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Abstract

It is shown how the exchange coupling between two ferromagnetic planes

embedded in an infinite non-magnetic metal, regarded as a function of the

distance between the planes, may contain important components which oscil-

late with periods not predicted by RKKY theory. The interesting case of a

FCC(110) structure with a Cu-like Fermi surface is discussed in detail.
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Oscillatory exchange coupling between metallic magnetic layers across a non-magnetic

spacer has been intensively studied over the last five years. One of the main issues in this

area has been the determination of the oscillation periods of the coupling as a function of

the spacer thickness.

The physical mechanisms which have been proposed for explaining this phenomenon

include the quantum well theory (QWT) of Edwards et al. [1–3] and an extension of the

RKKY theory to the multilayer geometry due to Bruno and Chappert [4,5]. In the QWT

electrons propagating across the multilayer structure experience spin-dependent potential

wells whose depths depend on the exchange interaction in the ferromagnetic layers. The os-

cillatory behaviour of the interlayer coupling arises as a consequence of quantum interference

effects inside the wells, and bears a formal analogy to de Haas-van Alphen oscillations [1].

The existence of these quantum wells has been confirmed experimentally by photoemission

measurements [6].

In the RKKY theory the oscillation periods are directly related to the spacer Fermi

surface (FS) and are given by the wave vectors qz perpendicular to the layers that span the

FS across those parts whose group velocities are mutually antiparallel. There is a general

belief that all oscillation periods are given by the RKKY theory. Indeed, it has been shown

that in certain simple models [1–3] the periods predicted by the QWT coincide with the

RKKY ones and are given by the extremal dimensions of the spacer FS in the direction

perpendicular to the layers. In another case [7], where the lattice lacks reflection symmetry

about a layer plane, the correspondence between the quantum well and the RKKY periods

is more subtle but still obtains. Of course in the models mentioned above harmonics of the

RKKY appear but no new fundamental periods. Furthermore, d’Albuquerque e Castro et

al. [8] showed analytically for a very general model that RKKY theory holds in the limit

of very small exchange splitting in the ferromagnetic material. However, van Schilfgaarde

and Harrison found that real systems, such as Fe/Cr, are not in this limit [9], although they

were convinced that the oscillation periods were derivable from the RKKY. Here we show,

however, that under certain conditions, including those met in FCC(110) multilayers with
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a Cu-like spacer FS, oscillation periods exist which are not predicted by RKKY. These are

in addition to the usual RKKY periods.

A FCC(110) magnetic multilayer within the one-band nearest-neighbour tight-binding

model is an interesting system because of the difficulty in determining analytically the

energies of the resonances and size quantized states in such a structure [10]. Here, however,

we approach the problem using the formalism of Ref. [8], which gives the coupling in terms of

the one-electron propagators. This enables us to find the periods of oscillation analytically

and to evaluate the exchange coupling numerically.

We consider a multilayered system consisting of two parallel ferromagnetic atomic planes

embedded in an infinite non-magnetic material. We label these two planes 0 and n, so that

the number of atomic planes in the spacer layers is equal to n−1. It has been shown recently

that as far as the interlayer coupling as a function of the spacer thickness is concerned, the

thickness of the magnetic layers affects the phase and amplitude of the oscillations, but not

the periods [11].

Within the single band model, the expression for the exchange coupling J , defined as

the difference in the thermodynamical potential between the ferromagnetic and antiferro-

magnetic configurations, is given by [8]

J = −1

π

∑

q‖

∫

d ω f(ω)F (q‖, ω) , (1)

where

F (q‖, ω) = Im ln { 1 + 4V 2
exG

↑
n0(q‖, ω)G

↓
0n(q‖, ω) } , (2)

and Gσ
n0(q‖, ω) is the off-diagonal matrix element between planes 0 and n of the Green’s

function for an electron with spin σ in the ferromagnetic configuration of the system, f(ω)

is the Fermi function, Vex is the exchange interaction in the ferromagnetic layers, and the

summation over q‖ is restricted to the two-dimensional Brillouin zone (BZ). We assume for

simplicity that the site energies in the ferromagnetic material are ǫ↑,↓ = ǫ0∓Vex, where ǫ0 is

the spacer on-site energy. In this situation, the off-diagonal propagators in Eq.(2) can be

written for each q‖ and ω as
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G↑,↓
n0 = ± τ↑,↓ gn0 (1− τ↑,↓ g00)

Vex (1− τ↑,↓ gn0τ↑,↓ g0n)
, (3)

where τ↑,↓ = ±Vex(1±Vexg00)
−1, and gn0 is the matrix element of the bulk spacer Green’s

function. A similar expression can be obtained for G↑,↓
0n . In general, within the one-band

model, g0n is equal to gn0, apart from a possible q‖-dependent phase factor.

It is clear that the behaviour of the coupling as a function of the spacer thickness is

related to the dependence of gn0 on n, which can be determined as follows. The matrix

element of g between arbitrary planes l and m is given by

glm = (
1

2π
)
∫ π

d

−π

d

dq⊥
e−iq⊥(l−m)d

ω − E(q‖, q⊥) + i 0+
(4)

where q⊥ is the wave vector perpendicular to the layers, d is the interplane distance, and

E(q‖, q⊥) describes the bulk spacer band structure. We evaluate the above expression

for glm with l < m by integrating around the boundary of the semi-infinite rectangle

−π/d ≤ Re q⊥ ≤ π/d ; Im q⊥ ≥ 0, in the complex q⊥-plane. This procedure is com-

pletely general and can be applied, within the one-band model, to any lattice structure

and layer orientation, with hoppings to arbitrary number of neighbours. For the FCC(110)

case, E(q‖, q⊥) = ǫ(q‖)+ 2t1(q‖)cos(q⊥d)+ 2t2(q‖)cos(2q⊥d), where ǫ(q‖) = −2t0 cos(2qxd),

t1(q‖) = −4t0 cos(qxd)cos(
√
2qyd), and t2(q‖) = −t0. Here qx and qy are the components

of q‖, −t0 is the hopping between first nearest neighbour atoms, and the origin of energy

is chosen such that ǫ0 = 0. t1 and t2 are the hoppings to first and second nearest planes,

respectively. Using the contour integration described above, we obtain

gn0(q‖, ω) = A1(q‖, ω)e
iq1(q‖,ω)nd + A2(q‖, ω)e

iq2(q‖,ω)nd, (5)

where cos(qjd) = −[γ+(−1)j
√

γ2 + 8(ω − ǫ+ 2t2)/2t2]/4, Aj = [2i(cos(q1d)−cos(q2d))(1−

cos2(qjd))
1/2]−1, for j = 1, 2, and γ = t1/t2. Here q⊥ = ±q1 and q⊥ = ±q2 are the roots of

the equation E(q‖, q⊥) = ω. In the present case g0n = gn0 and the above expression for gn0

can be extended to continuous values of n. Eq.(5) shows that for values of q‖ and ω, for

which q1 and q2 are real, gn0 oscillates with the superposition of two periods, 2πd/|q1| and

4



2πd/|q2|, which are in general incommensurate. In those cases gn0 exhibits a quasi-periodic

dependence on n. As it is shown below, this fact may have a striking effect on the coupling.

The function F in Eq.(1) varies with n through gn0 and therefore exhibits the same

quasi-periodic behaviour. In order to deal with this quasi-periodic function, we make use of

a procedure analogous to the one recently proposed [11] to investigate the dependence of the

coupling on the magnetic layer thickness. It consists in replacing n in expression (5) for gn0

by fictitious variables n1 and n2, which multiply q1 and q2, respectively. The real physical

situation corresponds to n1 = n2 = n. The extended function F (n1, n2) is then periodic in

each variable separately, and can be Fourier analysed in the usual way. Thus we find

F =
∑

m1,m2

Cm1,m2
ei(m1q1+m2q2)nd, (6)

where Cm1,m2
(q‖, ω) are the Fourier coefficients, and m1 and m2 are integers. Since F is in

fact a function of g2n0, it follows that Cm1,m2
= 0 unless m1 +m2 is even. These coefficients

contain all the information about the electron potential in the ferromagnetic layers. In

particular, they depend on the magnitude of Vex and vanish for Vex = 0. In the RKKY limit,

where F is replaced by the leading second-order term of its expansion in powers of Vex, the

Fourier coefficients can be determined analytically. In this limit only six coefficients appear,

namely C±2,0, C0,±2, and C±1,±1, whose values are given by C2,0 = V 2
exA

2
1/2i, C0,2 = V 2

exA
2
2/2i,

C1,1 = V 2
exA1A2/i, and the property C−m1,−m2

= C∗
m1,m2

.

By inserting Eq.(6) into Eq.(1) we find that, according to the usual stationary phase

method [1–3,11], for sufficiently large values of n, the nonzero contributions to the coupling

come from ω equal to the Fermi energy EF and q‖ in the neighbourhood of those points at

which the argument of the exponential is stationary. They are given by the equation

m1∇‖q1(q‖, EF ) +m2∇‖q2(q‖, EF ) = 0, (7)

where ∇‖ is the two-dimensional gradient in q‖ space. The position of the extremal points

can be determined exactly from the analytical expressions for q1 and q2. The weight of the

contribution to the coupling from each solution of Eq.(7) depends on the magnitude of the
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corresponding Fourier coefficient and partial derivatives of φ = m1q1 +m2q2 with respect to

qx, qy, and ω.

Clearly the surfaces q⊥ = ±q1(q‖, EF ) and q⊥ = ±q2(q‖, EF ) map out the FS. Fig. 1

shows a cross-section perpendicular to the atomic planes of the FS for EF/2t0 = 1.64 and

qy = π
√
2/4d. Note that q1 > 0 and q2 < 0. Full lines correspond to the surface ±q1 and

dashed lines to ±q2. The nature of the FS depends on EF , and three distinct energy regions

are to be considered, namely −12t0 ≤ EF ≤ −4t0, −4t0 ≤ EF ≤ 0, and 0 ≤ EF ≤ 4t0. The

two boundary values, −4t0 and 0, correspond to those values of EF at which the FS first

touches the layer geometry BZ, and develops necks, respectively. As we show below, the

numbers of periods we obtain in the three regions are different.

It is interesting to examine first the predictions for the periods in the RKKY limit, where

only six integers pairs m1 m2 are to be considered in Eq.(7). In the first energy region we

find only one period λa

2,0 = πd/|q1(qa

‖ , EF )|, with qa

‖ = (0, 0). In the second region an

additional period λb

1,1 = 2πd/|q1(qb

‖, EF ) + q2(q
b

‖, EF )| appears, where qb

‖ = (0,±π
√
2/4d).

Finally, in the third region RKKY predicts four periods, namely, λa

2,0, λ
c

2,0 = πd/|q1(qc

‖, EF )|,

λc

0,2 = πd/|q2(qc

‖, EF )|, and λc

1,1 = 2πd/|q1(qc

‖, EF ) + q2(q
c

‖, EF )| = λd

1,1 = 2πd/|q1(qd

‖ , EF ) +

q2(q
d

‖ , EF )|, with qc

‖ = (±π/2d,±π
√
2/4d) and qd

‖ = (±π/2d, 0) . The Fourier coefficients

associated with the period λα
m1,m2

are C±m1,±m2
(qα

‖ , EF ). These periods are shown in Fig. 2

as functions of EF . For the present model we find that q1(q
c

‖, EF ) and q2(q
c

‖, EF ), which are

represented in Fig. 1, satisfy the relation q1(q
c

‖, EF )− q2(q
c

‖, EF ) = π. Thus, the oscillation

periods λc

2,0 and λc

0,2 cannot be distinguished just by looking at discrete integer values of n.

We recall that in FCC Cu EF lies in the third energy region with FS necks. A quantitative

description of the oscillation periods for Cu can be obtained within the present framework

by going beyond nearest neighbours and using the tight-binding parameters of Halse [12].

Then λc

1,1 and λd

1,1 become distinct periods and, by taking into account the equivalence of

λc

2,0 and λc

0,2 for a discrete lattice, we find exactly the four RKKY periods of Bruno and

Chappert [4].

However, it follows from Eq.(7) that there are contributions to the coupling with periods
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other than those which arise in the RKKY limit discusssed above. In fact, it is easy to show

that for EF in the second and third energy regions we find an infinite number of solutions,

corresponding to infinitely many values of m1 and m2. Some of these solutions correspond

merely to harmonics of the fundamental RKKY periods but some fundamentally new periods

can arise. The simplest and most interesting case actually occurs in the top energy region,

where ∇‖q1 and ∇‖q2 vanish simultaneously at qc

‖. Thus, Eq.(7) is automatically satisfied for

any values of m1 and m2. The corresponding periods are λc

m1,m2
= 2πd/|m1q1 +m2q2|. Fig.

3 exhibits the coupling J at temperature T = 2.0 × 10−3W/kB as a function of the spacer

thickness for EF/2t0 = 1.64 and Vex = 0.15W , where W = 16t0 is the spacer band-width.

We chose this value of EF so that an important new period λc

3,1, plotted as a function of

EF in Fig.2, is well separated from the RKKY periods. The full line in Fig.3 corresponds

to the result obtained from Eq.(1), and the dashed line to the RKKY approximation scaled

down by a factor of 8. In both cases n was treated as a continuous variable, but the physical

discrete values are indicated. For this EF the long period dominates both curves although

with an amplitude differing by a large factor, but the interesting fine structure is different and

reflects contributions beyond the fundamental RKKY periods. To make this point explicit,

we present in the inset the absolute value of the ratio between some coefficients Cm1,m2
and

C1,1, the largest coefficient of a fundamental RKKY period, as a function of Vex and for

qc

‖. As expected, for very small exchange splittings, the magnitudes of higher order Fourier

coefficients relative to that of the fundamental RKKY one are negligible. However, they

rapidly increase with Vex, and the ratio |Cm1,m2
|/|C1,1| becomes significant. From the inset

in Fig.3, we see that for Vex = 0.15W , there are additional contributions to the coupling

coming not just from harmonics of the RKKY frequencies, which correspond to m1 and

m2 even, but a very important one coming from a new period λc

3,1 = 4.5d. In fact, the

contribution from this new period can be calculated separately using the stationary phase

method [1–3,11]. The result is shown in Fig.4, together with those corresponding to two of

the fundamental RKKY periods, namely, λa

2,0 and λc

2,0. It is clear that this new period is as

important as the RKKY ones, except for the dominant long period whose large amplitude is
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due to FS geometry which causes some second derivatives of φ to vanish, making a stationary

phase evaluation of this contribution impossible. The amplitude of the new contribution falls

off as 1/n2 just like the normal RKKY components and their harmonics [1–5].

The appearance of the non-RKKY periods is clearly related to the spacer off-diagonal

propagators oscillating as a function of the spacer thickness with more than one period, for

fixed energy and q‖. As we have shown, such a behaviour can be found even in the one-band

model, for which the FS is simple and has a single sheet. It can also be found in those cases

in which the spacer FS has more than one sheet. Thus we may expect the occurrence of

non-RKKY periods in the coupling through a non-magnetic transition metal. Therefore,

in those cases, the interpretation of the results in terms of just the RKKY theory may be

misleading.

In conclusion, we have shown that the relation between the oscillation periods of the

coupling and the spacer FS is more complex and subtler than has been assumed so far,

making possible the appearance of non-RKKY periods. This is the central result in this

communication, which settles the long standing question about whether or not the quantum

well and the RKKY theories always give the same periods of oscillation.

We are grateful to EPSRC and Royal Society of UK, and CNPq of Brazil for financial

support. We also would like to acknowledge Dr. R. B. Muniz and Dr. Murielle Villeret for

useful discussions in the early stages of this work.

8



REFERENCES

[1] D. M. Edwards, J. Mathon, R. B. Muniz and M. S. Phan, Phys. Rev. Lett. 67, 493

(1991).

[2] D. M. Edwards, J. Mathon, R. B. Muniz and M. S. Phan, J. Phys.: Condens. Matter 3

4941 (1991)

[3] J. Mathon, Murielle Villeret and D. M. Edwards, J. Phys.: Condens. Matter 4, 9873

(1992)

[4] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991)

[5] P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992)

[6] J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69 844 (1992)

[7] D. M. Edwards, J. Mathon and R. B. Muniz, Phys. Rev. B 50 16066 (1994)

[8] J. d’Albuquerque e Castro, M. S. Ferreira and R. B. Muniz, Phys. Rev. B 49, 16062

(1994)

[9] M. van Schilfgaarde and W. A. Harrison, Phys. Rev. Lett. 71 3870 (1993)

[10] A. V. Kozlov and W. A. Harrison, Phys. Rev. B 48 12334 (1993)

[11] J. d’Albuquerque e Castro, J. Mathon, Murielle Villeret and D. M. Edwards, Phys. Rev.

B 51, 12876 (1995)

[12] M. R. Halse, Trans. Roy. Soc. London A 265, 507 (1969)

9



FIGURES

FIG. 1. Cross-section of the spacer Fermi surface perpendicular to the layers for EF/2t0 = 1.64

(see text). Full lines correspond to the surface ±q1 and dashed lines to ±q2. The two vectors

q1(q
c

‖, EF ) and q2(q
c

‖, EF ) are indicated.

FIG. 2. RKKY periods as a function of EF . Curves 1,2,3,4, and 5 correspond to λa
2,0, λ

b
1,1,

λc
2,0, λ

c
0,2, and λc

1,1 = λd
1,1, respectively. The dot-dashed curve is a new period λc

3,1.

FIG. 3. Exchange coupling as a function of the spacer thickness for EF /2t0 = 1.64, Vex = 0.15W

and kBT = 2.0× 10−3W (full line). The dashed line corresponds to the RKKY result scaled down

by a factor of 8. The inset shows the ratio |C3,1|/|C1,1| (full line), |C4,2|/|C1,1| (dashed line), and

|C4,0|/|C1,1| (dot-dashed lined) as a function of Vex, for q
c

‖.

FIG. 4. Contributions to the coupling coming from the non-RKKY period λc
3,1 (full line), and

two RKKY periods λa
2,0 (dashed line) and λc

2,0 (dot-dashed line) (see text).
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