the structural aspects of acquaintance 
nets, we approached an explanation of the dynamics of how acquaintance 
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bonds are formed with the help of a stochastic model that was simulated by 
computer. We regarded each individual to be located as a point in a social 
space, which we regarded as a square region in the two-dimensional Euclidean 
plane, to start with. As before, we let N be the number of individuals. Each 
individual can change his position in time t to time t + 1 by (Ax,Ay) where 

Ax = 
I 

s with probability p 
--s with probability q where p + q + Y = 1 
0 with probability Y 

and with AJ~ defined similarly, and statistically independent of Ax. Each 
individual is confined to remain in a D X D square, so that if his location at 
t is z(t) = [x(t), y(t)], then in the next simulation cycle it is 

[x(t) + Ax mod D, y(t) + Ay mod D] = [x(t + l), y(t + l)] 

We now define GAB to be 1 if the line connecting [xA(t), y,!,(t)] and 
[xA(t + I>, yA(t + I)] inkrSeCtS the line from [q(t), ys(t)] to [xg(t + I), 

YB(t + I)], and eAB = 0 if these paths do not intersect. The event EAB 
corresponding to eAB(t) = 1 at time t is interpreted as a contact between A 
and B on day t. (1 /t)Z:‘,= 1 eAB(T) denotes the frequency with which A and B 
have met during the first t days. 

Next, let KA(t) be the set of all people whom A has met by day t, or 
{all B:eAs(T) = 1 for r < t}. We now extend KA(t) to include A and define 
the center of that group or cohort on day t as follows: 

CA(t) = [yA(t),yA(t)l 

with t 

XA(t) + z XB(t) x CAB(T) 

i?A(t) = - 
BE KA(I) 7=1 

--_____ 

1 + c xeAd7) 

B 7 

and YA(t) is similarly defined. The x-coordinate of the center is the average 
of the x-coordinates of A and all the people he has met, weighted by how 
frequently they were contacted. 

as follows with ZA(t) = (XA(t)JA(t)). 

If CA(t) > ZA(t), then pA(t + 1) = PA(t) + e 

qA(t+ l)=qA(t) -e/2 
rA(t + 1) = YA(t) - e/2 

If CA(t) < ZA(t), then pA(t + 1) = PA(t) - e/2 

qA(t+ l)=qA(t)+e 

rA(t + l)=rA(t)- e/2 

If CA(t) = zA(t), then the probabilities do not change. Initially, [p(O), q(O), 

The probabilities p and q also vary with time and with each individual, 



r(O)1 = (l/3, l/3, l/3) and no probability must ever fall outside [6, 1 ~~ 6 1 
to ensure that the system remains stochastic; when these values are reached, 
the probabilities stay there until the z’s and c’s change. 

After considerabje experimentation with several values of the different 
parameters, we chose: 

Number of individuals ,I’ = 225 
Size of one side of square grid D= 15 
Social responsiveness or elasticity C’ = 0.2 
Lower bound on probability of position change 6 = 0.01 
Unit increment in position change ,s = 1 

Well before the 10th iteration, clustering begins and by the 20th iteration 
it clusters into a single group. For realism, we would expect several clusters 
to emerge (corresponding to social strata) that exhibit both local and global 
structure, which are not too rigidly determined by the Euclidean structure 
of the social space. We have not explored the model sufficiently to deter- 
mine if it has these properties, if small changes in the model could provide 
it with these properties, or if this approach should be abandoned. Computa- 
tion cost increases as ,V2 and the number of iterations, and took a few 
minutes per iteration on the MIT 370-186 system in 1973. This cost could 
be reduced by sampling, resulting in a fractional decrease that is the sample 
size divided by IV. After enough iterations have produced what appears to be 
a realistic but scaled-down acquaintance net in such an idealized social space, 
a second program (also written by Diek Kruyt) to compute the distribution 
of chain lengths is then applied. Its cost varies as N3. 

Our present decision ~~ held since 1975 is to explore the use of a com- 
puter program that constructs an acquaintance net according to a simulation 
that uses the data we obtained from the loo-day diaries kept by our 27 
respondents (see 5 2). The basic inputs to this program are: 

The total number of individuals :Y= 1000 
The number of people seen by person A on any 
J‘days in 100 Y(‘) = data 
The number of different people that A did not see 
in lOOdays YA(0) 
The number of people, each of whom has exactly 
h- acquaintances in common with A MA(k) = data 

Outputs include the distribution of chain length. The program starts by 
selecting A and linking to him all the Y( 100) people he sees daily (chosen at 
random from the N ~ 1 in the program). This might, for example, be the 
nucleus of his circle of acquaintances consisting of Y( 100) = 3 people. Call 
them B, C, and D, and we have 

so far. 
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Next proceed with the first of A’s friends just chosen, say B. Link to him 
all Y( 100) others chosen randomly from N - 1, but including A. This might 
generate the following list of B’s friends: A, C, F. Repeat this for all people 
labeled so far,e.g., C, II, F, etc., until there are no more new “target” people. 
Then repeat this procedure for Y(99) in place of Y( loo), but eliminating 
certain randomly chosen links if they do not satisfy the following constraint. 

Our data suggested that there are fewer people who have one acquaintance 
in common with A than there are who have two acquaintances in common 
with A, etc., but that only a few people have very many acquaintances in 
common with A. Thus, there is a value, M, for which M(k) is greatest, where 
M = M(K). For example, if M(1) = 2, M(2) = 3, M(4) = 5, M(5) = 4, etc., 
then M = 5, K = 4. We must ensure that M people among those chosen so far 
each have K acquaintances in common with A, also with the people he sees 
daily. We then repeat these steps with Y(98) in place of Y(99) and replace 
the constraint that M friends have K acquaintances in common with A, etc., 
by one requiring that M(K - 1) people have K - 1 acquaintances in common 
with A, B, etc. This is continued until Y(0) and M( 1) replace Y( 1) and M(2), 
respectively. 

Effective and efficient algorithms for making these selections subject to 
the given constraints have yet to be developed. The computational complexity 
of this algorithm must also be determined, and hopefully is a polynomial 
in N. Hopefully also, such a program can be run for N large enough so that 
distribution of chain length does not change significantly as N is increased. 
Fruitful next steps seem to us to be the further development and analysis of 
the models sketched in this section. When these are found to have properties 
we consider realistic for large social contact nets and are the result of 
plausible explanatory inferences, then some.difficult problems of statistical 
estimation must be solved. Hopefully, then we will have reached some under- 
standing of contact nets that we have been seeking. 

Appendix 

Some approximations using Stirling’s formula have already been derived 
and analyzed. 

There is another very useful approximation based on a slightly different 
model in the general case. 

Let q{j be defined as in eqn. (2), but rewrite it as 

(mk - hik)!(mk - hik)! = -___ 
???k!(???k - hik - hjk)! 

(mk - hik)!(mk - h&(WZk - hjk - l)...(???k - hjk - hi,+ l)(mk - hik - hik)! 
___-- ___ ~-__ 

mk(mk - l)...(mk - hik+ I)(mk - hk)!(V2k - hjk - hik)! 
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(/lik terms) 

It is easily seen that this represents the probability of failing to draw a 
sample of hik red balls from an urn having rnk balls of which hik are red, but 
sampling without re 

R. 
lacement. If we sample with replacement, the above 

formula becomes qjk &, where qjk = (1 - hik/mk). This represents the proba- 
bility that none of A’s hik friends in stratum k is known to C (s(A) = i, s(C) 
= j), where it is possible to count the same friend more than once. The frac- 
tional error committed by this assumption is 

This will be estimated later. Now, 

lOgq;j = i, hjk log (1 - g) 

If /zjk < ???k for all k, we can further approximate this by 

hjk hkj 
i hik mk = -- i hik ; = ~ ip. kt, hikhkj 

k=l k=l I I 

with a fractional error of about hik/2m k, which is less than (h + h’)‘/Zm, 
as in the previous approximation. Furthermore, this approximation permits 
matrix multiplication and greater generality than only two values of Irii. If 
we denote the matrix (hii) by H and (log qij) by L, then L = HH, H being the 
transpose of H. 

To estimate the error, we take 

i- 
f= 1= n 

“‘5 1 1 ~ hjk/(mk - I) 

k=l I=0 1 ~ hjkhk 1 
The term in brackets is approximated by the series 

+ hik + !$ + . . 
mk mi ’ 

1+ zik + ,.. 
mk 

1 
_~ __ __-- 

mk-1 
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= 1 _ ____‘__ 
mk(mk - 0 

hik + !% + . . . 
mk 

E = I- h exp 
k=l 

= 1 

N 1 

= 1 

1 

_ 

According to this estimate, the approximation is good only when 

i h;khkj <m; 
k=l 

To compare this with the exponential approximation, let hik = h if i = k, 
h’ if i f k, so that 

z hfkhkj = h*h’ + hh’* (r - 2)h13 i#j 
k 

= h3 + (r - 1)1~‘~ i=j 

Hence, it would be required that (h + h’)3r < m* or (h + h’)3’2 dr < m, 
compared with (h + h’)* < m. 

For the above simplified situation, the replacement model gives 

, 

[ 

-h* + (r - l)h’* 
qii N exp 

m 1 
-2hh’ + (r - 2)h’* 

-- 
1 

i+j 
m 
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As an example where the departure from the results obtained when strati- 
fication was disregarded becomes more pronounced than in the illustrations 
chosen so far, let N = 108, rzi = II = 1 O3 for all i, mi = m = 1 O4 for all j, Y = 
104, kii = /I = 500, /Iii = /z’ = 500/( 1 O4 1) = 5 X lo-’ for all i fj. 

(1) PO*= n/N = lo-” 

(2) PI” = (1 PPO)[~l’* = (1 PpO)(l -41’“) 

41 
‘* = .;. q*‘(l) + 1 ~~ L 

i 1 y Y,‘(2) 

yl’(l)= exp 
i 

25X104 25 x lO-4 
~ 

1 o4 
+__104 x1()4 ,e-25 z(-J 

q ,‘(2) z exp ( _ ?-X50!x5X’0~’ + !!!2TE!!!4 
IO4 104 i 

z 0.9925 

41 ‘* = 0.99241 

PI * = 0.00759 

(3) Recall that u = exp(-k*/m), v = exp(-k’*/m), w = exp(-M’/m), SO 
that 

qi(l)=exp 

= exp 
k3 

i- [-- 
+3 

m 

= exp 
i 

- ; (V + 3vl211’* +r*12’3) 
i 

~ L (k*k’ + [k(r ~~ 2) + /~‘(r* - 3r + 3)] IT’* + 
n1 

+ 2[11 + (1. ~ 2)k’lkk’) 
i 

= exp - i [k2k’ + 11Yk’* + kf3v2 + 2k2k’ + 2(r ~~ 2)kk’*] 
l?l 
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- A (3h2h’ + 3rhh’? +r2ht3) 
m 

Then, 

q;(l) = exp[- 10m4(125 X lo6 + 3 X 125 X 10e2 X IO4 + 10’ X 125 X 10e6)1 

= exp[-(12500 + 5)] N 0 

Y~(2)=exp]-10-4(3X125X102 +3X104 x125~10-~ + 

+ lo8 x 125 x 10-6)] 

= exp(-8.75) = 0.00016 

Hence, 

P2” = (1 - IO-“)(l -0.00759)(1 -0.00016) 

= 0.9924 
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